
JFP 23 (1): 38–144, 2013. c© Cambridge University Press 2012

doi:10.1017/S0956796812000366 First published online 10 October 2012

38

Syntactic soundness proof
of a type-and-capability system

with hidden state

FRANÇOIS POTTIER

INRIA, BP 105, 78153 Le Chesnay Cedex, France

(e-mail:)Francois.Pottier@inria.fr)

Abstract

This paper presents a formal definition and machine-checked soundness proof for a very

expressive type-and-capability system, that is, a low-level type system that keeps precise

track of ownership and side effects. The programming language has first-class functions

and references. The type system’s features include the following: universal, existential, and

recursive types; subtyping; a distinction between affine and unrestricted data; support for

strong updates; support for naming values and heap fragments via singleton and group

regions; a distinction between ordinary values (which exist at runtime) and capabilities (which

do not); support for dynamic reorganizations of the ownership hierarchy by disassembling

and reassembling capabilities; and support for temporarily or permanently hiding a capability

via frame and anti-frame rules. One contribution of the paper is the definition of the type-

and-capability system itself. We present the system as modularly as possible. In particular, at

the core of the system, the treatment of affinity, in the style of dual intuitionistic linear logic,

is formulated in terms of an arbitrary monotonic separation algebra, a novel axiomatization

of resources, ownership, and the manner in which they evolve with time. Only the peripheral

layers of the system are aware that we are dealing with a specific monotonic separation

algebra, whose resources are references and regions. This semi-abstract organization should

facilitate further extensions of the system with new forms of resources. The other main

contribution is a machine-checked proof of type soundness. The proof is carried out in the

Wright and Felleisen’s syntactic style. This offers an evidence that this relatively simple-minded

proof technique can scale up to systems of this complexity, and constitutes a viable alternative

to more sophisticated semantic proof techniques. We do not claim that the syntactic technique

is superior: We simply illustrate how it is used and highlight its strengths and shortcomings.

1 Introduction

This paper presents a formal definition and machine-checked soundness proof for a

core type-and-capability system, that is, a low-level type system that keeps precise

track of side effects.

1.1 Why control side effects?

Many prominent academic and industrial programming languages, such as the

members of the ML family, on the one hand, and Java and C#, on the other hand,

have the following key features in common:

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 39

1. Thanks to automated garbage collection, dynamic memory management is

implicit and efficient.

2. Side effects are permitted: They include the use of modifiable data structures,

which is sometimes essential for efficiency and modularity; system calls, which

are required in order to interact with the real world; and concurrency, which

can help deal with input/output and exploit the processing power of multi-core

and multi-processor machines.

3. A sound, polymorphic type system rules out many programming mistakes, and

at the same time fosters the construction of independent components that can

be easily and safely assembled.

One may argue that these features are among the main reasons why these

programming languages are so widely adopted and studied. Yet, although the type

systems of ML, Java, and C# are effective at describing the structure of memory

and at imposing abstraction barriers between components, they do not attempt to

control the use of side effects in a precise manner.

As far as the treatment of mutable state is concerned, for instance, these type

systems keep track of the memory locations that are mutable and immutable, and

achieve soundness by requiring every mutable location to have a fixed type. However,

they do not keep track of accesses to mutable memory: if f has type “function of

A to B”, they are able to tell that f requires an argument of type A and produces a

result of type B, but are unable to tell which mutable memory locations (or, more

abstractly, which mutable data structures) are potentially read and written by f.

Similarly, if p has type “pointer to A”, they are able to tell that writing an arbitrary

value of type A at address p is safe, in the sense that the heap will not become

corrupted; but they are unable to tell, at a more abstract level, which mutable data

structures this memory location participates in. As a result, they cannot tell which

data structure invariants might be broken by this write operation.

As far as the treatment of system calls and concurrency is concerned, analogous

limitations exist. If d has type “file descriptor”, for instance, these type systems are

unable to tell whether d is presently in an open or closed state, so they cannot

detect that d is never closed, or closed twice. If p has type “pointer to hash table”,

they are unable to tell whether this table is thread-local or shared, and, in the latter

case, which lock protects it, so they cannot detect that two threads race to access

the table. In this paper, we do not attempt to perform “typestate checking”, which

would be required in order to ensure that file descriptors are properly managed, and

we do not support concurrency: we work strictly in a sequential setting. However, we

note that setting up a type system that keeps track of “who” owns “which” objects

seems to be a good approach to address these issues: the papers by Bierhoff and

Aldrich (2007) and Fähndrich et al. (2006), for instance, are excellent illustrations

of this claim.

1.2 A partial survey of prior work and ideas

The limitations described above are well known. It seems desirable to overcome

these, although one must acknowledge that it is not quite known yet whether the

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

40 F. Pottier

benefits of accurately keeping track of side effects will outweigh the cost of working

with significantly more complex type systems. A huge literature exists on this topic,

which cannot be fully surveyed here. In the following, we review some of the most

relevant works and explain how these influence the type system that we present in

this paper.

Researchers in the object-oriented programming community study the breach

of abstraction that arises out of aliasing and mutable state and dub it the

representation exposure problem (Detlefs et al., 1998). They propose a number

of disciplines to forbid representation exposure. These include islands (Hogg, 1991),

balloons (Almeida, 1997), ownership types (Clarke et al., 1998; Boyapati et al.,

2002), and universes (Müller & Poetzsch-Heffter, 2001; Dietl & Peter, 2005). These

disciplines are often simple but restrictive: for instance, none of them allows the

owner of an object to change over time.

Type-and-effect systems keep track of the read and write effects of each expression,

and annotate function types with effects. Early type-and-effect systems (Gifford

et al., 1992) establish a crude distinction between pure and effectful expressions.

Later systems (Talpin & Jouvelot, 1994) partition memory into regions and allow

effects to refer to regions, thus permitting a finer-grained analysis. Monads, as found

in the programming language Haskell, can be considered type-and-effect systems in

another guise. The IO monad (Peyton Jones & Wadler, 1993) establishes a distinction

between pure and effectful expressions, while the ST monad (Launchbury & Jones,

1995) distinguishes multiple disjoint regions of memory.

Linearity plays an important role in the control of side effects. Walker (2005)

surveys the rich literature that exists on this topic. Technically, a linear value is one

that is used exactly once. More interestingly perhaps, a linear type system typically

enforces the property that there exists exactly one pointer to a linear value: a linear

type system controls aliasing. This means that the graph of all linear values forms

a forest, or in other words, the linear values are organized in a hierarchy. One can

informally speak of an “ownership hierarchy” and consider that a linear-type system

controls ownership. Instead of linearity, it is often sufficient to impose affinity: an

affine value is one that is used at most once.

As pointed out, for instance, by Ahmed et al. (2007), a deep reason why linearity

plays an important role in controlling and reasoning about side effects is that

linearity enables strong updates. A strong update consists in changing the type

(or, at a more abstract level, the logical facts that are known to hold) of the

contents of a mutable object. Strong updates are necessary for reflecting protocols

on resources whose state changes over time: for instance, changing the type of a

file descriptor d from “open” to “closed” is a strong update. More generally, strong

updates are necessary for proving properties of imperative programs: for instance,

the assignment axiom of separation logic (Reynolds, 2002), which takes the form

{(e ↪→ −)} e := e′ {(e ↪→ e′)}, is a strong update. This axiom requires the exclusive

ownership of the memory location e. In general, some form of linearity is required

for strong updates to be sound. Indeed, changing the information associated with

the file descriptor d or with the memory location e in the above examples makes

sense only if this information is recorded in exactly one place. If one allowed it to be

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 41

duplicated, disseminated, and eventually become recorded in uncontrollably many

places, one would be unable to update this information in a consistent manner.

Thus, linearity is crucial. However, linearity need not take as restrictive a form

as it does in the early linear type systems. The key requirement for strong updates

to be possible is that there should be one place where the type of the contents of

a mutable object is recorded. Does this imply that there should be one pointer to

the object? Yes, if the type of the pointer to the object mentions the type of the

contents of the object. No, if it does not. In Smith et al.’s (2000) alias types, pointer

types do not mention the type of the object that they point to, and (as a result)

pointers can be duplicated. For every mutable object, there exists a capability, where

the current type of the object is recorded. Capabilities are linear, so there exists only

one place where the type of a mutable object is recorded. Holding a pointer to a

mutable object does not, by itself, allow the object to be read or written: one needs,

in addition, the capability for this object. Indeed, if one is reading, the capability

must be consulted to find out what type of data are read; and, if one is writing, the

capability must be updated with the type of the new data that are written. Because

the capability is required for reading and writing, it can be thought of as a token

that must be presented for access to be granted, hence its name. Capabilities can be

given first-class status: They can be passed into and returned out of functions, and

can be nested within values or within other capabilities. Capabilities do not exist at

runtime: they exist only at type-checking time.

In a type-and-capability system, pointers (or, more generally, values) need not be

linear, so the heap need not form a forest. Capabilities are linear and (because a

capability can be nested within another) form a forest, or an ownership hierarchy.

Because capabilities have first-class status, ownership transfers are possible, and the

ownership hierarchy may evolve over time.

Type-and-capability systems subsume traditional linear type systems. The notion

of a linear value is either directly supported or encoded as a pair of a duplicable

value and a linear capability for this value. The system presented in this paper

supports both views and allows moving from one to the other.

Type-and-capability systems subsume type-and-effect systems and the state

monad.1 Indeed, a function whose type advertises an effect is encoded as a function

that requires a capability as an argument and returns it. Furthermore, type-and-

capability systems are able to assign types to functions that perform transfers of

ownership. Two archetypical examples of such functions are memory allocation

(which requires no capability, and produces one) and memory de-allocation (which

requires a capability, and produces none). These functions perform transfers of

ownership between the caller and the memory manager.

Capabilities originate in Crary et al.’s (1999) work, where a capability governs

a whole region of memory, that is, a group of mutable objects. In the alias types

system and its descendants (Smith et al., 2000; Walker & Morrisett, 2000; Ahmed

1 An encoding of the IO and ST monads requires heterogeneous regions, whereas we formalize only
homogeneous regions in this paper. See Section 2 for a brief discussion of the difference and choice
between these two forms.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

42 F. Pottier

et al., 2007), on the other hand, a capability governs a singleton region, that is,

a single mutable object. DeLine & Fähndrich (2001) and Fähndrich & DeLine

(2002) consider both group regions and singleton regions and propose mechanisms,

known as adoption, focus and defocus, for moving from one to the other. The Sing#

programming language (Fähndrich et al., 2006) is perhaps the most advanced and

realistic incarnation of these ideas.

Type-and-capability systems and separation logic (2002) are closely related. In

their traditional forms, they seem to be incomparable, because the former concern

rich typed λ-calculi, whereas the latter concerns a simple first-order imperative

language, and because the former guarantees just memory safety, whereas the latter

can prove the correctness of a program with respect to a logical specification.

However, it is possible to extend type-and-capability systems by incorporating

logical assertions within types (see, for instance, Pilkiewicz & Pottier, 2011) and

to extend separation logic with support for higher-order functions and higher-order

store (Birkedal et al., 2006; Reus & Schwinghammer, 2006; Schwinghammer et al.,

2009), so there is ultimately no deep gap between these approaches. The Hoare

Type Theory (Nanevski et al., 2008) is particularly a rich marriage between the type

theory and the separation logic.

One might think that type-and-capability systems are primarily concerned with

linearity, while separation logic is concerned with separation. However, linearity and

separation are two sides of the same coin. In a type-and-capability system, the fact

that a capability for a region of memory is linear (non-duplicable) implies that a

conjunction of two capabilities must involve distinct capabilities, that is, capabilities

for separate regions. Conversely, in separation logic, the fact that conjunction is

separating implies that the formula (e ↪→ e′), which holds of a heap cell at address e,

does not entail (e ↪→ e′) ∗ (e ↪→ e′). Thus, the formula (e ↪→ e′) has linear (non-

duplicable) behavior, and for this reason can be thought of as a claim of ownership

of the memory cell at address e. Ishtiaq and O’Hearn (2001) show that separation

logic can be considered as one interpretation of the sub-structural logic BI. They also

note the connection between separation logic and alias types (Smith et al., 2000).

Separation algebras, which have been discovered and studied in the setting of

separation logic (Calcagno et al., 2007; Dockins et al., 2009), serve in the present

paper, under the generalized form of monotonic separation algebras, as a basis for

the definition of a type-and-capability system. This is another hint of the close

relationship between type-and-capability systems and separation logic.

1.3 A type-and-capability system with hidden state

Charguéraud and Pottier (2008) present a type-and-capability system for a λ-calculus

equipped with products, sums, and references. The system borrows most of its

features from prior papers, with a number of minor technical improvements.2

2 In particular, Charguéraud and Pottier (2008) introduce distinct types for region inhabitants and
pointers, whereas earlier works conflate these notions, and they note that the value restriction is not
required. We come back to these technical aspects in Section 2.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 43

Charguéraud and Pottier (2008) point out that the type-and-capability system can

be used to direct a functional translation: Every well-typed imperative program can

be translated to an equivalent purely functional program. The translation turns a

capability for a region into a finite map that represents the contents of this region,

and turns a value that inhabits this region into a key that can be used to access

the map. The translation accounts for advanced operations, such as DeLine &

Fähndrich’s (2001) and Fähndrich & DeLine’s (2002) adoption, focus and defocus,

in a way that produces reasonable purely functional code, and one might claim,

intuitively “explains” these operations. The soundness of the type-and-capability

system and the existence of the functional translation are intimately linked: the two

are proved simultaneously.

In subsequent work (Pottier, 2008), we extend this type-and-capability system with

support for hidden state. What is this?

As explained by O’Hearn et al. (2004), the primitive memory allocation and de-

allocation operations perform transfers of ownership between the caller and an

invisible memory manager. The de-allocation operation, for instance, requires a

capability as an argument, and does not return it. This capability seems to disappear

because it becomes part of the state of the memory manager, which is hidden. It

would be nice, O’Hearn et al. argue, if there was nothing magic about the memory

manager, so that programmers could implement their own memory-manager-like

objects, offering allocation and de-allocation methods.

For this purpose, the system must give programmers the ability to hide the internal

state of an object, that is, to pretend that the object has no internal state at all. This

is different, and more radical, than to expose the existence of an internal state while

abstracting away its nature.

The concepts of both hiding and abstraction appear in Hoare’s influential

paper (1972). Most of the paper is devoted to the study of a form of abstraction:

a relation between concrete states and abstract states, defined by a pair of an

abstraction function A and a concrete invariant I. Nevertheless, the idea that

“benevolent side-effects”, concrete side effects that do not change the abstract

state, can be “wholly invisible” to the client, amounts to a form of hidden state. (In

particular, if the abstract state has type unit, every concrete side effect is benevolent.)

O’Hearn et al. (2004) revisit this idea in the setting of separation logic and attempt

to explain it in terms of the so-called hypothetical frame rule. Birkedal et al. (2006)

present an even more general rule, known as the higher-order frame rule. These

approaches do permit a form of hidden state, albeit, we argue (Pottier, 2008), in

an awkward way: When an object with hidden internal state is built, it cannot be

returned, but must instead be passed on to a continuation. In short, the frame rules

allow a capability to become temporarily hidden, whereas what is needed is for

a capability to become permanently hidden. The use of continuation-passing style

allows encoding the latter in terms of the former, but is undesirable in practice.

The anti-frame rule (Pottier, 2008) is meant to solve this problem. It allows the

methods of an object, or a group of closures, to share a hidden internal state.

It does not impose an unnatural use of continuation-passing style. It is sound in

the setting of an ML-like calculus, where functions can be passed as arguments

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

44 F. Pottier

to functions, returned out of functions, and stored in the heap. In short, the rule

allows a capability I to be visible within a certain lexical scope, and invisible to the

outside. This capability is made available whenever control enters this scope, and

must be released whenever control exits this scope: it plays the same role as Hoare’s

invariant I.

Pottier (2008) presents three applications of the anti-frame rule, including an

encoding of weak references in terms of strong references (we explain the distinction

in Section 2), an implementation of lazy thunks, and an implementation of Landin’s

fixed point combinator. Pilkiewicz and Pottier (2011) explain how the anti-frame

rule allows implementing a “lock” abstraction that serves a similar purpose as the

anti-frame rule itself, but is more flexible and provides a weaker guarantee. These

locks offer exactly the same interface as the primitive locks found in several versions

of concurrent separation logic (Gotsman et al., 2007; O’Hearn, 2007; Hobor et al.,

2008; Buisse et al., 2011). Pilkiewicz and Pottier (2011) use these locks to hide the

mutable internal state of a hash-consing facility.

The purpose of the present paper is to offer a unified and streamlined presentation

of Charguéraud and Pottier’s (2008) type-and-capability system , including the anti-

frame rule (Pottier, 2008), and to prove the system as sound.

Charguéraud (unpublished observations) has an informal proof of the soundness

of the type-and-capability system, without the anti-frame rule, and of the existence

of the functional translation. This proof, which is purely syntactic, is about 25

pages long, and probably lacks detail in several places. The introduction of the anti-

frame rule makes it significantly more difficult to establish type soundness. Pottier’s

conference paper (2008) contains only a proof sketch, which boils down to explicitly

proving one key case of one key lemma.3 Thus, there is a need for a detailed proof

of soundness.

Schwinghammer et al. (2010) present the first complete soundness proof of the

anti-frame rule, in the setting of a separation logic. They build a semantic model

of the logic using certain recursively defined worlds. The construction of the set of

worlds is non-trivial, as it requires solving a non-standard recursive domain equation.

This equation exhibits a certain built-in monotonicity requirement, whose presence

is made necessary by the anti-frame rule. Birkedal et al. (2011) present a semantic

model of Charguéraud and Pottier’s (2008) type-and-capability system, extended

with a higher-order frame rule, but without group regions and the anti-frame

rule. Compared with the previously cited work, this paper abandons denotational

semantics in favor of operational semantics and step-indexing; and solves a simpler

recursive domain equation, because it does not account for the anti-frame rule.

Schwinghammer et al. (2011) put everything together, so to speak. By reusing and

simplifying Schwinghammer et al.’s (2010) main ideas, they are able to extend

3 In hindsight, this is indeed where most of the interesting difficulty is concentrated. However, the
conference paper assumes the equational theory of the ⊗ operator, as well as the existence of certain
recursive types, without justification. The construction of type equality, it turns out, is non-trivial
(Section 9). Furthermore, the conference paper omits to mention the fact that adopting the anti-frame
rule requires reintroducing the value restriction (Section 2).

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 45

Birkedal et al.’s (2011) step-indexed model with support for the anti-frame rule.4

The journal paper by Schwinghammer et al. (2012) sums up this line of work.

In the present paper, we present a type soundness proof for a streamlined version

of Charguéraud and Pottier’s (2008) system (Pottier, 2008), with group regions and

the anti-frame rule. Several changes in the presentation of the system are motivated

by the desire to simplify the formalization. The most important such change is an

abstract treatment of affinity, based on dual intuitionistic linear logic (DILL) and

an axiomatization of monotonic separation algebras.

The soundness proof is purely syntactic: It follows the classic scheme proposed by

Wright and Felleisen (1994), which is based on the properties of subject reduction

and progress. It was developed concurrently with (and independently of) the proofs

cited above. It confirms (if needed) that the type system is sound and shows that

the syntactic proof technique can scale up to a system of this complexity.

The soundness proof is machine-checked. It consists of approximately 20,000

lines of Coq scripts and is available online for browsing (Pottier, 2012a) and

downloading (Pottier, 2012b). It relies on the CoLoR library (Blanqui & Koprowski,

2011) at two places: a lexicographic path ordering is used in the proof that type

equality is transitive (Lemma 6.3), and a multiset ordering is used to argue that the

reduction of values terminates (Lemma 13.4).

1.4 Organization of the paper

The paper is divided in three parts. Part 1 is an overview of the architecture of the

type-and-capability system and its soundness proof. Part 2 contains the definition of

the system, and Part 3 presents the proof of type soundness.

To the reader who would like to quickly obtain a rough idea of how the system

works, we suggest reading just the first part (Sections 2 and 3). To the reader who

would like to quickly have access to the definition of the system, we suggest glancing

at the syntax and the equational theory of types (Figures 8 and 9 in Section 6) and

moving directly to the presentation of the typing and subtyping rules (Sections 7

and 8).

PART ONE

Overview

In this part, we present an overview of the architecture of the type-and-capability

system and of its soundness proof (Section 2). We give a detailed example that shows

several of the features of the system working in concert (Section 3).

4 In fact, they are able to support the generalized frame and anti-frame rules. These rules, proposed in
an unpublished note by Pottier (2009a), allow reasoning about the well-bracketing of function calls
and returns.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

46 F. Pottier

2 Architectural and technical overview

In this section, we first explain the architecture of the type-and-capability system,

and discuss several design choices (Section 2.1). Then we review the architecture of

the type soundness proof, and discuss a number of technical choices (Section 2.2).

2.1 Architecture of the type-and-capability system

The type-and-capability system is constructed by starting with the polymorphic

λ-calculus and successively adding a relatively small number of features, namely,

affinity, references, capabilities and regions, an explicit treatment of erasure, and

the anti-frame rule. Unfortunately, once the scaffolding is removed, this gradual

construction is no longer apparent, and the definition of the system as a large set

of subtyping and typing rules can seem overwhelming. Thus, before attempting to

formally define the system, we offer a record of its gradual construction, and take

this opportunity to discuss a few design choices.

The core. At the core of the system is the polymorphic λ-calculus, also known as

System F (Girard, 1972; Reynolds, 1974). We equip it with universal, existential, and

recursive types: all three forms of quantification play essential roles in the system.

Existential types are typically used to describe operations that create new regions.

Recursive types serve, as usual, to encode algebraic data types; furthermore, in the

presence of the anti-frame rule, recursive types are required for subject reduction to

hold.

Anticipating that many operations that transform capabilities and regions are

presented as subtyping axioms, we equip the system with subtyping. Mitchell (1988)

extends the polymorphic λ-calculus with a natural notion of subtyping, under the

name Fη . We follow this route. The elimination of a universal quantifier and the

introduction of an existential quantifier become subtyping axioms. Since we have

recursive types, we include rules for subtyping recursive types, in the style of Brandt

and Henglein (1998).

For the record, the definition and soundness proof for Fη took less than one week

and about 2,000 lines of Coq scripts. Adding recursive types, to obtain Fμ
η , took two

more weeks and brought the line count to 4,000. These figures do not have much

absolute significance, but can be compared to those associated with the complete

type-and-capability system whose formalization required roughly six months and

represents 20,000 lines of Coq scripts.

Affinity. The next step is to set up machinery to prevent the duplication of certain

values.

At this point, a question arises: What should the system support: linear values,

which are used exactly once, affine values, which are used at most once, or both?

The distinction between linear and affine values boils down to a distinction between

explicit and implicit de-allocation. While linear values must be explicitly discarded

(the act of discarding a value counts as one use), affine values may be implicitly

discarded (the value is then never used). Linearity is appropriate for resources that

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 47

are not automatically managed by the runtime system, such as file descriptors:

It is desirable that the programmer be warned if she forgets to close a file

descriptor. Affinity is appropriate for resources that are automatically reclaimed

by the runtime system, such as memory in a garbage-collected system. In a realistic

programming language, it would be important to support both linear and affine

resources. In the present paper, for the sake of simplicity, we follow Charguéraud

and Pottier (2008) and support only affine resources. Our resources are references

(which are automatically reclaimed) and regions (which do not exist at runtime), so

this is good enough.

Thus, we introduce a distinction between affine values, which are used at most

once, and unrestricted values, which can be used any number of times. We set up

the type system so as to keep track of this distinction and enforce the rule that affine

values cannot be duplicated. Thus, the type system now counts how many times

each variable is used and ensures that affine variables are used at most once. This is

done in the style of DILL (Barber, 1996). This style is used, for instance, by Ahmed

et al. (2007). At least one alternative exists; we discuss it later in Section 2.2.

By itself, the machinery that counts uses of variables serves no purpose: it is

a mechanism without an end. In the end, it does not matter how many times

variables are used; what matters is that the permission to access certain resources

is not duplicated. At this level, however, we have not yet introduced any concrete

resources: references, regions, etc. are introduced later on. Instead, we axiomatize

an abstract notion of resource (described in detail in Section 10) and introduce a

resource in the typing judgement. Then, by proving that subject reduction holds,

we abstractly demonstrate that resources are not duplicated. Again, by itself, this

result is not directly meaningful. However, once we introduce references and strong

updates, for instance, it will allow us to establish type soundness in a straightforward

way.

Concrete resources. We are now ready to introduce concrete resources and exploit

the machinery that we have just set up in order to prevent the duplication of

resources. In this paper, we are interested in two particular kinds of concrete, non-

duplicable resources: references, on the one hand, and capabilities for regions, on

the other hand.

These two features are entirely independent of one another, and can be introduced

in any order. This remark is in fact a contribution of Charguéraud and Pottier’s

work (2008). In the prior work, regions are usually considered as sets of memory

locations. Charguéraud and Pottier point out that it is simpler and more general to

view regions as sets of values, which may or may not be memory locations.

We discuss references first, followed with capabilities and regions.

References. We extend the calculus with memory locations and stores, and extend

the type system with a type of references. At this point, a question arises. What

should the system support: strong references, weak references, or both?

Strong references support strong updates, that is, type-varying updates: the type

of their content may change with time. Thus, they cannot be duplicable: they must

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

48 F. Pottier

be affine. Charguéraud and Pottier’s (2008) references are strong. Weak references,

on the other hand, are duplicable, but do not allow strong updates. That is, the type

of their content is fixed at allocation time, and can never change. ML’s references

are weak.

Strong and weak references are incomparable. Strong references enable precise and

flow-sensitive reasoning, but are somewhat inconvenient, because access requires a

permission. Weak references are more lightweight, because whoever has the address

is allowed to read and write, but they impose flow-insensitive reasoning.

In a realistic programming language, it seems desirable to support both strong and

weak references. Several researchers study their combination and the interactions

between them. Alms (Tov & Pucella, 2011), an affine λ-calculus, offers strong

references under the name “aref” and weak references under the name “ref” (in the

implementation only). Tan et al. (2009) study a separation logic equipped with both

forms of references. The logic allows a strong reference to be (irreversibly) turned

into a weak one. This is useful: in particular, it allows initializing a weak reference in

a non-atomic manner. Ahmed et al. (2007) present a linear λ-calculus equipped with

both forms of references. More precisely, they distinguish pointers and capabilities,

so there is just one type of pointers, but there are two flavors of capabilities, a

strong one and a weak one. Memory allocation creates a strong capability, which

can later be “frozen”, that is, turned into a weak (duplicable) capability. A weak

capability does not allow reading or writing. However, it can be “thawed”, that is,

turned into a strong capability again. This allows reading and writing, including

strong updates. A thawed capability can be “refrozen”. The system requires that

thawing and refreezing be performed in a type-consistent manner: indeed, the type

of a weak reference must remain fixed. Furthermore, when freezing or thawing a

memory location, one must prove that this location is not already thawed. This is

a “global” proof obligation, which we believe can be difficult to meet. One way of

meeting it is to restrict oneself to thawing at most one memory location at any time:

This is analogous to the manner in which we allow focusing on at most inhabitant

of a group region (see below). Another way is to use dynamic checks: Pilkiewicz and

Pottier’s (2011) implementation of “lock” and “unlock” in terms of the anti-frame

rule can be viewed as a version of “thaw” and “refreeze” where the check that the

location is not already thawed (the lock is not already held) is performed at runtime.

Pottier (2008) notes that in the presence of the anti-frame rule weak references

can be programmed up on top of strong references. (Although not demonstrated in

the conference paper, Tan et al.’s (2009) rule for turning a strong reference into a

weak one can also be programmed up.) Thus, in principle, there is no need for weak

references to be considered primitive. In the present paper, we follow this approach,

and do not formalize weak references.5

5 One should note that the current encoding of weak references in terms of strong references and the
anti-frame rule introduces an inefficiency. Indeed, a weak reference is encoded as a hidden strong
reference whose access is mediated by a pair of “get” and “set” functions. In a realistic programming
language implementation, one would not accept the penalty imposed by this encoding. Thus, one
would still want weak references to be primitive, or one would need to look for a cleverer encoding.
At present, it is not known to the author whether one exists.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 49

At this point, the system corresponds roughly to Alms (Tov & Pucella, 2011) in

terms of its feature set. Alms differs mainly in its treatment of affinity; we come

back to this point later on in Section 2.2.

Capabilities and regions. As we have argued earlier, directly preventing the duplica-

tion of values results in a very rigid type discipline. It is much more flexible to permit

the duplication of values. If the use of values is governed by affine permissions, or

capabilities, this remains sound. This idea appears in Alias Types (Smith et al.,

2000; Walker & Morrisett, 2000) and is developed in a very elegant way by Ahmed

et al. (2007).

Naturally, as soon as one decides to introduce capabilities, it becomes necessary

to keep track of which capabilities govern which values. In other words, when

considering an instruction that attempts to access a certain value, and attempts to

justify this access by presenting a certain capability, the type-checker needs a way

of assuring that this particular capability is indeed associated with this particular

value.

One simple way to do this is to introduce names for values. These names are

static: they appear as part of types. The type of a capability refers to such a name:

it says, “I grant access to the value named r”. The type of a value also refers to such

a name: informally, it says, “I am the value named r”. (This is known as a singleton

type.) The type-checker can then verify that the value and the capability that are

presented together do refer to a common name r. The name r, which represents a

single value, is known as a singleton region.

In order to allow writing real code, it is necessary to permit aliasing, that is, to

allow situations where one does not statically know with certainty which values are

equal and which are distinct. In our setting, this can be done by letting a name r

denote not just a single value but a set of values. In that case, r is known as a group

region. Then, the type of a value says, informally, “I am a member of the region r”,

while the type of a capability says, “I grant access to every value in the region r”.

There is just one capability for an entire region: there cannot be one per inhabitant,

since one does not statically know how many inhabitants are there.

In summary, capabilities and regions go hand-in-hand. Regions are names that

serve to keep track of the connection between values and capabilities. Regions are

names for sets of values.

A group region has an arbitrary number of inhabitants, including zero, one, or

more, while a singleton region has exactly one. For each region, whether it is a

singleton or a group, is indicated by the capability for this region. The capability

also carries information about the inhabitants of the region, namely, their type.

The type carried by a capability for a singleton region is the type of the single

inhabitant of the region. If we wish to somehow affect this inhabitant (say, the

inhabitant is a reference, and we write a new value to it), then it is easy to update

the capability to carry a new type. Thus, singleton regions support strong updates.

On the other hand, the type carried by a capability for a group region is the common

type of all inhabitants of the region. If we wish to somehow affect one inhabitant,

we must do so in a way that does not modify its type, because this type is shared

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

50 F. Pottier

with all other inhabitants whose number is unknown. Thus, group regions support

weak updates only.

In Alias Types (Smith et al., 2000; Walker & Morrisett, 2000; Ahmed et al.,

2007), every region is a singleton region. Vault (DeLine & Fähndrich, 2001) has

group regions. In Vault, a guarded type “R : T” denotes a value of type T that

inhabits region R. Vault also has singleton regions, and introduces mechanisms that

let singleton and group regions interact (Fähndrich & DeLine, 2002). Charguéraud

and Pottier (2008) adopt these mechanisms, and, because they assume the presence

of a garbage collector, are able to simplify them.

Singleton regions are created as a result of memory allocation: whenever a

fresh object is allocated, a fresh singleton region is created as well, which this

object inhabits. Group regions are created empty. Group regions are populated via

adoption: at any point in time, a singleton region may be merged into a group

region, causing the latter to grow.

At any time, an inhabitant of a group region can be placed into a fresh singleton

region. This is known as focusing. This allows “working with” this value: because it

is now viewed as an inhabitant of a singleton region, various kinds of strong updates

can be performed. However, as long as this process is taking place, any access to

the original group region must be forbidden. One returns to the original situation

by defocusing, that is, by abandoning the singleton region.

Focus and defocus represent the only way of accessing an inhabitant of a group

region. For instance, dereferencing a pointer that inhabits a group region requires

focusing, dereferencing, and defocusing. Of course, in a surface language, one might

wish to offer syntactic sugar for these steps, or to infer where focus and defocus

must take place.

Remarks on capabilities and regions. As explained above, when one focuses on one

inhabitant of a group region, this object is temporarily “carved out” of the region,

and the region becomes disabled until this object is returned. Following Boyland

and Retert (2005), it would be possible to allow carving of multiple objects out of a

group region, provided one statically proves or dynamically checks that these objects

are distinct. The degenerate case where only one object can be carved out represents

a sweet spot, in the sense that no side condition is needed. However, it may well

turn out to be too restrictive in situations where simultaneous access to two distinct

elements of a group region is required.

Our group regions are homogeneous: All inhabitants of the region must have

a common structure, which is carried by the capability, whereas the type of an

inhabitant carries no information beside the name of the region. One could also

wish to support heterogeneous regions, where every inhabitant can have a different

structure. In that case, the type of an inhabitant carries both the name of the region

and the structure of this inhabitant, while the capability for the region carries no

information beside the name of the region. Following Talpin and Jouvelot (1994),

regions are traditionally heterogeneous (Tofte & Talpin, 1997; Crary et al., 1999;

DeLine & Fähndrich, 2001; Swamy et al., 2006). Charguéraud and Pottier (2008)

choose homogeneous regions because, through their functional translation, regions

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 51

are represented by finite maps. Homogeneous regions become simply-typed finite

maps, whereas heterogeneous regions would become dependently-typed finite maps,

where the type of the data depends upon the key. It is not clear to us whether, in

practice, one can get away with only, say, homogeneous regions. Monnier (2008)

introduces an interesting hybrid that subsumes homogeneous and heterogeneous

regions.

Boyland (2010) describes nesting, a mechanism by which one permission can

become (irreversibly) nested within another permission. A nested permission can be

temporarily recovered, or “carved out”, via a focus/defocus mechanism. Boyland

notes that nesting is an extension of adoption. Indeed, it seems that heterogeneous

group regions, together with adoption, focus and defocus, can be encoded in terms

of singleton regions and nesting: The idea is to nest the permissions for each of the

inhabitants within the permission for one master object that stands for the group

region. We do not attempt to formalize nesting in this paper, but note that it might

be relatively straightforward to do so. Boyland points out that the set of nesting

facts increases over time, and, for this reason, a nesting fact may be safely duplicated.

The same is true, in our system, of region membership facts. Our abstract treatment

of resources accounts, once and for all, for the idea that monotonic information is

duplicable.

