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Abstract

We apply the methods of Heegaard Floer homology to identify topological properties of complex
curves in CP2. As one application, we resolve an open conjecture that constrains the Alexander
polynomial of the link of the singular point of the curve in the case that there is exactly one singular
point, having connected link, and the curve is of genus zero. Generalizations apply in the case of
multiple singular points.
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1. Introduction

We consider irreducible algebraic curves C ⊂ CP2. Such a curve has a finite
set of singular points, {zi}

n
i=1; a neighborhood of each intersects C in a cone on

a link L i ⊂ S3. A fundamental question asks what possible configurations of
links {L i} arise in this way. In this generality the problem is fairly intractable,
and research has focused on a restricted case, in which each L i is connected (and
is thus denoted Ki ), and C is a rational curve, meaning that there is a rational
surjective map CP1

→ C . Such a curve is called rational cuspidal. Being rational
cuspidal is equivalent to C being homeomorphic to S2.

Our results apply in the case of multiple singular points, but the following
statement gives an indication of the nature of the results and their consequences.
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THEOREM 1.1. Suppose that C is a rational cuspidal curve of degree d with
one singular point, a cone on the knot K , and the Alexander polynomial of K is
expanded at t = 1 to be∆K (t) = 1+((d − 1)(d − 2)/2)(t−1)+(t−1)2

∑
l kl t l .

Then, for all j, 0 6 j 6 d − 3, kd(d− j−3) = ( j + 1)( j + 2)/2.

There are three facets to the work here.

(1) We begin with a basic observation that a neighborhood Y of C is built from
the 4-ball by attaching a 2-handle along the knot K = #Ki with framing d2,
where d is the degree of the curve. Thus, its boundary, S3

d2(K ), bounds the
rational homology ball CP2

\Y . From this, it follows that the Heegaard Floer
correction term satisfies d(S3

d2(K ), sm) = 0 if d|m, for properly enumerated
Spinc structures sm .

(2) Because each Ki is an algebraic knot (in particular an L-space knot), the
Heegaard Floer complex CFK∞(S3, Ki) is determined by the Alexander
polynomial of Ki , and thus the complex CFK∞(S3, K ) and the d-invariants
are also determined by the Alexander polynomials of the Ki .

(3) The constraints that arise on the Alexander polynomials, although initially
appearing quite intricate, can be reinterpreted in compact form using
semigroups of singular points. In this way, we can relate these constraints to
well-known conjectures.

1.1. The conjecture of Fernández de Bobadilla, Luengo, Melle-Hernandez,
and Némethi. In [7], the following conjecture was proposed. It was also verified
for most of the known examples of rational cuspidal curves.

CONJECTURE 1.2 [7]. Suppose that the rational cuspidal curve C of degree d has
critical points z1, . . . , zn . Let K1, . . . , Kn be the corresponding links of singular
points, and let∆1, . . . , ∆n be their Alexander polynomials. Let∆ = ∆1 · . . . ·∆n ,
expanded as

∆(t) = 1+
(d − 1)(d − 2)

2
(t − 1)+ (t − 1)2

2g−2∑
j=0

kl t l .

Then, for any j = 0, . . . , d − 3, kd(d− j−3) 6 ( j + 1)( j + 2)/2, with equality for
n = 1.

We remark that the case n = 1 of the conjecture is Theorem 1.1. We will prove
this result in Section 4.4. Later, we will also prove an alternative generalization
of Theorem 1.1 for the case n > 1, stated as Theorem 5.4, which is the main
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result of the present article. The advantage of this formulation over the original
conjecture lies in the fact that it gives precise values of the coefficients kd(d− j−3).
Theorem 6.5 provides an equivalent statement of Theorem 5.4.

REMARK 1.3. After a preliminary version of this paper appeared, Bodnár and
Némethi [2] found a counterexample to Conjecture 1.2 with three singular points;
see Remark 5.5 for more details.

2. Background: Algebraic geometry and rational cuspidal curves

In this section, we will present some of the general theory of rational cuspidal
curves. Section 2.1 includes basic information about singular points of plane
curves. In Section 2.2, we discuss the semigroup of a singular point and its
connections to the Alexander polynomial of the link. We shall use results from this
section later in the article to simplify the equalities that we obtain. In Section 2.3,
we describe results from [7] to give some flavor of the theory. In Section 2.4, we
provide a rough sketch of some methods used to study rational cuspidal curves.
We refer to [15] for an excellent and fairly up-to-date survey of results on rational
cuspidal curves.

2.1. Singular points and algebraic curves. For a general introduction and
references to this subsection, we refer to [4, 8], or to [14, Section 10] for a
more topological approach. In this article, we will be considering algebraic curves
embedded in CP2. Thus we will use the word curve to refer to a zero set of an
irreducible homogeneous polynomial F of degree d. The degree of the curve is
the degree of the corresponding polynomial.

Let C be a curve. A point z ∈ C is called singular if the gradient of F vanishes
at z. Singular points of irreducible curves in CP2 are always isolated. Given a
singular point and a sufficiently small ball B ⊂ CP2 around z, we call K = C∩∂B
the link of the singular point. The singular point is called cuspidal or unibranched
if K is a knot, that is, a link with one component, or, equivalently, if there is an
analytic map ψ from a disk in C onto C ∩ B.

Unless specified otherwise, all singular points are assumed to be cuspidal.
Two unibranched singular points are called topologically equivalent if the links

of these singular points are isotopic; see for instance [8, Definition I.3.30] for
more details. A unibranched singular point is topologically equivalent to one for
which the local parameterization ψ is given in local coordinates (x, y) on B by
t 7→ (x(t), y(t)), where x(t) = t p, y(t) = tq1 + · · · + tqn for some positive
integers p, q1, . . . , qn satisfying p < q1 < q2 < · · · < qn . Furthermore, if we set
Di = gcd(p, q1, . . . , qi), then Di does not divide qi+1, and Dn = 1. The sequence
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(p; q1, . . . , qn) is called the characteristic sequence of the singular point, and p
is called the multiplicity. Sometimes n is referred to as the number of Puiseux
pairs, a notion which comes from an alternative way of encoding the sequence
(p; q1, . . . , qn). We will say that a singular point is of type (p; q1, . . . , qn) if it
has a presentation of this sort in local coordinates.

