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Artinianness of Certain Graded Local
Cohomology Modules

Amir Mafi and Hero Saremi

Abstract. 'We show that if R = €@, en, Ru is a Noetherian homogeneous ring with local base ring
(Ro, mg), irrelevant ideal Ry, and M a finitely generated graded R-module, then HT]T.IOR(H}2+ (M)) is

Artinian for j = 0,1 where t = inf{i € Ny : H}ih (M) is not finitely generated}. Also, we prove that
if cd(Ry, M) = 2, then for eachi € Ny, H! (HIZ2+ (M)) is Artinian if and only if Hit2 (Hllh (M)) is

moR moR
Artinian, where cd(R+, M) is the cohomological dimension of M with respect to Ry. This improves

some results of R. Sazeedeh.

1 Introduction

Throughout this note, we assume that R = P, oy, Rs is a Noetherian homoge-
neous ring with local base ring (Ry, mg). This means that there are finitely many
Ii,...,l, € Rysuchthat R = Ry[l;,...,L.]. Wedenote R, = @nGN R,, the irrelevant
ideal of R, and that m = my & R, the graded maximal ideal of R. Assume also that
M = @, ., M, is a finitely generated graded R-module. For each i € Ny, let H§+ (M)
denote the i-th local cohomology module of M with respect to R, furnished with its
natural grading [2, Chapter 12]. For the unexplained terminology we refer to [2].
Brodmann, Fumasoli and Tajarod [3] proved that for eachi € Nyand j = 0, 1, the
graded module ano R(Hziz+ (M)) is Artinian whenever dim Ry < 1. Later Brodmann,
Rohrer and Sazeedeh [4]showed that Hlﬁlo R(Hfh (M)) is Artinian for each i € N even
if dim Ry = 2. Sazeedeh [8] proved that I'y, z(Hf, (M)) is Artinian whenever ¢ is the
least non-negative integer i such that Hy (M) is not R, -cofinite. The aim of this note

is to show that H, ,{10 r(Hg, (M)) is Artinian, whenever

t = inf{i € Ny : Hj, (M) is not finitely generated }

and j = 0,1. This generalizes the corresponding result which is shown in [9, The-
orem 2.2] for the special case t = j = 1 and which was already mentioned above.
In addition, we show that if cd(R,, M) = 1, then for each j,t € Ny, H&OR(H@ (M))
is Artinian and also if cd(R,, M) = 2, then H J (HIZ2+ (M)) is Artinian if and only if

. meR
Hﬁé(H &, (M)) is Artinian. This extends the main result which is shown in [9, Theo-
rem 2.3].
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2 The Results

Theorem 2.1 Let t be a non-negative integer and let Hy (M) be a finitely generated
R-module for all i < t. Then H;, p(Hy (M)) is Artinian for j = 0, 1.

Proof By [6, Theorem 11.38], there is the Grothendieck spectral sequence

EM = HE (HE (M) i HEM(M).

Since E/*? is a subquotient of ES*? for all r > 2, by [2, Exercise 2.1.9; Theorem
7.1.3] and our hypotheses we have that EP9 is Artinian for all r > 2, p > 0,and
q < t. Foreachr > 2and p,q > 0, let 271 = ker(EP? — EF*"~"') and BP! =
im(EF """~ — EPY). For each r > 2 and p = 0, 1 we have the exact sequences

0— BP1 — 7P1 — Eff{ —0
and

(21) 00— Z;qu N Ef:q N Blr’JJrT,q—rJrl — 0.

Notice that B?" = 0 and Bf”’t_m is Artinian for all > 2 and p = 0, 1. Hence
we have that

(2.2) zpt = BN

forallr >2and p =0, 1.

Now EZ! is isomorphic to a subquotient of HE™ (M) and thus is Artinian for all
p > 0. Since EZ! = EP for r sufficiently large, we have that Ef is Artinian for
all p > 0 and all large r. Fix r and suppose E’ jrtl is Artinian for p = 0,1. From
the isomorphism (Z2) we have that Z/" is Artinian for p = 0,1. From the exact
sequence (2.1) we get that EP? is Artinian. Continuing in this fashion we see that B
is Artinian for all ¥ > 2 and p = 0, 1. In particular, Eg t = H;l;OR(Hfe+ (M)) is Artinian
forp=0,1. |

The following corollaries immediately follow by Theorem [2.1]

Corollary 2.2 ([9, Theorem 2.2]) The graded module ng)R(H}2+ (M)) is Artinian for
j=0,1

Corollary 2.3 Let t be a non-negative integer such that grade(R,, M) = t. Then
HQOR(H@(M)) is Artinian for j = 0, 1.