Here regions are static names for sets of values. Regions have no existence

at runtime. This makes sense because we assume garbage collection. Assuming

garbage collection, in turn, makes sense because, in our system, not all values are

affine, so not all values can be manually de-allocated. In Crary et al.’s Calculus

of Capabilities (1999), regions are also static names, and, in addition, regions

are represented at runtime by region handles. Region handles are run-time data

structures. A region handle must be presented when allocating an object in a region,

and in return, allows de-allocating the region together with all of the objects that

it contains. The situation in Vault (Fähndrich & DeLine, 2002) is analogous. In

Cyclone (Swamy et al., 2006), one distinguished region, known as the “heap”, is

garbage-collected, while other regions are explicitly managed by the programmer

via region handles.

At this point, the system corresponds roughly to Ahmed et al.’s (2007) presentation

of Alias Types, extended with group regions.

Erasure. Capabilities need not exist at runtime. This is an important remark, as

the operations that rearrange capabilities tend to be quite numerous and might

represent a significant cost if they were not completely erased. Of course, this

remark is not new. Ahmed et al. (2007) note: “[Capabilities] have no operational

significance. This observation yields a number of opportunities for optimizing and

erasing the manipulation of capabilities”. Similarly, Tov and Pucella (2011) write that

“capabilities have no run-time significance”, but list “not representing capabilities

at run-time” as a part of the future work.

In these approaches, it sounds as if erasing capabilities is an optimization. This is

not fully satisfactory, as it is then up to the compiler to silently decide whether, and

to what extent, the optimization is applied. Furthermore, the design of the system

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

52 F. Pottier

might render optimization impossible in some situations. For instance, in the two

systems cited above, the distinction between capabilities (which should be erased)

and ordinary values (which cannot be erased) is encoded in the types. Yet, these

systems allow abstracting over a type variable. Thus, when a value has type α, it is

impossible to tell whether this value represents a capability or an ordinary value.

Thus, the optimization cannot be applied, unless one is willing to perform code

specialization.

We believe that the system should be designed in such a way that there is an

unambiguous distinction between what is erased and not erased at runtime. This

distinction can be encoded in the kinds, as in Charguéraud and Pottier’s system

(2008), or by other means; we come back to this issue in Section 2.2. As a benefit

of this distinction, the programmer is presented with a clear cost model: the system

guarantees that all operations that manipulate capabilities are erased. Technically,

this means that we are able to equip our untyped calculus (a version of Core ML

with references) with a completely standard operational semantics. We do define

also an instrumented operational semantics, where capabilities exist at runtime. We

prove that erasure is a simulation, that is, the two semantics are equivalent. It is

important to establish this equivalence, as the instrumented semantics is somewhat

exotic. In order to account for the anti-frame rule, for instance, the instrumented

semantics needs to somehow explain how a capability appears out of thin air when

control enters the scope of the rule, and disappears when control leaves this scope.

In our approach the instrumented semantics is purely part of the type soundness

proof; it is not part of the model that is presented to the programmer.

In the present paper, the distinction between the values that exist at runtime

(“ordinary values”) and those that do not (“capabilities”) is entirely independent

of the distinction between affine and unrestricted values. In principle, all four

combinations of choices make sense and are useful. Charguéraud and Pottier (2008)

make only two of the four combinations available: they fix the convention that

ordinary values are duplicable, while capabilities are affine. Affine ordinary values

are not quite lost, as they can be encoded as pairs of a duplicable value and an affine

capability (Walker & Morrisett, 2000; Fähndrich & DeLine, 2002; Ahmed et al.,

2007). Unrestricted capabilities are however unavailable. Pilkiewicz and Pottier (2011)

reintroduce them and illustrate two of their uses: there, purely logical assertions, as

well as the so-called “observations”, are duplicable capabilities.

Hidden state. It is fair to say that the study of the anti-frame rule is the main

motivation for writing the present paper. Many of the features that we have

described so far are required, in one way or another, before we can begin to

discuss the anti-frame rule. Recursive types, for instance, are required in the subject

reduction proof for the anti-frame rule: they are used to construct commutative

pairs (Lemma 6.12), which, in turn, are used in the revelation lemma (Lemma 12.4).

A notion of capability and a guarantee that capabilities are erased at runtime are

required if one wishes to guarantee that the anti-frame rule has no operational

significance. Mutable state, although not technically required by the anti-frame rule,

is involved in all useful applications of the rule known to date.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 53

With this large mass of prerequisites in place, we are ready to study the anti-

frame rule. Introducing the rule, per se, is easy: we add one typing rule, and do

not modify any of the existing rules. Significant work is involved, however, in

introducing the type constructor ⊗, which appears in the anti-frame rule, together

with its equational theory (Section 6); in introducing a technical subtyping axiom,

⊗-exchn, and proving that it does not compromise type soundness (Section 8.7); in

extending the instrumented operational semantics with support for the anti-frame

rule (Section 13); and in establishing type soundness (Section 15).

Charguéraud and Pottier (2008) point out that there is no adverse interaction

between polymorphism and strong references. Even though their type-and-capability

system does not impose a syntactic value restriction in the style of Wright (1995),

it is sound. Once the anti-frame rule is introduced, this pleasant state of affairs

breaks down: some restriction becomes necessary again. We unfortunately did not

make this point in the conference paper (Pottier, 2008); it appears in an unpublished

note (Pottier, 2009b). Of course, in retrospect, this is obvious, because there is a

well-known adverse interaction between polymorphism and weak references, and the

anti-frame rule allows encoding weak references. The Coq formalization supports

two variants of the system: one may choose between having both the value restriction

and the anti-frame rule, or neither of them. The choice is encoded as a Boolean

parameter, with respect to which the entire formalization is parametric: that is, type

soundness holds regardless of the value of this parameter.

We believe that it is a contribution of this paper to emphasize the fact that

unsoundness does not arise out of the interaction between polymorphism and

the act of allocating fresh mutable state; it arises out of the interaction between

polymorphism and the act of hiding. This is further discussed in Section 15.

Further features. Some features are omitted, which could have been welcome. In

particular, recursive functions and sums are absent. Charguéraud and Pottier (2008)

include both of these features. Here recursion can be obtained via one of the standard

fixed-point combinators (which are well-typed, since the system has recursive types)

or via Landin’s knot (Pottier, 2008). We do not expect a major difficulty to arise while

adding these features. We do expect that, as is often the case in large mechanized

proofs, several minor difficulties might arise and might require existing definitions

to be altered. We have not yet attempted to find out.

2.2 Architecture of the proof

Proof technique. The main result that we establish is type soundness: “Well-typed

programs do not go wrong”. The proof technique is syntactic: following Wright

and Felleisen (1994), we separately prove subject reduction and progress statements.

These results are first established at the level of an ad hoc instrumented calculus, then

ported back down to a “raw” calculus, whose syntax and semantics are standard.

In comparison with “semantic” approaches (Ahmed, 2004; Ahmed et al. 2010;

Birkedal et al. 2010, 2011; Schwinghammer et al. 2011), the syntactic approach

seems more simple-minded. It is purely about syntax and reduction, whereas the

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

54 F. Pottier

semantic approach involves more complex mathematics. This is not to say that the

overall effort involved in a syntactic proof is less significant than that required by a

semantic proof. Our wild guess is, in the setting of a one-time endeavor, these efforts

are roughly comparable. As argued by Bell et al. (2008), the semantic approach may

represent a better investment in the long run, because its mathematical foundations

are independent of the programming language and type system, and because the

Hoare logic that serves as an intermediate layer is independent of the type system.

Also, the semantic approach scales up to a binary setting (that is, to logical relations),

whereas the syntactic approach does not.

In spite of its plausible lack of reusability, we adopted the syntactic technique

because it seemed more elementary and because we wanted to test whether it would

scale up to a complex type system without losing its perceived simplicity. The answer

is positive, with reservations.

Let us attempt to compare the syntactic and semantic techniques in a slightly

more detailed manner. In either case, we examine where ingenuity is required and

where non-modular definitions or proofs have to be constructed.

In the syntactic approach, one needs ingenuity to define the syntax and semantics

of the instrumented calculus, as well as to come up with suitable typing rules for the

constructs that play a role in the semantics but do not appear in source programs. In

addition, proving that the instrumented semantics agrees with the standard semantics

is more difficult than one might expect, due to the need to prove that computationally

irrelevant computation steps cannot cause an infinite loop (Lemma 13.4). This proof

is non-modular: It requires coming up with a termination criterion for a reduction

relation whose definition involves a large number of rules. As a result, it has an

unfortunate tendency to break when new rules are introduced. The proofs of subject

reduction and progress for the instrumented semantics, on the other hand, are fairly

mechanical and modular. They consist of many independent cases, each of which

usually goes through in a relatively straightforward way. Furthermore, extending

the system with new features causes new cases to appear but usually does not break

any existing cases.

The semantic approach stems from a desire to interpret types as sets of values. This

approach sounds natural, but quickly leads to a number of difficulties. Accounting

for impredicative polymorphism and recursive types is challenging (MacQueen et al.,

1986; Abadi et al., 1991; Vouillon & Melliès, 2004). Accounting for types whose

meaning evolves over time is also difficult. The latter problem is usually solved by

setting up a Kripke model, that is, by parameterizing the interpretation of types

over a world, for some ordered set of worlds, where the ordering represents a

“possible future” relation. A Kripke model can be used, for instance, to account

for the facts that new regions can be allocated and that the population of an

existing region can only grow. A Kripke model can also be used to account for

weak references. The model must then reflect the facts that new references can

be allocated and that the type of an existing reference cannot change. For this

purpose, a world must contain a map from memory locations to some form of

types. Here, one can choose to use semantic types (that is, functions of worlds to

sets of values), in which case the domain of worlds must be recursively defined; or

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 55

syntactic types, in which case the interpretation of types must be recursively defined.

Either way, subtle recursive definitions are required, and, in order to formulate

these definitions in a sound manner, one must usually introduce some form of

step-indexing or approximation (Ahmed, 2004; Ahmed et al., 2010; Birkedal et al.,

2010). Modeling the higher-order frame and anti-frame rules requires a similar array

of techniques (Schwinghammer et al. 2010, 2011; Birkedal et al. 2011). In summary,

one needs ingenuity to come up with an appropriate definition of worlds, as well

as interpretations of types and typing judgements. Furthermore, this construction is

non-modular, in that extending the system with new features may require significant

changes to these definitions. Once this is done, however, checking that each typing

rule is valid with respect to the semantic model is a relatively mechanical and

modular process.

Some concepts are common to the two approaches. For instance, something that

resembles a Kripke model is present in a syntactic proof of type soundness. In a

proof of type soundness for weak references, a store typing (Harper, 1994) serves as

a world: it is used to give meaning to the ref type constructor, that is, to type-check

memory locations. The statement of the subject reduction lemma constrains how

the store typing evolves: over time, new memory locations may be allocated, but

the type of an existing location does not change. A monotonicity lemma states that

the evolution of the store typing preserves typing judgements. In the present paper,

store typings are subsumed by an abstract notion of resource (Section 10), which

is used to give meaning to strong references and regions. The manner in which

resources evolve over time is constrained by two ordering relations. An analogous

monotonicity lemma (Lemma 15.4) is established.

An instrumented calculus. Our “raw” calculus (Section 4) has standard syntax and

semantics: it is an untyped λ-calculus equipped with pairs, references, nothing more.

The final statement that “well-typed programs do not go wrong” is relative to this

calculus, so it is perfectly clear what is meant by “to go wrong”.

However, as mentioned earlier, we do not establish subject reduction and progress

directly with respect to the semantics of the raw calculus. It would be extremely

difficult to do so. Indeed, the type system has a large number of non-syntax-directed

typing rules, including universal quantifier introduction, existential quantifier elimi-

nation, introduction and elimination of the “!” modality, type equality, subtyping,

the anti-frame rule, and more. The subtyping relation is defined by several dozen

axioms and rules. The raw calculus has very few forms of redexes, but there are

myriad ways in which each of these forms could be well-typed. Thus, a direct attempt

at a subject reduction proof would be hopeless.

We work around this problem by artificially making the type system completely

syntax-directed.6 We introduce an instrumented calculus (Section 5), which has

6 This technique is commonly used, for instance, to establish type soundness for System F . One first
proves subject reduction and progress for a version of System F where type abstractions and type
applications are explicit and require extra reduction steps. One then proves that these extra reduction
steps have no computational meaning and can be erased. Type soundness with respect to the “raw”

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

56 F. Pottier

syntax to indicate where quantifiers are introduced and eliminated, where subtyping

is exploited, where the anti-frame rule is used, and so on. In order to make subtyping

completely explicit, we introduce a syntactic category of coercions, in the style of

Brandt and Henglein (1998), which can be thought of as proof terms, or witnesses,

for a subtyping fact. In the instrumented calculus, this information is a part of the

syntax of programs so that when the structure of a program is known, the structure

of its type derivation is also known. (For the sake of convenience, the type equality

rule remains non-syntax-directed.)

Naturally, we must arrange for the new syntactic forms that we introduce not to

block reduction. We equip the instrumented calculus with an operational semantics,

where new reduction rules explain how these new syntactic forms behave at runtime.

The two calculi are connected by an erasure function, which maps instrumented

terms down to raw terms. The two semantics are related by a simulation lemma

(Lemma 15.18): the erasure function is a weak simulation. To establish this lemma,

we must prove two facts. First, a reduction step in the instrumented calculus is

mapped by the erasure function to either a reduction step in the raw calculus, or

no step at all. Second, the instrumented semantics does not introduce artificial non-

termination: An infinite sequence of reduction steps in the instrumented calculus

cannot be mapped by the erasure function to zero reduction steps in the raw calculus.

(Hence, it must be mapped to at least one step; thus, it must be mapped to an

infinite number of steps.)

The simulation lemma allows transporting the subject reduction and progress

statements, which are initially proved at the level of the instrumented calculus, down

to the level of the raw calculus. Thus, neither the semantics of the instrumented

calculus nor the simulation lemma are part of the final statement of type soundness.

The syntax of the instrumented calculus and the definition of the erasure function are

part of it, because a “well-typed program” in the raw calculus is, by definition, the

image through the erasure function of some well-typed program in the instrumented

calculus.

Terms versus values. We view values and terms as distinct syntactic categories and

adopt an administrative normal form where many positions are required to hold

values. (The components of a pair must be values etc.) This allows us to distinguish

the reduction of values, which does not affect the store, and the reduction of terms,

which does affect.

In a traditional call-by-value calculus, the syntactic category of values embodies

two distinct concepts. On the one hand, values are irreducible, and an irreducible

term that is not a value is considered an error. On the other hand, values can be

substituted for variables. In our instrumented calculus, however, these concepts no

longer coincide. Because there is a subtyping rule for values, the syntax of values

includes the application of a coercion to a value. Because coercion applications

can reduce, it follows that values can reduce. Thus, our values are not irreducible.

λ-calculus follows. Thus, the technique is standard, but has seldom been applied at as large a scale as
is the case here.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 57

Fortunately, value reduction remains a relatively simple and well-behaved relation.

It does not involve the store: it reduces a value to a value. It has no computational

content: its image through the erasure function is the identity (Lemma 13.3). It is

terminating (Lemma 13.4). For these reasons, it remains acceptable to substitute

values for variables, even though a value may be able to reduce.

We define a subset of canonical values (Section 13.1) and prove that every well-

typed value eventually reduces to a canonical value. The proof exploits subject

reduction for values (Lemma 15.9), progress for values (Lemma 15.10), and the fact

that value reduction is terminating (Lemma 13.4).

In summary, in the raw calculus, we distinguish raw values and raw terms, while

in the instrumented calculus, we distinguish canonical values, values, and terms. The

erasure function maps values (whether canonical or not) to raw values and terms to

raw terms.

Representing names and binding. The POPLmark challenge (Aydemir et al., 2005)

has drawn attention to the difficulties associated with the representation of names

and binders within proof assistants. Various representations have been recently

investigated, including nominal representations (Urban, 2008), locally nameless

representations with cofinite quantification (Charguéraud, 2012), and canonical

locally named representations (Pollack et al., 2012).

In this work, we choose to stick with the oldest solution to this problem, namely, de

Bruijn indices (de Bruijn, 1972), because it is well understood and easy to work with.

We set up a series of generic definitions, lemmas, and tactics about de Bruijn indices.

These help equip an inductive type of interest (say, types τ) with the operations of

lifting and substitution, and establish their properties. Lifting, written k↑τ, produces

a copy of τ where every index above k is incremented. It can be thought of as an

end-of-scope marker: Informally speaking, the type k↑τ can be used in a context

where the variable k is in scope if τ is a type where k is not in scope. Substitution,

written [τ′/k]τ, substitutes the type τ′ for the variable k through the type τ. It can

be thought of as a beginning-of-scope marker: the variable k is in scope within τ,

but not within τ′ or within the result [τ′/k]τ.

Throughout this paper, we use these notations. We apologize to the reader for

using de Bruijn indices in a paper that is meant to be read by humans. However, there

is a reason to do so: The definitions and lemmas that we present are mechanically

extracted from the Coq formalization, and, for this reason, cannot be easily translated

into informal nominal syntax. This decision does mean that certain statements will

look a bit unusual. Most of the time, fortunately, the reader will be able to ignore

the details of de Bruijn indices by pretending that “k↑τ” is “τ”. (In informal nominal

syntax, this would amount to ignoring a freshness side condition.) Also, remember

that “0” represents the most recently bound variable. We will translate a few

statements into an informal nominal syntax to help the reader become familiar with

our notation.

In hindsight, the use of de Bruijn indices seems to have been a reasonable choice.

Setting up a generic machinery took only a couple of days, and this machinery was

instantiated without difficulty for each of the syntactic categories that involve names

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

58 F. Pottier

and binders, namely, types, raw values and terms, coercions, and instrumented values

and terms. We do acknowledge though that on a few occasions we had difficulty

finding out how to express a statement in the de Bruijn notation.

Encoding affinity. The type system must somehow distinguish between affine and

unrestricted values. There are several ways of doing this.

One possibility is to make this distinction explicit in the syntax of types. There

are again multiple ways of doing this. One approach is to view all type constructors

as affine by default and use an explicit “!” modality to indicate where duplication

is permitted. In this case, explicit typing rules must be set up to deal with the

modality. One could perhaps adopt the four classic rules of intuitionistic linear

logic, namely, weakening, dereliction, contraction, and promotion, but Barber (1996)

argues convincingly in favor of DILL, a formulation where there is just one

introduction rule and one elimination rule for “!”. One could also decorate every

type constructor with an explicit qualifier, in the style of Ahmed et al. (2005), but

it seems more economical to have an explicit modality than to build it into every

other type constructor. Thus, we follow Barber’s approach (1996). Because we are

interested in only two modes, namely, “affine” and “unrestricted”, one modality is

enough.

Another possibility would be to not make any distinction in the syntax of types,

and instead to use the kind assignment judgement to distinguish between affine and

unrestricted types. Charguéraud and Pottier (2008) adopt this approach. There, a

type of kind val describes a duplicable value, while a type of kind mem describes an

affine value. The kind val is a sub-kind of mem so that a duplicable value can be

provided where an affine value is expected. Charguéraud and Pottier (2008) use just

one kind cap of affine capabilities, but Pilkiewicz and Pottier (2011) introduce a kind

dcap of duplicable capabilities together with the sub-kinding axiom dcap � cap.

This mechanism is studied in isolation by Mazurak et al. (2010) and Tov and

Pucella (2011), who incorporate a form of kind polymorphism.

In a surface language, we believe that encoding affinity information at the level

of kinds is preferable, because this allows types to become significantly less verbose,

while requiring relatively few kind annotations. This was indeed Charguéraud and

Pottier’s (2008) motivation for adopting this style. In a kernel language, where

verbosity is not an issue, the choice is not so clear-cut. We choose to encode

this information at the level of types because this allows us to get away with

no kinds at all. Mazurak et al. (2010) note that either style can be translated

into the other, so in principle one can encode a surface language that represents

affinity at the level of kinds into a kernel language that represents it at the level of

types.

Encoding erasability. We have argued above in favor of an unambiguous distinction

between the “physical” and “logical” layers, that is, between what exists at runtime

and what is erased. Charguéraud and Pottier (2008) encode this distinction at the

level of kinds: values, which have kind val or mem, exist at runtime, while capabilities,

which have kind cap, are erased. Thanks to the absence of kind polymorphism, this

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 59

means that there exists a simple, kind-driven erasure algorithm. In this paper,

motivated by the (perhaps artificial) desire to have no kinds at all, we again pursue

another approach. We explore the idea that the distinction between what exists at

runtime and what is erased should be so simple as to be syntactic. That is, ideally, a

simple examination of the syntax of an instrumented term should let us determine

what parts exist at runtime and what are erased. In other words, the erasure function

should be a function of a term alone: it should not require any auxiliary information

in the form of types or kinds.

When applied to a physical term (that is, a term that is meant to exist at runtime),

the erasure function should produce a raw term. When applied to a logical term (that

is, a term that is meant to be completely erased at runtime), the erasure function

should produce “nothing”. However, for simplicity, we would like to be able to view

the erasure function as a total function from terms down to raw terms. This leads

us to incorporating “nothing”, that is, a special constant •, as part of the syntax of

raw terms.

We expect the erasure of a valid physical term to be a raw term where • does not

occur. We expect the erasure of a valid logical term to be •. In order to enforce this,

we restrict our attention to the “well-layered” terms of the instrumented calculus.

In short, it does not make sense to write a logical term where a physical one is

expected, or vice-versa. We define a well-layeredness judgement that makes this rule

precise, and classifies the values and terms of the instrumented calculus as either

physical (Phy) or logical (Log).

The well-layeredness judgement involves an environment, which maps variables

to layers. It is entirely independent of (and significantly simpler than) the typing

judgement. We set up the instrumented semantics so that well-layeredness is

preserved by reduction (Lemma 14.2). We exploit well-layeredness as a hypothesis

in the proof of the simulation lemma (Lemma 15.18), which states that the

instrumented semantics and the raw semantics agree. In these lemmas, no well-

typedness hypothesis is required. This can be considered a positive aspect insofar as

it simplifies our architecture.

Unfortunately, well-layeredness and well-typedness cannot be completely indepen-

dent. A difficulty arises in the treatment of pairs and unit. What is the erasure of a

pair? Because we would like to allow each component of a pair to be physical or

logical, we really have four varieties of pairs. The erasure function must be able to

distinguish between them. The erasure of a pair could be a pair (if both components

are physical), the erasure of just one component (if this component is physical

and the other component is logical), or nothing at all (if both components are

logical; this variety of pair corresponds to the separating conjunction of separation

logic). For this reason, in the instrumented calculus, we annotate each component

of a pair with a layer ι, one of Phy and Log. Similarly, the pair elimination

construct, letpair, is annotated with two layers, and its image through the erasure

function depends upon these annotations. The unit constant is also annotated with

a layer: ()Phy represents the unit value, while ()Log represents the unit capability and

corresponds to Charguéraud and Pottier’s � (2008) and the empty heap assertion

emp of separation logic.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

60 F. Pottier

Annotating both pair introduction and pair elimination with layers introduces

the possibility for a mismatch. Even within a well-layered term, pair introduction

and pair elimination constructs with mismatched layers may come into contact.

Should such a term reduce? No: that would break both the fact that reduction

preserves well-layeredness (Lemma 14.2) and the fact that erasure is a simulation

(Lemma 15.18). Thus, such a term must be stuck. Because we must prove that a

well-typed term cannot be stuck, we must arrange for this term to be ill-typed,

and, for this purpose, we must incorporate some layer information as part of the

syntax of types. We decide to annotate the pair type constructor with one layer

per component, so a pair type has the form ι1 (τ1 × τ2)ι2 , where ι1 and ι2 are layers

and τ1 and τ2 are types. Thus, the type system must keep track of the distinction

between the four varieties of pairs. This seems natural. Charguéraud and Pottier’s

system (2008) also keeps track of this distinction at the level of kinds. Analogously,

we annotate the unit type with a layer.

In summary, the distinction between well-layeredness and well-typedness mostly

works. However, the fact that the preservation of well-layeredness (Lemma 14.2) and

simulation (Lemma 15.18) must be established without a well-typedness hypothesis

can be considered a weakness. We did encounter cases where it seemed that such a

hypothesis was necessary, and, because this hypothesis was not available, we resorted

to formulating the instrumented semantics in such a way that these cases would not

arise.7 In hindsight, using kinds to distinguish between physical and logical entities,

in the style of Charguéraud and Pottier (2008), might have been more elegant and

robust.

Notation. In an attempt to eliminate as many typographical errors as possible, the

definitions and lemmas presented in this paper are extracted from the Coq source

and typeset by an ad hoc tool. In the interest of readability, the notation used by the

tool is sometimes overloaded, hence ambiguous. Furthermore, in a few cases, certain

“uninteresting” hypotheses, such as the well-formedness of all types, are omitted.

(The reader is explicitly warned.) Naturally, the Coq formalization (Pottier, 2012a,

2012b) contains no such abuse and serves as a reference. In the electronic version of

this paper, the Œ symbol that marks the end of every definition and lemma is also

a hyperlink to the online Coq version of this definition or lemma.

3 Illustration: an encoding of weak references with affine content

Before delving into the definition of the type-and-capability system, let us illustrate

its main features by means of an example. The conference paper (Pottier, 2008)

presents an encoding of weak references in terms of strong ones. These weak

7 This can often be done by making certain reductions subject to extra side conditions. Thus, we have
fewer cases to deal with in Lemmas 14.2 and 15.18, which assume that a certain reduction takes place,
and more cases to deal with in the proof of progress, where we must show that well-typed terms do
not get stuck (Lemma 15.17), and where a well-typedness hypothesis is available. In general, in the
syntactic proof technique, adjusting the operational semantics allows one to move proof obligations
between the subject reduction and progress lemmas.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 61

λinitv . – this is mkwref

let r = new initv in

λnewv . – this is swap

let newv = newv in

let oldv = read r in

write (r, newv);

oldv

Fig. 1. Encoding weak references with affine content: raw version.

references support separate read and write operations. Because reading a reference

creates a copy of its content, they are restricted to duplicable content, that is, in

the terminology of the present paper, to content of type ! τ. In this section, we

present a slightly different encoding: we show how to encode weak references with

affine content (in other words, with arbitrary content) in terms of strong references

and the anti-frame rule. These weak references provide a single operation, namely,

“swap”. This operation writes a new value to the reference and returns its previous

value. Even though we implement “swap” in terms of the primitive read and write

operations, the system is sufficiently expressive to recognize that this operation does

not involve duplication.

3.1 The raw code

The untyped code, a term of the raw calculus (Section 4), is short (Figure 1). For

readability, we have used names instead of de Bruijn indices. A weak reference

with affine content is encoded as an “object” that offers a single “method”, namely,

“swap”. In other words, a weak reference is a first-class function which, when

invoked, swaps a new value for the current one. In Figure 1, the main function

(which we refer to as mkwref , for “make a weak reference”) creates a fresh reference

r and returns a function (which we refer to as swap) that has access to r.8

One can see, informally, that the only way for the user to access r is via swap. As

a result, if the initial value initv has type τ and if swap presents itself to the user as

a function that expects an argument of type τ, then the property that the reference r

exists and contains a value of type τ is true forever: it is an invariant. Furthermore,

the user need not be aware of this invariant: all she needs to know is that swap

expects an argument of type τ and produces a result of type τ. The type derivation

that we are about to present is a formal justification of this argument.

Some of the material that follows (Sections 3.2 and 3.3) cannot be fully under-

stood until the instrumented calculus and the type system have been presented.

Nevertheless, we hope that, upon first reading, the reader can still gather a rough

understanding of what is going on, and that this will help to clarify how the various

bits and pieces fit together.

8 The seemingly redundant binding “let newv = newv in . . . ” will be explained shortly (Section 3.2).

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

62 F. Pottier

1Λ ! λinitv . – this is mkwref

2 let xrc = new initv in

3 unpack rc = xrc in

4 let rc = rc in hide

5 letpairPhy,Log (r, c) = rc in

6 let! r = at-bang r in

7 Phy(

8 ! λnewvc. – this is swap

9 let xnewvcc = (focus . . .) newvc in

10 unpack newvcc = xnewvcc in

11 letpairPhy,Log (newvc1, c2) = newvcc in

12 letpairPhy,Log (newv , c1) = newvc1 in

13 let oldvc1 = read Phy(r, {ref at-bang} c1)Log in

14 letpairPhy,Log (oldv , c1) = oldvc1 in

15 let uc1 = write Phy(Phy(r, newv)Phy, c1)Log in

16 letpairPhy,Log (u , c1) = uc1 in

17 Phy(

18 (defocus path-root) Phy(dereliction oldv , c2)Log,

19 c1

20)Log,

21 c

22)Log

Fig. 2. Encoding weak references with affine content: instrumented version.

3.2 The instrumented code

In order to prove that the raw term of Figure 1 is well-typed, we must first construct

a term of the instrumented calculus (Section 5) whose erasure is the raw term of

interest. This instrumented term appears in Figure 2. Again, we use names instead

of de Bruijn indices, and keep doing so until the end of this section.

This term may at first seem quite daunting. In fact, quite a lot of noise is caused

by the mundane operations of constructing and deconstructing pairs of a value

and a capability, which are required in order to explicitly “thread” capabilities

through the code. The more interesting aspects of this code are the anti-frame rule,

represented by the let/hide construct; the “focus” and “defocus” operations, which

allow reading a reference with affine content; and the introduction and elimination

of the “!” modality, which allow proving that certain values are duplicable and using

these values multiple times.

This instrumented term is well-layered, which means that there is no confusion

between values that exist and runtime and values that do not (Section 14). Its erasure

(Section 5.2) is the raw term that we are interested in.9

The instrumented version of mkwref has type ∀α.! (α → (! (α → α))). Here is a

formal version of this claim, whose proof has been machine-checked.

9 The “let” definition on line 9 of Figure 2 is the reason why, after erasure, there remains a redundant
definition, of the form “let newv = newv in . . . ”, in the code of Figure 1. In order to eliminate this
redundancy, it seems that one would need to make “focus” a coercion, as opposed to a primitive
operation.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 63

Lemma 3.1 Provided the anti-frame rule is enabled, the term mkwref is well-typed:

anti-frame enabled

void , nil , nil 	 mkwref : ∀(! (0 → (! (0 → 0))))
♥

What does this type mean?

First, the function mkwref is polymorphic in α, the type of the content of the

reference. The type variable α ranges over all types, which is why we speak of weak

references with “affine content”, as opposed to the weak references with duplicable

content of the conference paper (Pottier, 2008).

Second, the function mkwref is duplicable. This means that one can create as

many weak references as one wishes. It also means that mkwref can have multiple

independent users, because invoking mkwref does not require presenting a unique

capability, its users need not cooperate or even be aware of each other’s existence.

Last, the value produced by a call to mkwref is itself duplicable, which is why we

speak of “weak” references. This value is a weak reference, represented by a “swap”

function. The fact that this value is duplicable means that one can use a weak

reference as many times as one wishes. It also means that a weak reference can have

multiple independent users: invoking swap does not require presenting a unique

token. In other words, weak references can be freely aliased. This is in contrast with

traditional affine (or linear) type systems (Walker, 2005), where a container of affine

data must itself be affine.

3.3 The type derivation

Let us briefly explain the most important aspects of the instrumented term and

the type derivation. The reader who would like more details is referred to the Coq

formalization (Pottier, 2012a, 2012b), which makes it possible to interactively step

through the type derivation.

On line 1 of Figure 2, the type variable α and the variable initv , which represents

the initial value of the reference, are introduced. Our terms do not refer to types,

which is why there is no reference to α in Figure 2.

On line 2, a fresh reference is allocated. This is a strong reference: its use is

governed by a capability. Technically, the primitive operation new produces an

existential package. On line 3, this package is opened, which introduces a fresh type

variable ρ. Inside the package, we find a pair rc of a memory location r and a

capability c. The value r has type [ρ], which means that it inhabits the region ρ.

The capability c has type {S ρ : ref α}, which means that this capability represents

the ownership of the region ρ and guarantees that ρ is a singleton region whose

inhabitant is a reference to a value of type α.

On line 4, the anti-frame rule is applied, so that the existence of r is known to the

code that follows the hide keyword and unknown to the outside world. The general

form of the let/hide construct, in nominal notation, is “let x = v in hide t. (In the

de Bruijn notation, it will be just “let v in hide t”.) Its meaning is the same as that

of an ordinary let construct, but it is type-checked in a special way: an invariant is

visible to the term t and invisible to the outside world.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

64 F. Pottier

One key piece of information that must be supplied at this point in the type

derivation is the invariant. The invariant is a type θ. It is the type of a capability

to which the code inside the hide construct has access and to which the outside

world is oblivious. Again, because terms do not refer to types, the invariant does

not appear in Figure 2.

What is θ? To a first approximation, it is {S ρ : ref α}. This means that the

reference r exists forever, its content is always a value of type α, and the code that

follows the hide keyword has read and write access to r, as long as it preserves this

invariant.

This tentative invariant would be appropriate if, instead of working with an

abstract type α, we decided to fix a type τ of “inert” data, that is, a type τ that is

built out of base types, products, and sums. Here, however, α can be instantiated

with an arbitrary type τ, including one that involves functions.

Imagine, for instance, that α stands for the function type unit → unit. In that case,

{S ρ : ref (unit → unit)}, which means that the reference r contains a procedure, is

not strong enough an invariant. The invariant must be “self-stable”, so to speak,

it must additionally guarantee that the procedure that is stored in r preserves the

invariant. This is a recursive sentence. We translate it in formal terms as follows: the

invariant must satisfy the recursive equation θ ≡ {S ρ : ref ((unit ∗ θ) → (unit ∗ θ))}.
Thus, the invariant must be a recursive type.

The idea remains the same in the presence of more complex function types. For

instance, if α stands for (unit → unit) → unit, then the invariant must satisfy the

equation θ ≡ {S ρ : ref ((((unit ∗ θ) → (unit ∗ θ)) ∗ θ) → (unit ∗ θ))}.
In order to support polymorphism, we must deal with the general case where α

is a type variable and can later be instantiated with an arbitrary type. This leads

us to introducing a new type operator, the “tensor” ⊗ (Section 6). For an arbitrary

type τ, the type τ ⊗ θ can be thought of as a copy of τ where every function carries

an additional argument and result of type θ. Thus, in the general case, the invariant

must be a type θ that satisfies the equation θ ≡ {S ρ : ref (α ⊗ θ)}. Such a type

exists: it is μβ.{S ρ : ref (α ⊗ β)}. Thus, recursive types are required not only in the

type soundness proof but also in practical applications of the anti-frame rule! This

invariant implies in particular that, inside the hide construct, the reference r can be

read and written at type α ⊗ θ.

The anti-frame rule introduces a “change of vocabulary”: whatever has type τ⊗θ

inside the hide construct has type τ outside. This change is effective both “upon

entry” and “upon exit”, so to speak. If prior to entering the hide construct some

variable x has type τ1, then, within this construct, x appears to have type τ1 ⊗ θ.