The link of a singular point with a characteristic sequence (p; q1, . . . , qn) is an
(n − 1)-fold iterate of a torus knot T (p′, q ′), where p′ = p/D1 and q ′ = q1/D1;
see for example [4, Sections 8.3 and 8.5] or [28, Ch. 5.2]. In particular, if n = 1,
the link is a torus knot T (p, q1). In all cases, the genus of the link is equal to
µ/2 = δ, where µ is the Milnor number and δ is the so-called δ-invariant of the
singular point; see [8, page 205] or [14, Section 10]. The genus is also equal to
half the degree of the Alexander polynomial of the link of the singular point. The
Milnor number can be computed from the following formula; see [14, Remark
10.10]:

µ = (p − 1)(q1 − 1)+
n∑

i=2

(Di − 1)(qi − qi−1).

Suppose that C is a degree-d curve with singular points z1, . . . , zn (and
L1, . . . , Ln are their links). The genus formula, due to Serre (see [14, Property
10.4]), states that the genus of C is equal to

g(C) =
1
2
(d − 1)(d − 2)−

n∑
i=1

δi .

If all the critical points are cuspidal, we have δi = g(L i), so the above formula
can be written as

g(C) =
1
2
(d − 1)(d − 2)−

n∑
i=1

g(L i). (2.1)

In particular, C is rational cuspidal (that is, it is a homeomorphic image of a
sphere) if and only

∑
g(L i) =

1
2 (d − 1)(d − 2).

2.2. Semigroup of a singular point. The notion of the semigroup associated
to a singular point is a central notion in the subject, although in the present work
we use only the language of semigroups, not the algebraic aspects. We refer to
[28, Ch. 4] or [8, page 214] for details and proofs. Suppose that z is a cuspidal
singular point of a curve C , and that B is a sufficiently small ball around z. Let
ψ(t) = (x(t), y(t)) be a local parameterization of C ∩ B near z; see Section 2.1.
For any polynomial G(x, y), we look at the order at zero of an analytic map
t 7→ G(x(t), y(t)) ∈ C. Let S be the set of integers that can be realized as the
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order for some G. Then S is clearly a semigroup of Z>0. We call it the semigroup
of the singular point. The semigroup can be computed from the characteristic
sequence: for example, for a sequence (p; q1), S is generated by p and q1. The
gap sequence, G := Z>0\S, has precisely µ/2 elements, and the largest one is
µ− 1, where µ is the Milnor number.

We now assume that K is the link of the singular point z. Explicit computations
of the Alexander polynomial of K show that it is of the form

∆K (t) =
2m∑
i=0

(−1)i tni , (2.2)

where ni form an increasing sequence with n0 = 0 and n2m = 2g, twice the genus
of K .

Expanding tn2i − tn2i−1 as (t − 1)(tn2i−1
+ tn2i−2

+ · · · + tn2i−1) yields

∆K (t) = 1+ (t − 1)
k∑

j=1

t g j , (2.3)

for some finite sequence 0 < g1 < · · · < gk . We have the following result (see
[28, Exercise 5.7.7]).

LEMMA 2.4. The sequence g1, . . . , gk is the gap sequence of the semigroup of
the singular point. In particular k = #G = µ/2, where µ is the Milnor number,
so #G is the genus.

Writing t g j as (t−1)(t g j−1
+ t g j−2

+· · ·+ t+1)+1 in (2.3) yields the following
formula:

∆K (t) = 1+ (t − 1)g(K )+ (t − 1)2
µ−2∑
j=0

k j t j , (2.5)

where k j = #{m > j : m 6∈ S}.
We shall use the following definition.

DEFINITION 2.6. For any finite increasing sequence of positive integers G, we
define

IG(m) = #{k ∈ G ∪ Z<0 : k > m}, (2.7)

where Z<0 is the set of the negative integers. We shall call IG the gap function,
because in most applications G will be a gap sequence of some semigroup.

REMARK 2.8. We point out that, for j = 0, . . . , µ− 2, we have IG( j + 1) = k j ,
where the k j are as in (2.5).
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EXAMPLE 2.9. Consider the knot T (3, 7). Its Alexander polynomial is

(t21
− 1)(t − 1)

(t3 − 1)(t7 − 1)
= 1− t + t3

− t4
+ t6
− t8
+ t9
− t11

+ t12

= 1+ (t − 1)(t + t2
+ t4
+ t5
+ t8
+ t11)

= 1+ 6(t − 1)+ (t − 1)2(6+ 5t + 4t2

+ 4t3
+ 3t4

+ 2t5
+ 2t6

+ 2t7
+ t8
+ t9
+ t10).

The semigroup is (0, 3, 6, 7, 9, 10, 12, 13, 14, . . .). The gap sequence is 1, 2, 4,
5, 8, 11.

REMARK 2.10. The passage from (2.2) through (2.3) to (2.5) is just an algebraic
manipulation, and thus it applies to any knot whose Alexander polynomial has
form (2.2). In particular, according to [24, Theorem 1.2], it applies to any L-space
knot. In this setting, we will also call the sequence g1, . . . , gk the gap sequence of
the knot, and denote it by G K ; we will write IK (m) for the gap function relative
to G K . Even though the complement Z>0\G K is not always a semigroup, we still
have #G K =

1
2 deg∆K . This property follows immediately from the symmetry of

the Alexander polynomial.

2.3. Rational cuspidal curves with one cusp. The classification of rational
cuspidal curves is a challenging old problem, with some conjectures (like
the Coolidge–Nagata conjecture [5, 16]) remaining open for many decades.
The classification of curves with a unique critical point is far from being
accomplished; the special case when the unique singular point has only one
Puiseux term (its link is a torus knot) is complete [7], but even in this basic case
the proof is quite difficult.

To give some indication of the situation, consider two families of rational
cuspidal curves. The first one is written in projective coordinates on CP2 as
xd
+ yd−1z = 0 for d > 1; the other one is (zy − x2)d/2 − xyd−1

= 0 for d
even and d > 1. These are of degree d . Both families have a unique singular
point: in the first case, it is of type (d − 1; d); in the second case, it is of type
(d/2; 2d − 1). In both cases, the Milnor number is (d − 1)(d − 2), so the curves
are rational. An explicit parameterization can be easily given as well.