Proposition 2.4 Let t be a non-negative integer and let ano R(HA (M)) be Artinian
forall j # t and for all i. Then H,, x(Hy (M)) is Artinian for all i.
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Proof Consider the Grothendieck spectral sequence

E}T = HE p(HE (M) = HAM(M).

mnR

For each r > 2, we consider the exact sequence

art
(2.3) 00— ker dPt N EP ot d Ep+ft T+l

It follows from our hypotheses that the R-module EF*"*~"*! is Artinian. Note that
EP is a subquotient of E)* for all p, q > 0. There is an integer s such that E5 = EP
forall p,gandall r > s. Also, for each n > 0, there is a finite filtration

0:¢H+IHH gd)an g - g¢lHn Q¢OH11:HH

of the module H" = H" (M) such that EZJ" 7 = ¢?H" /¢p?* ' H" for all 0 < p < n.
Thus EZ2 is Artlnlan for all p,q > 0. Since EP = ker df L/ im dp SH s 2, it

follows that ker 4| is Artinian for all p > 0. Hence by using the exact sequence

(@3) for r = s — 1, we deduce that E’”'| is Artinian for all p > 0. By continuing this

argument repeatedly for integer s — 1,5 — 2, ..., 3 instead of s, we obtain that E{" is
Artinian for p > 0. [ ]

Hellus [5, Example 1.1] showed that there exists an ideal of cohomological dimen-
sion 1 which is not principal. Hence the following consequence is a generalization of
[9, Proposition 2.6].

Corollary 2.5 Letcd(Ry,M) = 1. Then annR(H£+ (M)) is Artinian for all i, j.
Proof This is clear by Proposition 2.4l [ |

Corollary 2.6 Letcd(R,,M) = 2. Then Hn R(HR (M)) is Artinian for all i if and
only if H, DR(H121 (M)) is Artinian for all i.

Proof By Proposition [2.4] and this fact that H, H, R(F g, (M)) is Artinian for all 7, the
result easily follows. u

Aghapournahr and Melkersson [1, Theorem 2.18] proved that if a and b are two
ideals of R such that R/a + b is Artinian and ara(a) = 2, then the module H{ (H2(M))
is Artinian if and only if the module H{"*(H}(M)) is Artinian for all t. Since the
arithmetic rank is less than the cohomological dimension, the following result is an
improvement of [1, Theorem 2.18].

Theorem 2.7 ([9 Theorem 2.3]) Let cd(Ry, M) = 2 and let t be a non-negative
integer. Then H (H2 (M)) is Artinian if and only if H.}2 (Hllh (M)) is Artinian.

ng moR

Proof By [2, Corollary 2.1.7] and [7, §1], we can assume that I'g, (M) = 0. Consider
the Grothendieck spectral sequence

qu ng(Hq (M)) :> H1l1)1+q(M)~
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Foreachr > 2, p > 0,and g = 1,2 let Z7 = ker(EP'? — EF*™™"') and
BP! = im(EF """ — EP). Notice that BYY = 0 forallr > 2, p > 0,and g > 2
and 201 = El"forallr > 2, p > 0,and q = 1. Forallr > 2 and p,q > 0, we
consider the exact sequence

(2.4) 0 — ZP9 — EP4 — BPHra—TTL
Since EF1 = 7z /B! for all r > 2 and p,q > 0, it follows that
~ gt
(2.5) Z:,z ~ E:+1-

Hence from the exact sequence (2.4) and the isomorphism (Z.3) we obtain that Z;*

E2. On the other hand E;"™' 2 73" and B/*»! = 0 for all r > 3. It therefore

follows that Ey™' /B, = 421, Now from the exact sequence

t,2 t+2,1
0—E —E"—E" —E> —0

the result follows. [ |

Remark  Let cd(R;,M) = 2. Then I'yg(Hg, (M)) is Artinian if and only if
H; r(Hy, (M)) is Artinian.
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