Symmetrically, if the value returned by the hide construct has type τ2 ⊗ θ, then, to

the outside world, this value appears to have type τ2.

For this reason, on line 4, the variable rc is redefined, with the same value, but

with a new type. Outside “hide”, its type was [ρ] ∗ {S ρ : ref α}. Inside “hide”, its

type is ([ρ] ∗ {S ρ : ref α}) ⊗ θ. By the distribution laws that govern the “tensor”

operator and by the equation that defines θ, this type is equal to [ρ]∗θ. Thus, on line

5, where we decompose the pair rc, we find that r has type [ρ], while the capability

c has type θ.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 65

On line 6, we prepare for the variable r to be used by the function swap, where

r occurs free. We want swap to be a duplicable function: this is indicated by the

“!” introduction construct that precedes “λ” on line 8. This means that r must be

“unrestricted”, in the sense of DILL (Barber, 1996), when we type-check swap. At

this point, however, r is not “unrestricted”: it is “affine”, which means that it can

be used at most once. In order to rectify this, we proceed in two steps, both of

which take place on line 6. First, we apply the coercion at-bang, which changes the

type of r from [ρ] to ! [ρ]. The intuitive idea is: because the fact that r inhabits the

region ρ is true forever (it cannot be revoked), it is safe to mark this information

as duplicable. Second, we use the let! construct, which we borrow from DILL, to

eliminate the “!” modality and make r an “unrestricted” variable of type [ρ]. The

general rule is that a variable bound by let! is unrestricted (it can be used for an

arbitrary number of times), while a variable bound by any other construct is affine

(it can be used at most once).

On lines 7–22, we build a pair of the swap function and of the capability c. This

capability serves as a witness that the invariant initially holds: its presence here is

required by the anti-frame rule.

Let us now examine the code of swap. On line 8, its argument, newvc, is introduced.

It is a pair of a new value, which has type α⊗ θ, and a capability, which has type θ.

The presence of this capability means that when swap is invoked the invariant holds.

On lines 9–12, we take a preparatory step whose purpose is to allow the reference r

to be read. The primitive operation read is restricted to references whose content is

duplicable. For this reason, it cannot directly be applied to r. In order to be able

to read r, we must first “focus” on its content, that is, introduce a fresh singleton

region σ, whose inhabitant is the value stored in r. This allows us to argue that

this value has type [σ], a duplicable type, and to read r. Reading r in this manner

duplicates the value stored in r, but does not duplicate the capability that governs

this value.

The focus operation on line 9 takes two arguments: a path, which indicates

where to focus, and a value, newvc. For the sake of readability, the path has

been elided in Figure 2, but will be shown here. Recall that newvc has type

(α ⊗ θ) ∗ θ, that is, (α ⊗ θ) ∗ {S ρ : ref (α ⊗ θ)}. In other words, newvc is “a

pair whose right-hand component is a capability for a singleton region whose

inhabitant is a reference whose content is a value of type α ⊗ θ”. We wish to

introduce a name, say σ, for the content of this reference. Thus, we must focus on

the path path-right Phy Log (path-singleton (path-ref path-root)). This path indicates

that, beginning at the root of the value newvc, we wish to descend into the right-hand

component of a pair, then into a capability for a singleton region, and finally into a

reference.

The focus operation, followed with the de-structuring operations on lines 10–

12, produces the following entities: a fresh type variable σ; a value newv of type

α ⊗ θ; a capability c1 of type {S ρ : ref [σ]}, which represents the ownership of the

reference r, but not of its content, which inhabits the region σ; and a capability c2

of type {S σ : α ⊗ θ}, which represents the ownership of the region σ, hence the

ownership of the value currently held in r.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

66 F. Pottier

On lines 13–14, we read r. The capability c1 serves as a proof that this is legal.

We obtain a pair of a value oldv , which has type ! [σ], and a capability c1, whose

type is unchanged.

On lines 15–16, we write r. The capability c1 serves as a proof that this is legal.

We obtain a pair of a unit value and a capability c1, whose type is updated: this is

a strong update. The type of c1 is now {S ρ : ref (α ⊗ θ)}, that is, θ. We have just

re-established the invariant, which was broken earlier by the “focus” operation.

On lines 17–20, we are done. We return a pair of the value oldv , which is the

“real” result of the function swap, and of the capability c1, which proves that we

have re-established the invariant. In order to make oldv a suitable result, however,

a couple of steps are required. First, because we are about to use oldv only once, we

apply the coercion dereliction, which converts the type of oldv from ! [σ] to just [σ].

Second, by a “defocusing” operation, we bring together the value oldv , which has

type [σ], and the capability c2, which has type {S σ : α⊗θ}. This operation produces

a value of type α ⊗ θ. Thus, we forget that oldv inhabits σ and keep only the

information that oldv has type α ⊗ θ.

What have we achieved so far? Considering our hypothesis about swap’s argument,

newvc, and considering our analysis of swap’s result, we have proved that swap has

type ! (((α ⊗ θ) ∗ θ) → ((α ⊗ θ) ∗ θ)). By the equational theory of tensor, this type is

equal to (! (α → α)) ⊗ θ.

Thus, the pair of swap and c, which extends from line 7 to line 22, has type

((! (α → α)) ⊗ θ) ∗ θ, a type which we also write (! (α → α)) ◦ θ. This type means that

(i) swap preserves the invariant, and (ii) the invariant holds initially.

This is where the “change of vocabulary” imposed by the anti-frame rule kicks

in again. If the code that follows the hide keyword produces a value of type

(! (α → α)) ◦ θ, then the entire let/hide construct is deemed to have type ! (α → α).

In other words, as far as the outside world is concerned, this term behaves like a

duplicable function of α to α.

The final step is to conclude that mkwref , which extends from lines 1 to 22, has

type ∀α.! (α → (! (α → α))), as claimed earlier.

3.4 Comments

We have shown how, thanks to the anti-frame rule, one can implement weak

references with affine content in terms of strong references with affine content.

Thus, the anti-frame rule offers a way of implementing a duplicable container

with affine content, something that is forbidden by traditional affine or linear type

systems (Walker, 2005).

Certain more recent systems do include duplicable references with non-duplicable

content, with the restriction that these references cannot be read: they support only

the “swap” and “write” operations (Ahmed et al., 2005; Swamy et al., 2006; Tov &

Pucella, 2011). Our approach offers a reconstruction of these duplicable references

with affine content. It is interesting to note that Ahmed et al. (2005) wrote: “Storing

a unique object in a shared reference ‘hides’ the unique object in some way”. The

anti-frame rule turns this intuition into an explicit mechanism.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 67

Our references with affine content offer a single “swap” operation. If one would

like to have separate “get” and “set” operations, two possibilities come to mind.

One approach is to require the content to have a duplicable type, of the form ! α.

This approach is illustrated in the conference paper (Pottier, 2008).

Another approach is to check at runtime that the content of a reference is

never read twice. For this purpose, one builds on top of the weak references with

affine content defined above. One creates a weak reference whose content has

type option α. Then, on top of the “swap” function, which has type ! (option α →
option α), one defines a “set” function of type ! (α → unit) and a “get” function

of type ! (unit → option α). The “get” function can fail, that is, it can return

the value None. Furthermore, this function has a hidden side effect: it writes

the value None into the reference. Thus, if “get” is invoked twice, without an

intervening call to “set”, then the second invocation must fail. This is a dynamic

mechanism for enforcing affinity. Such mechanisms are useful because they can serve

to link code that is type-checked within a type-and-capability system (which keeps

track of ownership and distinguishes affine and duplicable data) with code that

is type-checked within an ordinary type system (where everything is considered

duplicable).

Tov and Pucella (2010) draw attention to this idea. They propose a primitive

mechanism whereby an affine value is encapsulated within a wrapper that maintains

one bit of hidden mutable state and presents itself as a duplicable value. In their

more recent work on Alms (Tov & Pucella, 2011), these primitive wrappers are no

longer necessary; instead, duplicable references with affine content, equipped with

a “swap” operation, are considered a primitive construct, so the above approach,

based on references of type option α, can be used.

In an unpublished note (Pottier, 2009b), we have pointed out that the anti-frame

rule is “paranoid”, that is, very restrictive. Because it requires the invariant to hold

whenever control enters or exits the area where the invariant is visible, it effectively

prevents the code within this area from exploiting pre-existing libraries in order

to manage its hidden state. Fortunately, there is a way around this problem: The

anti-frame rule can be used to implement a “lock” abstraction that offers much

greater flexibility than the direct use of the anti-frame rule (Pilkiewicz & Pottier,

2011). This comes at the cost of a dynamic check, and a potential runtime failure,

should the code attempt to obtain a single lock twice. In short, locks are another

instance of a dynamic mechanism for enforcing affinity.

The anti-frame rule is sound only in a sequential setting. To see this, consider

the above encoding of weak references with affine content. It is clear that our

implementation of “swap” in terms of reading and writing is not atomic. Hence, in

a concurrent setting, this implementation would be incorrect: It would be possible

for two concurrent invocations of “swap” to read the same value, thus violating

affinity. There is no obvious way to “fix” the anti-frame rule for use in a concurrent

setting. Instead, primitive dynamically allocated locks in the style of concurrent

separation logic (Gotsman et al., 2007; O’Hearn, 2007; Hobor et al., 2008; Buisse

et al., 2011) can be considered a replacement for it. They are in fact easier to

understand than the anti-frame rule because they do not involve a “tensor” and a

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

68 F. Pottier

V ::= x | λT | (V , V) | () | l | •
T ::= V | V T | letpairV inT | newV | readV | writeV

Fig. 3. Syntax of the raw calculus.

“change of vocabulary”. However, in their present form, these concurrent separation

logics do not guarantee the absence of deadlocks.

PART TWO

Definition

In this part, we define the type-and-capability system. We describe the syntax and

semantics of the untyped (“raw”) calculus (Section 4). We present the syntax of a

non-standard (“instrumented”) calculus (Section 5). The terms of this calculus carry

type-checking information that facilitates the type soundness proof. The two calculi

are related via an erasure function. We introduce types (Section 6) and define the

typing (Section 7) and subtyping (Section 8) judgements.

4 The raw calculus

The raw calculus is a standard call-by-value λ-calculus equipped with pairs and

references. The syntax of raw values and raw terms appears in Figure 3.

Raw values include variables x, where x is a de Bruijn index; functions λT , where

one variable is bound in T ; pairs (V , V); the unit value (); memory locations l;

and a special value •, pronounced “erased”. A memory location is a natural

integer. The value • plays a role in the definition of the erasure function, which

connects the instrumented calculus with the raw calculus (Section 5.2). There it

represents an “erasure error”. It never appears in the erasure of a well-layered

program (Section 14).

Raw terms include values V ; function application V T ; pair elimination

letpairV inT , where two variables are bound in T ; and three primitive operations

for allocating, reading, and writing references, newV , readV , and writeV . For

the sake of uniformity, all primitive operations expect exactly one argument; in

particular, in writeV , the value V is expected to be a pair of a memory location

and a value. We sometimes write letT1 inT2 as syntactic sugar for (λT2) T1.

We let M range over partial functions of memory locations to raw values, that is,

total functions of memory locations to optional raw values. We write ⊥ for Coq’s

“None” and write V for Coq’s “Some V”. Thus, the image M l of a memory location l

through a function M is either ⊥ or a value V . We let both l and � range over

memory locations. The meta-variable � usually denotes the allocation limit, that is,

the first available memory location. A raw store S is a pair of a function M, which

represents the contents of the store, and an allocation limit �. We write M below �

for such a pair.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 69

S/ (λT) V −→ S/ [V/0]T S/ letpair (V1, V2) inT −→ S/ [V1/0][0↑V2/0]T

S1/T1 −→ S2/T2

S1/V T1 −→ S2/V T2

M1[� �→ V] = M2

M1 below �/newV −→ M2 below � + 1/ �

M l = V

M below �/ read l −→ M below �/V

M1 l = V1 M1[l �→ V2] = M2

M1 below �/write (l, V2) −→ M2 below �/ ()

Fig. 4. Operational semantics of the raw calculus.

The operational semantics of the raw calculus takes the form of a single reduction

relation: the proposition S1/T1 −→ S2/T2 holds when the raw configuration S1/T1

reduces in one step to the raw configuration S2/T2. (We use the word configuration

for a pair of a store and a closed term.) The inductive definition of this predicate

appears in Figure 4. The first two rules respectively reduce a β-redex and a letpair-

redex. The third rule allows reduction under a context: in this calculus, the only

evaluation context is the right-hand side of an application. The reduction rule for

newV extends the store with a binding of � to V , where � is the current allocation

limit, and increments the allocation limit. The reduction rule for read l fetches the

value V that is currently stored at address l. The rule is applicable only if this

address currently holds a value, that is, M l �= ⊥. The reduction rule for write (l, V2)

updates the store with a binding of l to V2. Again, the rule is applicable only if a

previous binding of l to V1 exists, that is, M l �= ⊥.

5 The instrumented calculus

The instrumented calculus extends the raw calculus (Section 4) with explicit con-

structs for coercions, capabilities, quantifier introduction, etc. Its operational seman-

tics describes how these new constructs behave: in particular, the application of a

coercion to a value reduces to a new value. None of these constructs is intended to

exist at runtime: an erasure function, which maps terms to raw terms, formalizes

this idea.

In this section, we briefly present the syntax of the instrumented calculus and

define the erasure function. The meaning of each construct is explained in greater

depth as we present the typing and subtyping rules (Sections 7 and 8). The semantics

of the instrumented calculus is discussed only after the type system is defined (Section

13).

5.1 Syntax

The syntax of the instrumented calculus, presented in Figure 5, involves several

syntactic categories. Layers ι are used to distinguish between physical entities (which

exist at runtime) and logical entities (which do not). Coercions c can be thought

of as proof terms for subtyping judgements. Focus paths π appear in the focus

and defocus operations. Primitive operations p include the standard operations for

allocating, reading, and writing references, as well as operations that have no

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

70 F. Pottier

ι ::= Phy | Log (layers)

c ::= id | c; c | (reflexivity, transitivity)

c → c | ι(c × c)ι | ∀c | ∃c | ! c | ref c | {c} | {c\} | (congruence)

∀I | ∀E | ∃I | ∃E | (quantifier intro/elim)

distrib | ∃LI | ∀-pair | ∀-bang | ∀-ref | ∀-regioncap |
∀-regioncappunched | pair-exists-left |
pair-exists-right | bang-exists | ref-exists |
cap-exists |

(quantifier movement)

dereliction | bang-idempotent | pair-bang |
bang-pair | unit-bang | bang-ref | bang-regioncap |
bang-regioncappunched | at-bang |

(affinity)

singleton-to-group | defocus π | defocus-group | (regions)

star-comm | star-assoc | star-ref | ref-star |
star-singleton | singleton-star | ⊗-exchx |

(movement of stars)

x | μc (recursive coercions)

π ::= path-root | path-left ι ι π | path-right ι ι π | path-ref π |
path-singleton π

(focus paths)

p ::= defocus-dup π | focus π | newgroup | adopt |
focusgroup | new | read | write

(primitive operations)

v ::= x | λt | ι(v, v)ι | ()ι | Λv | pack v | c v | ! v | l%v | {�v} |
{? ::�v} | [v]

(values)

�v ::= ε | v ::�v (lists of values)

t ::= v | v t | Phy(t, v)Log | Λt | c t | unpack v in t | let! v in t |
letpairι,ι v in t | p v | let v in hide t

(terms)

Fig. 5. Syntax of the instrumented calculus.

runtime effect. Values v, w and terms t have more elaborate syntax than their raw

counterparts.

A pair value ι1 (v1, v2)ι2 is annotated with two layers ι1 and ι2, one per component.

This information guides the erasure process (Section 5.2). Similarly, a unit value

()ι is annotated with a layer. The value ()Phy is the usual unit value, whereas the

value ()Log represents a trivial capability and corresponds to ∅ in Charguéraud and

Pottier’s paper (2008) and to emp in separation logic.

The constructs Λv, pack v, and ! v mark the presence of an introduction rule

for the type constructors ∀, ∃, and ! respectively. The construct c v represents an

application of the coercion c to the value v.

Remark 5.1 The syntax of the instrumented calculus is type-free. No coercion, value,

or term refers to a type. In particular, although the placement of type abstractions

and type applications is explicit, it is not said which type variables or types are

involved. Thus, the construct Λv does not introduce a type variable. It is in fact not

a binder. The coercion ∀E does not indicate which type is used to instantiate the

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 71

universal quantifier. In most presentations of System F , terms do refer to types. This

helps the machine perform type-checking, and allows the programmer to impose

abstraction barriers. However, for the purpose of establishing type soundness, this

information is not necessary. Getting rid of it simplifies the syntax and semantics of

the instrumented calculus. �

A value of the form l%v represents a memory location l. It carries the value v

that is currently contained in the store at location l. This design is unusual, and may

come as a surprise. How is it sound, and how is it useful?

How is it sound? By decorating the pointer l with the value v that it points to, we

seem to run the risk that someone writes a new value to l and v becomes stale. We

are in fact safe because references are affine: a value of the form l%v has a type of

the form ref τ, which is an affine type. Roughly speaking, the type system ensures

that, for each memory location l, there is at most one value of the form l%v in

existence, and v is precisely the value that is currently stored at l. This is expressed

by the first typing rule in Figure 23.

How is it useful? Why decorate l with v? One technical reason is that this helps

define a semantics for the coercion ref c, which asserts that the type constructor

ref is covariant. As we will see, the coercion application (ref c) (l%v) reduces to

l%(c v). In short, we are able to “push the coercion down into the store”, without

actually consulting the store. This allows us to formalize the semantics of coercions

in terms of reduction of values, as opposed to reduction of pairs of a store and a

value.

The value {�v} represents a capability over a (singleton or group) region, whose

inhabitants are exactly the values in the list �v. The name of the region is not

mentioned. Again, the reason why it is possible for the capability to carry an exact

list of the inhabitants is that the capability is affine.

The value {? ::�v} represents a capability over a (group) region in which a hole

has been punched (via the primitive operation focusgroup), and whose remaining

inhabitants are the values in the list�v.

A value of the form [v] represents the value v, marked as a region inhabitant.

That is, the constructor [·] serves as a hint to the type system that this value should

receive a type of the form [ρ], which means “inhabitant of region ρ”, regardless of

the structure of the value v.

Let us now move on to terms.

The term Phy(t, v)Log represents a pair of a (physical) term t and a (logical) value v.

Reduction is permitted inside the term t. As we will see (Section 7.2), this construct

corresponds to the frame rule of separation logic: The value v represents a capability

that is set aside during the computation t.

The construct Λt marks the introduction of a universal quantifier. The presence

of this construct in the syntax of terms (as opposed to only in the syntax of values)

means that we do not hardwire the value restriction in the syntax of the calculus.

Indeed, we offer a choice between having both the anti-frame rule and the value

restriction, or neither of them. The construct Λt is well-typed only in the latter case.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

72 F. Pottier

�x� = x �l%v� = l

�λt� = λ�t� �Λv� = �v�
�Phy(w1, w2)Phy� = (�w1�, �w2�) �pack v� = �v�
�Log(w1, w2)Phy� = �w2� �c v� = �v�
�Phy(w1, w2)Log� = �w1� �! v� = �v�
�Log(w1, w2)Log� = • �[v]� = �v�

�()Phy� = () �{�v}� = •
�()Log� = • �{? ::�v}� = •

Fig. 6. Erasure: values.

The constructs unpack v in t and let! v in t serve as elimination forms for the type

constructors ∃ and ! respectively. Both bind a (term) variable in the term t. The

universal quantifier ∀ does not require an elimination construct in the syntax of

terms: it is eliminated via the coercion ∀E.

The construct letpairι1 ,ι2 v in t deconstructs a pair. It binds two variables in the

term t. Similar to the pair constructor, it is annotated with two layers ι1 and ι2,

which guide the erasure function.

The construct p v is the application of a primitive operation p to a value v. By

convention, all primitive operations have arity one.

The term let v in hide t represents an application of the anti-frame rule. In order

to simplify the operational semantics of the instrumented calculus, we adopt the

convention that exactly one variable, represented by the de Bruijn index 0, is in

scope in the term t. The value v is substituted for this variable before t is executed.

Thus, to a first approximation, the semantics of let v in hide t is just that of a normal

“let” definition. More details are provided later on (Section 13).

Remark 5.2 In a higher-level language, it would be more natural to offer a construct

“hide t”, where t is allowed to have an arbitrary number of free variables �x. Such a

construct is used in the conference paper (Pottier, 2008), where it is further annotated

with the invariant that is being hidden. In theory, one can define “hide” in terms of

“let/hide” by instantiating v with a tuple (�x) of the free variables of t. That is, in

informal nominal syntax, “hide t” is sugar for “let x = (�x) in hide let (�x) = x in t”,

where the variable x is fresh. The conference paper uses the syntax “hide I = τ

outside of t”, which indicates that the hidden invariant is the recursive capability

μI.τ. In the present paper, terms do not refer to types, so the corresponding construct

is just “hide t”. �

Let m range over partial functions of memory locations to values. A store s is a

pair of a function m and an allocation limit �. We write m below � for such a pair.

5.2 Erasure

The erasure function, defined in Figures 6 and 7, relates the instrumented calculus

and the raw calculus. We write �v� (resp. �t�) for the erasure of a value v (resp.

of a term t). Erasure is not type-directed, thanks to the explicit layer annotations

carried by some constructs (unit, pair construction, pair deconstruction), no type

information is required.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 73

�v t� = �v� �t� �(defocus-dup π) v� = �v�
�Phy(t1, v2)Log� = �t1� �(focus π) v� = �v�

�Λt� = �t� �newgroup v� = �v�
�c t� = �t� �adopt v� = �v�

�let! v in t� = [�v�/0]�t� �focusgroup v� = �v�
�unpack v in t� = [�v�/0]�t� �new v� = new �v�
�let v in hide t� = [�v�/0]�t� �read v� = read �v�

�letpairPhy,Phy v in t� = letpair �v� in �t� �write v� = write �v�
�letpairPhy,Log v in t� = [�v�/0][•/0]�t�
�letpairLog,Phy v in t� = [•/0][0↑�v�/0]�t�
�letpairLog,Log v in t� = [•/0][•/0]�t�

Fig. 7. Erasure: terms.

The erasure function can be considered a part of the definition of the type-and-

capability system. Indeed, a raw term is considered well-typed if and only if it is the

erasure of some well-typed instrumented term. A raw term is in general the erasure

of many instrumented terms, which correspond to candidate type derivations.

The definition of the erasure of values (Figure 6) is straightforward. A pair of

two physical components is a “real” pair: its erasure is a pair. The erasure of a

“mixed” pair of one physical component and one logical component is the erasure

of the physical component. A pair of two logical components is itself a purely logical

value: its erasure is the special raw value •. Similarly, the empty capability ()Log, as

well as capabilities for regions {�v} and {? ::�v}, are mapped to •.

The definition of the erasure of terms (Figure 7) is also relatively simple.

Several constructs that exist only in the instrumented calculus and involve binding

are erased via a substitution. For instance, the erasure of unpack v in t is defined as

[�v�/0]�t�, rather than let �v� in �t�. (In informal nominal syntax, one would say: the

erasure of unpack x = v in t is defined as [�v�/x]�t�, rather than let x = �v� in �t�.)
This makes it possible for these constructs to exist in the instrumented syntax and to

be completely invisible in the raw syntax. For instance (in informal nominal syntax),

the erasure of unpack x = x in t is just the erasure of t. No spurious β-redex in the

raw term betrays the fact that an unpack construct is present in the instrumented

term. In summary, the syntax of a raw term T does not suggest where unpack

constructs are needed: these can be inserted anywhere in an attempt to build a

well-typed term of the instrumented calculus whose erasure is T and thus prove that

T is well-typed.

The erasure of a letpair construct is a letpair construct only in the case where

both components are physical. In the other three cases, the letpair construct is

erased via a substitution; any variables that were bound by letpair to logical values

are replaced with •.

The primitive operations that have no runtime effect, such as focus π, disappear.

The primitive operations that do have a runtime effect, to wit, the three primitive

operations on references, are translated to the constructs of the raw calculus that

manipulate references.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

74 F. Pottier

q ::=

| ∀ universal quantifier

| ∃ existential quantifier

κ ::=

| S singleton region

| G group region

τ ::=

| x type variable

| τ → τ function type

| ι(τ × τ)ι pair type

| unitι unit type

| qτ universal or existential type

| μτ recursive type

| ! τ duplicable type

| ref τ reference type

| r region identifier

| [τ] region inhabitant type

| {κ τ : τ} region capability

| {τ : τ \ τ} punched region capability

| τ ⊗ τ tensor type

Fig. 8. Types.

The erasure function is extended to stores in the obvious way. We write �s� for

the erasure of a store s.

6 Types

6.1 Syntax

The syntax of types appears in Figure 8. We let τ and θ range over types. We let

ρ and σ also range over types, with the informal idea that ρ and σ denote regions,

although there is no formal such requirement.

Let us briefly review the meaning of each type construct. x is a type variable,

represented as a de Bruijn index. τ1 → τ2 is the type of functions that map an

argument of type τ1 to a result of type τ2. ι1 (τ1 × τ2)ι2 is a type of pairs whose

left-hand component has type τ1 and right-hand component has type τ2. The layers

ι1 and ι2 indicate which components of the pair exist at runtime. unitι is the type

of a unit value. Again, the layer annotation indicates whether this value exists at

runtime. ∀τ and ∃τ are universal and existential types, respectively, while μτ is a

recursive type. These three forms bind a type variable in τ. The type ! τ describes

values (or terms) that have type τ and do not own (or consume) any affine resources.

The type ref τ is the type of references that (currently) hold a value of type τ. The

type r is a region identifier. Region identifiers do not appear in source programs,

where regions are represented by type variables. Similar to memory locations, region

identifiers are dynamically allocated. The type [ρ] is the type of the values that

inhabit the region ρ. The type {κ ρ : τ} represents a capability over the region ρ.

The kind of the region – singleton or group – is indicated by κ, while the common

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 75

structure of the region inhabitants is given by τ. The type {ρ : τ \ σ} represents

a capability over the group region ρ. The inhabitants of the region have common

structure τ. A hole has been punched out of this region: one value has been taken

out, and is now an inhabitant of the singleton region σ. Last, the type τ ⊗ θ can be

thought of as a copy of τ where every function carries an additional argument and

result of type θ. This additional argument and result is in the logical layer: it does

not exist at runtime. In other words, a value of type τ ⊗ θ can be roughly described

as a value of type τ that, in addition, requires and returns a capability θ at every

interaction with its environment. This “tensor” construct appears in the statement

of the higher-order frame and anti-frame rules (Birkedal et al., 2006; Pottier, 2008).

It is useful to introduce a small amount of extra notation. Charguéraud and

Pottier (2008) use × to denote a pair of two ordinary values, which exist at runtime.

They use ∗ to denote a pair of an ordinary value and a capability, or a pair of two

capabilities. By analogy, we write τ1 × τ2 for Phy(τ1 × τ2)Phy, τ1 ∗ τ2 for Phy(τ1 × τ2)Log,

and also τ1 ∗ τ2 for Log(τ1 × τ2)Log. Hopefully, no serious ambiguity arises from

this abuse of notation. Of course, the machine-checked proof uses unambiguous

notation.

Following earlier papers (Pottier, 2008; Schwinghammer et al., 2010), we write

τ ◦ θ for (τ ⊗ θ) ∗ θ, that is, for Phy((τ ⊗ θ) × θ)Log.

We let �τ and �θ denote lists of types. We write τ ⊗�τ for the iterated application

of the tensor operator ⊗ and τ ◦�τ for the iterated application of the composition

operator ◦.

6.2 Type equality: axiomatization

The type system has a non-trivial notion of type equality. This relation must satisfy

a number of properties, which we now list.10 The actual construction of this relation

can be considered a purely technical issue and is deferred to Section 9.

Lemma 6.1 Lifting is compatible with type equality.

τ ≡ θ

k↑τ ≡ k↑θ
♥

Lemma 6.2 Substitution is compatible with type equality.

τ1 ≡ τ2 θ1 ≡ θ2

[θ1/k]τ1 ≡ [θ2/k]τ2

♥

Lemma 6.3 Type equality is reflexive, symmetric, and transitive. Œ

Lemma 6.4 Type equality is a congruence. Œ

Lemma 6.5 Type equality satisfies the equational theory in Figure 9. Œ

10 For better readability, lemmas are presented as inference rules.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

76 F. Pottier

μτ ≡ [μτ/0]τ

(τ1 → τ2) ⊗ θ ≡ (τ1 ◦ θ) → (τ2 ◦ θ)

(ι1 (τ1 × τ2)ι2) ⊗ θ ≡ ι1 ((τ1 ⊗ θ) × (τ2 ⊗ θ))ι2
(unitι) ⊗ θ ≡ unitι

(qτ) ⊗ θ ≡ q(τ ⊗ (0↑θ))
(! τ) ⊗ θ ≡ ! (τ ⊗ θ)

(ref τ) ⊗ θ ≡ ref (τ ⊗ θ)

[σ] ⊗ θ ≡ [σ]

{κ σ : τ} ⊗ θ ≡ {κ σ : τ ⊗ θ}
{ρ : τ \ σ} ⊗ θ ≡ {ρ : τ ⊗ θ \ σ}

Fig. 9. The equational theory of types.

The first law in Figure 9 states that a recursive type μτ is equal to its unfolding

[μτ/0]τ. In informal nominal syntax, one would write: a recursive type μα.τ is equal

to its unfolding [μα.τ/α]τ.

Thus, we are working with equi-recursive types (Gapeyev et al., 2002). In the

alternative iso-recursive approach, the types μτ and [μτ/0]τ are considered distinct,

but are subtypes of each other: explicit coercions are provided for converting one

into the other. We choose the equi-recursive approach because it seems more natural

and elegant: it is more pleasant to work with a rich notion of type equality than with

painful explicit coercions. In short, the equi-recursive approach requires more work

upfront during the construction of type equality, but simplifies the type soundness

proof.

The remaining laws in Figure 9 govern the tensor operator and formalize our

informal suggestion that “τ ⊗ θ is a copy of τ where every function carries an

additional argument and result of type θ”. In particular, the second law of Figure 9

can be written under the following form:

(τ1 → τ2) ⊗ θ ≡ ((τ1 ⊗ θ) ∗ θ) → ((τ2 ⊗ θ) ∗ θ)

This shows that when “· ⊗ θ” reaches a function type, it transforms this function

type by introducing “· ∗ θ” in its domain and codomain. In this law as well as in

every other law, “· ⊗ θ” propagates itself down recursively so as to transform all

occurrences of function types in this way.

The laws that govern tensor describe its action on every type construct, with four

exceptions. There is no law that describes the action of tensor on a type variable,

on a recursive type, on another tensor, or on a region identifier. An application of

tensor to a type variable, of the form x ⊗ θ, cannot be simplified: it is effectively

suspended until x is instantiated. An application of tensor to a recursive type or to

another tensor, of the form (μτ) ⊗ θ or (τ1 ⊗ τ2) ⊗ θ, can be simplified only by first

simplifying the left-hand side until a type constructor other than μ or ⊗ appears at

its root. An application of tensor to a region identifier, of the form r ⊗ θ, cannot

be simplified. This last point has no deep significance: we could have adopted the

law r ⊗ θ ≡ r. This law would serve no useful role, however, because, in practice,

tensor is never applied to a region identifier: observe, how in the last three rules of

Figure 9 tensor does not propagate down into ρ and σ.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 77

A number of seemingly natural laws are not included as part of the equational

theory of Figure 9. Consider, for instance, the candidate law τ1 ∗τ2 ≡ τ2 ∗τ1. A reader

who is familiar with separation logic (Reynolds, 2002) might understand this law as

an assertion that separating conjunction is commutative, and might be inclined to

view it as reasonable. Indeed, in separation logic, where assertions are interpreted

as predicates over heaps, this law is valid. However, in the present paper, our

interpretation of types is strictly syntactic: the type constructor ∗ constructs ordered

pairs. Adopting the law τ1 ∗ τ2 ≡ τ2 ∗ τ1 would be inconsistent. In combination

with the fact that the pair type constructor is injective (Lemma 6.6), this law would

imply that all types are equal, which in turn would contradict the fact that disjoint

type constructors have disjoint ranges (Lemma 6.9). For an analogous reason, the

candidate law (τ ⊗ θ1) ⊗ θ2 ≡ τ ⊗ (θ1 ◦ θ2), which appeared in the author’s earlier

paper (Pottier, 2008), cannot be made part of the equational theory.

Fortunately, the lack of these laws is not an insurmountable problem. Following

Charguéraud and Pottier (2008), the commutativity of ∗, for instance, can be

considered a subtyping axiom. Thus, the types τ1 ∗ τ2 and τ2 ∗ τ1 are subtypes

of each other. This is almost as good as type equality, but not quite as convenient:

in the present paper, type equality is transparent, whereas subtyping can be exploited

only via explicit coercions. The author must confess to not being fully aware of this

distinction until the machine-checked proof revealed it.

The candidate law (τ⊗θ1)⊗θ2 ≡ τ⊗ (θ1 ◦θ2) could also be considered a subtyping

axiom. Instead, we find it slightly more economical to use a different subtyping axiom,

which we dub “tensor exchange” (Section 6.3). This highly technical subtyping axiom

is not expected to be useful to the end user, but plays a role in the subject reduction

proof.

The type constructors other than μ and ⊗ must be injective. This property is

exploited (as usual) in the proof of subject reduction.

Lemma 6.6 The type constructors other than μ and ⊗ are injective. For instance, in

the case of the function type constructor, we have:

τ1 → τ2 ≡ θ1 → θ2

τ1 ≡ θ1 τ2 ≡ θ2

♥

Recursive type equations must have unique solutions. This property is used, in

particular, to establish the existence of commutative pairs (Section 6.3).

Lemma 6.7 (Unique solutions) Provided the type τ is contractive with respect to the

type variable 0, the recursive equation 0 ≡ τ (an equation where the type variable 0

represents the unknown) admits a unique solution, to wit, the recursive type μτ. That

is, we have:

θ ≡ [θ/0]τ

θ ≡ μτ
♥

In informal nominal syntax, one would say that the recursive type equation α ≡ τ

admits a unique solution, namely, the recursive type μα.τ. This lemma requires

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

78 F. Pottier

a contractiveness hypothesis because not all recursive equations admit a unique

solution. Here are two representative examples, in informal nominal syntax. First,

consider the equation α ≡ α. Every type τ is a solution of it. Second, consider the

equation α ≡ α ⊗ τ. According to the laws of Figure 9, many types satisfy this

equation: two such types are unitPhy and [r], where r is a region identifier.