There also exist more complicated examples. For instance, Orevkov [21]
constructed rational cuspidal curves of degree φ j having a single singular point
of type (φ j−2;φ j+2), where j is odd and j > 5. Here, the φ j are the Fibonacci
numbers, φ0 = 0, φ1 = 1, φ j+2 = φ j+1 + φ j . As an example, there exists a
rational cuspidal curve of degree 13 with a single singular point of type (5; 34).
Orevkov’s construction is inductive and by no means trivial. Another family found
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by Orevkov is rational cuspidal curves of degree φ2
j−1−1 having a single singular

point of type (φ2
j−2;φ

2
j ), for j > 5, odd.

The main result of [7] is that, apart from these four families of rational cuspidal
curves, there are only two sporadic curves with a unique singular point having
one Puiseux pair, one of degree eight, and the other of degree 16.

2.4. Constraints on rational cuspidal curves. Here, we review some
constraints for rational cuspidal curves. We refer to [15] for more details and
references. The article [7] shows how these constraints can be used in practice.
The fundamental constraint is given by (2.1). Then Matsuoka and Sakai [13]
proved that, if (p1; q11, . . . , q1k1), . . . , (pn; qn1, . . . , qnkn ) are the only singular
points occurring on a rational cuspidal curve of degree d with p1 > · · · > pn ,
then p1 > d/3. Later, Orevkov [21] improved this to α(p1 + 1) + 1/

√
5 > d,

where α = (3+
√

5)/2 ∼ 2.61, and showed that this inequality is asymptotically
optimal (it is related to the curves described in Section 2.1). Both proofs use very
deep algebro-geometric tools. We re-prove the result of [13] in Proposition 6.7
below.

Another obstruction comes from the semicontinuity of the spectrum, a concept
that arises from Hodge theory. Even a rough definition of the spectrum of a
singular point is beyond the scope of this article. We refer to [1, Ch. 14] for a
definition of the spectrum, and to [7] for illustrations of its use. We point out
that recently (see [3]) a tight relation has been drawn between the spectrum
of a singular point and the Tristram–Levine signatures of its link. In general,
semicontinuity of the spectrum is a very strong tool, but it is also very difficult to
apply.

Using tools from algebraic geometry, such as the Hodge index theorem, Tono
in [27] proved that any rational cuspidal curve can have at most eight singular
points. An old conjecture is that a rational cuspidal curve can have at most four
singular points; see [25] for a precise statement.

In [6], a completely new approach was proposed, motivated by a conjecture on
Seiberg–Witten invariants of links of surface singularities made by Némethi and
Nicolaescu; see [19]. Specifically, Conjecture 1.2 in the present article arises from
these considerations. Another reference for the general conjecture on Seiberg–
Witten invariants is [18].

3. Topology, algebraic topology, and Spinc structures

Let C ⊂ CP2 be a rational cuspidal curve. Let d be its degree, and let z1, . . . , zn

be its singular points. We let Y be a closed manifold regular neighborhood of C ,
let M = ∂Y , and let W = CP2 − Y .
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3.1. Topological descriptions of Y and M. The neighborhood Y of C can
be built in three steps. First, disk neighborhoods of the zi are selected. Then
neighborhoods of N − 1 embedded arcs on C are adjoined, yielding a 4-ball.
Finally, the remainder of C is a disk, so its neighborhood forms a 2-handle
attached to the 4-ball. Thus, Y is a 4-ball with a 2-handle attached. The attaching
curve is easily seen to be K = #Ki . Finally, since the self-intersection of C is d2,
the framing of the attaching map is d2. In particular, M = S3

d2(K ).
One quickly computes that H2(CP2,C) = Zd , and H4(CP2,C) = Z, with the

remaining homology groups 0. Using excision, we see that the groups Hi(W,M)
are the same. Via Lefschetz duality and the universal coefficient theorem, we find
that H0(W ) = Z, H1(W ) = Zd , and all the other groups are 0. Finally, the long
exact sequence of the pair (W,M) yields

0→ H2(W,M)→ H1(M)→ H1(W )→ 0,

which in this case is

0→ Zd → Zd2 → Zd → 0.

This is realized geometrically by letting the generator of H2(W,M) be H ∩W ,
where H ⊂ CP2 is a generic line. Its boundary is algebraically d copies of the
meridian of the attaching curve K in the 2-handle decomposition of Y .

Taking duals, we see that the map H 2(W )→ H 2(M), which maps Zd → Zd2 ,
takes the canonical generator to d times the dual to the meridian in M = S3

d2(K ).

3.2. Spinc structures. For any space X , there is a transitive action of H 2(X)
on Spinc (X ). Thus, W has d Spinc structures, and M has d2 such structures.

Since CP2 has a Spinc structure with first Chern class a dual to the class of the
line, its restriction to W is a structure whose restriction to M has first Chern class
equal to d times the dual to the meridian.

For a cohomology class z ∈ H 2(X) and a Spinc structure s, one has c1(z ·
s) − c1(s) = 2z. Thus, for each k ∈ Z, there is a Spinc structure on M which
extends to W having first Chern class of the form d + 2kd. Notice that, for d
odd, all md ∈ Zd2 for m ∈ Z occur as first Chern classes of Spinc structures that
extend over W , but, for d even, only elements of the form md with m odd occur.
(Thus, for d even, there are d extending structures, but only d/2 first Chern classes
that occur.)

According to [23, Section 3.4], the Spinc structures on M have an enumeration
sm , for m ∈ [−d2/2, d2/2], which can be defined via the manifold Y . Specifically,
sm is defined to be the restriction to M of the Spinc structure on Y , tm , with the
property that 〈c1(tm),C〉 + d2

= 2m. We point out that, if d is even, sd2/2 and
s−d2/2 denote the same structure; see Remark 4.5 below.

https://doi.org/10.1017/fms.2014.28 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2014.28


Rational cuspidal curves 9

It now follows from our previous observations that the structures sm that extend
to W are those with m = kd for some integer k,−d/2 6 k 6 d/2 if d is odd. If d
is even, then those that extend have m = kd/2 for some odd k, −d 6 k 6 d . For
future reference, we summarize this with the following lemma.

LEMMA 3.1. If W 4
= CP2 − Y , where Y is a neighborhood of a rational

cuspidal curve C of degree d (as constructed above), then the Spinc structure sm

on ∂W 4 extends to W 4 if m = kd for some integer k,−d/2 6 k 6 d/2 if d is odd.
If d is even, then those that extend have m = kd/2 for some odd k, −d 6 k 6 d.
Here, sm is the Spinc structure on ∂W that extends to a structure t on Y satisfying
〈c1(tm),C〉 + d2

= 2m.

4. Heegaard Floer theory

Heegaard Floer theory [22] associates to a 3-manifold M , with Spinc structure
s, a filtered graded chain complex C F∞(M, s) over the field Z2 defined up to a
filtered chain homotopy equivalence. A fundamental invariant of the pair (M, s),
the correction term or d-invariant, d(M, s) ∈ Q, is determined by C F∞(M, s).
The manifold M is called an L-space if certain associated homology groups are
of rank one [24].

A knot K in M provides a second filtration on C F∞(M, s) [22]. In particular,
for K ⊂ S3, there is a bifiltered graded chain complex CFK∞(K ) over the field Z2.
It is known that for algebraic knots the complex is determined by the Alexander
polynomial of K . More generally, this holds for any knot upon which some
surgery yields an L-space; these knots are called L-space knots.

The Heegaard Floer invariants of surgery on K , in particular the d-invariants
of S3

q(K ), are determined by this complex, and for q > 2(genus(K )) the
computation of d(S3

q(K ), s) from C F K∞(K ) is particularly simple. In this
section, we will illustrate the general theory, leaving the details to references such
as [9, 11].

4.1. CFK∞(K ) for K an algebraic knot. Figure 1 is a schematic illustration
of a finite complex over Z2. Each dot represents a generator, and the arrows
indicate boundary maps. Abstractly, it is of the form 0 → Z4

2 → Z5
2 → 0

with homology Z2. The complex is bifiltered, with the horizontal and vertical
coordinates representing the filtrations levels of the generators. We will refer
to the two filtrations levels as the (i, j)-filtrations levels. The complex has an
absolute grading which is not indicated in the diagram; the generator at filtration
level (0, 6) has grading zero, and the boundary map lowers the grading by one.
Thus, there are five generators at grading level zero and four at grading level one.
We call the first set of generators type A, and the second type B.
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Figure 1. The staircase complex St(K ) for the torus knot T (3, 7).

We will refer to a complex such as this as a staircase complex of length n,
St(v), where v is a (n − 1)-tuple of positive integers designating the length of
the segments starting at the top left and moving to the bottom right in alternating
right and downward steps. Furthermore, we require that the top left vertex lies on
the vertical axis and the bottom right vertex lies on the horizontal axis. Thus, the
illustration is of St(1, 2, 1, 2, 2, 1, 2, 1). The absolute grading of St(v) is defined
by setting the grading of the top left generator to be equal to zero and the boundary
map to lower the grading by one.

The vertices of St(K ) will be denoted Vert(St (K )). We shall write
VertA(St(K )) to denote the set of type A vertices, and write VertB(St(K ))
for the set of vertices of type B.

If K is a knot admitting an L-space surgery, in particular an algebraic knot
(see [10]), then it has Alexander polynomial of the form ∆K (t) =

∑2m
i=0(−1)tni .

To such a knot we associate a staircase complex, St(K ) = St(ni+1 − ni), where i
runs from zero to 2m − 1. As an example, the torus knot T (3, 7) has Alexander
polynomial 1− t + t3

− t4
+ t6
− t8
+ t9
− t11

+ t12. The corresponding staircase
complex is St(1, 2, 1, 2, 2, 1, 2, 1).

Given any finitely generated bifiltered complex S, one can form a larger
complex S⊗Z2[U,U−1

], with differentials defined by ∂(x⊗U i)= (∂x)⊗U i . It is
graded by gr(x⊗U k) = gr(x)−2k. Similarly, if x is at filtration level (i, j), then
x ⊗ U i is at filtration level (i − k, j − k). If K admits an L-space surgery, then
St(K ) ⊗ Z2[U,U−1

] is isomorphic to CFK∞(K ). Figure 2 illustrates a portion
of St(T (3, 7)) ⊗ Z2[U,U−1

], that is, a portion of the Heegaard Floer complex
CFK∞(T (3, 7)).
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Figure 2. A portion of CFK∞(T (3, 7)).

4.2. d-invariants from CFK∞(K ). We will not present the general definition
of the d-invariant of a 3-manifold with Spinc structure; details can be found
in [22]. However, in the case that a 3-manifold is of the form S3

q(K ), where
q > 2(genus(K )), there is a simple algorithm (originating from [23, Section 4];
we use the approach of [9, 11]) to determine this invariant from CFK∞(K ).

If m satisfies −d/2 6 m 6 d/2, one can form the quotient complex

CFK∞(K )/CFK∞(K ){i < 0, j < m}.

We let dm denote the least grading in which this complex has a nontrivial
homology class, say [z], where [z] must satisfy the added constraint that, for all
i > 0, [z] = U i

[zi ] for some homology class [zi ] of grading dm + 2i .
In [23, Theorem 4.4], we find the following result.

THEOREM 4.1. For the Spinc structure sm , d(S3
q(K ), sm) = dm +

((−2m + q)2 − q)/4q.

4.3. From staircase complexes to the d-invariants. Let us now define a
distance function for a staircase complex by the formula

JK (m) = min
(v1,v2)∈Vert(St(K ))

max(v1, v2 − m),

where v1, v2 are coordinates of the vertex v. Observe that the minimum can
always be taken with respect to the set of vertices of type A. The function JK (m)
represents the greatest r such that the region {i 6 0, j 6 m} intersects St(K )⊗U r

nontrivially. It is immediately clear that JK (m) is a nonincreasing function. It is
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–1–2–3–4–5–6–7 0 1 2 3 4 5 6 7

Figure 3. The function J (m) for the knot T (3, 7). When (0,m) lies on the dashed
vertical intervals, the function J (m) is constant; when it is on solid vertical
intervals, the function J (m) is decreasing. The dashed lines connecting vertices
to points on the vertical axis indicate how the ends of dashed and solid intervals
are constructed.

also immediate that for m > g we have JK (m) = 0. Figure 3 illustrates properties
of the function JK (m) for the K = T (3.7).