Contractiveness is defined in such a way that the unique solutions lemma

(Lemma 6.7) implies nothing about the above equations. Furthermore, the recursive

types μα.α and μα.(α ⊗ τ) are considered ill-formed, because they are not the

unique solutions of the above equations. The definitions of contractiveness and

well-formedness are deferred to Section 9. In short, well-formedness requires every

cycle in the type structure to go through at least one type constructor other than μ

or the left-hand side of ⊗.

Throughout the paper, we adopt the informal convention that “we work with

well-formed types only”. As a result, we do not explicitly show any of the well-

formedness hypotheses. In the Coq formalization, of course, these hypotheses are

explicit.

The following property is exploited in the proof of subject reduction for the

“tensor exchange” coercion.

Lemma 6.8 The type constructors other than μ and ⊗ are stable under tensor, in the

following sense: if τ1 ⊗ τ2 exhibits one of these type constructors at its root, then

τ1 exhibits the same type constructor. For instance, in the case of the function type

constructor, we have:

∃θ1θ2, τ1 ⊗ τ2 ≡ θ1 → θ2

∃θ1θ2, τ1 ≡ θ1 → θ2

♥

All of our requirements so far are positive, so the relation that equates all types

satisfies them. Of course, such a trivial definition of type equality is unacceptable,

because we also have one negative requirement,11 which is exploited (as usual) in

the proof of progress.

Lemma 6.9 The type constructors other than μ and ⊗ have pairwise disjoint ranges.

For instance, in the case of the function and reference type constructors, we have:

¬(τ1 → τ2 ≡ ref θ) ♥

Remark 6.10 We do not require that type equality be decidable because this property

is not exploited in the proof of type soundness. It would be required, however, in the

implementation of a type-checker if one wished to stick with equi-recursive types.

Efficiently testing recursive polymorphic types for equality is a subtle problem (Glew,

2002; Gauthier & Pottier, 2004). The equational theory of tensor presumably makes

it more difficult still. In a practical surface language, one would probably circumvent

the problem by using named iso-recursive types instead of equi-recursive types. �

11 In fact, we have a quadratic number of disjointness requirements. In Coq, one uses a single tactic
definition to avoid explicitly stating a quadratic number of lemmas.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 79

6.3 Commutative pairs

The revelation lemma (Lemma 12.4), which plays an important role in the argument

of soundness of the anti-frame rule, requires the technical notion of a commutative

pair. We define this notion here because it is part of the theory of type equality, but

defer a full explanation until we come to the revelation lemma.

Definition 6.11 We write (τ, θ) �� (τ′, θ′) when the types τ, θ, τ′, θ′ form a commutative

pair. This notion is defined as follows:

τ′ ≡ τ ⊗ θ′ θ′ ≡ θ ⊗ τ′

(τ, θ) �� (τ′, θ′)
♥

For the revelation lemma to go through, it is necessary that commutative pairs

exist. That is, it is necessary that, for arbitrary types τ and θ, there exist types

τ′ and θ′ that satisfy the above equations. Because the equations are mutually

recursive, this may seem non-obvious. Fortunately, because tensor is contractive in

its second argument, these equations are contractive. So by the unique solutions

lemma (Lemma 6.7), they admit a solution.

Lemma 6.12 (Commutative pairs) Commutative pairs exist. For all types τ and θ,

∃τ′θ′, (τ, θ) �� (τ′, θ′) ♥

The proof is trivial. In informal nominal syntax, the type τ′ is just μα.(τ ⊗ (θ ⊗ α)),

where α is fresh for τ and θ. Symmetrically, θ′ is just μα.(θ⊗ (τ⊗ α)). These recursive

types are well-formed.

7 Typing

We now come to the central part of the definition of the type system: The typing

judgements for values and terms. These judgements have identical forms: the typing

judgement for values takes the form R,M,E 	 v : τ, while the typing judgement for

terms takes the form R,M,E � t : τ.

Within the syntactic category of values, we distinguish between the constructs that

are available to the programmer, on the one hand, and the constructs that exist only

for the purposes of the reduction semantics, on the other hand. This distinction is

traditional. Memory locations are a typical example of a construct that appears in

an operational semantics but is not directly available to the programmer. Here, in

addition to memory locations l%v, region inhabitants [v], and capabilities {�v} and

{? ::�v} are constructs that cannot appear in source programs. Thus, the typing rules

for these constructs are of no concern to programmers. Their role is to participate in

the definition of the global invariant that the type system enforces. The presentation

of these rules is deferred to Section 11.

The component R in a judgement R,M,E 	 v : τ indicates what resources are

“owned by” the value v, or, to put it slight differently, which references and regions

one may access if one owns v. The component R in a judgement R,M,E � t : τ

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

80 F. Pottier

indicates what resources are initially “owned by” the term t, or, in other words,

which references and regions this term may access when it is executed.

The component R plays a non-trivial role only in the typing rules that con-

cern constructs that are inaccessible to the programmer. The rules that concern

programmer-accessible constructs ignore R, or propagate it, or split it, but never

actually consult it. As a result, a source program is well-typed under some resource R

if and only if it is well-typed under the empty resource. In other words, when type-

checking a source program, the component R may be omitted entirely. Programmers

need not know about resources and their theory.

For this reason, we defer the definition of resources to Section 10, and defer the

presentation of the typing rules for programmer-inaccessible constructs to Section 11.

For the moment, the reader can essentially ignore the role played by resources in

the typing rules. It should be sufficient to note that multiplicity environments (which

are described below) and resources are always treated in the same manner.

Remark 7.1 The role played by resources is analogous to the role played by store

typings in a syntactic proof of type soundness for ML with weak references (Harper,

1994). There the typing judgement for source programs has three components, to

wit, a typing environment, a term, and a type. However, the typing judgement

for programs that are being executed has one more component, namely, a store

typing, which assigns types to memory locations. Even though store typings play an

important role in the statement of subject reduction, programmers need not know

about them. �

The components M and E in a typing judgement are environments. We wish to

present an affine variant of DIIL (Barber, 1996). In Barber’s presentation, a typing

judgement involves two environments Γ and Δ, both of which map variables to types.

A variable that appears in Γ is unrestricted: it may be used for an arbitrary number

of times. A variable that appears in Δ is affine: it may be used at most once. At a

binary node in the type derivation (that is, at a function application, a pair, etc.), the

environment Γ is transmitted to both premises, whereas the environment Δ is split as

Δ1,Δ2 and the first (resp. second) premise receives just Δ1 (resp. Δ2). How should we

emulate this approach? Recall that we represent variables as de Bruijn indices and

environments as lists. In Barber’s approach, a variable that is currently in scope may

occur in Γ, or in Δ, or in neither of them. (The third situation means that the variable

is affine but has been sent down some other branch of the type derivation.) In our

setting, this is not very convenient. If a variable is represented as a de Bruijn index x,

we would like to be assured that information about this variable is found at the xth

slot in the environment. To achieve this, we adopt a formulation where a multiplicity

environment M maps variables to multiplicities and a type environment E maps

variables to types. M and E are represented as lists. The environment M records

how many times a variable may be used, whereas the environment E records its

type. A multiplicity m is one of 0, 1, and ∞. The multiplicity ∞ means that the

variable is unrestricted (“it appears in Γ”); the multiplicity 1 means that it is affine

(“it appears in Δ”); and the multiplicity 0 means that it is in scope, but may not be

used (“it appears in neither of them”).

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 81

M(x) = m m �= 0 E(x) = τ

R,M,E 	 x : τ

R, (M; 1), (E; τ1) � t : τ2

R,M,E 	 λt : τ1 → τ2

R1 ∗ R2 = R M1 ∗ M2 = M

R1,M1, E 	 v1 : τ1 R2,M2, E 	 v2 : τ2

R,M,E 	 ι1 (v1, v2)ι2 : ι1 (τ1 × τ2)ι2
R,M,E 	 ()ι : unitι

R,M, (0↑E) 	 v : τ

R,M,E 	 Λv : ∀τ

R,M,E 	 v : [θ/0]τ

R,M,E 	 pack v : ∃τ
̂R,̂M,E 	 v : τ

R,M,E 	 ! v : ! τ

R,M,E 	 v : τ nil 	 c : τ � θ

R,M,E 	 c v : θ

R,M,E 	 v : τ1 τ1 ≡ τ2

R,M,E 	 v : τ2

Fig. 10. Typing rules for values: programmer-accessible constructs.

Multiplicities form a separation algebra. That is, they are equipped with a three-

place conjunction relation, written m1 ∗ m2 = m, which is defined as follows:

0 ∗ 0 = 0 1 ∗ 0 = 1 0 ∗ 1 = 1 ∞ ∗ ∞ = ∞

Furthermore, the function that maps a multiplicity m to its “core” m̂ is defined as

follows:

̂0 = 0 ̂1 = 0 ∞̂ = ∞

These notations are extended pointwise to multiplicity environments, and are used

in the typing rules that follow. When applied to a multiplicity environment M, the

function ̂· retains all duplicable variables and discards all affine variables.

We will see later in Section 10 that resources are also equipped with a conjunction

relation ∗ and a “core” function ̂·. In the typing rules, ∗ and ̂· are applied to both

resources R and multiplicity environments M, thus emphasizing the fact that R and

M are treated in the same manner.

7.1 Values

The typing rules for values appear in Figure 10. We review them in turn.

A variable x is deemed to have type τ if the multiplicity associated with x in the

multiplicity environment M is non-zero (that is, it is either 1 or ∞) and the type

associated with x in the type environment E is τ.

A function λt has type τ1 → τ2 if its body has type τ2 under extended multiplicity

and type environments. The multiplicity environment is extended with the multiplic-

ity 1, because a function argument is, by default, affine. The function is allowed to

capture affine variables in its closure: there are no restrictions on M. This is sound

because the function itself is considered affine: the type τ1 → τ2 is not duplicable.

In order to type-check the components of a pair, the multiplicity environment M is

split, while the type environment E is transmitted to the two premises. The layers ι1
and ι2 that decorate the pair are reflected in its type.

The layer annotation ι carried by a unit value is reflected in its type.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

82 F. Pottier

The rules that introduce a universal or existential quantifier are borrowed from

System F . The introduction rule for the “!” type constructor ensures that only

duplicable variables are accessed by transmitting ̂M to the premise in place of M.

The resource R is treated in the same manner: the resource ̂R intuitively represents

the “duplicable part” of R.

The last two rules in Figure 10 are type conversion rules. The subtyping rule

allows moving from τ1 to τ2 via an explicit coercion c. (The subtyping judgement,

C 	 c : τ1 � τ2, is defined in Section 8.) The type equality rule allows implicitly

moving from τ1 to τ2, provided these types are equal. This rule and its counterpart

for terms are the only non-syntax-directed typing rules.

Remark 7.2 Our rules correspond to a purely affine variant of DILL. A purely

linear variant would be slightly different. In the rule for variables, the resource R,

as well as the multiplicity environment M, deprived of x, would be required to be

duplicable. In the rule for the unit value and in the “!” introduction rule, R and M

would be required to be duplicable. The property that R is duplicable can be written

R ∗ R = R or R = ̂R; see Section 10. �

7.2 Terms

The typing rules for terms appear in Figure 11. We review them in turn.

The first rule in Figure 11 permits the injection of values into terms. Its premise

is a judgement about the value v, while its conclusion is a judgement about the

term v.

The next two rules, for function application and for pairs, are borrowed from

DILL (Barber, 1996). Let us comment on the latter one.

Pairs already appear in the syntax of values. One might think that it is not

necessary to also include pairs in the syntax of terms. In fact, we do need to allow

at least pairs of the particular form Phy(t1, v2)Log in the syntax of terms. These pairs

are useful, both in practice and in the subject reduction proof: their typing rule

corresponds to the first-order frame rule of separation logic. In a pair Phy(t1, v2)Log,

the component t1 represents a computation that takes place at runtime, whereas

the component v2 is a logical value: it is erased at runtime. In other words, v2 is a

capability that is set aside during the evaluation of t1. This capability is not made

available to t1: it is “framed out”. If one specializes the typing rule to the case

where v2 is a variable x, omits the component R, and presents the rule in informal

(nominal, DILL-style) notation, one obtains the following version of the rule:

Γ,Δ � t : τ1

Γ, (Δ; x : τ2) � Phy(t, x)Log : τ1 ∗ τ2

The type (or the “capability”) τ2 appears in the left- and right-hand sides of the

conclusion, but does not appear in the premise. This is very close to Charguéraud

and Pottier’s (2008) formulation of the frame rule. There the fact that the frame

rule could be viewed as a pairing construct was made evident by the functional

translation, whereas here it is evident in the syntax of the instrumented calculus.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 83

R,M,E 	 v : τ

R,M,E � v : τ

R1 ∗ R2 = R M1 ∗ M2 = M

R1,M1, E 	 v : τ1 → τ2 R2,M2, E � t : τ1

R,M,E � v t : τ2

R1 ∗ R2 = R M1 ∗ M2 = M

R1,M1, E � t1 : τ1 R2,M2, E 	 v2 : τ2

R,M,E � Phy(t1, v2)Log : τ1 ∗ τ2

anti-frame disabled

R,M, (0↑E) � t : τ

R,M,E � Λt : ∀τ

R1 ∗ R2 = R M1 ∗ M2 = M

R1,M1, E 	 v : ∃τ1 R2, (M2; 1), (0↑E; τ1) � t : 0↑τ2

R,M,E � unpack v in t : τ2

R1 ∗ R2 = R M1 ∗ M2 = M

R1,M1, E 	 v : ! τ1 R2, (M2; ∞), (E; τ1) � t : τ2

R,M,E � let! v in t : τ2

R1 ∗ R2 = R M1 ∗ M2 = M

R1,M1, E 	 v : ι1 (τ1 × τ2)ι2 R2, (M2; 1; 1), (E; τ1; τ2) � t : θ

R,M,E � letpairι1 ,ι2 v in t : θ

R,M,E 	 v : τ1

	 p : τ1 → τ2

R,M,E � p v : τ2

anti-frame enabled R1,M, E 	 v : τ1

R2, (nil ; 1), (nil ; τ1 ⊗ θ) � t : τ2 ◦ θ R1 ∗ R2 = R

R,M,E � let v in hide t : τ2

R,M,E � t : τ nil 	 c : τ � θ

R,M,E � c t : θ

R,M,E � t : τ1 τ1 ≡ τ2

R,M,E � t : τ2

Fig. 11. Typing rules for terms.

The next rule concerns type abstractions of the form Λt. Recall that we already

have a rule, presented in Figure 10, for abstracting a value v over a type variable.

Here, however, we are looking at a more powerful rule, which abstracts an arbitrary

term t over a type variable. The presence of this typing rule amounts to the absence

of the value restriction (Wright, 1995). As explained earlier, we need the value

restriction only when the anti-frame rule is enabled. In other words, we are able to

accept type abstractions of the form Λt when the anti-frame rule is disabled.

The construct unpack v in t is type-checked in a standard way. As in System F ,

the value v must have an existential type ∃τ. One type variable, which stands for an

unknown type, and one term variable, which is assumed to have type τ, are then

bound in t. As in DILL, the multiplicity environment M is split between v and t.

The construct let! v in t is type-checked in a standard way. As in DILL, the

value v must have a duplicable type ! τ1. One term variable is then bound in t, with

multiplicity ∞ and type τ1. This is the only way for a variable to be bound with

multiplicity ∞. As usual, the multiplicity environment M is split.

The typing rule for letpairι1 ,ι2 v in t is mostly standard. As in DILL, two term

variables are bound in t, while M is split. A non-standard aspect resides in the layer

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

84 F. Pottier

annotations ι1 and ι2, which are explicitly carried by the letpair construct and are

reflected in the type of the pair v.

The typing rule for the application of a primitive operation p to a value v relies

on the auxiliary judgement 	 p : τ1 → τ2, which fixes the types of the primitive

operations. This judgement is defined further in Section 7.3.

Next comes the anti-frame rule. In the instrumented calculus, the use of this rule is

explicitly signaled by the construct let v in hide t. The purpose of this rule is to allow

the term t to hide a certain capability, of type θ, from the outside world. Thus, the

term t internally has type τ2 ◦ θ, as indicated by the third premise, but it is allowed

to hide the existence of θ and to pretend that it has type τ2, as indicated by the

conclusion. Recall that τ2 ◦ θ stands for (τ2 ⊗ θ) ∗ θ (Section 6). In this conjunction,

the left-hand conjunct τ2 ⊗ θ indicates that θ holds at every interaction between the

term t and its environment: Indeed, the type τ2 ⊗θ can be thought of as a copy of the

type τ2, where every function type requires θ as an extra argument and produces θ as

an extra result. The right-hand conjunct θ indicates that the term t is responsible for

initially establishing the invariant θ: the evaluation of t must produce a pair of some

value and a capability of type θ. This capability, once hidden, remains inaccessible

forever. More precisely, it becomes temporarily accessible whenever control enters

the scope of the hide construct, and becomes inaccessible again upon exit. There is

no way of permanently recovering this capability.

We have adopted the convention that, within t, exactly one term variable, namely,

the variable 0, is in scope. At runtime, this variable is bound to the value v. Any

term variables that were previously in scope are inaccessible within t. Thus, the term

t is type-checked under multiplicity and type environments of length 1. If the value

v has type τ1, then the term t has access to it, via the variable 0, at type τ1 ⊗ θ.

Again, this means that the invariant θ must hold at every interaction between the

term t and its environment. This reflects the informal idea that if the term t wishes

to invoke a “callback” provided by its environment, then it must restore its hidden

invariant θ before doing so, and it can assume that θ still holds when the evaluation

of the callback returns.

As usual, the resource R is split between v and t. The multiplicity environment M

is not split: all of it is made available to v, since, as per our convention, any term

variables that were previously in scope are no longer in scope inside t.

The last two rules in Figure 11 are the rules for subtyping and type equality. They

are analogous to the last two rules of Figure 10.

7.3 Primitive operations

The typing rules for primitive operations appear in Figures 12 and 13. Every

primitive operation p is considered of arity one, so the typing judgement takes the

form 	 p : τ1 → τ2. Among the primitive operations, we distinguish two groups.

The operations listed in Figure 12 allow allocating, reading, and writing references.

They have an effect at runtime: that is, they are not erased.

The operations listed in Figure 13 are operations on regions. They do not have

any effect at runtime: they are erased. However, they do have a side effect, in a

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 85

	 new : τ → ∃([0]∗{S 0 : ref (0↑τ)}) 	 read : [σ]∗{S σ : ref (! τ)} → (! τ)∗{S σ : ref (! τ)}

	 write : ([σ] × τ2) ∗ {S σ : ref τ1} → unit ∗ {S σ : ref τ2}

Fig. 12. Typing rules: primitive operations: references.

	 π : T
	 focus π : T[τ] → ∃(((0↑T)[[0]]) ∗ {S 0 : 0↑τ})

	 π : T
	 defocus-dup π : (T[[σ]]) ∗ {κ σ : ! τ} → (T[! τ]) ∗ {κ σ : ! τ}

	 newgroup : unit → ∃(unit ∗ {G 0 : τ}) 	 adopt : τ ∗ {G σ : τ} → [σ] ∗ {G σ : τ}

	 focusgroup : [ρ] ∗ {G ρ : τ} → ∃([0] ∗ ({S 0 : 0↑τ} ∗ {0↑ρ : 0↑τ \ 0}))

Fig. 13. Typing rules: primitive operations: regions.

certain sense: each of them either allocates a fresh region or enlarges the population

of an existing region. Because they are erased, one might wonder whether these

operations could be viewed as coercions. We discuss this point in Remark 8.3.

7.3.1 Primitive operations on references

The primitive operations new, read, and write (Figure 12) allow creating, reading,

and writing references. Their typing rules are in the style of Charguéraud and

Pottier (2008), which itself follows earlier works (Smith et al., 2000). In these rules,

one distinguishes between the memory location, which receives a duplicable type of

the form [σ], and an affine capability for the region σ. The operations read and

write require the capability, and return it, since it would otherwise be lost. However,

they need not return the reference itself: the reference is duplicable, and it is up to

the caller to keep a copy of it if needed. Thus, the runtime behavior of read and

write coincides with the behavior of the operations ! and := of ML.

In informal nominal notation, the type of new is τ → ∃σ.[σ] ∗ {S σ : ref τ}, where

σ is a type variable and is fresh for τ. This operation expects a value of type τ. It

produces a fresh region, represented by the (existentially bound) type variable σ (or 0,

in the de Bruijn notation). It also produces a fresh memory location, whose type is

[σ], meaning that this memory location is an inhabitant of the new region. Finally,

it produces a capability {S σ : ref τ}. This capability indicates that σ is a singleton

region and its inhabitant has type ref τ. This capability represents the ownership of

the region and the reference that it contains.

read expects a pair of an inhabitant of some region [σ] and a capability for this

region, {S σ : ref (! τ)}. This capability indicates that the inhabitant of this region is

a reference to a value of type ! τ. Reading is restricted to duplicable types ! τ. The

fact that the type ! τ occurs twice in the return type of read clearly shows that there

is duplication and that this restriction is necessary. read returns a pair of this value

and the unmodified capability. The reference itself is not returned.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

86 F. Pottier

	 path-root : []
	 π : T

	 path-left ι1 ι2 π : ι1 (T × τ2)ι2

	 π : T
	 path-right ι1 ι2 π : ι1 (τ1 × T)ι2

	 π : T
	 path-ref π : ref T

	 π : T
	 path-singletonπ : {S σ : T}

Fig. 14. Typing rules: focus paths.

write expects three arguments: a reference, a value to be written into the reference,

and a capability for the reference. It produces a pair of the unit value and a modified

capability. write allows strong updates: the previous type τ1 and the new type τ2

may be distinct.

7.3.2 Primitive operations on regions

The primitive operation focus π (Figure 13) and the subtyping axiom defocus π (to

be presented in Section 8.6) are inverses of each other. In short, they allow converting

back and forth between structural and nominal views of data. Say some value v has

type τ, which could be a function type, a pair type, etc. This is a structural view of

v. If we create a fresh singleton region σ, which v inhabits, as well as a capability

{S σ : τ}, then we can also say that v has type [σ]. This is a nominal view of v: the

type variable σ acts as a name for the value v. This view may be useful, in particular,

because [σ] is a duplicable type, whereas τ might not be duplicable. We can create

several copies of v at type [σ]. In order to actually use one of these copies, we need

the capability {S σ : τ}, of which there exists just one copy.

Focusing is the act of switching from a structural view to a nominal view. It

produces a fresh region as well as a capability for this region. De-focusing is the

converse operation. Both operations are used in the encoding of weak references

with affine content (Section 3).

We have just suggested that focusing allows creating a name σ for a value v.

However, if v is a composite value, one may wish to name one of its components.

For instance, if v is a pair, one may wish to name its first component; if v is a

reference, one may wish to name its content; and so on. One may wish to go down

by several levels at once: for instance, if v is a capability for a singleton region whose

inhabitant is a reference, one may wish to name the content of this reference. In

general, we allow focusing on a component of v that is determined by a path π. The

syntax of paths was given in Figure 5. The special case where one creates a name

for the entire value v corresponds to the empty path path-root.

The judgement 	 π : T (Figure 14) tells where a path π leads. T is a type context,

that is, a type with one hole. The idea is that if the value v has type T[τ], then

starting at the root of v and following the path π leads us down to a component of

type τ.

In the simplest case, π is the empty path path-root, and the type context T is the

empty context []. Thus, the primitive operation focus path-root accepts a value v of

type τ, and returns the same value, now viewed at type ∃([0] ∗ {S 0 : 0↑τ}). That is,

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 87

it produces a fresh region, represented by the (existentially bound) type variable 0,

as well as a pair of the value v, now viewed as an inhabitant of the new region (as

indicated by the type [0]), and of a capability over the new region, {S 0 : 0↑τ}. This

operation is of particular interest when τ is an affine type: then, the rule states that

an affine value can be split into a pair of a duplicable value and an affine capability.

This allows an affine value to be copied. Because the capability remains affine, only

one copy of the value can be used at a time, so the system remains sound.

In more elaborate cases, a non-trivial path π is used. Then the path π serves

to select a sub-value v′ of the value v to which the primitive operation focus π is

applied. If the value v has type T[τ], where the type context T is dictated by the

path π (Figure 14), then the value v′ has type τ. As before, a fresh singleton region

is created, which v′ inhabits. The operation returns the value v, at a new type, where

[0] replaces τ in the hole of the type context T.

One must not assign a name to something that does not exist, and one must not

assign one single name to multiple different things. For these reasons, a path π must

exactly lead to one component, as opposed to zero or more than one component.

As a result, there is no path for descending into a group region because a group

region may have zero, one, or more inhabitants. We do offer an operation (namely,

focusgroup, described further on) for focusing on an inhabitant of a group region,

but it is not a special case of focus π.

The inverse of focus π is defocus π (Section 8.6). We make defocus π a coercion,

as opposed to a primitive operation like focus π, because it does not have any side

effect. This issue is discussed in greater depth in Remark 8.3.

The primitive operation defocus-dup π (Figure 13) states that if we hold the

capability over some region σ and if this capability indicates that the inhabitants of

this region have type ! τ, then we may convert a value of type [σ] – an inhabitant

of the region – to the type ! τ. This is a form of defocusing. It is restricted to

duplicable types precisely because τ is duplicated in the right-hand side. It was

known as sng-extract in Charguéraud and Pottier’s paper (2008). Ideally, it should

be a coercion, like defocus π. Unfortunately, making it a coercion breaks our proof

that value reduction terminates (see Remark 13.5).

The primitive operation newgroup creates a fresh group region and produces a

capability {G 0 : τ} for this new region. The new region initially has no inhabitants,

so the type τ of the region’s inhabitants can be freely chosen. In particular, τ may

refer to the type variable 0. That is, the description of the region’s inhabitants may

refer to the region itself. This allows creating and working with graph-like structures

in the heap.

The primitive operation adopt adopts a value of type τ into an existing group

region σ whose inhabitants have type τ. The value becomes a new inhabitant of

the region, and is thereafter viewed at type [σ]. The operation requires a capability

for the group region σ and returns it. This operation is found in Charguéraud and

Pottier’s work (2008), and is originally due to Fähndrich and DeLine (2002).

The primitive operation focusgroup isolates an inhabitant of an existing group

region ρ into a fresh singleton region, represented by the type variable 0. The

inhabitant, initially of type [ρ], is returned at type [0], together with a capability

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

88 F. Pottier

{S 0 : 0↑τ} for the new singleton region. The capability {G ρ : τ} over the group

region ρ is transformed into a punched capability {0↑ρ : 0↑τ \ 0}, which indicates

that the group region ρ is disabled until the inhabitant is returned via the coercion

defocus-group (Section 8.6). Again, this operation is found in Charguéraud and

Pottier’s work (2008) and is originally due to Fähndrich and DeLine (2002).

It is worth noting that, after focusgroup is applied to a value v, this value inhabits

both the group region ρ and the fresh singleton region 0. Because [ρ] is a duplicable

type, the population of a region can only grow with time, and we cannot revoke the

fact that v inhabits ρ. Regions can overlap: here, ρ and 0 have a common inhabitant.

Adoption is another operation that introduces overlap between regions.

8 Subtyping

Subtyping is a relation between types. Coercions c serve as witnesses for subtyping

assertions. Thus, subtyping judgements take the form 	 c : τ1 � τ2. At the level

of the instrumented calculus, this means that if v is a value of type τ1, then the

coercion application c v is a value of type τ2. According to the semantics of the

instrumented calculus (Section 13), the value c v may take one or more reduction

steps until it reaches a canonical form. At the level of the raw calculus, subtyping

has no computational content. The erasure of c v is the erasure of v. A raw value of

type τ1 is a raw value of type τ2.

In general, coercions have free variables, which denote coercions. In this paper,

this is due to the presence of recursive coercions of the form μc. This construct

binds a coercion variable within c. Certain type systems give coercions first-class

status and allow abstracting over coercions: this would be another reason why

coercions have free variables. Thus, in general, the subtyping judgement takes the

form C 	 c : τ1 � τ2, where a coercion environment C maps coercion variables to

coercion types. A coercion type is of the form τ1 � τ2. Variables are represented as

de Bruijn indices and environments are represented as lists.

The subtyping judgement is inductively defined in a style pioneered by Brandt and

Henglein (1998). Because the type system is quite rich, there are many subtyping rules.

In the following, we divide these rules in several groups: reflexivity and transitivity

(Section 8.1); congruence (Section 8.2); quantifier introduction and elimination

(Section 8.3); quantifier movement (Section 8.4); affinity (Section 8.5); regions

(Section 8.6); movement of stars (Section 8.7); and recursive coercions (Section

8.8).

Remark 8.1 Because we do not have a semantic model of subtyping, there is no

sense in which our inductive definition of subtyping can be said to be complete.

In fact, although we have tried to give a wide array of subtyping rules, we have

possibly omitted a few valid and useful rules. �

Remark 8.2 Extending the system with new rules is usually not difficult, but can

be cumbersome. In short, the recipe involves: introducing a new coercion form;

introducing a new subtyping rule; introducing one or more new reduction rules in

the instrumented semantics; updating the proofs that value reduction terminates

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 89

(Lemma 13.4), the raw and instrumented semantics agree (Lemma 15.18), and

value reduction enjoys subject reduction and progress (Lemmas 15.9 and 15.10).

This administrative burden, as well as the above-mentioned lack of a completeness

guarantee, are shortcomings of the syntactic approach to type soundness. �

Remark 8.3 (Conversion mechanisms) We have three mechanisms that convert a

value from type τ1 to type τ2 without performing any computation at runtime.

The most transparent one is type equality. It is applicable when τ1 ≡ τ2 holds,

and requires no computation at all, not even in the instrumented semantics. The

second mechanism is subtyping. It is applicable when τ1 � τ2 holds, and requires

computation at the level of the instrumented calculus, but not at the level of the

raw calculus. The last mechanism is the application of a primitive operation that

exists in the instrumented calculus but is erased in the raw calculus: an example is

newgroup, which creates a fresh group region (Section 7.3.2). Similar to subtyping,

this mechanism requires computation at the level of the instrumented calculus, but

not at the level of the raw calculus.

The distinction between the first and second mechanisms is justified by the fact

that subtyping involves computation at the level of the instrumented calculus, while

type equality does not. We have noted earlier (Section 6.2) that τ1 � τ2 ∧ τ2 � τ1

does not imply τ1 ≡ τ2. Certain laws, such as the commutativity of ∗, cannot be

made part of type equality and must therefore be subtyping axioms. This is in a

sense unfortunate but seems inherent in our interpretation of ∗ as a pair.

The distinction between the second and third mechanisms is justified by the fact

that a coercion has no side effect whatsoever, while a primitive operation can “have

a conceptual side effect”. For instance, newgroup creates a fresh region; adopt adds

a new inhabitant to an existing region. Of course, these side effects are not real:

at the level of the raw calculus, newgroup and adopt are erased. Nevertheless,

whether coercions are or are not allowed to have such side effects has an impact

on the statement of the property that “the reduction of values preserves types”

(Lemma 15.9). Assume that v1 reduces to v2 and v1 is well-typed with respect to

a certain resource R. If “a coercion cannot have a side effect”, then we can state

that v2 must be well-typed with respect to R. If, on the other hand, “a coercion

can have a side effect”, then we must be more flexible and state that v2 must be

well-typed with respect to some resource R′ such that R � R′ holds. (The ordering �,

which describes the “active” evolution of resources during execution, is introduced

in Section 10.) Each of these interpretations makes sense. Unfortunately, because

R � R′ does not imply ̂R � ̂R′, only the first interpretation validates the property

that “!” is covariant. If, for instance, one could apply newgroup under “!”, then one

would obtain a duplicable capability for the new region, which would be unsound.

Thus, although we could adopt the point of view that “a coercion can have a side

effect”, we would have to distinguish anyway between the coercions that do not

have a side effect and can be applied under “!”, and those that do have a side effect

and cannot be applied under “!”. Here we adopt a slightly coarser approach, and

distinguish between coercions, which do not have a side effect and can be applied

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

90 F. Pottier

τ1 ≡ τ2

C 	 id : τ1 � τ2

C 	 c1 : τ1 � τ2 C 	 c2 : τ2 � τ3

C 	 c1; c2 : τ1 � τ3

Fig. 15. Subtyping: reflexivity and transitivity.

C 	 c1 : θ1 � τ1 C 	 c2 : τ2 � θ2

C 	 c1 → c2 : τ1 → τ2 � θ1 → θ2

C 	 c1 : τ1 � θ1 C 	 c2 : τ2 � θ2

C 	 ι1 (c1 × c2)ι2 : ι1 (τ1 × τ2)ι2 � ι1 (θ1 × θ2)ι2

0↑C 	 c : τ1 � τ2

C 	 ∀c : ∀τ1 � ∀τ2

0↑C 	 c : τ1 � τ2

C 	 ∃c : ∃τ1 � ∃τ2

C 	 c : τ1 � τ2

C 	 ! c : ! τ1 � ! τ2

C 	 c : τ1 � τ2

C 	 ref c : ref τ1 � ref τ2

C 	 c : τ1 � τ2

C 	 {c} : {κ σ : τ1} � {κ σ : τ2}
C 	 c : τ1 � τ2

C 	 {c\} : {ρ : τ1 \ σ} � {ρ : τ2 \ σ}

Fig. 16. Subtyping: congruence.

under an arbitrary context, and primitive operations, which can have a side effect,

but cannot be applied under any context. �

8.1 Reflexivity and transitivity

It is natural for subtyping to be reflexive and transitive. The simplest way to

enforce these properties is to build them into the inductive definition of subtyping

(Figure 15). The statement of reflexivity is standard. Of course, it relies on our notion

of type equality (Section 6), as opposed to syntactic equality. That is, τ1 ≡ τ2 implies

τ1 � τ2, and the witness of this fact is the coercion id. The statement of transitivity

is standard. If the coercions c1 and c2 respectively convert τ1 to τ2 and τ2 to τ3,

then the coercion c1; c2, which can be understood as the sequential composition of

c1 and c2, converts τ1 to τ3.

8.2 Congruence

Subtyping is a congruence. This is made precise by the rules in Figure 16. As usual,

the function type constructor is contravariant in its domain and covariant in its

codomain. The pair type constructor is covariant in both of its arguments. The

types ∀τ, ∃τ, and ! τ are covariant with respect to τ. The type constructor ref τ is

covariant with respect to τ (Charguéraud & Pottier, 2008). As demonstrated by the

mechanized proof, this is sound. In order to understand intuitively why this is so,

recall that ref describes strong references: writing to a reference changes its type. As

a result, ref τ1 must be understood as the type of a reference that currently holds a

value of type τ1. If τ1 is a subtype of τ2, then a value of type τ1 is also a value of

type τ2, so a reference that currently holds a value of type τ1 is also a reference that

currently holds a value of type τ2.