For the sake of the next lemma, we define n−1 = −∞.

LEMMA 4.2. Suppose that m 6 g. We have JK (m + 1)− JK (m) = −1 if n2i−1−

g 6 m < n2i − g for some i, and JK (m + 1) = JK (m) otherwise.

Proof. The proof is purely combinatorial. We order the type A vertices of St(K )
so that the first coordinate is increasing, and we denote these vertices v0, . . . , vk .
For example, for St(T (3, 7)) as depicted in Figure 1, we have v0 = (0, 6),
v1 = (1, 4), v2 = (2, 2), v3 = (4, 1), and v4 = (6, 0). We denote by (vi1, vi2)

the coordinates of the vertex vi .
A verification of the two following facts is straightforward.

max(vi1, vi2 − m) = vi1 if and only if m > vi1 − vi2.

max(vi1, vi2 − m) > max(vi−1,1, vi−1,2 − m) if and only if m 6 vi1 − vi−1,2.

(4.3)

By the definition of the staircase complex, we also have vi1 − vi2 = n2i − g and
vi1 − vi−1,2 = n2i−1 − g. The second equation of (4.3) yields

JK (m) = max(vi1, vi2 − m) if and only if m ∈ [n2i−1, n2i+1].
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Then the first equation of (4.3) allows to compute the difference JK (m + 1) −
JK (m). 2

The relationship between JK and the d-invariant is given by the next result.

PROPOSITION 4.4. Let K be an algebraic knot, let q > 2g(K ), and let m ∈
[−q/2, q/2] be an integer. Then

d(S3
q(K ), sm) =

(−2m + q)2 − q
4q

− 2J (m).

Proof. Denote by Si the subcomplex St(K ) ⊗ U i in CFK∞(K ). The
result depends on understanding the homology of the image of Si in
CFK∞(K )/CFK∞(K ){i < 0, j < m}. Because of the added constraint (see
the paragraph before Theorem 4.1), we only have to look at the homology classes
supported on images of the type A vertices. Notice that, if i > JK (m), then at
least one of the type A vertices is in CFK∞(K ){i < 0, j < m}. But all the type
A vertices are homologous in Si , and since these generate H0(Si), the homology
of the image in the quotient is zero. On the other hand, if i 6 JK (m), then none
of the vertices of Si are in CFK∞(K ){i < 0, j < m}, and thus the homology of
Si survives in the quotient.

It follows that the least grading of a nontrivial class in the quotient arises from
the U JK (m) translate of one of type A vertices of S0 = St(K ). Since U lowers
grading by two, the grading is −2JK (m). The result follows by applying the shift
described in Theorem 4.1. 2

REMARK 4.5. Notice that, in the case that q is even, the integer values m = −q/2
and m = q/2 are both in the given interval. One easily checks that Proposition 4.4
yields the same value at these two endpoints.

We now relate the J function to the semigroup of the singular point. Let IK be
the gap function as in Definition 2.6 and Remark 2.10.

PROPOSITION 4.6. If K is the link of an algebraic singular point, then, for−g 6
m 6 g, JK (m) = IK (m + g).

Proof. In Section 2.2, we described the gap sequence in terms of the exponents
ni . It follows immediately that the growth properties of IK (m + g) are identical
to those of JK (m), as described in Lemma 4.2. Furthermore, since the largest
element in the gap sequence is 2g − 1, we have IK (2g) = JK (g) = 0. 2

https://doi.org/10.1017/fms.2014.28 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2014.28


M. Borodzik and C. Livingston 14

4.4. Proof of Theorem 1.1. According to Lemma 3.1, the Spinc structures on
S3

d2(K ) that extend to the complement W of a neighborhood of C are precisely
those sm where m = kd for some k, where −d/2 6 k 6 d/2; here, k ∈ Z if d
odd, and k ∈ Z + 1

2 if d is even. Since W is a rational homology sphere, by [22,
Proposition 9.9], the associated d-invariants are 0, so, by Proposition 4.4, letting
q = d2 and m = kd, we have

2JK (kd) =
(−2kd + d2)2 − d2

4d2
.

By Proposition 4.6, we can replace this with

8IG K (kd + g) = (d − 2k − 1)(d − 2k + 1).

Now g = d((d − 3)/2)+ 1, so, by substituting j = k + (d − 3)/2, we obtain

8IK ( jd + 1) = 4(d − j + 1)(d − j + 2),

and j ∈ [−3/2, . . . , d−3/2] is an integer regardless of the parity of d . The proof
is accomplished by recalling that k jd = IK ( jd + 1); see Remark 2.8.

5. Constraints on general rational cuspidal curves

5.1. Products of staircase complexes and the d-invariants. In the case that
there is more than one cusp, the previous approach continues to apply, except the
knot K is now a connected sum of algebraic knots.

For the connected sum K = #Ki , the complex CFK∞(K ) is the tensor product
of the CFK∞(Ki). To analyze this, we consider the tensor product of the staircase
complexes St(Ki). Although this is not a staircase complex, the homology is still
Z2, supported at grading level zero. For the tensor product, we shall denote by
Vert(St(K1) ⊗ · · · ⊗ St(Kn)) the set of vertices of the corresponding complex.
These are of the form v1 + · · · + vn , where v j ∈ Vert(K j), j = 1, . . . , n.

Any element of the form a1q1 ⊗ a2q2 ⊗ · · · ⊗ anqn represents a generator of the
homology of the tensor product, where the aiqi are vertices of type A taken from
each St(Ki). Furthermore, if the translated subcomplex St(K ) ⊗ U i

⊂ St(K ) ⊗
Z2[U,U−1

] intersects CFK∞(K ){i < 0, j < m} nontrivially, then the intersection
contains one of these generators. Thus, the previous argument applies to prove the
following.

PROPOSITION 5.1. Let q > 2g−1, where g = g(K ) and m ∈ [−q/2, q/2]. Then
we have

d(S3
q(K ), sm) = −2JK (m)+

(−2m + q)2 − q
4q

,
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where JK (m) is the minimum of max(α, β − m) over all elements of form a1q1 ⊗

a2q2 ⊗ · · · ⊗ anqn , where (α, β) is the filtration level of the corresponding element.

Since the d-invariants vanish for all Spinc structures that extend to W , we have
the following.