Remark 8.4 In contrast, in ML, where references are weak, ref τ1 must be under-

stood as the type of a reference that is forever constrained to hold a value of type τ1.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 91

C 	 ∀I : τ � ∀(0↑τ) C 	 ∀E : ∀τ � [θ/0]τ

C 	 ∃I : [θ/0]τ � ∃τ C 	 ∃E : ∃(0↑τ) � τ

Fig. 17. Subtyping: quantifier introduction and elimination.

Weak references can be encoded in terms of strong references and the anti-frame

rule (Pottier, 2008). A weak reference of type τ is encoded as a pair of accessor

methods, of type (unit → τ) × (τ → unit). The fact that τ appears in both covariant

and contravariant positions in this encoding explains why, under a weak-reference

interpretation, ref τ must be considered invariant with respect to τ. �

The types {κ ρ : τ} and {ρ : τ \ σ}, which respectively represent full and punched

capabilities over regions, are covariant with respect to τ (Charguéraud & Pottier,

2008). This is consistent with a view of regions as sets of values: If τ1 is a subtype

of τ2, then a region that currently contains values of type τ1 is also a region that

currently contains values of type τ2.

Remark 8.5 The type constructor μ· does not come with a congruence rule of its

own. A plausible candidate for such a rule would be Amadio and Cardelli’s subtyping

rule (1993). However, this rule is admissible (Section 8.8). �

Remark 8.6 The type constructor · ⊗ · does not come with a congruence rule either.

If such a rule existed, what would it be? The meaning of tensor, as encoded in its

equational theory (Figure 9 in Section 6), suggests that τ ⊗ θ could be considered

covariant with respect to τ and invariant with respect to θ.

The revelation lemma (Lemma 12.1) shows that, in a limited way, tensor is indeed

covariant in its first argument, even in the absence of an explicit congruence rule.

This lemma states that if there exists a closed coercion that establishes τ1 � τ2, then

there exists a closed coercion that establishes τ1 ⊗ θ � τ2 ⊗ θ. This is good enough

for our purposes. �

8.3 Quantifier introduction and elimination

Following Mitchell (1988), we note that certain (albeit not all) quantifier introduction

and elimination rules can be presented as subtyping axioms. A subtyping axiom is

visually lighter than a typing rule. Furthermore, it is more expressive: indeed, because

subtyping is a congruence, a subtyping axiom can be applied under a context. Four

axioms for introducing and eliminating universal and existential quantifiers appear

in Figure 17.

The statement of the universal introduction axiom ∀I, in nominal notation, would

be τ � ∀α.τ, where the type variable α is fresh for τ. This is a degenerate form: it

allows introducing only an unused quantifier. Thus, it does not suppress the need

for Λ-abstractions in the syntax of terms. The universal elimination axiom ∀E, on

the other hand, is general: it eliminates the need for type applications in the syntax

of values and terms. Its statement in nominal notation would be ∀α.τ � [θ/α]τ.

Together, ∀I and ∀E allow deriving Mitchell’s axiom (1988) for comparing universal

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

92 F. Pottier

anti-frame disabled

C 	 distrib : ∀(τ1 → τ2) � (∀τ1) → (∀τ2)
C 	 ∃LI : ∀(τ1 → (0↑τ2)) � (∃τ1) → τ2

C 	 ∀-pair : ∀(ι1 (τ1 × τ2)ι2) � ι1 ((∀τ1) × (∀τ2))ι2 C 	 ∀-bang : ∀(! τ) � ! (∀τ)

C 	 ∀-ref : ∀(ref τ) � ref (∀τ) C 	 ∀-regioncap : ∀{κ 0↑σ : τ} � {κ σ : ∀τ}

C 	 ∀-regioncappunched : ∀{0↑ρ : τ \ 0↑σ} � {ρ : ∀τ \ σ}

C 	 pair-exists-left : ι1 ((∃τ1) × τ2)ι2 � ∃(ι1 (τ1 × (0↑τ2))ι2)

C 	 pair-exists-right : ι1 (τ1 × (∃τ2))ι2 � ∃(ι1 ((0↑τ1) × τ2)ι2) C 	 bang-exists : ! (∃τ) � ∃(! τ)

C 	 ref-exists : ref (∃τ) � ∃(ref τ) C 	 cap-exists : {S σ : ∃τ} � ∃{S 0↑σ : τ}

Fig. 18. Subtyping: quantifier movement.

types, which takes the form ∀�α.τ � ∀�β.[�θ/�α]τ, where the type variables �β are fresh

for ∀�α.τ. (We have not formally proved this fact.) Thus, the seemingly uninteresting

axiom ∀I is actually useful.

The introduction and elimination axioms for existential quantifiers are dual. Here

the axiom ∃I is general, and suppresses the need for a “pack” construct in the syntax

of terms. (We do keep a “pack” construct in the syntax of values: it plays a role in

the operational semantics of ∃I.) The axiom ∃E is degenerative: it allows eliminating

of only an unused quantifier.

8.4 Quantifier movement

While certain type constructors, such as the function and pair type constructors, de-

scribe structure that exists at runtime, the universal and existential type constructors

are of a pure logical nature. As a result, it often makes sense for them to commute

with other type constructors. In Figure 18, we present a set of such commutation

rules. This set seems reasonably complete in an informal sense, although there can

be no formal statement of this fact. None of these rules is particularly interesting:

we include these only because we wish to ensure that “everything works”. The reader

is encouraged to jump ahead to the next section (Section 8.5).

The first group of rules indicate how the universal quantifier can be pushed down

into some other type constructor.

The coercion distrib pushes a universal quantifier into (both sides of) a function

type. This axiom appears in Mitchell’s work (1988). There is a subtle point about

this axiom: it conflicts with the value restriction. (To see why this is so, consider

the reduction rule for this axiom, which appears in Figure A4. The right-hand

side of the rule uses a Λ-abstraction whose body is not a value.) Furthermore, as

explained earlier (Section 2), enabling the anti-frame rule requires imposing the value

restriction. Thus, the use of the coercion distrib is permitted only in the variant of

our system where the anti-frame rule is disabled.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 93

C 	 dereliction : ! τ � τ C 	 bang-idempotent : ! τ � ! (! τ)

C 	 pair-bang : ι1 ((! τ1) × (! τ2))ι2 � ! (ι1 (τ1 × τ2)ι2)

C 	 bang-pair : ! (ι1 (τ1 × τ2)ι2) � ! (ι1 ((! τ1) × (! τ2))ι2) C 	 unit-bang : unitι � ! (unitι)

C 	 bang-ref : ! (ref τ1) � τ2 C 	 bang-regioncap : ! {κ σ : τ1} � τ2

C 	 bang-regioncappunched : ! {ρ : τ1 \ σ} � τ2 C 	 at-bang : [σ] � ! [σ]

Fig. 19. Subtyping: affinity.

The coercion ∃LI also pushes a universal quantifier into a function type. In

informal nominal syntax, its statement would be ∀α.(τ1 → τ2) � (∃α.τ1) → τ2, where

α is fresh for τ2. This axiom is applicable only when the type variable α bound by

the universal quantifier does not occur in the codomain; then, the quantifier can

be pushed into the domain, where it becomes an existential quantifier. This rule is

analogous to a left-introduction rule for the existential quantifier.

The coercions ∀-pair, ∀-bang, ∀-ref , ∀-regioncap, and ∀-regioncappunched push

a universal quantifier into various type constructors.

A universal quantifier can be pushed down into another universal quantifier.

That is, in informal nominal notation, ∀α.∀β.τ is a subtype of ∀β.∀α.τ. Similarly, a

universal quantifier can be hoisted out of an existential quantifier: that is, ∃α.∀β.τ is

a subtype of ∀β.∃α.τ. These properties are the consequences of the axioms that we

have given. In fact, one can prove that T[∀α.τ] is a subtype of ∀α.T[τ], where T
is a covariant (possibly multi-hole) type context and α is fresh for T. The proof is

purely based on axioms ∀I and ∀E. We omit the details.

In summary, we have listed several axioms and derived rules that tell how a

universal quantifier can be pushed into and hoisted out of many type constructors.

These quantifier movement rules can be useful in practice. Furthermore, they

help emphasize the meaning of certain type constructors: for instance, the fact

that the types ∀(ref τ) and ref (∀τ) are inter-convertible indicates that we are

considering strong references. Under a weak-reference interpretation, they would be

unrelated.

A dual program can be carried out for the existential quantifier. We give a

number of axioms that allow hoisting an existential quantifier out of some other

type constructor (Figure 18). These axioms indicate that an existential quantifier can

be hoisted out of either side of a pair, out of a “!” or “ref” constructor, and out

of a capability for a singleton region. It cannot be hoisted out of a group region: in

general, a group region has multiple inhabitants, and each has its own witness for

the existential type, so it is impossible to exhibit one single witness.

A consequence of axioms ∃I and ∃E is that an existential quantifier can be pushed

into any covariant (possibly multi-hole) context. That is, in nominal notation,

∃α.T[τ] is a subtype of T[∃α.T], where T is a covariant context and α is fresh

for T.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

94 F. Pottier

	 π : T
C 	 defocus π : (T[[σ]]) ∗ {S σ : τ} � T[τ]

C 	 defocus-group : {S σ : τ} ∗ {ρ : τ \ σ} � {G ρ : τ}

C 	 singleton-to-group : {S σ : τ} � {G σ : τ}

Fig. 20. Subtyping: regions.

8.5 Affinity

Like the universal and existential quantifiers, the “!” type constructor is of pure

logical nature. As a result, it interacts with itself and with other type constructors

in interesting ways. The corresponding axioms appear in Figure 19.

As usual (Barber, 1996), “!” can disappear spontaneously, and is idempotent.

The axiom unit-bang indicates that the type unitι is duplicable.

The axioms pair-bang and bang-pair together with dereliction indicate that the

three types ι1 ((! τ1) × (! τ2))ι2 and ! (ι1 (τ1 × τ2)ι2) and ! (ι1 ((! τ1) × (! τ2))ι2) are inter-

convertible. That is, a pair of duplicable things, a duplicable pair of things, and

a duplicable pair of duplicable things are the same. In particular, a pair whose

components are duplicable is itself duplicable. This reflects the fact that even though

a pair is a heap-allocated object, we do not consider inherently affine. Hence, we do

not keep track of who “owns” it. This is true, in general, of all immutable objects.

This design choice simplifies the language and encourages a purely functional

programming style. It does imply that we need a garbage collector: duplicable

objects cannot be explicitly de-allocated.

The axiom bang-ref indicates that the type ! (ref τ) is a subtype of every

type, which means that it is empty. In other words, there is no such thing as a

duplicable reference: references are inherently affine. Analogously, the capabilities

that govern regions are inherently affine. We do not expect the axioms bang-ref and

bang-regioncap to be useful in practice: We include them only because we wish to

document the interaction of “!” with every other type of constructor.

The axiom at-bang indicates that the type [σ] is duplicable. Indeed, this type

describes a value that inhabits the region σ, but does not represent the ownership of

this value. It is sound to duplicate a value (say, a memory location) as long as one

does not duplicate the permission that governs it (say, the right to read and write

at this location). This axiom was used in Section 3 to justify that a reference whose

content has type [σ] has duplicable content and hence can be read.

8.6 Regions

We have explained that focus π (Section 7.3.2) is considered a primitive operation

because it has the “side effect” of creating a fresh region. The inverse operation,

defocus π, has no such side effect, so we are able to consider it as a coercion

(Figure 20).

The coercion defocus π requires a capability of the form {S σ : τ}, which represents

the ownership of a singleton region σ as well as the information that the inhabitant

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 95

ι1 = Log ∨ ι2 = Log

C 	 star-comm : ι1 (τ1 × τ2)ι2 � ι2 (τ2 × τ1)ι1

ι1 = Log ∨ ι2 = Log ∨ ι3 = Log

C 	 star-assoc : (ι1 .ι2)((ι1 (τ1 × τ2)ι2) × τ3)ι3 � ι1 (τ1 × (ι2 (τ2 × τ3)ι3))(ι2 .ι3)

C 	 star-ref : (ref τ1) ∗ τ2 � ref (τ1 ∗ τ2) C 	 ref-star : ref (τ1 ∗ τ2) � (ref τ1) ∗ τ2

C 	 star-singleton : {S σ : τ1} ∗ τ2 � {S σ : τ1 ∗ τ2}

C 	 singleton-star : {S σ : τ1 ∗ τ2} � {S σ : τ1} ∗ τ2

(α, β) �� (α′, β′) |�θ| = n

C 	 ⊗-exchn : ((τ ⊗ α) ⊗ β′) ⊗�θ � ((τ ⊗ β) ⊗ α′) ⊗�θ

Fig. 21. Subtyping: movement of stars.

of this region has type τ. It enables the replacement of one occurrence of the

singleton type [σ] with the type τ. This occurrence appears under a type context T,

which is determined by the path π. The capability {S σ : τ} is consumed. If it were

preserved, the type τ would appear twice in the right-hand side of the axiom, which

would be unsound, since τ is not in general duplicable. In the special case where τ

is duplicable, the operation defocus-dup π (Section 7.3.2), which does not consume

the capability, can be used instead.

The axiom defocus-group allows returning to a group region an inhabitant that

has previously been borrowed via the focusgroup operation (Section 7.3.2). The

capability {S σ : τ} represents the ownership of this particular inhabitant, while the

capability {ρ : τ \ σ} represents the ownership of the group region deprived of this

particular inhabitant. If they agree on a common type τ, then these two capabilities

can be consumed to produce a capability for the full group region, {G ρ : τ}.
The axiom singleton-to-group allows a singleton region to degenerate into a

group region.

8.7 Movement of stars

In separation logic, a basic consequence of the semantic interpretation of separating

conjunction is that it is commutative and associative. Here the role of separating

conjunction is played by the pair type constructor.

Is a pair type constructor commutative? This depends on the layer annotations

that it carries. In a pair of two physical values, the ordering of the pair components

matters, as it describes the layout of the pair in memory. However, in a pair of a

physical value and a logical value, or in a pair of two logical values, the ordering

does not matter because logical values are erased. Thus, we provide a subtyping

axiom for exchanging the two components of a pair when at least one of them is

in the logical layer (Figure 21). This subtyping axiom is its own inverse: the types

ι1 (τ1 × τ2)ι2 and ι2 (τ2 × τ1)ι1 are inter-convertible if at least one of ι1 and ι2 is Log.

Analogously, the pair type constructor can be considered associative, provided that

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

96 F. Pottier

C(x) = τ � θ

C 	 x : τ � θ

C; τ � θ 	 c : τ � θ

C 	 μc : τ � θ

Fig. 22. Subtyping: recursive coercions.

at least one of the three components involved is in the logical layer. The conjunction

ι1.ι2 is defined as Phy if at least one of ι1 and ι2 is Phy and Log otherwise.

We have already studied how the pair-type constructor commutes with the uni-

versal and existential quantifiers (Figure 18), and with the “!” modality (Figure 19).

There are two more type constructors with which “∗” freely commutes, namely,

references and singleton regions. This is stated by the subtyping axioms star-ref ,

ref-star, star-singleton, and singleton-star (Figure 21). These axioms allow storing

a capability into and retrieving a capability out of a reference or a singleton region.

The last axiom in Figure 21 is more complex. It is not meant to be of interest to

a programmer: it is included because it plays a role in the proof of type soundness.

(More specifically, it is used in the revelation lemma; see Section 12.) Upon first

reading, take the natural integer n to be zero and the vector of types �θ to be empty.

In this simplified case, the axiom states that if the types α, β, α′, and β′ form a

commutative pair, then the types (τ ⊗ α) ⊗ β′ and (τ ⊗ β) ⊗ α′ are inter-convertible.

(Commutative pairs are defined in Section 6.3.) Because commutative pairs are

symmetric, this axiom is its own inverse.

This property is at the heart of the soundness argument for the anti-frame rule.

It appears in the conference paper (Pottier, 2008), where it is used in the proof

of Lemma 3.1. It also appears in Schwinghammer et al.’s (2010) semantic proof,

where it corresponds to item (1) of Definition 1. In the semantic approach, this

property takes the form of a type equality, whereas in the syntactic approach, a

more cumbersome explicit coercion is necessary.

The general form of this axiom, where�θ is an arbitrary vector of types, is required

for the axiom itself to satisfy revelation (Lemma 12.1).

The coercion ⊗-exch0, which exchanges two tensors, can be used to define a

coercion ◦-exch, which exchanges two composition operators.

Lemma 8.7 There exists a coercion ◦-exch that satisfies the following typing rule:

(α, β) �� (α′, β′)

C 	 ◦-exch : (τ ◦ α) ◦ β′ � (τ ◦ β) ◦ α′ ♥

The coercion ◦-exch is used in the semantics of the instrumented calculus. It

appears, for instance, when ⊗-exchn is applied to a λ-abstraction (Section 13).

8.8 Recursive coercions

Our treatment of subtyping in the presence of recursive types follows Brandt and

Henglein (1998). We introduce coercion variables x and recursive coercions μc, where

one variable is bound in c. The rules for ascribing types to these constructs are simple

(Figure 22). A coercion variable x has type τ � θ if the coercion environment C says

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 97

so. A recursive coercion μc has type τ � θ if c has type τ � θ under the assumption

that the bound variable has type τ � θ.

The ability to fold and unfold recursive types is built into the definition of type

equality, which itself is included in the subtyping relation via the coercion id. Thus,

we do not need “fold” and “unfold” coercions.

It is worth noting that the typing rules for recursive coercions do not explicitly refer

to recursive types. Even though recursive types are the reason why we need recursive

coercions, the two concepts remain orthogonal. To illustrate the expressiveness of

this approach, we prove that Amadio and Cardelli’s (1993) well-known rule for

comparing recursive types is admissible.

Lemma 8.8 There exists a coercion transformer amadio-cardelli · such that the fol-

lowing property holds:

0↑0↑C; 0 � 1 	 c : 1↑τ � 0↑θ
C 	 amadio-cardelli c : μτ � μθ

♥

There is however a technical pitfall. Some recursive coercions are dangerous. The

coercion μ0, for instance, has type τ � θ for every τ and θ. If we admit this coercion,

then subtyping becomes the full relation, and the type system becomes unsound.

Technically, the coercion μ0 breaks neither subject reduction nor progress at the

level of the instrumented calculus. It does, however, break the property that the

reduction of values terminates, because a value of the form (μ0) v reduces to itself.

This makes it impossible to transport subject reduction and progress down to the

raw calculus.

In order to avoid this problem, we restrict our attention to certain well-formed

coercions. The basic idea is as follows: In order to guarantee that a value of the

form (μc) v cannot reduce forever, we allow the coercion to invoke itself recursively

only after it has descended at least one level down in the raw value that underlies

v. Because the structure of raw values is finite and unaffected by the reduction of

coercions, this is enough to ensure that coercions cannot diverge.

A coercion μc is well-formed if and only if c is contractive in the coercion

variable 0. The inductive definition of contractiveness, which extends Brandt and

Henglein’s (1998) definition, is omitted. In short, the coercions c1 → c2, Phy(c1×c2)Phy,

and ref c are contractive in every variable, while every other composite coercion is

contractive in a variable x only if its immediate constituents are contractive in this

variable. The bottom line is that every cycle in a recursive coercion must cross a

type constructor that exists at runtime.

PART THREE

Proof of type soundness

In this part, we explicitly construct the type equality relation (Section 9), which

so far was only axiomatized. We complete the definition of the system by defining

monotonic separation algebras, whose elements we refer to as “resources” (Section

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

98 F. Pottier

10), and by proposing typing rules for the values that do not appear in source

programs, such as memory locations and capabilities (Section 11). Then, we study

revelation, that is, the transformation of a hidden invariant into an explicit one

(Section 12). We prove that the system supports revelation, or, more technically,

that a higher-order frame rule is admissible. We present the operational semantics

of the instrumented calculus (Section 13), which exploits revelation. We define the

well-layeredness judgement, which guarantees that the two “layers” (the values that

exist at runtime and those that do not) co-exist in a consistent manner (Section 14).

Finally, we establish type soundness for the instrumented calculus and for the raw

calculus (Section 15).

9 Type equality: construction

Earlier (Section 6), we have listed the properties that the type equality relation must

satisfy. We now construct this relation. This part of formalization comprises roughly

3,000 lines of Coq definitions, statements, and proofs.

Contractiveness and well-formedness. In short, well-formedness requires every cycle

in the type structure to go through at least one type constructor other than μ or the

left-hand side of ⊗.

More precisely, we use an inductive definition of well-formedness (not shown),

whereby a type τ is well-formed only if its sub-terms are well-formed, and, in addition,

a type μτ is well-formed only if its body τ is contractive in the type variable 0. A

type τ is contractive in a type variable x if and only if every occurrence of x within

τ appears under at least one type constructor other than μ or the left-hand side of

⊗.

This is made precise via an inductive definition of contractiveness, of which we

show only the following four representative rules:

k �= x

x contractive in k

τ contractive in k + 1

μτ contractive in k

τ1 → τ2 contractive in k
τ1 contractive in k

τ1 ⊗ τ2 contractive in k

Schwinghammer et al. (2009, 2010) define a semantic model of separation logic

assertions, which correspond roughly to our types. The model forms a metric space.

Contractiveness is given a direct definition in terms of the metric, and the fact that

the assertion μτ exists when τ is contractive in the type variable 0 follows directly

from Banach’s fixed point theorem. More strikingly, the tensor operator is also given

a direct definition: It is (roughly speaking) a function of a pair of assertions to an

assertion. One can prove that this function is contractive in its second argument.

Toward a definition of type equality. It would be nice if one could define type equality

just by orienting the laws in Figure 9 from left to right and by considering two types

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 99

equal if and only if their normal forms are equal. If these laws formed a terminating

and confluent rewrite system, then such a definition would make perfect sense, as

each type would admit a unique normal form. Unfortunately, although this system

is indeed confluent, it is clearly not terminating: by unfolding recursive types, its

first rule creates new structure.

One could address this problem by proving that, although the rewriting process

out of a type τ does not in general terminate, it produces, in the limit, a possibly

infinite tree, known as the “infinite unfolding” of τ. One would first define a function

that maps a well-formed type to its infinite unfolding, then define equality of types

as equality of infinite unfoldings.

We follow this route in spirit, but decide to fuse the definitions of the unfolding

function and that of the equality relation over infinite trees. This allows us to give

a direct definition of type equality and to never explicitly work with infinite trees.

Should this definition be inductive or co-inductive? It cannot be purely inductive,

because we are dealing with recursive types and wish to allow for equality proofs

between them that are “infinitely deep”. However, it seems that it cannot be purely

co-inductive either. For one thing, we need a rule that allows a rewriting step to

take place before the comparison continues. As noted by Gapeyev et al. (2002),

including such a rule as part of a co-inductive definition allows equality proofs that

are “infinitely wide”, and leads to a relation that equates too many types.

In summary, we seem to need a mixed inductive–co-inductive definition of type

equality. Other researchers have come to this conclusion as well (Danielsson &

Altenkirch, 2010). Unfortunately, although certain modern proof assistants, most

notably Agda, support the mixing of induction and co-induction, Coq does not.

A standard work-around consists in using an inductive definition of approximate

equality down to depth k, where k is an integer index, and in viewing equality as the

limit of the approximate equality relations. The index k can be used to precisely

control what kind of infinite proofs are permitted: in short, for each premise of each

proof rule, inductive behavior is imposed by leaving k unmodified, while co-inductive

behavior is permitted by decrementing k.

Defining type equality. Here is how approximate equality is defined. All types are

0-equal:

τ ≡0 θ

Two function types are k + 1-equal if and only if their respective domains and

codomains are k-equal. The decrease in the approximation index k means that a

function type constructor contributes one to the depth of a type. This reflects the

fact that this type constructor is considered contractive in both arguments.

τ1 ≡k θ1 τ2 ≡k θ2

τ1 → τ2 ≡k+1 θ1 → θ2

An analogous congruence rule is given for every type constructor except μ. This

includes type variables, region identifiers, and tensor. In particular, following is the

the congruence rule for tensor. The treatment of the approximation index k reflects

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

100 F. Pottier

the fact that tensor is considered contractive in its right-hand argument only.

τ1 ≡k+1 θ1 τ2 ≡k θ2

τ1 ⊗ τ2 ≡k+1 θ1 ⊗ θ2

The equational theory of Figure 9 is built into the definition of approximate equality

via the following two symmetric rules. There, the reduction relation · � · corresponds

to the rewrite system of Figure 9, oriented from left to right; reduction is permitted

at the root and in the left-hand side of a tensor. The following two rules may be

viewed as transitivity rules, where one premise is constrained to perform a directed

rewrite step · � · as opposed to an arbitrary equality step · ≡k ·.

τ1 � τ2 τ2 ≡k θ

τ1 ≡k θ

θ1 � θ2 τ ≡k θ2

τ ≡k θ1

The above rules allow unfolding a recursive type in situations where the type

constructor μ prevents the application of any other rule. For this reason, no explicit

congruence rule is needed for μ. These rules also allow moving tensors out of the

way in many situations. For instance, if a tensor is applied to a pair type, it can be

moved down into the pair components. There are, however, situations where tensors

cannot be moved out of the way. For instance, an application of a tensor to a type

variable cannot be simplified. For this reason, a congruence rule for tensor (which

was shown above) is required. This gives rise to a critical pair in the proof rules:

there can be multiple successful ways of proving two applications of tensor equal.

This in turn leads to technical difficulties in the proof that approximate equality is

transitive: we found this proof surprisingly difficult. This may be the price to pay

for adopting a purely syntactic view of types.

It is not difficult to check that the sequence of relations · ≡k · decreases as k

increases. We then define type equality · ≡ · as its limit, that is, as the intersection

of the approximate type equality relations.

Except for transitivity, it is relatively easy to establish all of the properties that

were listed previously (Section 6.2). Many of these properties require well-formedness

hypotheses (which, by convention, we do not show). Reflexivity, for instance, requires

one. The ill-formed type μ0 is not equal to itself, because a proof of this equality

would be “infinitely wide” and has been ruled out.

10 Resources/monotonic separation algebras

An affine type system controls how many times variables are used. However, as far

as we are concerned, this is not an end in itself. It is only a means of governing

the ownership of resources. That is, the reason why we wish to control the use of

variables is that variables denote values; and the reason why we wish to control the

use of values is that values encapsulate and provide access to resources. But what

are resources, and why control them?

Let us offer some examples.

A memory cell is a resource. Read and write access to memory cells must be

controlled so as to ensure that strong updates are sound. A memory cell should

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 101

have at most one owner, and only the owner should be allowed to read and write

the cell. (This informal sentence in our affine setting means that the permission to

read and write the cell must not be duplicated. It may, however, be discarded.)

A region is a resource. Regions support various logical operations, such as focus,

defocus, and adoption, which can be thought of as strong updates, because they alter

the set of region inhabitants or the extent to which the region owns its inhabitants.

For this reason, regions too should have at most one owner, and only the owner

should be allowed to perform certain operations on regions.

One may imagine many other kinds of resources. For instance, a ghost memory

cell could be a resource. A ghost cell does not exist at runtime but appears in

the source program, where it may be written, read, and referred to within logical

assertions. A monotonic memory cell could be a resource. Updates to a monotonic

cell are constrained by a fixed pre-order, and this property can be exploited when

reasoning about programs. A time credit could be a resource. A time credit represents

a permission to perform a constant amount of computation. We have explored these

ideas in other work (Pilkiewicz & Pottier, 2011) and hope to verify in the future that

the present framework directly supports them. In an extension of the system with

primitive weak references, a store typing could be a resource. In a multi-threaded

setting, a dynamically allocated lock could be a resource. A memory cell that

supports fractional permissions could be a resource.

Although usually one is ultimately interested in specific kinds of resources (in this

paper, just references and regions), it is important to manipulate resources abstractly

wherever possible. Many of our typing rules implement mechanisms for imposing

and preserving affinity in a manner that is independent of the particular kinds of

resources that are being controlled.

This idea has been investigated by multiple authors. Calcagno et al. (2007)

axiomatize separation algebras and present an abstract version of separation logic

which they prove sound with respect to an arbitrary separation algebra. Dockins

et al. (2009) relax the treatment of the unit element, study certain additional axioms,

and discuss systematic methods of constructing separation algebras.

Our own axiomatization arises out of a desire to better highlight the abstract

structure of Charguéraud and Pottier’s paper (2008) proof of type soundness. This

axiomatization turns out to be quite closely related with Calcagno et al.’s (2007)

and Dockins et al.’s (2009) ideas. The main novelty, perhaps, is that our resources

are equipped with two ordering relations, which allow us to constrain (and reason

about) the manner in which an active thread of computation may affect the state of

a suspended thread. (The details follow.) For this reason, we refer to the models of

our axiomatization as monotonic separation algebras.

In the following, we first axiomatize monotonic separation algebras (Section 10.1).

In other words, we list a number of properties that resources must satisfy. In the

Coq formalization, this takes the form of a type class definition. Then, we present

systematic means of constructing separation algebras (Section 10.2). In Coq, this

corresponds to a number of parameterized instance definitions. Last, we indicate

which concrete instance is used in this paper to deal with references and regions

(Section 10.3).

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

102 F. Pottier

Resources have already appeared in the definition of the typing judgement (Section

7), but they are actively exploited only by the typing rules that deal with programmer-

inaccessible constructs, which we have not given yet (Section 11).

10.1 Axiomatization

The most prominent property of resources is that they can be split and combined:

that is, they support a form of conjunction. This operation is usually formalized

either as a partial function of two arguments (Calcagno et al., 2007; Nanevski et al.,

2010) or as a ternary relation (Dockins et al., 2009). We choose the latter approach

and use the notation R1 ∗ R2 = R. (Calcagno et al. write •, while Dockins et al.

write ⊕.) This statement means that the resources R1 and R2 combine to form the

resource R, or, adopting an opposite view, R can be split into R1 and R2.

Axioms 10.1 Conjunction is commutative and associative.

R1 ∗ R2 = R

R2 ∗ R1 = R

R1 ∗ R2 = R12 R12 ∗ R3 = R123

∃R23, R2 ∗ R3 = R23 ∧ R1 ∗ R23 = R123

Remark 10.2 The statement of associativity involves an existential quantifier. In

practice, it turns out that this is quite painful, and makes reasoning modulo com-

mutativity and associativity very difficult. We end up developing a special-purpose

tactic, called reconfigure, for this kind of reasoning. Within the implementation of

reconfigure, we temporarily revert to a view of conjunction as a binary function.

In hindsight, it might have been more convenient to follow other authors (Nanevski

et al., 2010) and view conjunction as a binary function from the very beginning. A

perceived advantage of our approach (and the reason why we chose it) is that we

do not need to introduce artificial “undefined” resources in order for conjunction

to be defined everywhere, and we do not need to pollute the type system with side

conditions that require all resources to be “defined”. �

Remark 10.3 Dockins et al. (2009) require conjunction to be a functional rela-

tion. Our implementation of reconfigure also exploits this property (and a few

more). However, the only task of reconfigure is to rearrange resources up to

commutativity and associativity, so, in principle, it should be possible to implement

reconfigure without using any axioms other than commutativity and associativity.

The property that conjunction is a functional relation is never explicitly used

outside the implementation of reconfigure, so we do not consider it a part of the

axiomatization of resources. �

Two resources R1 and R2 are compatible if and only if there exists a resource R

such that R1 ∗ R2 = R holds. A resource R is duplicable if and only if R ∗ R = R

holds.

Remark 10.4 One might expect the following axiom to hold: if R is compatible with

itself, then R is duplicable. Dockins et al. (2009) refer to this axiom as disjointness.

This property can be valid in certain instances: for example, if resources represent

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 103

the exclusive ownership of heap fragments, then the only resource that is compatible

with itself is the empty heap, which is duplicable. However, it is false in some

other instances: for example, two fractional permissions combine to yield a greater

fractional permission, yet they are not duplicable; two permissions to spend a unit

of time combine to yield a permission to spend two units of time, yet they are

not duplicable. Thus, we omit this axiom. It is not required in the type soundness

proof. �

A resource R can be composite: It can be a conjunction of “smaller” resources,

some of which are duplicable, some of which are not. In such a case, it is useful

to be able to refer to the “duplicable part” of R. Thus, we require the existence of

a function ̂· that maps a resource R to its “duplicable core” (or just “core”) ̂R. In

order to spell out our intuition that ̂R is the “duplicable part” of R, we require the

following.

Axioms 10.5 ̂R is a unit for R. Two compatible resources have a common core. A

duplicable resource is its own core. Splitting a core yields duplicable parts.

R ∗ ̂R = R
R1 ∗ R2 = R

̂R1 = ̂R

R ∗ R = R

R = ̂R

R1 ∗ R2 = ̂R

R1 ∗ R1 = R1

These axioms have a somewhat disparate appearance. Perhaps one could find

a more aesthetically pleasing set of axioms. We view these axioms as technically

satisfactory insofar as they have the following four consequences.

Lemma 10.6 A core is duplicable.

̂R∗̂R = ̂R ♥

Lemma 10.7 If a resource is its own core, then it is duplicable.

R = ̂R

R ∗ R = R
♥

Lemma 10.8 The function “core” is idempotent.

̂

̂R = ̂R ♥

Lemma 10.9 The function “core” preserves conjunction.

R1 ∗ R2 = R

̂R1 ∗ ̂R2 = ̂R
♥

As a result of these properties, we now have three equivalent characterizations of

duplicability. Indeed, “R is duplicable” (R ∗ R = R) is equivalent to “R is a core”

(∃R1, R = ̂R1), which itself is equivalent to “R is its own core” (R = ̂R).

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

104 F. Pottier

Remark 10.10 Calcagno et al.’s separation algebras (2007) have a single unit element.

Dockins et al. (2009) relax this condition and only require that each resource has its

own unit. They state this using existential quantification: ∀x, ∃ux, ux ∗ x = x. They

further prove that units are unique, that is, ux is really a function of x. To a certain

extent, our mapping of R to ̂R is related to Dockins et al.’s (2009) mapping of x

to ux. Indeed, if one reads Axioms 10.5 in this light, one finds that the first three

axioms are part of (or consequences of) Dockins et al.’s basic axioms (2009), while

the last one is Dockins et al.’s positivity axiom. However, our units are not unique

(see Remark 10.11 below), so ̂R is not “the” unit for R, but the strongest unit

for R. �

Remark 10.11 We depart from Calcagno et al. (2007) and Dockins et al. (2009)

in that our units are not unique and our conjunction is not cancellative, that is,

R1 ∗ R = R′ and R2 ∗ R = R′ do not imply R1 = R2. (The uniqueness of units

is a consequence of cancellativity.) We find that cancellativity is not necessary for

soundness. Furthermore, it is quite a strong axiom. Indeed, combined with the above

axioms, it implies that duplicable resources are atomic, that is, they cannot be split in

a non-trivial way: ̂R1 ∗ ̂R2 = ̂R implies ̂R1 = ̂R and ̂R2 = ̂R. This is quite unpleasant.