THEOREM 5.2. If C is a rational cuspidal curve of degree d with singular points
Ki and K = #Ki , then, for all k in the range [−d/2, d/2], with k ∈ Z for d odd
and k ∈ Z+ 1

2 for d even,

JK (kd) =
(d − 2k − 1)(d − 2k + 1)

8
.

Proof. We have, from the vanishing of the d-invariants, d(S3
d2(K ), sm) (for

m = kd), the condition

JK (m) =
(−2m + d2)2 − d2

8d2
.

The result then follows by substituting m = kd and performing algebraic
simplifications. 2

5.2. Restatement in terms of IK i (m). We now wish to restate Theorem 5.2
in terms of the coefficients of the Alexander polynomial, properly expanded. As
before, for the gap sequence for the knot Ki , denoted G Ki , let

Ii(s) = #{k > s : k ∈ G Ki ∪ Z<0}.

For two functions I, I ′ : Z → Z bounded below, we define the following
operation:

I � I ′(s) = min
m∈Z

I (m)+ I ′(s − m). (5.3)

As pointed out to us by Krzysztof Oleszkiewicz, in real analysis this operation is
sometimes called the infimum convolution.

The following is the main result of this article.

THEOREM 5.4. Let C be a rational cuspidal curve of degree d. Let I1, . . . , In be
the gap functions associated to each singular point on C. Then, for any j ∈ {−1,
0, . . . , d − 2}, we have

I1 � I2 � · · · � In( jd + 1) =
( j − d + 1)( j − d + 2)

2
.
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REMARK 5.5.

• For j = −1, the left-hand side is d(d − 1)/2 = d − 1 + (d − 1)(d − 2)/2.
The meaning of the equality is that

∑
#G j = (d − 1)(d − 2)/2, which follows

from (2.1) and Lemma 2.4. Thus, the case j = −1 does not provide any new
constraints. Likewise, for j = d − 2, both sides are equal to zero.

• We refer to Section 6.2 for a reformulation of Theorem 5.4.

• The relation of Theorem 5.4 to Conjecture 1.2 for n > 1 is more complicated.
It is shown in [17] and [2] (see also [20, Proposition 7.1.3]) that Theorem 5.4
implies Conjecture 1.2 in the case when n = 2. For n > 2, Conjecture 1.2 is
false in general. An explicit counterexample with n = 3 is given in [2, Example
2.2.4]. We refer to that paper also for a detailed discussion of the relation of
Theorem 5.4 to Conjecture 1.2, as well as for a formulation of a new variant
of Conjecture 1.2, [2, Conjecture 2.1.3]. This new conjecture does not follow
from Theorem 5.4.

Theorem 5.4 is an immediate consequence of the arguments in Section 4.4
together with the following proposition.

PROPOSITION 5.6. As in (5.3), let IK be given by I1�· · ·� In , for the gap functions
I1, . . . , In . Then JK (m) = IK (m + g).

Proof. The proof follows by induction over n. For n = 1, the statement is
equivalent to Proposition 4.6. Suppose we have proved it for n − 1. Let K ′ =
K1# · · · #Kn−1, and let JK ′(m) be the corresponding J function. Let us consider
a vertex v ∈ Vert(St1(K ) ⊗ · · · ⊗ Stn(K )). We can write this as v′ + vn ,
where v′ ∈ Vert(St(K1) ⊗ · · · ⊗ St(Kn−1)) and vn ∈ Vert(St(Kn)). We write the
coordinates of the vertices as (v1, v2), (v′1, v

′

2) and (vn1, vn2), respectively. We have
v1 = v

′

1 + vn1, v2 = v
′

2 + vn2. We shall need the following lemma.

LEMMA 5.7. For any four integers x, y, z, w, we have

max(x + y, z + w) = min
k∈Z
(max(x, z − k)+max(y, w + k)).

Proof of Lemma 5.7. The direction ‘6’ is trivial. The equality is attained at
k = z − x . 2

Continuation of the proof of Proposition 5.6.
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Applying Lemma 5.7 to v′1, v
′

2, vn1, vn2 − m, and taking the minimum over all
vertices v, we obtain

JK (m) = min
v∈Vert(St(K1)⊗···⊗St(Kn))

max(v1, v2 − m)

= min
v′∈Vert′

min
vn∈Vertn

min
k∈Z
(max(v′1, v

′

2 − k)+max(vn1, vn2 + k − m)),

where we denote Vert′ = Vert(St(K1)⊗· · ·⊗St(Kn−1)) and Vertn = Vert(St(Kn)).
The last expression is clearly mink∈Z JK ′(k) + JKn (m − k). By the induction
assumption, this is equal to

min
k∈Z

IK ′(k + g′)+ IKn (m − k + gn) = IK (m + g),

where g′ = g(K ′) and gn = g(Kn) are the genera, and we use the fact that
g = g′ + gn . 2

6. Examples and applications

6.1. A certain curve of degree six. As described, for instance, in [7, Section
2.3, Table 1], there exists an algebraic curve of degree six with two singular points,
the links of which are K = T (4, 5) and K ′ = T (2, 9). The values of IK (m)
for m ∈ {0, . . . , 11} are {6, 6, 5, 4, 3, 3, 3, 2, 1, 1, 1, 1}. The values of IK ′(m) for
m ∈ {0, . . . , 7} are {4, 4, 3, 3, 2, 2, 1, 1}. We readily get

I � I ′(1) = 10, I � I ′(7) = 6, I � I ′(13) = 3, I � I ′(19) = 1,

exactly as predicted by Theorem 5.4.
On the other hand, the computations in [7] confirm Conjecture 1.2, but we

sometimes have an inequality. For example, k6 = 5, whereas Conjecture 1.2 states
that k6 6 6. This shows that Theorem 5.4 is indeed more precise.

6.2. Reformulations of Theorem 5.4. Theorem 5.4 was formulated in a
way that fits best with its theoretical underpinnings. In some applications, it
is advantageous to reformulate the result in terms of the function counting
semigroup elements in the interval [0, k]. To this end, we introduce some notation.

Recall that, for a semigroup S ⊂ Z>0, the gap sequence of G is Z>0\S. We put
g = #G, and for m > 0 we define

R(m) = #{ j ∈ S : j ∈ [0,m)}. (6.1)

LEMMA 6.2. For m > 0, R(m) is related to the gap function I (m) (see (2.7)) by
the following relation:

R(m) = m − g + I (m). (6.3)
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Proof. Let us consider an auxiliary function K (m) = #{ j ∈ [0,m) : j ∈ G}. Then
K (m) = g − I (m). Now R(m)+ K (m) = m, which completes the proof. 2

We extend R(m) by (6.3) for all m ∈ Z. We remark that R(m) = m−g for m >

sup G, and R(m) = 0 for m < 0. In particular, R is a nonnegative, nondecreasing
function.

We have the following result.

LEMMA 6.4. Let I1, . . . , In be the gap functions corresponding to the semigroups
S1, . . . , Sn . Let g1, . . . , gn be given by g j = #Z>0\S j . Let R1, . . . , Rn be as in
(6.1). Then

R1 � R2 � · · · � Rn(m) = m − g + I1 � · · · � In(m),

where g = g1 + · · · + gn .

Proof. To simplify the notation, we assume that n = 2; the general case follows
by induction. We have

R1 � R2(m) = min
k∈Z

R1(k)+ R2(m − k)

= min
k∈Z
(k − g1 + I1(k)+ m − k − g2 + I2(m − k))

= m − g1 − g2 + I1 � I2(m). 2

Now we can reformulate Theorem 5.4.

THEOREM 6.5. For any rational cuspidal curve of degree d with singular points
z1, . . . , zn , and for R1, . . . , Rn the functions as defined in (6.1), one has that, for
any j = {−1, . . . , d − 2},

R1 � R2 � · · · � Rn( jd + 1) =
( j + 1)( j + 2)

2
.

This formulation follows from Theorem 5.4 by an easy algebraic manipulation,
together with the observation that, by (2.1) and Lemma 2.4, the quantity g from
Lemma 6.4 is given by ((d − 1)(d − 2))/2.

The formula bears strong resemblance to [7, Proposition 2], but in that article
only the ‘>’ part is proved, and an equality in the case when n = 1 is conjectured.

REMARK 6.6. Observe that, by definition,

R1 � · · · � Rn(k) = min
k1,...,kn∈Z

k1+···+kn=k

R1(k1)+ · · · + Rn(kn).
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Since for negative values R j(k) = 0 and R j is nondecreasing on [0,∞), the
minimum will always be achieved for k1, . . . , kn > −1.

6.3. Applications. From Theorem 6.5, we can deduce many general estimates
for rational cuspidal curves. Throughout this subsection we shall be assuming that
C has degree d , its singular points are z1, . . . , zn , the semigroups are S1, . . . , Sn ,
and the corresponding R-functions are R1, . . . , Rn . Moreover, we assume that the
characteristic sequence of the singular point zi is (pi ; qi1, . . . , qiki ). We order the
singular points so that p1 > p2 > · · · > pn .

We can immediately prove the result of Matsuoka and Sakai, [13], following
the ideas in [7, Section 3.5.1].

PROPOSITION 6.7. We have p1 > d/3.

Proof. Suppose that 3p1 6 d . It follows that, for any j , 3p j 6 d . Let us choose
k1, . . . , kn > −1 such that

∑
k j = d + 1. For any j , the elements 0, p j , 2p j , . . .

all belong to the S j . The function R j(k j) counts elements in S j strictly smaller
than k j ; hence, for any ε > 0, we have

R j(k j) > 1+
⌊

k j − ε

p j

⌋
.

Using 3p j 6 d , we rewrite this as R j(k j) > 1 + b(3k j − 3ε)/dc. Since ε > 0 is
arbitrary, setting δ j = 1 if d|3k j , and zero otherwise, we write

R j(k j) > 1+
⌊

3k j

d

⌋
− δ j .

We get ∑
j : d|3k j

R j(k j) >

⌊∑
3k j

d

⌋
. (6.8)

Using the fact that ba/dc+bb/dc> b(a + b)/dc−1 for any a, b ∈ Z, we estimate
the other terms: ∑

j : d 6 | 3k j

R j(k j) > 1+
⌊

3
∑

k j

d

⌋
. (6.9)

Since
∑

k j = d + 1, there must be at least one j for which d does not divide 3k j .
Hence, adding (6.8) to (6.9), we obtain

R1(k1)+ · · · + Rn(kn) > 1+
⌊∑n

j=1 3k j

d

⌋
= 1+

⌊
3d + 3

d

⌋
= 4.
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This contradicts Theorem 6.5 for j = 1, and the contradiction concludes the
proof. 2

We also have the following simple result.

PROPOSITION 6.10. Suppose that p1 > (d + n − 1)/2. Then q11 < d + n − 1.

Proof. Suppose that p1 > (d + n − 1)/2 and q11 > d + n − 1. It follows that
R1(d + n) = 2. But then we choose k1 = d + n, k2 = · · · = kn = −1, and we get∑n

j=1 R j(k j) = 2; hence

R1 � R2 � · · · � Rn(d + 1) 6 2,

contradicting Theorem 6.5. 2

6.4. Some examples and statistics. We will now present some examples and
statistics, where we compare our new criterion with the semicontinuity of the
spectrum as used in [7, Property (SSl)] and the Orevkov criterion [21, Corollary
2.2]. It will turn out that the semigroup distribution property is quite strong and
is closely related to the semicontinuity of the spectrum, but they are not the
same. There are cases which pass one criterion and fail to another. Checking the
semigroup property is definitely a much faster task than comparing spectra; refer
to [6, Section 3.6] for more examples.

EXAMPLE 6.11. Among the 1920 593 cuspidal singular points with Milnor
number of the form (d − 1)(d − 2) for d ranging between 8 and 64, there are
only 481 that pass the semigroup distribution criterion, that is, Theorem 1.1. All
of these pass the Orevkov criterion M < 3d − 4. Of those 481, we compute that
475 satisfy the semicontinuity of the spectrum condition and 6 of them fail the
condition; these are (8; 28, 45), (12; 18, 49), (16; 56, 76, 85), (24; 36, 78, 91),
(24; 84, 112, 125), (36; 54, 114, 133).