We do have in mind instances where duplicable resources admit non-trivial splits.

For example, logical assertions, viewed as resources, are duplicable (it is sound for

them to be duplicable because they are true forever), yet admit non-trivial splits,

since P ∧ Q is in general a strictly stronger assertion than P or Q alone. Similarly,

observations (Pilkiewicz & Pottier, 2011) are duplicable, yet admit non-trivial splits:

When j > i holds, an observation of a “fate” (a monotonic ghost variable) in state j

is strictly stronger than an observation of it in state i: so, they are distinct, yet the

two combine to yield just the former. �

We now come to what constitutes perhaps the most original part of our axioma-

tization of resources. We introduce two pre-orders, written � and �, which describe

how resources evolve in time.

Axioms 10.12 The relations � and � are reflexive and transitive. �

Why two pre-orders? This question is perhaps best answered by thinking in a

concurrent setting, where each thread of execution owns a certain resource, and

these resources join together to form a resource that describes the global state of

the system. In an interleaving semantics, as one thread of execution makes progress,

all other threads are suspended.

The active thread performs operations that have an effect on its own resource.

For instance, it may allocate (and claim ownership of) new memory, update pre-

existing memory cells that it owns, and so on. We use the active execution pre-order,

written �, to reflect this evolution. That is, R1 � R2 holds if the active thread can

cause its own resource to evolve from R1 to R2.

Meanwhile, what does a suspended thread perceive? One might at first imagine

that it must not perceive any change, that is, its own resource must remain unchanged

as long as it remains suspended. One would formalize this via the following candidate

axiom:

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 105

Ra
1 ∗ Rb

1 = R1 Ra
1 � Ra

2

∃R2, R
a
2 ∗ Rb

1 = R2 ∧ R1 � R2

Here, one should consider Ra
1 as the resource initially owned by the active thread

and Rb
1 as the resource initially owned by some passive thread. The two resources

are compatible: this is expressed by the first premise. The active thread makes

one execution step, and moves to Ra
2: this is expressed by the second premise. The

conclusion of the candidate axiom states that, after this execution step, the two

threads are still in compatible states – that is, Ra
2 and Rb

1 can be joined to yield a

new global state R2 – and, furthermore, this group of two threads, one of which

takes an execution step, can be considered abstractly as a single thread that takes an

execution step – that is, the initial global state R1 and the new global state R2 are in

the active execution pre-order �. The latter condition is required for the candidate

axiom to remain useful in a situation where there is an arbitrary number of passive

threads: it allows iterated applications of the axiom.

This candidate axiom makes sense – so it was worth explaining – but is too

strong. For example, when resources represent heap fragments, it is natural for

every resource to carry an allocation limit, which represents the number of the

next available memory location, and for two resources to be compatible only if

their allocation limits agree. Thus, when the active thread allocates new memory, a

passive thread must react by updating its allocation limit. As a result, we cannot

require the state of the passive thread, represented by Rb
1 , to remain unchanged. We

must allow Rb
1 to evolve to Rb

2 along a certain pre-order, which we refer to as the

passive execution pre-order, and write �.

Thus, the definitive version of the above candidate axiom is as follows.

Axiom 10.13 Consider an active thread and a passive thread in compatible states. If

the active thread moves (along the active execution pre-order), then the passive thread

is able to move as well (along the passive execution pre-order) so that the two threads

remain in compatible states; furthermore, their combined state has evolved along the

active execution pre-order.

Ra
1 ∗ Rb

1 = R1 Ra
1 � Ra

2

∃Rb
2R2, R

a
2 ∗ Rb

2 = R2 ∧ Rb
1 � Rb

2 ∧ R1 � R2

Our informal discussion of the execution pre-orders has been in terms of threads.

Nevertheless, these pre-orders make sense in a sequential setting as well. An

operational semantics typically splits a term into a pair of a redex and an evaluation

context. The redex can be viewed as active and the evaluation context as passive.

The type system splits the global state R into a conjunction of R1, owned by the

redex, and R2, owned by the evaluation context. When the redex makes a step, R1

evolves along the active execution pre-order �, while R2 evolves along the passive

execution pre-order �.

In the concurrent separation logic, the frame rule can be viewed as a special case

of the parallel composition rule, where one thread is active and the other is passive.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

106 F. Pottier

In light of this remark, one should not be surprised that thinking in terms of threads

also makes sense in a sequential setting.

We need another axiom that looks very much like Axiom 10.13.

Axiom 10.14 Consider two passive threads in compatible states. If their combined state

must move (along the passive execution pre-order) then each thread is able to comply

(along the passive execution pre-order).

Ra
1 ∗ Rb

1 = R1 R1 � R2

∃Ra
2R

b
2 , R

a
2 ∗ Rb

2 = R2 ∧ Ra
1 � Ra

2 ∧ Rb
1 � Rb

2

Together, Axioms 10.13 and 10.14 allow reasoning about a collection of threads.

Imagine these threads are organized in a tree, where a binary internal node represents

a conjunction and a leaf node represents a thread and its resource. The root of the

tree represents the global system. Imagine one leaf makes an active move. Then,

Axiom 10.13 can be iteratively applied along the path from this leaf up to the root:

one finds that every node along this path makes an active move. Next, Axiom 10.14

can be iteratively applied along every path down to some other leaf: one finds that

every leaf other than the active leaf makes a passive move. This argument appears

in the type soundness proof.

In the terminology of rely/guarantee, the active execution ordering � is a

guarantee (it describes the updates that the active thread can perform), while the

passive execution ordering � is a rely (it describes the updates that a passive thread

must be able to tolerate). In a concurrent setting, Dinsdale-Young et al. (2010)

have independently developed ideas that appear very closely related to ours: Our

Axiom 10.13 corresponds quite closely to their Lemma B.8, while our Axiom 10.14

corresponds exactly to their Lemma B.7. The more recent paper by Dinsdale-Young

et al. (2012) is also relevant.

Our last axiom is as follows.

Axiom 10.15 The function “core” preserves the passive execution pre-order.

R1 � R2

̂R1 � ̂R2

This axiom allows establishing the monotonicity lemma (Lemma 15.4) in the case

of the “!” introduction rule (Figure 10).

We refer to a structure that satisfies all of the axioms presented above as a

monotonic separation algebra. Our use of conjunction together with two execution

pre-orders allows us to abstractly and smoothly reason about exclusive ownership

(for instance, a memory location is owned by at most one thread), shared information

(for instance, the allocation limit is shared among all threads), and monotonic

information (for instance, the allocation limit can only grow with time; the set of

inhabitants of a region can only grow with time).

Remark 10.16 The reader may be puzzled by the fact that there exist several trivial

monotonic separation algebras. For instance, a trivial algebra is obtained by taking

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 107

both � and � to be the diagonal relation, which relates every resource R with

itself and only itself. Another trivial algebra is obtained by taking both � and �
to be the full relation, which relates all resources. Either of these trivial choices

satisfies Axioms 10.12, 10.13, 10.14, and 10.15. What is going on? The axioms that

we have presented are sufficient to establish type soundness for the core of our

type system, deprived of any concrete resources. (This corresponds to the typing

rules in Figures 10 and 11.) That is, they are sufficient to ensure that the control of

duplication (which, in our DILL-style formulation, is built into every typing rule) is

correctly implemented. However, once we extend the system with concrete resources

(such as references and regions), this abstract axiomatization of resources is no

longer sufficient to define the type system, let alone to prove its soundness. Some of

the typing rules must be aware of the concrete structure of resources. (These rules

are presented in Section 11.) As a result, some of the lemmas that participate in the

type soundness proof must be aware of the concrete definition of the pre-orders �
and �. The proofs of these lemmas would break if the trivial definitions above were

adopted. In particular, subject reduction (Lemma 15.13) would break if � was the

diagonal relation: the “active thread” would be disallowed from affecting its own

resources or allocating new resources. Monotonicity (Lemma 15.4) would break if

� was the full relation: a “passive thread” would be forced to assume that its own

resources can be stolen or destroyed by the currently active thread. �

Our type system is an extension of an abstract DILL-style formalism (Section

7) with specific typing rules that deal with references and regions (Sections 7, 8,

and 11). Subject reduction and progress for the core formalism can in principle be

proved in terms of an arbitrary monotonic separation algebra. However, we have not

explicitly isolated this aspect. Our type soundness proof is only “semi-abstract”: It

exploits the properties of monotonic separation algebras where possible, but drops

down to the level of one specific separation algebra (which involves references and

regions; see Section 10.3) where necessary.

10.2 Instances

We now provide a toolbox for building a variety of monotonic separation algebras.

Credits. The natural numbers form a monotonic separation algebra, where conjunc-

tion is addition, “core” is the constant function 0, the active execution pre-order �
is �, and the passive execution pre-order � is equality. This could be used to model

time or space credits (Hofmann, 2000; Atkey, 2010; Pilkiewicz & Pottier, 2011). The

use of � as the active execution pre-order indicates that credits can be consumed

but not manufactured.

Exclusive permissions. Imagine that there is one object of interest. This object might

be a memory cell, a region, or something else. For the moment, we are not interested

in the nature of this object; neither are we interested in its name, or address. We are

only interested in setting up a monotonic separation algebra whose resources allow

claiming either “I do not own the object” or “I do own the object, and it is presently

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

108 F. Pottier

in state x”. We would like to think of the object as mutable, and we would like to

formalize the idea that only the owner is allowed to mutate the object, or to claim

that its current state is x. Here the value x ranges over an arbitrary Coq type X.

We represent permissions as values of the Coq type option X. Recall that we write

⊥ for “None” and x for “Some x”, so a value of type option X is either ⊥ or some

value x of type X. We take ⊥ to represent the absence of a permission (“I do not

own the object”) and x to represent a permission (“I do own the object, and it is

presently in state x”). In order to indicate how permissions combine and evolve

with time, we equip the type option X with the structure of a monotonic separation

algebra, as follows.

Conjunction is inductively defined by the axioms ⊥ ∗R = R and R ∗ ⊥ = R. Thus,

two resources (or permissions) of the form x1 and x2 are incompatible. This means

that ownership is exclusive: there is at most one owner. Furthermore, only the owner

has access to the description x of the object. Last, permissions are atomic: whenever

a permission is split, one of the two parts must be ⊥.

The function “core” is the constant function ⊥.

The active execution pre-order is defined as follows: R1 � R2 holds if and only if

R1 = ⊥ implies R2 = ⊥. Thus, it is impossible for the active thread to spontaneously

acquire ownership: the relation ⊥ � x never holds. However, it is permitted for the

owner to perform a strong update: the relation x1 � x2 always holds. It is also

permitted for the owner to abandon ownership: the relation x � ⊥ always holds.

The passive execution pre-order is equality: as long as a thread remains inactive,

the permissions that it holds do not change.

Monotonic sets. In order to explain regions, we introduce monotonic sets. The

informal idea is two-fold: first, the contents of a monotonic set can only grow

with time; second, a monotonic set has an owner, and only the owner can add new

elements to the set.

For an arbitrary type X, a monotonic set over X is a pair of a permission p of

type option unit and a set s of type X → Prop. In Coq, the value of type unit is

written tt , so a permission p is either ⊥ or tt . (We could in principle use bool instead

of option unit . Using option unit allows us to re-use the treatment of exclusive

permissions presented above.) We write mSet X for the type of monotonic sets

over X.

Conjunction of monotonic sets is defined in terms of conjunction of permissions

and equality of raw sets: (p1, s1)∗(p2, s2) = (p, s) is defined as p1∗p2 = p∧s1 = s∧s2 = s.

Accordingly, the function “core” over monotonic sets loses any permission but

preserves the raw set: the core of (p, s) is defined as (p̂, s), that is, (⊥, s).

These definitions indicate that, although a monotonic set has an exclusive owner,

the underlying raw set is considered duplicable information. In our intended

application to regions, this is crucial. We would like the type [ρ], which characterizes

the inhabitants of region ρ, to be duplicable. (See the coercion at-bang in Section

8.5.) This is possible only if the knowledge that a certain value inhabits a certain

region is considered duplicable. This knowledge must be accessible to everyone, not

just to the owner of the region.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 109

The active execution pre-order � over monotonic sets is defined as follows:

p1 � p2 ∀x, s1 x ⇒ s2 x p1 = ⊥ ⇒ ∀x, s2 x ⇒ s1 x

(p1, s1) � (p2, s2)

The first premise dictates how the permission component evolves with time. (Here,

p1 and p2 are permissions of type option unit , so p1 � p2 is the relation defined in the

paragraph entitled “Exclusive permissions”, that is, p1 = ⊥ ⇒ p2 = ⊥.) The second

premise indicates that a monotonic set can only grow with time. The third premise

indicates that new elements can appear only if the set is owned. This is expressed

in the contrapositive: if it is not owned, then no new elements can appear. In our

intended application to regions, this means that only the owner of a region can

adopt new inhabitants into the region.

The passive execution pre-order � over monotonic sets is defined in a dual way:

p1 � p2 ∀x, s1 x ⇒ s2 x p1 = tt ⇒ ∀x, s2 x ⇒ s1 x

(p1, s1) � (p2, s2)

The first premise dictates how the permission component evolves with time. The

second premise again indicates that a monotonic set can only grow with time. The

third premise indicates that it can grow strictly only if it is not owned. This is natural

because the definition of � reflects the point of view of a passive thread. While a

thread is passive, only the monotonic sets that the thread does not own can grow.

Allocation maps. Certain objects can be created fresh, and exist forever thereafter.

For instance, memory locations are freshly allocated, and exist forever.12 Similarly,

regions can be freshly allocated, and exist forever.13 One could give many more

examples of this phenomenon, including first-class locks (Gotsman et al., 2007;

Hobor et al., 2008), first-class ghost memory cells (Pilkiewicz & Pottier, 2011), and

so on.

In order to deal with these situations, we introduce allocation maps. If X is

a monotonic separation algebra, then an allocation map over X is a pair of an

address �, known as the allocation limit, and a total mapping m of addresses into X.

Addresses are represented as natural numbers. The allocation limit represents the

next available address. Although the mapping m is formally a total function, we

regard its behavior at and above � as irrelevant. We write aMap X for the type of

allocation maps over X.

In a typical application, X might be an algebra of exclusive permissions, as

described earlier. Then an allocation map over X would be a pair of an allocation

limit and a mapping of addresses to permissions.

12 This, one may argue, is true regardless of whether one intends to rely on a garbage collector and
regardless of whether explicit memory de-allocation is permitted. Indeed, in a high-level operational
semantics, memory allocation can be considered to always yield fresh memory locations; there is
no garbage collector; and memory de-allocation, if permitted, has the effect of marking a memory
location as de-allocated, but does not make it available again for allocation.

13 Our regions do not exist at runtime. They are purely a type-checking device. Nevertheless, we do need
a mechanism for allocating fresh region names.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

110 F. Pottier

The conjunction of allocation maps is defined in terms of equality of the allocation

limits and address-wise conjunction of elements of X.

�1 = � �2 = � ∀l, (m1 l) ∗ (m2 l) = m l

(�1, m1) ∗ (�2, m2) = (�, m)

Thus, both components of a split must agree on a common allocation limit. In other

words, all threads share a consistent view of the allocation limit. This mechanism

ensures that, when the active thread decides to allocate the next address, this address

is globally fresh.

Accordingly, the function “core” over allocation maps preserves the allocation

limit: the core of (�, m) is defined as (�, λr. ̂(m r)). In other words, the allocation limit

is considered duplicable information.

The execution pre-orders � and � over allocation maps encode the property that

the allocation limit can only grow with time. Furthermore, at each address that

exists in both initial and final states, they require the appropriate pre-order over X

to be satisfied. Their definitions are

�1 � �2

∀l, l < �1 ⇒ (m1 l) � (m2 l)

(�1, m1) � (�2, m2)

�1 � �2

∀l, l < �1 ⇒ (m1 l) � (m2 l)

(�1, m1) � (�2, m2)

Products, sums, sequences. If the types X1 and X2 are equipped with monotonic

separation algebra structure, then the types X1 ×X2, X1 +X2, and list X1 again form

monotonic separation algebras. If X1 is arbitrary and X2 is a monotonic separation

algebra, then the type X1 → X2 again forms a monotonic separation algebra. The

definitions are omitted: they are straightforward adaptations of Dockins et al.’s

(2009) definitions.

10.3 A concrete instance

In the remainder of the paper, we fix the type of resources: We pick a particular

construction of resources that fits our purposes. We use resources to help us reason

about two particular features of the type system: references and regions. The typing

rules that have been presented already (Section 7) are formulated in terms of (and

are sound with respect to) an arbitrary monotonic separation algebra, while the

rules that specifically deal with references and regions (Section 11) are aware of the

concrete structure of resources.

Memory locations are dynamically allocated. Furthermore, we would like to set

up a system of exclusive permissions over memory locations. That is, we would like

each reference cell to have at most one owner. Last, we would like the owner of

a memory location to be able to formulate an assertion about the value that is

currently stored there. For instance, the owner should be able to say, “I know that

this reference cell currently holds a value of type τ”, for an arbitrary type τ. Because

the type τ could be arbitrarily precise, the only way in general for the owner to

justify such an assertion is to have exact knowledge of the value that is currently

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 111

stored in the cell. Thus, an appropriate type for resources that describe references is

aMap (option raw value). This is a type of allocation maps where a memory location

l is mapped to ⊥ if it is not owned and to V if it is owned and currently contains

the raw value V . In other words, this is essentially a type of raw heap fragments.

Like memory locations, regions are dynamically allocated. Like a memory location,

a region has at most one owner. Last, a region denotes a set of raw values. This is

a monotonic set: It can only grow with time, and only the owner of a region can

make it grow strictly. Thus, an appropriate type for resources that describe regions

is aMap (mSet raw value). This is a type of allocation maps where a region identifier

r is mapped to a pair of a permission (either ⊥, not owned, or tt , owned) and a set

of raw values (the inhabitants of the region).

Finally, we fix the type of resources to be the product of the two types mentioned

above. By construction, this type is equipped with the structure of a monotonic

separation algebra.

The empty resource, written void , is a pair of two empty allocation maps. It is

used when type-checking a source program (see, for instance, Lemma 3.1).

We introduce the following notation to project the various components of a

resource R. We write reflimit R for the reference allocation limit. We write R(l) for

the permission (of type option raw value) associated with a memory location l. We

write reglimit R for the region allocation limit. We write R(r) for the permission (of

type option unit) associated with a region r. We write R says V ∈ r to indicate that

the raw value V is an inhabitant of region r. This notation is used in the typing

rules that deal with references and regions (Section 7).

11 Typing: programmer-inaccessible constructs

11.1 Values

Figure 23 extends the typing judgement by giving typing rules for four forms of

values that do not exist in source programs, but participate in the operational

semantics of the instrumented calculus. These include memory locations l%v, region

inhabitants [v], and capabilities for regions, {�v} and {? ::�v}. Programmers need not

understand these rules; they are used only as a part of the type soundness proof.

Memory locations. The first rule concerns memory locations. Recall that, in the

instrumented calculus, a memory location takes the form l%v, where l is the actual

memory location and v is the value that it contains.

The first premise, l < reflimit R, requires l to be a valid (allocated) memory

location. The second premise splits the current resource in two parts. The sub-

resource R1 represents the ownership of the memory location l per se. Indeed, the

premise R1(l) = �v� indicates that R1(l) must be defined and must be the erasure of

the value v. That is, the sub-resource R1, viewed as a raw store fragment, contains

a binding for l, and, up to erasure, the value stored there is v. The sub-resource R2

represents whatever is necessary to type-check the value v. This value is type-checked

under empty multiplicity and type environments, which indicates that it must be

closed.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

112 F. Pottier

l < reflimit R R1 ∗ R2 = R

R2, nil , nil 	 v : τ R1(l) = �v�
R,M,E 	 l%v : ref τ

r < reglimit R

R says �v� ∈ r

v is closed

R,M,E 	 [v] : [r]

r < reglimit R

∀V , R says V ∈ r ⇒ ∃v, v ∈�v ∧ �v� = V

∀v, v ∈�v ⇒ R says �v� ∈ r

R1 ∗ R2 = R R2 	�v : τ R1(r) = tt

κ = S ⇒ |�v| = 1

R,M,E 	 {�v} : {κ r : τ}

r1 < reglimit R r2 < reglimit R

∀V , R says V ∈ r1 ⇒ ∃v, v ∈ w ::�v ∧ �v� = V

∀v, v ∈ w ::�v ⇒ R says �v� ∈ r1
R1 ∗ R2 = R R2 	�v : τ R says �w� ∈ r2

w is closed R1(r1) = tt

R,M,E 	 {? ::�v} : {r1 : τ \ r2}

Fig. 23. Typing rules for values: programmer-inaccessible constructs.

R 	 ε : τ

R1, nil , nil 	 v : τ R2 	�v : τ

R1 ∗ R2 = R

R 	 v ::�v : τ

Fig. 24. Typing rules for lists of closed values.

The fact that R1 and R2 are conjoined to obtain R reflects the idea that the type

ref τ represents the ownership of the memory cell and the value that it contains.

The fact that the type τ of the value v that is currently stored at this address is

used to construct the type ref τ is characteristic of strong references. In a system of

weak references, the typing rule for a memory location l would not have access to

the value v, and would instead consult a store typing that maps memory locations

to types (Harper, 1994; Wright & Felleisen, 1994).

Region inhabitants. The second rule in Figure 23 is used to type-check a region

inhabitant. Its conclusion ascribes the type [r], which means “inhabitant of region r”,

to a value of the form [v]. The underlying value v is arbitrary: it could be a memory

location, a function, etc. The type of v is irrelevant: in fact, it is not even required

(here) that v be well-typed. It is in the typing rule for capabilities that the inhabitants

of a region are required to be well-typed.

The first premise, r < reglimit R, requires r to be a valid (allocated) region name.

The second premise, R says �v� ∈ r, uses the resource R to interpret the region name

r as a set of raw values, and requires the erasure of v to be a member of this set.

(This notation was defined in Section 10.3.) The last premise indicates that v must

be a closed value.

The information that is extracted out of R by this typing rule is the region

allocation limit and the mapping of region names to sets of raw values. As per our

definitions (Section 10), this information is duplicable, that is, it is still present in
̂R. This remark explains why it is sound to consider [σ] a duplicable type, and is

indeed used in the subject reduction proof for the coercion at-bang. Furthermore,

the premises r < reglimit R and R says �v� ∈ r remain valid as the allocation limit

increases and as the set of inhabitants of the region r grows. In other words, this

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 113

typing judgement remains valid if R evolves to a new resource R′ such that R � R′

holds. We refer to this property as monotonicity (Lemma 15.4).

Capabilities. The third rule in Figure 23 concerns a capability for a group region

of the form {�v}, where �v is a list of the region inhabitants. This capability receives

the type {κ r : τ}, where κ is a region kind (either S, for a singleton region, or G,

for a group region), r is a region name, and τ is the common type of the region’s

inhabitants.

The first premise requires r to be a valid region name.

The somewhat impressive second and third premises simply express the fact that

the raw values in the list ��v� are exactly the raw values that (R says) inhabit the

region r.

The next premise splits the current resource in two parts. The sub-resource R1

represents the ownership of the region r per se. This is expressed by the premise

R1(r) = tt . The sub-resource R2 represents whatever is necessary to type-check the

values �v. This is expressed by the premise R2 	 �v : τ. This premise exploits an

auxiliary judgement, whose definition is straightforward and appears in Figure 24.

In short, this judgement indicates that each of the values in the list �v has type τ

under empty multiplicity and type environments and that the conjunction of the

resources required to type-check these values is R2.

The last premise, κ = S ⇒ |�v| = 1, indicates that a singleton region must

have exactly one inhabitant. In contrast, a group region can have any number of

inhabitants.

The last rule in Figure 23 concerns a capability for a group region in which a

hole has been punched. By this, we mean that the primitive operation focusgroup

has been used to isolate a particular inhabitant of the group region. A capability

for a punched region is diminished: It represents the ownership of the region per se

as well as the ownership of all inhabitants except the one that has been focused on.

In the typing rule, the punched group region is r1. The inhabitant that has been

isolated is w. The remaining inhabitants are �v. The value w has been placed in a

singleton region r2.

The third and fourth premises express the fact that the raw values in the list

�w ::�v� are exactly the raw values that (R says) inhabit the group region r1. Even

though the capability {? :: �v} over the region r1 does not include the ownership

of w, the value w is still considered an inhabitant of the region r1. Regions can only

grow with time: if w was once an inhabitant of r1, then w is forever an inhabitant

of r1.

The antepenultimate premise, R says �w� ∈ r2, requires w to be an inhabitant of

the region r2. This ensures that defocus-group is sound: When we relinquish the

ownership of r2, we will regain control over w, and will be able to reconstruct a full

capability for the group region r1.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

114 F. Pottier

11.2 Stores and configurations

In order to facilitate the statement of type soundness, we define typing judgements

about stores and configurations.

The judgement that concerns stores does not involve types in any way. In short,

as per Section 10.3, a resource R contains a raw store; furthermore, the image of a

store s through erasure is a raw store; so a resource R and a store s are consistent

with respect to one another if and only if they describe the same raw store.

Definition 11.1 A store s, which one can also write “m below �”, is consistent with a

resource R if and only if the following two conditions hold:

1. reflimit R = �, that is, the allocation limits of R and s coincide;

2. ∀l, l < � ⇒ �m l� = R(l), that is, the raw contents of R and s coincide. Œ

There is no requirement concerning the part of R that describes ghost state, that

is, the part of R that records information about regions.

We write R 	 s when s is consistent with respect to R.

We now define what it means for a top-level configuration s/ t to be well-typed.

We could perfectly well posit that s/ t is well-typed (without mentioning its type) if

and only if R 	 s and R, nil , nil � t : τ hold for some resource R and some type τ. It

seems however somewhat more instructive to define a three-place judgement, of the

form 	 s/ t : τ, which means that the configuration is well-typed and has type τ.

Definition 11.2 The judgement 	 s/ t : τ is defined by the following rule:

R 	 s R, nil , nil � t : τ ◦�θ
	 s/ t : τ

This definition presents an interesting twist. We do not require the term t to

have type τ: instead, we allow it to have type τ ◦�θ. In fact, we are building an

(iterated) anti-frame rule into the typing rule for top-level configurations so that a

configuration that claims to have type τ really has a more complex type inside. This

allows us to consider that when an instance of the anti-frame rule is executed (that

is, when a “let/hide” construct appears under an evaluation context), the anti-frame

rule extrudes all the way up through the evaluation context until it reaches the top

level, where it remains. Stating the definition in this manner allows us to give a

simpler statement of subject reduction (Lemma 15.14).

12 Revelation

The operational semantics of the anti-frame rule, to be presented shortly (Section

13.2), is based on scope extrusion. As an instance of the anti-frame rule extrudes, its

scope grows and eventually encompasses the entire program. Thus, whereas at type-

checking time the hidden invariant θ is visible only within the “hide” construct, at

run-time it becomes visible everywhere. We refer to this phenomenon as “revelation”.

Technically, the code that initially lay outside of the “hide” construct must be

rewritten so as to explicitly thread a capability of type θ (which it never uses, but

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 115

passes to the code that initially lies inside of the “hide” construct). For instance,

a first-order function v of type τ1 → τ2, where τ1 and τ2 are base types, must be

transformed into a function �v� of type (τ1 ∗ θ) → (τ2 ∗ θ), which accepts an extra

argument and returns it (unmodified) as an extra result. In this particular case, the

type (τ1 ∗ θ) → (τ2 ∗ θ) is equal to (τ1 → τ2) ⊗ θ, and indeed, in the general case, a

value v of type τ must be transformed into a value �v� of type τ ⊗ θ.

It may seem odd to turn a function of one argument and one result into a

function of two arguments and two results, and, in the process, to alter the code of

the function. One must keep in mind that this technical trick takes place at the level

of the instrumented calculus. At the level of the raw calculus, nothing happens: the

values v and �v� are equal up to erasure.

Because the syntactic category of values depends on the syntactic categories of

coercions and terms, these must be rewritten as well. Let us begin with coercions.

Lemma 12.1 (Revelation for coercions) If the coercion c proves that τ1 is a subtype

of τ2, then a coercion �c� proves that τ1 ⊗ θ is a subtype of τ2 ⊗ θ.

C 	 c : τ1 � τ2

C ⊗ θ 	 �c� : τ1 ⊗ θ � τ2 ⊗ θ
♥

In the above statement, if the environment C maps a coercion variable to the coercion

type τ1 � τ2, then C ⊗ θ maps this variable to the coercion type τ1 ⊗ θ � τ2 ⊗ θ.

This statement is ultimately specialized for closed coercions, so both C and C ⊗ θ

are nil .

The coercion �c� is defined by induction over the structure of c. We omit this

definition and mention only a couple of points. At function types, the tensor causes

an extra argument to appear, so �c1 → c2� is defined as (�c1� ∗ id) → (�c2� ∗ id). At

a “tensor exchange” coercion, the tensors pile up: that is, �⊗-exchn� is defined as

⊗-exch(n+1). This is the reason why this coercion carries an integer index n and why

its typing rule supports a vector of types �θ. All other cases are trivial.

Let us now move on to values and state the two properties that �v� must satisfy.

The application of tensor to a type environment, E ⊗ θ, is defined pointwise.

Lemma 12.2 (Revelation for values) If v has type τ, then �v� has type τ⊗ θ. That is,

�v� behaves like v, but preserves an additional invariant θ.

R,M,E 	 v : τ

R,M, (E ⊗ θ) 	 �v� : τ ⊗ θ
♥

Lemma 12.3 �v� and v coincide up to erasure.

��v�� = �v� ♥

The definition of �v� is straightforward. At coercion applications, revelation for

coercions (Lemma 12.1) is used, that is, �c v� is defined as �c� �v�. The only interesting

case is that of functions. An abstraction λt must be transformed so as to accept a

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

116 F. Pottier

pair of arguments: its original argument and a capability of type θ. The capability

must then be threaded through the body t of the function so as to eventually

produce a pair of results: the original result and a capability of type θ. Thus, the

term t must be transformed too. In informal nominal notation, the definition of

�λx.t� is λz.let (x, k) = z in k�t�14. The pair z is immediately deconstructed to obtain

the original argument x and the capability k. Control is then transferred to the

transformed function body k�t�.

Let us now discuss revelation for terms. This transformation is indexed with a

variable k, which indicates under what name the extra capability is available. The

transformed term k�t� must thread this capability throughout every computation

and eventually produce a pair of the original result and a capability. Thus, the two

properties that k�t� must satisfy are as follows.

Lemma 12.4 (Revelation for terms) If the term t has type τ, then, under the assump-

tion that k has type θ, the term k�t� has type (τ⊗θ)∗θ. That is, k�t� behaves like t, but

preserves an additional invariant θ, which is passed in the variable k and returned in

the second component of the result. For the sake of readability, we show the statement

only in the case where k is 0:

R,M,E � t : τ

R, (M; 1), (E ⊗ θ; θ) � 0�t� : τ ◦ θ
♥

Lemma 12.5 k�t� and t coincide up to erasure.

�k�t�� = k↑�t� ♥

The definition of k�t� is slightly more involved than that of �v�. We describe only

the key case and refer the reader to the Coq formalization (Pottier, 2012a, 2012b)

for further details.

The key case is that of the anti-frame rule, that is, the definition of k�let v in hide t�.

The term t has access to an invariant τ that is invisible outside “hide”. In order

to satisfy revelation for terms (Lemma 12.4), we must transform “let v in hide t” so

as to reveal another invariant θ. The result will be a transformed “hide” construct

within whose body two invariants are visible. Will these invariants still be known

there as τ and θ? Not quite. We must transform these invariants so as to express the

fact that each of them preserves the other. The new invariants must be τ′ and θ′,

where τ′ is “a version of τ that additionally preserves θ′”, and (symmetrically) θ′ is

“a version of θ that additionally preserves τ′”. In other words, we need the equations

τ′ ≡ τ ⊗ θ′ and θ′ ≡ θ ⊗ τ′ to hold. These equations characterize a “commutative

pair”.

By the commutative pairs lemma (Lemma 6.12), these equations admit a solution.

Furthermore, the coercion ⊗-exch0 (Section 8.7) witnesses the fact that two types

of the forms (· ⊗ τ) ⊗ θ′ and (· ⊗ θ) ⊗ τ′ are interconvertible, while the coercion

◦-exch witnesses the fact that two types of the forms (· ◦ τ) ◦ θ′ and (· ◦ θ) ◦ τ′ are

14 In the de Bruijn notation, the definition of �λt� is λ(letpairPhy,Log 0 in 2↑0�t�).

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 117

interconvertible. Both of these properties are required here, and indeed we are able to

offer a definition of k�let v in hide t� that exploits both of these coercions. (This is the

fundamental reason why the coercion ⊗-exchn is introduced.) For further insights,

the reader is referred to the conference paper (Pottier, 2008), which offers a detailed

account of this particular proof case, or to Schwinghammer et al.’s paper (2010),

which exploits commutative pairs in an analogous manner.

13 Semantics of the instrumented calculus

The instrumented calculus plays an important role in the type soundness proof.

It represents the main artifact that we have to invent. Its syntax and semantics

incorporate a number of design choices and compromises that allow controlling

where and under what form a certain number of proof obligations arise.

We wish to give the reader an opportunity to understand the basic design principles

for the semantics of the instrumented calculus. The complete definition of the

semantics, however, consists of a rather large number of rules (over 60 value

reduction rules and 25 term reduction rules!), so we place it in Appendix. In the

following, we explain only a few of the most important rules.

The semantics consists of two relations: the reduction of values, which takes the

form v1 −→ v2, and the reduction of terms (or, more accurately, of configurations),

which takes the form s1/ t1
h−→ s2/ t2. The integer superscript h, which has to do

with the extrusion of the anti-frame rule, is explained later on.

13.1 Reduction of values

The reduction of values gives operational meaning to coercions. There is usually

one reduction rule per coercion form, although a few coercion forms do not have

any reduction rules and a few have more than one.

The purpose of value reduction is to bring values to a canonical form. A canonical

value is one that does not contain any coercion applications, except perhaps within

abstractions λv and region inhabitants [v]. We omit the inductive definition of this

notion.

Many of the reduction rules are very simple. For instance, when applied to a value

v, the identity coercion id vanishes, while a composite coercion c1; c2 reduces to a

couple of nested coercion applications (Figure A 1).

id v −→ v (c1; c2) v −→ c2 (c1 v)

The coercions that witness the congruence of subtyping typically push themselves

down into the structure of values (Figure A 2). For instance, the coercion ι1 (c1 ×c2)ι2 ,

applied to a pair ι1 (v1, v2)ι2 , reduces by pushing the coercions c1 and c2 down

respectively into the first and second components of the pair.

ι1 (c1 × c2)ι2 ι1 (v1, v2)ι2 −→ ι1 (c1 v1, c2 v2)ι2

This also works for memory locations, even though the value reduction relation

does not have access to the store. Indeed, a memory location l carries its content v,

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

118 F. Pottier

so the coercion ref c is able to reduce by pushing c down into the reference and

applying it to v:

(ref c) (l%v) −→ l%(c v)

Similarly, because a capability for a region carries a list of the region inhabitants,

the cercion {c} is able to reduce by pushing c down into the region and applying it

to every inhabitant:

{c} {�v} −→ {c�v}

(We write c�v for the pointwise application of the coercion c to the list�v.)

The coercions that introduce, eliminate, and move quantifiers around reduce in a

fairly predictable and uninteresting way (Figures A 3 and A 4). Here, for instance,

are the reduction rules for the coercions that introduce and eliminate a universal

quantifier:

∀I v −→ Λv ∀E (Λv) −→ v

The coercions that concern the “!” modality are also fairly mundane (Figure A5).

Here are a couple of examples:

dereliction (! v) −→ v bang-idempotent (! v) −→ ! (! v)

It may be worth noting that the coercions whose type takes the form τ � ⊥, namely,

bang-ref , bang-regioncap, and bang-regioncappunched, do not have a reduction

rule. This means that in the progress lemma (Lemma 15.10) one will need to prove

that these coercions cannot be applied to a canonical value.

The coercion defocus π behaves in a more complex and original manner. This

coercion expects its argument to be a pair of a value v1 and a capability for the

region whose single inhabitant is a value v2. Its reduction rule is the following

(Figure A 6):

v1(π) = [v′′
1] v1(π �→ v2) = v′

1

(defocus π) Phy(v1, {v2 :: ε})Log −→ v′
1

The first premise checks that the path π within the value v1 exists and leads to a

value of the form “region inhabitant”. The second premise plugs the value v2 in its

place to obtain the reduct v′
1. The auxiliary predicates v(π) = w and v(π �→ w) = v′

are defined in Figures A 10 and A 11 in Appendix.

Remark 13.1 The base case in the definition of the “plugging” predicate explicitly

requires the old value (which is discarded) and the new value (which is plugged in

its place) to coincide up to erasure. As a result, v(π �→ w) = v′ implies �v� = �v′�.
This ensures that the left- and right-hand sides of the above reduction rule coincide

up to erasure (Lemma 13.3).

By building this requirement into “plugging”, one makes it more difficult to apply

the above reduction rule. This translates to a proof obligation in the progress lemma

for values (Lemma 15.10). Fortunately, there a typing hypothesis is available. For

some region r and type τ, the value [v′′
1] has type [r], while the capability {v2 :: ε}

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 119

has type {S r : τ}. This implies �v′′
1� = �v2�, which shows that “plugging” is indeed

permitted. �
Remark 13.2 The first premise in the above reduction rule requires that the path π

within the value v1 lead to a value of the form [v′′
1]. Anticipating the definition of

well-layeredness (Section 14), let us note that [v′′
1] is a physical value. Furthermore,

the value v2 (which we plug in its place) must be physical too, because it appears

as an inhabitant in the capability {v2 :: ε}. Hence, this reduction rule preserves

well-layeredness (Lemma 14.1). �
The coercion defocus-group expects its argument to be a pair of a capability

for a singleton region, whose inhabitant is v, and a capability for a group region,

which has been deprived of the ownership of one inhabitant, and whose remaining

inhabitants are �v. A typing assumption, not explicitly expressed here, implies that

the value |v| is (up to erasure) the value whose ownership has been taken away. The

idea is to return it, and indeed the reduct is just a capability for a complete group

region, {v ::�v}.

defocus-group Log({v :: ε}, {? ::�v})Log −→ {v ::�v}

Most of the coercions that deal with the “movement of stars” have straightforward

reduction rules (Figure A 7), with one exception, namely, “tensor exchange” ⊗-exchn.

The special case where n is 0 is sufficient to illustrate the main ideas. Recall (Section

8.7) that the coercion ⊗-exch0 has type (τ⊗α)⊗β′ � (τ⊗β)⊗α′, provided that (α, β)

and (α′, β′) form a commutative pair. Because the type τ is arbitrary, this coercion

must be prepared to accept any kind of value as an argument. That is, its argument

could be a λ-abstraction, a pair, a memory location, etc. We need one reduction

rule for each of these situations. Thus, the number of reduction rules for ⊗-exch0 is

equal to the number of forms of canonical values.

Among these rules, only the one that concerns λ-abstractions performs non-trivial

work. The rule is as follows:

⊗-exch0 (λt) −→ λ([◦-exch 0/1](◦-exch (0↑t)))

The function λt has type ((τ1 → τ2) ⊗ α) ⊗ β′, which by the equational theory of

tensor is equal to ((τ1 ◦ α) ◦ β′) → ((τ2 ◦ α) ◦ β′). On the other hand, the coercion

application ⊗-exch0 (λt) is supposed to have type ((τ1 → τ2) ⊗ β) ⊗ α′, which by the

equational theory of tensor is equal to ((τ1 ◦β)◦α′) → ((τ2 ◦β)◦α′). Thus, we see that

the effect of ⊗-exch0 should be to pre- and post-compose the function λt with the

coercion ◦-exch (which was defined in Lemma 8.7). This is done in the right-hand

side of the above reduction rule.

The other reduction rules for ⊗-exchn simply push it down into the structure of

values. For instance, here is how this coercion acts upon a pair:

⊗-exchn ι1 (v1, v2)ι2 −→ ι1 (⊗-exchn v1,⊗-exchn v2)ι2

Recursive coercions reduce by unfolding (Figure A 8):

c contractive in 0

(μc) v −→ ([μc/0]c) v

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

120 F. Pottier

Value reduction is permitted under all contexts, except inside λ-abstractions, which

suspend computation, and within values of the form [v], where value reduction would

serve no purpose (Figure A 9).

This concludes our presentation of the reduction of values.

This relation satisfies the following two properties. Note that neither of them

requires a well-typedness hypothesis.

Lemma 13.3 Value reduction has no computational content. The image of a value

reduction step through erasure is zero reduction steps.

v1 −→ v2

�v1� = �v2�
♥

Lemma 13.4 The reduction of values terminates. Œ

The proof of the former property is fairly easy: as noted in Remark 13.1, the

semantics is designed with this property in mind.

The proof of the latter property is significantly more involved. The difficulty

is mainly due to recursive coercions. In their absence, we believe that a simple

argument based on a recursive path ordering would work. In their presence, the

best we could do was map a value to a multiset of coercion application descriptors,

where the descriptor associated with a coercion application c v is a (lexicographically

ordered) pair of the weight of v and the measure of c, for appropriate notions of

weight and measure (described below), and prove that every reduction rule causes

this multiset to decrease.15

The weight of a value counts the number of “physical” constructors (namely,

Phy/Phy pairs and memory locations) that appear in it. Because “logical” construc-

tors are not counted, they can be rearranged without affecting the weight of a value.

Thus, when one coercion takes a reduction step, the descriptors associated with the

other coercions that might exist elsewhere in the value are not affected.

The measure of a coercion counts the number of constructors that appear in it,

but this count stops at “physical” constructors (namely, λ-abstractions, Phy/Phy

pairs, and memory locations): it does not examine their children. This definition is

designed so that unfolding a contractive recursive coercion causes its measure to

decrease, that is, the measure of [μc/0]c is strictly less than the measure of μc. (The

notion of a contractive coercion was defined in Section 8.8.)

What happens when a coercion propagates down into a “physical” constructor?

Consider, for instance, the second rule of Figure A 2, where a coercion propagates

down into a pair. Suppose ι1 and ι2 are Phy. The measure of the coercion does not

necessarily decrease because the measure of Phy(c1 × c2)Phy is 1, whereas the measure

of c1 and c2 is arbitrary. However, the weights of v1 and v2 are less than the weight

of Phy(v1, v2)Phy. Thus, this reduction step replaces one coercion descriptor with two

smaller descriptors. The multiset of the coercion descriptors decreases.

15 In fact, the ⊗-exchn reduction rules preserve this multiset, so an additional argument, based on a
simple polynomial interpretation, is required.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 121

What happens when a coercion propagates down into a “logical” constructor?

Consider, for instance, the third rule of Figure A 2, where a coercion propagates

down into a polymorphic value. The weight of v is equal to the weight of Λv, and

the measure of c is less than the measure of ∀c. Thus, this reduction step replaces

one coercion descriptor with one smaller descriptor. The multiset of the coercion

descriptors decreases.

This is about as much as we can say about this proof. For more details, the reader

is referred to the Coq formalization (Pottier, 2012a, 2012b).

Remark 13.5 This argument takes up about 1,000 lines, which is more than we

would like. It is also somewhat brittle. For instance, defocus-dup π should ideally

be a coercion, as opposed to a primitive operation. However, because this operation

duplicates a value, it causes an increase in the weight. We have been unable to prove

that value reduction terminates if defocus-dup π is made a coercion. We view this

as a shortcoming of our proof technique. �

13.2 Reduction of terms

The reduction judgement for configurations takes the form s1/ t1
h−→ s2/ t2. The

integer index h indicates how many instances of the anti-frame rule are being

executed, that is, how many new invariants are being installed. In most reduction

rules, h is zero. In the reduction rule associated with the “hide” construct, h is one.

In the rule that allows reduction under an evaluation context, h is arbitrary. This

rule uses h to adapt the evaluation context to work in the presence of the new

invariants.16

The reduction rules for functions, pairs, “let!”, and “unpack” are unsurprising

(Figure A 12). Another set of rules permits the reduction of values wherever they

appear (Figure A 13). When a construct appears both in the syntax of terms and in

the syntax of values (this is the case, for instance, of Λ-abstractions), there is a rule

for reducing one form to the other (also in Figure A13; these rules appear to do

nothing due to our ambiguous notation).

A group of reduction rules give the semantics of the primitive operations on

regions (Figure A 14). For instance, the application of focus π to a value v1 reduces

as follows:

v1(π) = v2 v1(π �→ [v2]) = v′
1

s/ (focus π) v1
0−→ s/pack Phy(v

′
1, {v2 :: ε})Log

The first premise checks that the path π within the value v1 exists and leads to

a value v2. The second premise plugs [v2] in its place, yielding a new value v′
1.

The reduct is a pair of v′
1 and a capability for a region whose single inhabitant

is v2. This pair is wrapped in a “pack” construct because the freshly created region

is existentially quantified. This reduction rule is by no means surprising: once the

16 In our system, h is always zero or one, but it seemed more general to make an integer index, rather
than a Boolean index.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

122 F. Pottier

typing rule for focus π is fixed (Figure 13) and the spirit of the instrumented calculus

is understood, it does not take much ingenuity to predict that the reduction rule

must look like this.

A “hide” construct reduces as follows (Figure A16):

s/ let v in hide t
1−→ s/ [�v�/0]t

We wrote earlier (Section 5.1) that, roughly speaking, the semantics of “let

in hide vt” is just that of a normal “let” definition, that is, the value v is substituted

for the variable 0, which is the one and only variable in scope within t. We now

see that, in fact, we substitute �v� for the variable 0. In view of the typing rule

associated with “hide” (Figure 11), this makes sense: The value v has type τ1, while

the term t is type-checked under the assumption that the variable 0 has type τ1 ⊗ θ.

Substituting v for 0 would not make sense, but substituting �v� for 0 does, according

to the revelation lemma for values (Lemma 12.2).

One might informally sum this up as follows. The hidden invariant is initially

unknown to the value v, because v lies outside of the scope of the “hide” construct.

As v is substituted for the variable 0, v enters the scope of the “hide” construct, so

the invariant is revealed to it, and v must be adapted.

Remark 13.6 We may now explain why we adopt the construct “let v in hide t”,

where only one variable is in scope within t. As noted earlier (Remark 5.2), a more

natural alternative would have been to use a construct of the form “hide t”, without

any restrictions on the free variables of t. (This is effectively the approach adopted

in the conference paper (Pottier, 2008).) However, we would then have been forced

to adopt a non-standard notion of substitution, whereby substituting into a “hide”

construct performs revelation on-the-fly:

[v/k](hide t) = hide ([�v�/k]t)

In principle, this approach should work. It would, however, make the definitions of

revelation and substitution mutually recursive, which seems unpleasant. In effect,

our approach delays all substitutions into the “hide” construct until it is executed.

Another motivation for our approach is that the definition of revelation for the

“hide” construct requires applying a suitable coercion to every free variable. This is

made significantly simpler if there is just one such variable. �
The semantics of “let v in hide t” might seem surprising in that the left- and right-

hand sides of the reduction rule do not have the same type. Indeed, if the redex has

type τ2, then the reduct has type τ2 ◦θ, where θ is the “hidden” invariant. Might this

break the subject reduction lemma? No, because we are careful to formulate this

lemma in an appropriate manner (Lemma 15.13). However, this does mean that the

evaluation context must adapt. The fact that the parameter h takes the value 1 can

be understood as a signal that an invariant is being revealed and that the evaluation

context must adapt. This will be evident shortly.

We now come to the rule that permits reduction under an evaluation context. The

syntax of evaluation contexts is as follows:

E ::= v [] | Phy([], v)Log | c []

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 123

That is, reduction is permitted within the argument of a function, within an

application of the frame rule, and within the argument of a coercion.

We write �E�h for h successive applications of revelation17 to the context E. So

in the particular case where h is zero, the rule that permits reduction under an

evaluation context has a standard appearance:

s1/ t1
0−→ s2/ t2

s1/E[t1]
0−→ s2/E[t2]

In the general case where h is arbitrary, the evaluation context must adapt to the

fact that, in the transition from t1 to t2, the term may decide to reveal a number

of invariants. Thus, the general form of the rule for reduction under a context

(Figure A 17) is

s1/ t1
h−→ s2/ t2

s1/E[t1]
h−→ s2/ �E�h[t2]

The connection between E and �E� in terms of type-checking will be made explicit

further on (Lemma 15.12). The connection between them in terms of erasure is as

expected: E and �E� are equal up to erasure. We do not explicitly state this property:

instead, we establish and use it on-the-fly inside the proof of the simulation lemma

(Lemma 15.18).

Reduction is also permitted under a type abstraction, with a caveat: this is sound

only when h is zero. For this reason, we do not make Λ[] an evaluation context:

instead, we provide the following reduction rule, where h must be zero (Figure A 17):

s1/ t1
0−→ s2/ t2

s1/Λt1
0−→ s2/Λt2

What would go wrong if one allowed h to be non-zero? This corresponds to a

situation where a “hide” construct is executed under a type abstraction that binds

a type variable. Then the reduction rule would dictate that the invariant must

be revealed outside the Λ-abstraction. However, if the invariant refers to the type

variable that is bound by this abstraction, this is impossible! This reduction rule,

generalized to an arbitrary h, would break the subject reduction lemma.

This is not a surprise. It is analogous to the well-known dangerous interaction

between weak references and polymorphism. In our setting, weak references can be

encoded in terms of strong references and hidden state, and it becomes apparent

that only the latter interacts in a dangerous way with polymorphism.

The problem is easily avoided. The above reduction is restricted so as to satisfy

subject reduction. There remains to guarantee that progress is also satisfied, that

is, to ensure that one never attempts to execute a “hide” construct under a type

17 Since evaluation contexts E are built out of values v and coercions c, it is straightforward to define
revelation for evaluation contexts �E� in terms of revelation for values �v� and coercions �c�. The
definition is omitted.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

124 F. Pottier

abstraction if the hidden invariant refers to the Λ-bound type variable. We adopt a

coarse sufficient condition: The user must choose between having both the anti-frame

rule and the value restriction, or neither of them.

14 Well-layeredness

We have argued at the beginning of the paper in favor of a simple and unambiguous

distinction between the “physical” and the “logical” layers, that is, between what

exists at runtime and what is erased. At the cost of annotating pairs and the unit

value with layers, we have been able to view erasure as a function of terms to raw

terms. However, there exist terms whose erasure does not make sense. For instance,

a function that accepts a pair of an ordinary value and a capability and attempts to

return the second component of this pair does not make sense, because a function

must produce a physical result, whereas a capability is logical.

The well-layeredness judgement tells which values and terms do make sense. Like

the subtyping and typing judgements, it is a part of the definition of the system. In

spite of this, we have delayed its presentation until now because it is so simple as to

be rather uninteresting.

The well-layeredness judgement about values takes the form I 	wl v : ι. This

judgement asserts that, under the layer environment I , which maps variables to

layers, the value v is well-layered and belongs to the layer ι. The well-layeredness

judgement about terms takes the form I 	wl t. This judgement asserts that, under

the layer environment I , the term t is well-layered. A term always belongs to the

physical layer: at runtime, its evaluation must produce an actual result.

We use an auxiliary well-layeredness judgement about primitive operations, which

takes the form 	wl p. This judgement asserts that the operation p transforms a

physical value to a physical value. (One could perhaps aim at greater generality

and allow primitive operations to have arbitrary input and output layers. This was

deemed good enough.) Because the primitive operations defocus-dup π and focus π

refer to a path π, we further use an auxiliary well-layeredness judgement about

paths. This judgement takes the form 	wl π : ι1 → ι2 and means that the path π

leads from a value rooted in the layer ι1 to a sub-value in the layer ι2. The inductive

definitions of these two auxiliary judgements are omitted; the reader is referred to

the Coq formalization (Pottier, 2012a, 2012b).

The inductive definition of well-layeredness for values and terms appears in

Figures 25 and 26. We briefly comment on some aspects. The argument of a λ-

abstraction must be a physical value; its result is physical as well, since every

well-layered term is physical; and a λ-abstraction is itself a physical value. The first

and second components of a pair must respectively inhabit the layers ι1 and ι2
that decorate the pair. The pair itself inhabits the layer ι1.ι2, defined as Phy if at

least one of ι1 and ι2 is Phy and Log otherwise. Universal quantification, existential

quantification, and the “!” modality, as well as subtyping, are mechanisms that

make sense in both physical and logical layers. The constructs related to references

and regions, on the other hand, are layer-specific. A memory location is physical,

and its content must be a physical value. A capability for a region is logical. Every

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 125

I(x) = ι

I 	wl x : ι

I; Phy 	wl t

I 	wl λt : Phy

I 	wl v1 : ι1 I 	wl v2 : ι2 ι = ι1.ι2

I 	wl ι1 (v1, v2)ι2 : ι
I 	wl ()ι : ι

I 	wl v : ι

I 	wl Λv : ι

I 	wl v : ι

I 	wl pack v : ι

I 	wl v : ι

I 	wl c v : ι

I 	wl v : ι

I 	wl ! v : ι

nil 	wl v : Phy

I 	wl l%v : Phy

nil 	wl�v : Phy

I 	wl {�v} : Log

nil 	wl�v : Phy

I 	wl {? ::�v} : Log

I 	wl v : Phy

I 	wl [v] : Phy

Fig. 25. Well-layeredness: values.

I 	wl v : Phy

I 	wl v

I 	wl v : Phy

I 	wl t

I 	wl v t

I 	wl v : Log I 	wl t

I 	wl Phy(t, v)Log

I 	wl t

I 	wl Λt

I 	wl t

I 	wl c t

I 	wl v : ι I; ι 	wl t

I 	wl unpack v in t

I 	wl v : ι I; ι 	wl t

I 	wl let! v in t

I 	wl v : ι1.ι2 I; ι1; ι2 	wl t

I 	wl letpairι1 ,ι2 v in t

	wl p I 	wl v : Phy

I 	wl p v

I 	wl v : Phy I; Phy 	wl t

I 	wl let v in hide t

Fig. 26. Well-layeredness: terms.

inhabitant of a region must be a physical value. At a letpair construct, the layer

annotations ι1 and ι2 are used to extend the layer environment.

A store s is well-layered if and only if every value v in the image of s satisfies

nil 	wl v : Phy. A configuration s/ t is well-layered (and we write 	wl s/ t) if and only

if the store s and the closed term t are well-layered.

The next lemmas guarantee that if a source program is well-layered, then all of

its reducts are well-layered.

Lemma 14.1 Value reduction preserves well-layeredness.

v1 −→ v2 nil 	wl v1 : ι

nil 	wl v2 : ι
♥

Lemma 14.2 Reduction preserves well-layeredness.

s1/ t1
h−→ s2/ t2 	wl s1/ t1

	wl s2/ t2
♥

Well-layeredness is exploited in the lemmas that relate the instrumented calculus

and the raw calculus (Lemmas 15.18 and 15.20).

Remark 14.3 The separation between well-typedness and well-layeredness may seem,

in hindsight, somewhat awkward and also sometimes limiting. For instance, we are

not able to add the subtyping axiom ! τ � (! τ) ∗ (! τ), which is supposed to mean

that a duplicable capability can be duplicated. Here is why. The natural reduction

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

126 F. Pottier

rule that accompanies this axiom reduces a value v to a pair Log(v, v)Log. Because this

pair is a logical value (its erasure is •), this reduction rule preserves well-layeredness

if and only if v is also a logical value. Unfortunately, we seem to lack the means

of requiring that v be a logical value. We would like to restrict the above subtyping

axiom by adding the side condition that τ must be the type of a logical value, as

opposed to the type of a physical value; but our types do not distinguish between

physical and logical values (in particular, a type variable stands for a completely

arbitrary type).

In the system as it stands, a duplicable capability can be duplicated by other

means; in particular, a variable of type ! τ can be used multiple times. Still, the

absence of this subtyping axiom is regrettable.

One alternative approach might be to introduce a modality that denotes “erasabil-

ity”, in the same way that the “!” modality denotes duplicability. Another alternative

approach would be to use kinds, instead of modalities, to distinguish which types

are duplicable (as opposed to affine) and which are logical (as opposed to physical).

This was the approach of Charguéraud and Pottier’s paper (2008). Introducing kinds

has a certain cost, but this approach seemed to work well on paper. �

15 Type soundness

We are now able to march toward the type soundness theorem. We begin with

a series of simple auxiliary lemmas. For the sake of readability, we simplify the

statement of these lemmas by giving only a statement about terms (there is usually

an identical statement about values) and by specializing the statement to the case

where some type variable or term variable of interest is 0.

The first three auxiliary lemmas are weakening properties.

Lemma 15.1 (Type variable weakening) Typing is stable under introduction of a new

type variable.

R,M,E � t : τ

R,M, (0↑E) � t : 0↑τ
♥

Lemma 15.2 (Term variable weakening) Typing is stable under introduction of a new

term variable.

R,M,E � t : θ

R, (M;m), (E; τ) � 0↑t : θ
♥

The more resources one has access to, the better. Similarly, the more variables one

has permission to use, the better. This property holds because the system is affine,

as opposed to linear.

Lemma 15.3 (Resource and multiplicity weakening) Typing is stable under addition

of resources and multiplicities.

R1,M1, E � t : τ R1 ∗ R2 = R M1 ∗ M2 = M

R,M,E � t : τ
♥

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 127

The next auxiliary lemma is a monotonicity property. It is used, in particular, in

the proof of Lemma 15.12, to prove that the (passive) evaluation context remains

well-typed, while the (active) term in the hole makes a step. Its proof relies in

Axioms 10.14 and 10.15.

Lemma 15.4 (Monotonicity) Typing is stable under the passive execution ordering �.

R1,M, E � t : τ R1 � R2

R2,M, E � t : τ
♥

Next come the substitution properties. The first of these concerns type variables.

Lemma 15.5 (Type substitution) Typing is stable under substitution of a type for a

type variable.

R,M, (0↑E) � t : τ

R,M,E � t : [θ/0]τ
♥

The next three concern term variables. We distinguish three lemmas, depending

on the multiplicity of the variable that is being substituted away. This multiplicity

is one of 0, 1, and ∞. The case where it is 0 is trivial, since the variable is then

unused. It is nevertheless worth spelling it out, as it is used in the proof of the next

case. The cases where it is 1 and ∞ respectively correspond to Barber’s linear cut

and intuitionistic cut (1996).

The constraints that bear on the value v, which is introduced by the substitution,

depend on this multiplicity. If it is 0, the value v is arbitrary. If it is 1, the value v

must be well-typed, and the assumptions R2,M2, E that are used to type-check v

must be compatible with the assumptions R1,M1, E that are used to type-check the

term t. If it is ∞, the resource R2 and the multiplicity environment M2 are further

required to be duplicable.

Lemma 15.6 (Unused value substitution) Typing is stable under substitution of an

arbitrary value for a variable of multiplicity 0.

R1, (M1; 0), (E; θ) � t : τ

R1,M1, E � [v/0]t : τ
♥

Lemma 15.7 (Affine value substitution) Typing is stable under substitution of a well-

typed value for a variable of multiplicity 1.

R1, (M1; 1), (E; τ1) � t : τ2

R2,M2, E 	 v : τ1

R1 ∗ R2 = R M1 ∗ M2 = M

R,M,E � [v/0]t : τ2

♥

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

128 F. Pottier

Lemma 15.8 (Unrestricted value substitution) Typing is stable under substitution of

a well-typed, duplicable value for a variable of multiplicity ∞.

R1, (M1; ∞), (E; τ1) � t : τ2

R2 ∗ R2 = R2 M2 ∗ M2 = M2

R2,M2, E 	 v : τ1

R1 ∗ R2 = R M1 ∗ M2 = M

R,M,E � [v/0]t : τ2

♥

This concludes the series of auxiliary lemmas, and brings us to the core statements

of type soundness for the instrumented calculus. We begin with subject reduction

and progress statements for the reduction of values.

Lemma 15.9 (Subject reduction for values) Value reduction preserves well-typedness.

R, nil , nil 	 v1 : τ v1 −→ v2

R, nil , nil 	 v2 : τ
♥

Lemma 15.10 (Progress for values) A well-typed value is canonical or reduces.

R, nil , nil 	 v : τ

v canonical ∨ (∃w, v −→ w)
♥

The proof of Lemma 15.9 involves one case per reduction rule in the instrumented

semantics. It is reasonably straightforward. The proof of Lemma 15.10 involves

a potentially tedious case analysis, which fortunately can be almost completely

automated. Both proofs require a number of auxiliary inversion lemmas for the

typing judgement (not shown). The number of these lemmas is linear in the number

of constructs in the instrumented language.

Our next step (and, in this paper, a key step) is to state an auxiliary lemma that

allows reasoning about the deconstruction and reconstruction of a term-in-context.

In a traditional type system, such a lemma usually takes a very simple form: “If

E[t1] has type τ, then there exists a type θ such that t1 has type θ and, for every

closed term t2 of type θ, E[t2] has type τ”. In other words, the term in the hole

can be replaced with any term of the same type without affecting the type of the

hole. Such a statement appears, for instance, in Wright and Felleisen’s paper (1994),

where it is known as the Replacement Lemma.

Here, the statement of this property is made significantly more complex by two

aspects, namely, the treatment of resources and the treatment of the anti-frame rule.

We focus on each of these aspects in turn, and give two successive versions of the

lemma. The first version deals with resources, and is valid, but too weak; the second

generalizes the first version to also deal with the anti-frame rule.

The first version of the lemma accounts for the fact that the resource R1 that

corresponds to E[t1] is split as Ra
1 ∗ Rb

1 , where Ra
1 and Rb

1 respectively correspond

to E and t1. As we replace the term t1 with a new term t2, we cannot require t2
to be well-typed with respect to the same resource Rb

1 . We must instead allow t2

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 129

to be well-typed under a new resource Rb
2 . This new resource cannot be completely

arbitrary, however: In order to guarantee that the term t2 can be placed in the

evaluation context E, we require that there exists a split Ra
2 ∗ Rb

2 = R2, where

Ra
1 � Ra

2 holds. That is, we require the evolution that is imposed on the evaluation

context to follow the passive execution ordering �. (If Rb
1 and Rb

2 are related by

the active execution ordering �, then, by Axiom 10.14, this is the case.) Then by

monotonicity (Lemma 15.4), the evaluation context remains well-typed. Thus, it is

possible to place the term t2 in the evaluation context E, yielding a term that is

well-typed with respect to the new resource R2.

Lemma 15.11 (Term-in-context, preliminary) Let R1, nil , nil � E[t1] : τ. Then, there

are resources Ra
1 and Rb

1 and a type θ such that:

1. The resource R1 is split between Ra
1 , which is “owned by” the evaluation context,

and Rb
1 , which is “owned by” the term.

Ra
1 ∗ Rb

1 = R1

2. The “type of the hole” of the evaluation context is θ.

Rb
1 , nil , nil � t1 : θ

3. In the place of t1, it is possible to plug a new term t2 of type θ, provided the

evolution that is imposed on the evaluation context respects the passive execution

ordering �. That is, for all t2, R
a
2 , R

b
2 , and R2, the following implication holds:

Rb
2 , nil , nil � t2 : θ Ra

1 � Ra
2 Ra

2 ∗ Rb
2 = R2

R2, nil , nil � E[t2] : τ
♥

The second version of the lemma accounts for the fact that we cannot require the

terms t1 and t2 to have the same type. In general, if t1 has type θ, we must allow t2
to have type θ ◦�θ, where�θ is a vector of “hidden” invariants that are being revealed.

In the most common case, which we have studied up to now, the vector�θ has length

zero, so that both t1 and t2, in fact, have type θ. However, if t1 reduces to t2 by

executing a “let/hide” construct, then the vector�θ has length one. In the statements

that follow, we assume that �θ has an arbitrary length h. Then the term t2 cannot be

plugged in the evaluation context E. It can, however, be plugged in the context �E�h

obtained by applying revelation h times to E. This yields a term �E�h[t2] of type

τ ◦�θ, whereas the original term E[t1] has type τ. In summary, if the step from t1 to

t2 is type-preserving up to the revelation of �θ, then the step from E[t1] to �E�h[t2]

is also type-preserving up to the revelation of �θ.

This is the basic idea behind the proof of type-preservation for the anti-frame

rule, and a contribution of the present paper. When a term decides to install a new

invariant by executing a “let/hide” construct, this invariant is immediately revealed

to the entire evaluation context. Whereas the static semantics of the anti-frame is

concerned with hiding the invariant, its dynamic semantics reveals it!

This syntactic phenomenon seems intuitively closely related to what happens in

the Kripke model (Levy, 2002; Birkedal et al., 2009, 2011; Schwinghammer et al.,

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

130 F. Pottier

2012), where allocating a fresh (weak) reference or installing a fresh hidden invariant

causes the entire system (that is, both the term and the evaluation context) to move

to a new world.

Here is the generalized statement of the previous lemma.

Lemma 15.12 (Term-in-context) Assume R1, nil , nil � E[t1] : τ. Then, there are re-

sources Ra
1 and Rb

1 and a type θ such that:

1. The resource R1 is split between the evaluation context and the term.

Ra
1 ∗ Rb

1 = R1

2. The “type of the hole” of the evaluation context is θ.

Rb
1 , nil , nil � t1 : θ

3. In the place of t1, it is possible to plug a new term t2 of type θ◦�θ, for an arbitrary

vector of types �θ. This vector represents a number of invariants that are being

revealed. The evaluation context E must then be adapted by applying revelation

as many times as there are invariants, that is, h times, where h is the length of

the vector �θ. The new complete term �E�h[t2] thus obtained no longer has type

τ, but τ ◦�θ: it itself reveals the invariants. That is, for all t2, R
a
2 , R

b
2 , R2, h, and

�θ, the following implication holds:

Rb
2 , nil , nil � t2 : θ ◦�θ Ra

1 � Ra
2 Ra

2 ∗ Rb
2 = R2 |�θ| = h

R2, nil , nil � �E�h[t2] : τ ◦�θ
♥

We continue with subject reduction and progress statements for the main reduction

relation, that is, for the reduction of configurations. Again, the statement of the

subject reduction lemma takes on a more complex form than usual, because of the

treatment of resources and the anti-frame rule. In the statement that follows, we

allow the term t1 to be well-typed with respect to a fragment Ra
1 of the resource R1

that corresponds to the entire store s1. The idea is that the term t1 appears under an

evaluation context E (which is not explicitly mentioned), and the resource R1 can

be split as Ra
1 ∗ Rb

1 , where the fragment Rb
1 is “owned by” E.

Lemma 15.13 (Subject reduction, inductive form) Assume that the configuration s1/ t1
takes a reduction step:

s1/ t1
h−→ s2/ t2

Assume that the store s1 is consistent with a global resource R1:

R1 	 s1

Assume that the term t1 is well-typed under Rb
1 , presumably a fragment of R1:

Rb
1 , nil , nil � t1 : τ

Then, there exists a vector of types �θ, whose length is h, such that, whatever the

fragment Ra
1 owned by the evaluation context (that is to say, for every Ra

1 such that

Ra
1 ∗ Rb

1 = R1 holds), there exist new resources Ra
2 , R

b
2 , and R2 such that

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 131

• The term t2 has type τ, where the invariants �θ are revealed:

Rb
2 , nil , nil � t2 : τ ◦�θ

• The evolution imposed on the evaluation context respects the passive execution

ordering:

Ra
1 � Ra

2

• The new resources owned by the evaluation context and by the term combine:

Ra
2 ∗ Rb

2 = R2

• The store s2 is consistent with this combination:

R2 	 s2 ♥

The above statement is quite complex. This seems to be the price to pay for

a formulation that lends to itself to a proof by structural induction over the first

hypothesis. Lemma 15.12 is used in the proof case that deals with reduction under

a context. Fortunately, this statement leads to the following much simpler corollary.

Lemma 15.14 (Subject reduction) The reduction of configurations preserves well-

typedness.

	 s1/ t1 : τ s1/ t1
h−→ s2/ t2

	 s2/ t2 : τ
♥

The premise and conclusion of the above lemma are able to refer to a common

type τ, thanks to the manner in which the typing judgement for configurations was

defined (Definition 11.2).

Let us now move on to the progress lemma.

The usual statement of this property is that every well-typed configuration is

acceptable, where a configuration s/ t is acceptable if either t is a value or s/ t is

able to reduce. We make two minor amendments to this notion. First, because our

values are supposed to reduce to a canonical form, we consider only canonical values

acceptable. Second, we build in the fact that if the anti-frame rule is disabled, then

s/ t is able to reduce without revealing any new invariants.

Definition 15.15 Whether a configuration s/ t is acceptable is defined as follows:

v canonical t = v

s/ t acceptable

s/ t
h−→ s′/ t′ anti-frame disabled ⇒ h = 0

s/ t acceptable

We first state progress under a form that is amenable to an inductive proof.