REMARK 6.12. The computations in Example 6.11 were made on a PC
computer during one afternoon. Applying the spectrum criteria for all these
cases would take much longer. The computations for degrees between 12 and
30 is approximately 15 times faster for semigroups; the difference seems to
grow with the degree. The reason is that, even though the spectrum can be given
explicitly from the characteristic sequence (see [26]), it is a set of fractional
numbers and the algorithm is complicated.

EXAMPLE 6.13. There are 28 cuspidal singular points with Milnor number equal
to 110 = (12−1)(12−2). We ask the following question: which of these singular
points can possibly occur as a unique singular point on a degree 12 rational curve?

https://doi.org/10.1017/fms.2014.28 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2014.28


Rational cuspidal curves 21

Table 1. Semigroup property for cuspidal singular points with Milnor number 12. If a
cuspidal singular point fails the semigroup criterion, we indicate the first j for which
I (12 j + 1) 6= (( j − d + 1)( j − d + 2))/2.

(3; 56) Fails at j = 1 (6; 9, 44) Fails at j = 1 (8; 12, 14, 41) Fails at j = 3
(4; 6, 101) Fails at j = 1 (6; 10, 75) Fails at j = 1 (8; 12, 18, 33) Fails at j = 4
(4; 10, 93) Fails at j = 1 (6; 14, 59) Fails at j = 2 (8; 12, 22, 25) Passes
(4; 14, 85) Fails at j = 1 (6; 15, 35) Fails at j = 2 (8; 12, 23) Passes
(4; 18, 77) Fails at j = 1 (6; 16, 51) Fails at j = 2 (8; 14, 33) Fails at j = 1
(4; 22, 69) Fails at j = 1 (6; 20, 35) Fails at j = 4 (9; 12, 23) Passes
(4; 26, 61) Fails at j = 1 (6; 21, 26) Passes (10; 12, 23) Passes
(4; 30, 53) Fails at j = 1 (6; 22, 27) Passes (11; 12) Passes
(4; 34, 45) Fails at j = 1 (6; 23) Passes
(6; 8, 83) Fails at j = 1 (8; 10, 57) Fails at j = 2

We apply the semigroup distribution criterion. Only eight singular points pass the
criterion, as is seen in Table 1.

Among the curves in Table 1, all those that are obstructed by the semigroup
distribution are also obstructed by the semicontinuity of the spectrum. The
spectrum also obstructs the case of (8; 12, 23).

EXAMPLE 6.14. There are 2330 pairs (a, b) of coprime integers, such that
(a − 1)(b − 1) is of form (d − 1)(d − 2) for d = 5, . . . , 200. Again we ask if
there exists a degree d rational cuspidal curve having a single singular point with
characteristic sequence (a; b). Among these 2330 cases, precisely 302 satisfy the
semigroup distribution property. Out of these 302 cases, only one, namely (2; 13),
does not appear on the list from [7]; see Section 2.3 for the list. It is therefore very
likely that the semigroup distribution property alone is strong enough to obtain the
classification of [7].

REMARK 6.15. After a preliminary version of this article appeared, Liu [12,
Theorem 2.3] proved the classification result of [7] using the semigroup
distribution property as the main tool.

EXAMPLE 6.16. In Table 2, we present all the cuspidal points with Milnor
number (30 − 1)(30 − 2) that satisfy the semicontinuity of the spectrum. Out
of these, all but the three ((18; 42, 65), (18; 42, 64, 69), and (18; 42, 63, 48))
satisfy the semigroup property. All three fail the semigroup property for j = 1. In
particular, for these three cases the semigroup property obstructs the cases which
pass the semicontinuity of the spectrum criterion.
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Table 2. Cuspidal singular points with Milnor number 752 satisfying the semicontinuity
of the spectrum criterion.

(15; 55, 69) (18; 42, 64, 69) (20; 30, 59) (25; 30, 59)
(15; 57, 71) (18; 42, 63, 68) (24; 30, 57, 62) (27; 30, 59)
(15; 59) (20; 30, 55, 64) (24; 30, 58, 63) (28; 30, 59)
(18; 42, 65) (20; 30, 58, 67) (24; 30, 59) (29; 30)

REMARK 6.17. We refer to the thesis of Liu, [12], for a thorough study of the
semigroup conditions. In particular, there are listed all instances of singular points
with two Puiseux pairs that satisfy the semigroup property.

EXAMPLE 6.18. The configuration of five critical points (2; 3), (2; 3), (2; 5),
(5; 7), and (5; 11) passes the semigroup, the spectrum, and the Orevkov criterion
for a degree 10 curve. In other words, none of the aforementioned criteria
obstructs the existence of such curve. We point out that it is conjectured (see
[15, 25]) that a rational cuspidal curve can have at most four singular points. In
other words, these three criteria alone are insufficient to prove that conjecture.
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1986).

[5] J. Coolidge, A Treatise on Plane Algebraic Curves (Oxford University Press, Oxford, 1928).
[6] J. Fernández de Bobadilla, I. Luengo, A. Melle-Hernández and A. Némethi, ‘On rational

cuspidal projective plane curves’, Proc. Lond. Math. Soc. 92 (2006), 99–138.

https://doi.org/10.1017/fms.2014.28 Published online by Cambridge University Press

http://www.arxiv.org/abs/1405.0437
http://www.arxiv.org/abs/1405.0437
http://www.arxiv.org/abs/1405.0437
http://www.arxiv.org/abs/1405.0437
http://www.arxiv.org/abs/1405.0437
http://www.arxiv.org/abs/1405.0437
http://www.arxiv.org/abs/1405.0437
http://www.arxiv.org/abs/1405.0437
http://www.arxiv.org/abs/1405.0437
http://www.arxiv.org/abs/1405.0437
http://www.arxiv.org/abs/1405.0437
http://www.arxiv.org/abs/1405.0437
http://www.arxiv.org/abs/1405.0437
http://www.arxiv.org/abs/1405.0437
http://www.arxiv.org/abs/1405.0437
https://doi.org/10.1017/fms.2014.28


Rational cuspidal curves 23

[7] J. Fernández de Bobadilla, I. Luengo, A. Melle-Hernández and A. Némethi, ‘Classification
of rational unicuspidal projective curves whose singularities have one Puiseux pair’, in
Proceedings of Sao Carlos Workshop 2004 Real and Complex Singularities, Series Trends
in Mathematics (Birkhäuser, 2007), 31–46.
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