Lemma 15.16 (Progress, inductive form) If the store s is consistent with the resource

R and if the term t is well-typed under a fragment of R, then the configuration s/ t is

acceptable.

R 	 s R1, nil , nil � t : τ R2 ∗ R1 = R

s/ t acceptable
♥

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

132 F. Pottier

The proof is routine. Only the case of a term of the form Λt may be worth

mentioning. The induction hypothesis guarantees that either t is a value (in which

case Λt reduces to a value, and we are done) or t is able to step. Because Λt is

well-typed, the anti-frame rule must be disabled. Thus, the step out of t must have

h = 0. This means that reduction under a Λ-abstraction is permitted: Λt is able to

make one step.

The above lemma has the following corollary.

Lemma 15.17 (Progress) Every well-typed configuration is acceptable.

	 s/ t : τ

s/ t acceptable
♥

Together, Lemmas 15.14 and 15.17 show that, in the instrumented calculus, well-

typed configurations cannot go wrong. There remains to transport this result down

to the level of the raw calculus.

In order to do so, we first relate the instrumented calculus and the raw calculus by

proving that erasure is a weak simulation. That is, one step of reduction at the level

of the instrumented calculus corresponds, through erasure, to zero or more steps of

reduction at the level of the raw calculus. We further prove that a computationally

irrelevant step (one that corresponds to zero steps at the level of the raw calculus)

causes a decrease in some well-founded ordering. (The well-founded ordering t1 � t2
is a lexicographic combination of a couple of suitable term measures and the value

reduction relation, which by Lemma 13.4 is well-founded.) This means that every

sequence of computationally irrelevant steps must be finite, or, in other words,

divergence at the level of the instrumented calculus implies divergence at the level

of the raw calculus.

Lemma 15.18 (Erasure is a simulation) Assume that a well-layered configuration

s1/ t1 reduces to s2/ t2. The image of this reduction step through erasure is either

zero reduction steps (and, in that case, t1 � t2 holds) or a non-empty sequence of

reduction steps.

s1/ t1
h−→ s2/ t2 	wl s1/ t1

(�s1� = �s2� ∧ �t1� = �t2� ∧ t1 � t2) ∨
�s1�/ �t1� −→+ �s2�/ �t2�

♥

The proof of this lemma does not require a well-typedness hypothesis, but does

require well-layeredness.

Then we define what it means for a raw configuration S/T to be well-typed. The

first definition that comes to mind is to consider S/T well-typed if and only if it is

the erasure of some well-layered and well-typed configuration s/ t. However, because

one step of reduction in the instrumented calculus may correspond to several steps

in the raw calculus, there are intermediate configurations at the raw level which are

not the erasure of a well-typed configuration and which we would nevertheless like

to consider valid. Thus, we generalize this definition slightly.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 133

Definition 15.19 A raw configuration S/T is well-typed if and only if it is able to

reach the erasure of some well-typed, well-layered configuration s/ t.

	 s/ t : τ 	wl s/ t S/T −→� �s�/ �t�
	 S/T : τ

It may be worth noting that this definition is appropriate only because the raw

calculus is deterministic. The existence of a path from S/T to �s�/ �t� means that

S/T will inevitably reduce to �s�/ �t�.
In order to establish a subject reduction property for this notion of well-typedness,

we must prove that a reduction step in the raw calculus corresponds to a number of

reduction steps in the instrumented calculus, so as to then exploit subject reduction

in the instrumented calculus. In other words, we need a backward simulation lemma,

whereas Lemma 15.18 is a forward simulation lemma. Fortunately, in a deterministic

setting, one follows from the other. We prove the following intermediate result.

Lemma 15.20 If the erasure of a well-typed, well-layered configuration makes a step

to S2/T2, then S2/T2 is able to reach the erasure of a well-typed, well-layered config-

uration.

	 s1/ t1 : τ 	wl s1/ t1 �s1�/ �t1� −→ S2/T2

	 S2/T2 : τ
♥

The proof exploits the fact that erasure is a simulation (Lemma 15.18), the

determinism of the raw semantics, subject reduction and progress for the instru-

mented calculus (Lemmas 15.14 and 15.17), and the preservation of well-layeredness

(Lemma 14.2). It also exploits the fact that the erasure of a value is a raw value,

hence cannot reduce.

Subject reduction for the raw calculus is an immediate corollary.

Lemma 15.21 (Raw subject reduction) The reduction of raw configurations preserves

well-typedness.

	 S1/T1 : τ S1/T1 −→ S2/T2

	 S2/T2 : τ
♥

The proof of progress exploits the same ingredients. We state the result directly.

Lemma 15.22 (Raw progress) A well-typed raw configuration either exhibits a value

or is able to reduce.

	 S1/T1 : τ

(∃V , T1 = V) ∨ (∃S2T2, S1/T1 −→ S2/T2)
♥

Lemmas 15.21 and 15.22 together lead to the final type soundness result, where di-

vergence is co-inductively defined in the simplest possible manner. (In a deterministic

setting, the notions of may-diverge and must-diverge coincide.)

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

134 F. Pottier

Lemma 15.23 (Type soundness) A well-typed raw configuration either eventually

yields a value or diverges.

	 S1/T1 : τ

(∃S2V2, S1/T1 −→� S2/V2) ∨ S1/T1 diverges
♥

16 Conclusion

We have presented a definition and type soundness proof for an expressive type-

and-capability system. At the core of the system lies an affine version of DILL,

extended with references, capabilities, and regions. On top of this rests a notion

of hidden state, in the form of an anti-frame rule. The system also incorporates a

number of features that are required by the very statement of the anti-frame rule

(such as the type constructor ⊗ and its equational theory) or by its soundness proof

(such as recursive types). This is the first syntactic soundness proof, and the first

machine-checked soundness proof, for the type-and-capability system with a hidden

state.

The formulation of the type-and-capability system involves a number of design

choices, some of which we are fairly happy with, others that appear in hindsight are

more questionable. Isolating the notion of a monotonic separation algebra (Section

10) and formulating the typing rules in the style of DILL (Sections 7 and 11) seem

to have been good decisions, which have led to elegant abstract definitions. On the

other hand, separating the notions of well-typedness and well-layeredness (Section

14) seems in the end somewhat awkward and also sometimes limiting, as noted in

Remark 14.3.

The type soundness proof involves a number of technical choices, the most

prominent of which is the choice of a syntactic proof technique, based on subject

reduction and progress lemmas. We find that establishing subject reduction for the

instrumented semantics was fairly easy: there is a large number of rules, each of

which does relatively little work, so the proof consists of a large number of relatively

simple cases. Establishing progress was fairly easy as well: although there is again

a large number of cases, their analysis can be automated in Coq. One weakness

of this approach seems to appear in the proof that value reduction terminates

(Lemma 13.4), where a single termination criterion must be found for a system that

involves several dozen rules (Remark 13.5). Working with equirecursive types seems

to have been a reasonable choice: although this approach makes it more difficult

to construct the type equality relation and establish its properties, it makes the rest

of the system simpler. Another weakness of our approach is the fact that certain

laws, including the commutativity and associativity of ∗ and the “tensor exchange”

law, cannot be built into the type equality relation, but must be viewed as coercions

(Section 6.2). This is cumbersome and complicates the definition of the revelation

operation �·�. Finally, let us briefly comment on the fact that, among the operations

that do nothing at runtime, there must be a distinction between those that “have no

side effect”, such as defocus π, and those that “have a side effect”, such as focus π.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 135

This is not an inherent shortcoming of the syntactic approach; some distinction is

required in order to achieve type soundness (Remark 8.3). With some more work,

it would be possible to view both defocus π and focus π as coercions, provided one

distinguishes between “pure” and “effectful” coercions and forbids the use of an

effectful coercion under the “!” modality.

The type-and-capability system presented in this paper is of very low level. From

a purely type-theoretic point of view, this is rather pleasant. Most of the type

constructors involved in the definition of the system are standard. Only a few

new type constructors, such as “region inhabitant” and “capability for a region”,

are added, whose meaning does not overlap with that of the pre-existing type

constructors. From a practical point of view, however, the system is extremely

unwieldy, as evidenced by the detailed example that we have given (Section 3). In a

surface language, we would suggest (1) using enough inference to ensure that the flow

of capabilities remains completely implicit; (2) getting rid of the distinction between

values and regions, which causes much noise by often imposing the introduction

of two names (a variable x and a type variable σ) for each value; and (3) getting

rid of the anti-frame rule, which seems difficult to explain to programmers and is

sound only in a sequential setting, whereas dynamically allocated locks seem easier to

explain and are sound in a concurrent setting (albeit with a risk of deadlock). Pottier

and Protzenko (2012) present a preliminary design for such a surface language.

Appendix Semantics of the instrumented calculus

This appendix provides the definitions of the value reduction relation (Figures A 1

to A 9) and the term reduction relation (Figures A 12 to A17). The definition is

complete, except for the fact that the definition of revelation (which is used in

Figures A 16 and A 17) has been omitted. The full Coq formalization is available

online for browsing (Pottier, 2012a) and downloading (Pottier, 2012b).

id v −→ v (c1; c2) v −→ c2 (c1 v)

Fig. A 1. Value reduction: reflexivity and transitivity.

(c1 → c2) (λt) −→ λ(c2 ([c1 0/1](0↑t))) ι1 (c1 × c2)ι2 ι1 (v1, v2)ι2 −→ ι1 (c1 v1, c2 v2)ι2

(∀c) (Λv) −→ Λ(c v) (∃c) (pack v) −→ pack (c v) (! c) (! v) −→ ! (c v)

(ref c) (l%v) −→ l%(c v) {c} {�v} −→ {c�v} {c\} {? ::�v} −→ {? :: c�v}

Fig. A 2. Value reduction: congruence.

∀I v −→ Λv ∀E (Λv) −→ v ∃I v −→ pack v ∃E (pack v) −→ v

Fig. A 3. Value reduction: quantifier introduction and elimination.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

136 F. Pottier

distrib (Λ(λt)) −→ λ(Λ([∀E 0/1](0↑t))) ∃LI (Λ(λt)) −→ λ(unpack 0 in 1↑t)

∀-pair (Λι1 (v1, v2)ι2) −→ ι1 (Λv1,Λv2)ι2 ∀-bang (Λ(! v)) −→ ! (Λv)

∀-ref (Λ(l%v)) −→ l%(Λv) ∀-regioncap (Λ{�v}) −→ {Λ�v}

∀-regioncappunched (Λ{? ::�v}) −→ {? :: Λ�v}

pair-exists-left ι1 (pack v1, v2)ι2 −→ pack ι1 (v1, v2)ι2

pair-exists-right ι1 (v1, pack v2)ι2 −→ pack ι1 (v1, v2)ι2

bang-exists (! (pack v)) −→ pack (! v) ref-exists (l%(pack v)) −→ pack (l%v)

cap-exists {(pack v) :: ε} −→ pack {v :: ε}

Fig. A 4. Value reduction: quantifier movement.

dereliction (! v) −→ v bang-idempotent (! v) −→ ! (! v)

pair-bang ι1 (! v1, ! v2)ι2 −→ ! ι1 (v1, v2)ι2 bang-pair (! ι1 (v1, v2)ι2) −→ ! ι1 (! v1, ! v2)ι2

unit-bang ()ι −→ ! ()ι at-bang [v] −→ ! [v]

Fig. A 5. Value reduction: affinity.

v1(π) = [v′′
1] v1(π �→ v2) = v′

1

(defocus π) Phy(v1, {v2 :: ε})Log −→ v′
1

defocus-group Log({v :: ε}, {? ::�v})Log −→ {v ::�v}

singleton-to-group {�v} −→ {�v}

Fig. A 6. Value reduction: regions.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 137

ι1 = Log ∨ ι2 = Log

star-comm ι1 (v1, v2)ι2 −→ ι2 (v2, v1)ι1

ι1 = Log ∨ ι2 = Log ∨ ι3 = Log

star-assoc (ι1 .ι2)(ι1 (v1, v2)ι2 , v3)ι3 −→ ι1 (v1, ι2 (v2, v3)ι3)(ι2 .ι3)

star-ref Phy(l%v1, v2)Log −→ l%Phy(v1, v2)Log

ref-star (l%Phy(v1, v2)Log) −→ Phy(l%v1, v2)Log

star-singleton Log({v1 :: ε}, v2)Log −→ {Phy(v1, v2)Log :: ε}

singleton-star {Phy(v1, v2)Log :: ε} −→ Log({v1 :: ε}, v2)Log

⊗-exchn (λt) −→ λ([◦-exchn 0/1](◦-exchn (0↑t)))

⊗-exchn ι1 (v1, v2)ι2 −→ ι1 (⊗-exchn v1,⊗-exchn v2)ι2 ⊗-exchn ()ι −→ ()ι

⊗-exchn (Λv) −→ Λ(⊗-exchn v) ⊗-exchn (pack v) −→ pack (⊗-exchn v)

⊗-exchn (! v) −→ ! (⊗-exchn v) ⊗-exchn (l%v) −→ l%(⊗-exchn v)

⊗-exchn {�v} −→ {⊗-exchn �v} ⊗-exchn {? ::�v} −→ {? :: ⊗-exchn �v}

⊗-exchn [v] −→ [v]

Fig. A 7. Value reduction: movement of stars.

c contractive in 0

(μc) v −→ ([μc/0]c) v

Fig. A 8. Value reduction: recursive coercions.

v1 −→ v2

ι1 (v1, v)ι2 −→ ι1 (v2, v)ι2

v1 −→ v2

ι1 (v, v1)ι2 −→ ι1 (v, v2)ι2

v1 −→ v2

c v1 −→ c v2

v1 −→ v2

Λv1 −→ Λv2

v1 −→ v2

pack v1 −→ pack v2

v1 −→ v2

! v1 −→ ! v2

�v1 −→�v2

{�v1} −→ {�v2}
�v1 −→�v2

{? ::�v1} −→ {? ::�v2}

v1 −→ v2

l%v1 −→ l%v2

Fig. A 9. Value reduction: reduction under a context.

v(path-root) = v
v1(π) = v

ι1 (v1, v2)ι2 (path-left ι1 ι2 π) = v

v2(π) = v

ι1 (v1, v2)ι2 (path-right ι1 ι2 π) = v

v1(π) = v

(l%v1)(path-ref π) = v

v1(π) = v

{v1 :: ε}(path-singletonπ) = v

Fig. A 10. Selecting a value at a path.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

138 F. Pottier

�v1� = �v2�
v1(path-root �→ v2) = v2

v1(π �→ v) = v′
1

ι1 (v1, v2)ι2 (path-left ι1 ι2 π �→ v) = ι1 (v
′
1, v2)ι2

v2(π �→ v) = v′
2

ι1 (v1, v2)ι2 (path-right ι1 ι2 π �→ v) = ι1 (v1, v
′
2)ι2

v1(π �→ v) = v′
1

(l%v1)(path-ref π �→ v) = l%v′
1

v1(π �→ v) = v′
1

{v1 :: ε}(path-singletonπ �→ v) = {v′
1 :: ε}

Fig. A 11. Updating a value at a path.

s/ (λt) v
0−→ s/ [v/0]t s/ let! (! v) in t

0−→ s/ [v/0]t

s/ letpairι1 ,ι2 ι1 (v1, v2)ι2 in t
0−→ s/ [v1/0][0↑v2/0]t s/unpack (pack v) in t

0−→ s/ [v/0]t

Fig. A 12. Term reduction: λ-calculus.

v1 −→ v2

s/ v1
0−→ s/ v2

s/ Phy(v1, v2)Log
0−→ s/ Phy(v1, v2)Log s/Λv

0−→ s/Λv s/ c v
0−→ s/ c v

v1 −→ v2

s/ v1 t
0−→ s/ v2 t

v1 −→ v2

s/unpack v1 in t
0−→ s/unpack v2 in t

v1 −→ v2

s/ let! v1 in t
0−→ s/ let! v2 in t

v1 −→ v2

s/ letpairι1 ,ι2 v1 in t
0−→ s/ letpairι1 ,ι2 v2 in t

v1 −→ v2

s/ p v1
0−→ s/ p v2

Fig. A 13. Term reduction: injection of values into terms.

v1(π) = [v] !w ∈�v v1(π �→ !w) = v2

s/ (defocus-dup π) Phy(v1, {�v})Log
0−→ s/ Phy(v2, {�v})Log

v1(π) = v2 v1(π �→ [v2]) = v′
1

s/ (focus π) v1
0−→ s/pack Phy(v

′
1, {v2 :: ε})Log

s/newgroup ()Phy
0−→ s/pack Phy(()Phy, {ε})Log

s/adopt Phy(v, {�v})Log
0−→ s/ Phy([v], {v ::�v})Log

�v� = �w� w ∈�v

s/ focusgroup Phy([v], {�v})Log
0−→ s/pack Phy([v], Log({w :: ε}, {? ::�v \ w})Log)Log

Fig. A 14. Term reduction: operations on regions.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 139

m1[l �→ v] = m2

m1 below l/new v
0−→ m2 below l + 1/pack Phy([l%v], {(l%v) :: ε})Log

m l = v �v� = �w� �v′� = l

m below �/ read Phy([v
′], {(l%(!w)) :: ε})Log

0−→ m below �/ Phy(!w, {(l%(!w)) :: ε})Log

m1 l = v1 m1[l �→ v2] = m2 �v′
1� = l

m1 below �/write Phy(Phy([v
′
1], v2)Phy, {(l%w) :: ε})Log

0−→ m2 below �/ Phy(()Phy, {(l%v2) :: ε})Log

Fig. A 15. Term reduction: references.

s/ let v in hide t
1−→ s/ [�v�/0]t

Fig. A 16. Term reduction: hide.

s1/ t1
h−→ s2/ t2

s1/E[t1]
h−→ s2/ �E�h[t2]

s1/ t1
0−→ s2/ t2

s1/Λt1
0−→ s2/Λt2

Fig. A 17. Term reduction: reduction under a context.

Acknowledgments

I would like to thank Arthur Charguéraud for a pleasant and fruitful collaboration

and for proof-reading this paper. I would also like to thank anonymous referees for

their insightful suggestions, which helped greatly in improving the paper.

Supplementary material

For supplementary material for this article, please visit http://dx.doi.org/10.1017/

S0956796812000366.

References

Abadi, M., Pierce, B. & Plotkin, G. (1991) Faithful ideal models for recursive polymorphic

types. Int. J. Found. Comput. Sci 2(1), 1–21.

Ahmed, A. J. (2004) Semantics of Types for Mutable State. Ph.D. thesis, Princeton University,

Princeton, NJ.

Ahmed, A., Appel, A. W., Richards, C. D., Swadi, K. N., Tan, G. & Wang, D. C. (2010)

Semantic foundations for typed assembly languages. ACM Trans. Program. Lang. Syst.

32(3), 7:1–7:67.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

140 F. Pottier

Ahmed, Amal J., Fluet, M. & Morrisett, G. (2005) A step-indexed model of substructural

state. In ACM International Conference on Functional Programming (ICFP), pp. 78–91.

Ahmed, A., Fluet, M. & Morrisett, G. (2007) L3: A linear language with locations. Fundam.

Inform. 77(4), 397–449.

Almeida, P. S. (1997) Balloon types: Controlling sharing of state in data types. In European

Conference on Object-Oriented Programming, Lecture Notes in Computer Science, vol. 1241.

New York: Springer, pp. 32–59.

Amadio, R. M. & Cardelli, L. (1993) Subtyping recursive types. ACM Trans. Program. Lang.

Syst. 15(4), 575–631.

Atkey, R. (2010) Amortised resource analysis with separation logic. In European Symposium on

Programming (ESOP), Lecture Notes in Computer Science, vol. 6012. New York: Springer,

pp. 85–103.

Aydemir, B. E., Bohannon, A., Fairbairn, M., Foster, J. N., Pierce, Benjamin C., Sewell, P.,

Vytiniotis, D., Washburn, G., Weirich, S. & Zdancewic, S. (2005) Mechanized metatheory

for the masses: The PoplMark challenge. In International Conference on Theorem Proving

in Higher Order Logics (TPHOLs), Lecture Notes in Computer Science, vol. 3603. New

York: Springer, pp. 50–65.

Barber, A. (1996) Dual Intuitionistic Linear Logic. Tech. Rep. ECS-LFCS-96-347. Laboratory

for Foundations of Computer Science, School of Informatics at the University of Edinburgh,

Edinburgh, UK.

Bell, C. J., Dockins, R., Hobor, A., Appel, A. W. & Walker, D. (2008) Comparing semantic

and syntactic methods in mechanized proof frameworks.Proceedings of the International

Workshop on Proof-Carrying Code (PCC), Carnegie Mellon University, Pittsburgh, PA.

Bierhoff, K. & Aldrich, J. (2007) Modular typestate checking of aliased objects. In

ACM Conference on Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA), pp. 301–320.

Birkedal, L., Reus, B., Schwinghammer, J., Støvring, K., Thamsborg, J. & Yang, H. (2011)

Step-indexed Kripke models over recursive worlds. In ACM Symposium on Principles of

Programming Languages (POPL), pp. 119–132.

Birkedal, L., Støvring, K. & Thamsborg, J. (2009) Realizability semantics of parametric

polymorphism, general references, and recursive types. In International Conference on

Foundations of Software Science and Computation Structures (FOSSACS), Lecture Notes

in Computer Science, vol. 5504. New York: Springer, pp. 456–470.

Birkedal, L., Støvring, K. & Thamsborg, J. (2010) Realisability semantics of parametric

polymorphism, general references, and recursive types. Math. Struct. Comput. Sci. 20(4),

655–703.

Birkedal, L., Torp-Smith, N. & Yang, H. (2006) Semantics of separation-logic typing and

higher-order frame rules for Algol-like languages. Logical Methods Comput. Sci. 2(5).

Blanqui, F. & Koprowski, A. (2011) CoLoR: A coq library on well-founded rewrite relations

and its application to the automated verification of termination certificates. Math. Struct.

Comput. Sci. 21(4), 827–859.

Boyapati, C., Lee, R. & Rinard, M. (2002) Ownership types for safe programming: Preventing

data races and deadlocks. In ACM Conference on Object-Oriented Programming, Systems,

Languages, and Applications (OOPSLA), pp. 211–230.

Boyland, J. T. (2010) Semantics of fractional permissions with nesting. ACM Trans. Program.

Lang. Syst. 32(6), 22:1–22:33.

Boyland, J. T. & Retert, W. (2005) Connecting effects and uniqueness with adoption. In ACM

Symposium on Principles of Programming Languages (POPL), pp. 283–295.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 141

Brandt, M. & Henglein, F. (1998) Coinductive axiomatization of recursive type equality and

subtyping. Fundam. Inform. 33, 309–338.

Buisse, A., Birkedal, L. & Støvring, K. (2011) A step-indexed Kripke model of separation

logic for storable locks. Electron. Notes Theor. Comput. Sci. 276, 121–143.

Calcagno, C., O’Hearn, P. W. & Yang, H. (2007) Local action and abstract separation logic.

In IEEE Symposium on Logic in Computer Science (LICS), pp. 366–378.

Charguéraud, A. (2012) The locally nameless representation. J. Autom. Reasoning 49(3), 363–

408.

Charguéraud, A. & Pottier, F. (2008) Functional translation of a calculus of capabilities. In

ACM International Conference on Functional Programming (ICFP), pp. 213–224.

Clarke, D. G., Potter, J. M. & Noble, J. (1998) Ownership types for flexible alias protection.

In ACM Conference on Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA), pp. 48–64.

Crary, K., Walker, D. & Morrisett, G. (1999) Typed memory management in a calculus

of capabilities. In ACM Symposium on Principles of Programming Languages (POPL),

pp. 262–275.

Danielsson, N. A. & Altenkirch, T. (2010) Subtyping, declaratively. In International Conference

on Mathematics of Program Construction (MPC), Lecture Notes in Computer Science, vol.

6120. New York: Springer, pp. 100–118.

de Bruijn, N. G. (1972) Lambda-calculus notation with nameless dummies: A tool for

automatic formula manipulation with application to the Church-Rosser theorem. Indag.

Math. 34(5), 381–392.

DeLine, R. & Fähndrich, M. (2001) Enforcing high-level protocols in low-level software. In

ACM Conference on Programming Language Design and Implementation (PLDI), pp. 59–69.

Detlefs, D. L., Leino, K., Rustan M. & Nelson, G. (1998) Wrestling with Rep Exposure. Res.

Rep. 156, SRC, Palo Alto, CA.

Dietl, W. & Peter, M. (2005) Universes: Lightweight ownership for JML. J. Object Technol.

4(8), 5–32.

Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson, M. J. & Yang, H. (submitted) Views:

Compositional Reasoning for Concurrent Programs.

Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M. & Vafeiadis, V. (2010)

Concurrent Abstract Predicates. Tech. Rep., Computer Laboratory, University of Cambridge,

Cambridge, UK.

Dockins, R., Hobor, A. & Appel, A. W. (2009) A fresh look at separation algebras and

share accounting. In Asian Symposium on Programming Languages and Systems (APLAS),

Lecture Notes in Computer Science, vol. 5904. New York: Springer, pp. 161–177.

Fähndrich, M., Aiken, M., Hawblitzel, C., Hodson, O., Hunt, G., Larus, J. R. & Levi, S. (2006)

Language support for fast and reliable message-based communication in Singularity OS.

In Proceedings of the EuroSys, pp. 177–190.

Fähndrich, M. & DeLine, R. (2002) Adoption and focus: Practical linear types for imperative

programming. In Proceedings of the ACM Conference on Programming Language Design

and Implementation (PLDI), pp. 13–24.

Gapeyev, V., Levin, M. & Pierce, B. (2002) Recursive subtyping revealed. J. Funct. Program.

12(6), 511–548.

Gauthier, N. & Pottier, F. (2004) Numbering matters: First-order canonical forms for second-

order recursive types. In Proceedings of the ACM International Conference on Functional

Programming (ICFP), pp. 150–161.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

142 F. Pottier

Gifford, D. K., Jouvelot, P., Sheldon, M. A. & O’Toole, J. W. (1992) Report on the FX-

91 Programming Language. Tech. Rep. MIT/LCS/TR-531, Massachusetts Institute of

Technology, Cambridge, MA.

Girard, J.-Y. (1972) Interprétation Fonctionnelle et Élimination des Coupures de L’arithmétique

D’ordre Supérieur. Thèse d’état, Université Paris 7.

Glew, N. (2002) A theory of second-order trees. In European Symposium on Programming

(ESOP), Lecture Notes in Computer Science, vol. 2305. New York: Springer, pp. 147–161.

Gotsman, A., Berdine, J., Cook, B., Rinetzky, N. & Sagiv, M. (2007) Local Reasoning for

Storable Locks and Threads. Tech. Rep. MSR-TR-2007-39. Microsoft Research, .

Harper, R. (1994) A simplified account of polymorphic references. Inf. Process. Lett. 51(4),

201–206.

Hoare, C. A. R. (1972) Proof of correctness of data representations. Acta Inform. 4, 271–281.

Hobor, A., Appel, A. W. & Zappa Nardelli, F. (2008) Oracle semantics for concurrent

separation logic. In European Symposium on Programming (ESOP), Lecture Notes in

Computer Science, vol. 4960. New York: Springer, pp. 353–367.

Hofmann, M. (2000) A type system for bounded space and functional in-place update. Nord.

J. Comput. 7(4), 258–289.

Hogg, J. (1991) Islands: Aliasing protection in object-oriented languages. In Proceedings of

the ACM Conference on Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA), pp. 271–285.

Ishtiaq, Samin S. & O’Hearn, Peter W. (2001) BI as an assertion language for mutable data

structures. In Proceedings of the ACM Symposium on Principles of Programming Languages

(POPL), pp. 14–26.

Launchbury, J. & Jones, S. P. (1995) State in Haskell. LISP Symb. Comput. 8(4), 293–341.

Levy, P. B. (2002) Possible world semantics for general storage in call-by-value. Computer

Science Logic, Lecture Notes in Computer Science, vol. 2471. New York: Springer.

MacQueen, D. B., Plotkin, G. D. & Sethi, R. (1986) An ideal model for recursive polymorphic

types. Inf. Control 71(1–2), 95–130.

Mazurak, K., Zhao, J. & Zdancewic, S. (2010) Lightweight linear types in system F◦. In

Workshop on Types in Language Design and Implementation (TLDI), pp. 77–88.

Mitchell, John C. (1988) Polymorphic-type inference and containment. Inf. Comput. 76(2–3),

211–249.

Monnier, S. (2008) Statically Tracking State with Typed Regions. Draft.

Müller, P. & Poetzsch-Heffter, A. (2001) Universes: A Type System for Alias and Dependency

Control. Tech. Rep. 279, Fernuniversität Hagen, Germany.

Nanevski, A., Morrisett, G. & Birkedal, L. (2008) -type theory, polymorphism and separation.

J. Funct. Program. 18(5–6), 865–911.

Nanevski, A., Vafeiadis, V. & Berdine, J. (2010) Structuring the verification of

heap-manipulating programs. In Proceedings of the ACM Symposium on Principles of

Programming Languages (POPL), pp. 261–274.

O’Hearn, Peter W. (2007) Resources, concurrency and local reasoning. Theor. Comput. Sci.

375(1–3), 271–307.

O’Hearn, P. W., Yang, H. & Reynolds, J. C. (2004) Separation and information hiding.

In Proceedings of the ACM Symposium on Principles of Programming Languages (POPL),

pp. 268–280.

Peyton Jones, S. & Wadler, P. (1993) Imperative functional programming. In Proceedings of

the ACM Symposium on Principles of Programming Languages (POPL), pp. 71–84.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

Syntactic soundness proof of a type system with hidden state 143

Pilkiewicz, A. & Pottier, F. (2011) The essence of monotonic state. Workshop on Types in

Language Design and Implementation (TLDI), Philadelphia, PA.

Pollack, R., Sato, M. & Ricciotti, W. (2012) A canonical locally named representation of

binding. J. Autom. Reasoning 49(2), 185–207.

Pottier, F. (2008) Hiding local state in direct style: A higher-order anti-frame rule. In IEEE

Symposium on Logic in Computer Science (LICS), pp. 331–340.

Pottier, F. (2009a) Generalizing the higher-order frame and anti-frame rules. Unpublished

manuscript.

Pottier, F. (2009b). Three comments on the anti-frame rule. Unpublished manuscript.

Pottier, F. (2012a) Accompanying Coq scripts; for browsing [online]. Available at:

http://gallium.inria.fr/∼fpottier/ssphs/. Accessed 21 September 2012.

Pottier, F. (2012b) Accompanying Coq scripts; for downloading [online]. Available at:

http://gallium.inria.fr/∼fpottier/ssphs/ssphs.tar.gz and also as an online

supplement at http://www.cambridge.org/.... Accessed 21 September 2012.

Pottier, F. & Protzenko, J. (2012) Programming with permissions: An introduction to Mezzo.

Unpublished manuscript.

Reus, B. & Schwinghammer, J. (2006) Separation logic for higher-order store. In Computer

Science Logic, Lecture Notes in Computer Science, vol. 4207. New York: Springer,

pp. 575–590.

Reynolds, John C. (1974) Towards a theory of type structure. In Colloque sur la

Programmation, Lecture Notes in Computer Science, vol. 19. New York: Springer,

pp. 408–425.

Reynolds, John C. (2002) Separation logic: A logic for shared mutable data structures. In

IEEE Symposium on Logic in Computer Science (LICS), pp. 55–74.

Schwinghammer, J., Birkedal, L., Pottier, F., Reus, B., Støvring, K. & Yang, H. (2012)

A step-indexed Kripke model of hidden state. Math. Struct. Comput. Sci. Available at:

http://dx.doi.org/10.1017/S0960129512000035.

Schwinghammer, J., Birkedal, L., Reus, B. & Yang, H. (2009) Nested Hoare triples and frame

rules for higher-order store. In Computer Science Logic, Lecture Notes in Computer Science,

vol. 5771. New York: Springer, pp. 440–454.

Schwinghammer, J., Birkedal, L. & Støvring, K. (2011) A step-indexed Kripke model of

hidden state via recursive properties on recursively defined metric spaces. In International

Conference on Foundations of Software Science and Computation Structures (FOSSACS),

Lecture Notes in Computer Science, no. 6604. New York: Springer, pp. 305–319.

Schwinghammer, J., Yang, H., Birkedal, L., Pottier, F. & Reus, B. (2010) A semantic

foundation for hidden state. In International Conference on Foundations of Software Science

and Computation Structures (FOSSACS), Lecture Notes in Computer Science, vol. 6014.

New York: Springer, pp. 2–17.

Smith, F., Walker, D. & Morrisett, G. (2000) Alias types. In European Symposium on

Programming (ESOP), Lecture Notes in Computer Science, vol. 1782. New York: Springer,

pp. 366–381.

Swamy, N., Hicks, M., Morrisett, G., Grossman, D. & Jim, T. (2006) Safe manual memory

management in Cyclone. Sci. Comput. Program. 62(2), 122–144.

Talpin, J.-P. & Jouvelot, P. (1994) The type and effect discipline. Inf. Comput. 11(2), 245–296.

Tan, G., Shao, Z., Feng, X. & Cai, H. (2009) Weak updates and separation logic. In Asian

Symposium on Programming Languages and Systems (APLAS), Lecture Notes in Computer

Science, vol. 5904. New York: Springer, pp. 178–193.

Tofte, M. & Talpin, J.-P. (1997) Region-based memory management. Inf. Comput. 132(2),

109–176.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

144 F. Pottier

Tov, J. A. & Pucella, R. (2010) Stateful contracts for affine types. In European Symposium on

Programming (ESOP), Lecture Notes in Computer Science, vol. 6012. New York: Springer,

pp. 550–569.

Tov, J. A. & Pucella, R. (2011) Practical affine types. In ACM Symposium on Principles of

Programming Languages (POPL), pp. 447–458.

Urban, C. (2008) Nominal techniques in Isabelle/HOL. J. Autom. Reason. 40(4), 327–356.

Vouillon, J. & Melliès, P.-A. (2004) Semantic types: A fresh look at the ideal model for types.

In ACM Symposium on Principles of Programming Languages (POPL), pp. 52–63.

Walker, D. (2005) Substructural type systems. In Advanced Topics in Types and Programming

Languages, Pierce, B. C. (ed). Cambridge, MA: MIT Press, Chap. 1, pp. 3–43.

Walker, D. & Morrisett, G. (2000) Alias types for recursive data structures. In Workshop on

Types in Compilation (TIC), Lecture Notes in Computer Science, vol. 2071. New York:

Springer, pp. 177–206.

Wright, A. K. (1995) Simple imperative polymorphism. LISP Symb. Comput. 8(4), 343–356.

Wright, A. K. & Felleisen, M. (1994) A syntactic approach to type soundness. Inf. Comput.

115(1), 38–94.

https://doi.org/10.1017/S0956796812000366 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000366

