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Turbulent boundary layer response to uniform
changes of the pressure force contribution
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We investigate a turbulent boundary layer (TBL) under uniform pressure force variations,
focusing on understanding its response to local pressure force, local pressure force
variation (local disequilibrating effect) and upstream history. The flow starts as a
zero-pressure-gradient (ZPG) TBL, followed by a uniform increase in the ratio of pressure
force to turbulent force in the outer region and concludes with a uniform decrease of the
same magnitude. This last zone includes a subzone with a diminishing adverse pressure
gradient (APG), followed by an increasing favourable pressure gradient (FPG). In both
subzones, the impact remains the same: mean momentum gain and turbulence reduction.
In the outer region, the mean flow responds to force balance changes with a considerable
delay. The accumulated flow history leads to a FPG TBL at the domain’s end with a
momentum defect comparable to APG TBLs. Below y+ = 10, the mean flow responds
almost instantaneously to pressure force changes. In the overlap layer, velocity profiles
deviate from the conventional logarithmic law of ZPG TBL. Outer-layer turbulence decays
more slowly than it increases initially, the latter turbulence increase persisting even after
the pressure force begins to decrease. As a result of the slow turbulence decay, the
FPG TBL at the domain’s end exhibits unusually high outer turbulence levels. Near
the wall, turbulence responds with a delay to pressure force changes, partly due to the
influence of large-scale turbulence. All these significant cumulative effects of continuous
pressure force variation indicate that parameters based solely on local variables cannot
fully describe the physics of non-equilibrium TBLs.
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1. Introduction

Most boundary layers found in industrial applications or in nature are complex because,
in addition to being turbulent, they are affected by pressure gradient, wall curvature,
wall roughness, heat transfer or a combination of these factors. As a result, one of
the fundamental characteristics of these turbulent boundary layers (TBLs) is that they
are non-equilibrium flows. This paper focuses on non-equilibrium effects caused by the
pressure gradient. Its premise is that in order to better understand and to better model
TBLs subjected to a pressure gradient, we have to understand, first and above all, how the
pressure gradient unbalances the boundary layer.

To avoid any confusion, it is important to define what is meant here by ‘flow
equilibrium’. Flow equilibrium refers to the state where all forces acting on the fluid
maintain the same balance as the flow develops (Rotta 1953; Clauser 1956; Townsend
1956; Maciel, Rossignol & Lemay 2006). The properties of an equilibrium flow, for
instance its thickness, velocity and forces’ magnitudes, can evolve in the streamwise
direction but the balance of forces remains identical. The flow thus remains dynamically
similar. It is important to note that in the context of turbulent flows, ‘equilibrium’ can
also have a different meaning; it is also employed to express particular types of turbulent
energy balance, as discussed by Spalart (2015).

In TBLs, the situation is more complex than in laminar flows and turbulent free shear
flows due to the presence of two dynamically distinct wall-normal layers, with independent
length scales: the inner and outer layers. The balance of forces differs significantly between
these layers. In the inner layer, viscous forces are important while mean inertia forces
are small, whereas the opposite is observed in the outer layer. This means that the inner
layer can reach a state of equilibrium or near equilibrium, for instance corresponding
to the law of the wall, whereas the outer layer remains in a state of disequilibrium.
When we refer to ‘near equilibrium’, we mean that the balance of forces undergoes
slow variation in the streamwise direction. The zero-pressure-gradient (ZPG) TBL serves
as an example of a near-equilibrium TBL, where the force balance in the outer region
experiences slow variations due to the increasing local Reynolds number. Unlike the
sink-flow TBL, which is a single-layer flow (Townsend 1956; Rotta 1962), ZPG TBLs and
favourable-pressure-gradient (FPG)/adverse-pressure-gradient (APG) ‘equilibrium’ TBLs
are anticipated to achieve exact equilibrium only in the theoretical scenario of infinite
Reynolds number, owing to their two-layer nature.

The concepts of self-similarity and equilibrium are interconnected. A flow or a region of
a flow is self-similar if its statistical properties, or at least some of them, such as the mean
velocity profile, depend solely on local flow variables (scales). If a flow region reaches a
self-similar state, then it can only depend on its upstream history through its length and
velocity scales. It has therefore become an equilibrium flow. A review of these ideas can be
found in Maciel et al. (2006) and Devenport & Lowe (2022). Equilibrium boundary layers
are seldom encountered in the real world and are challenging to achieve experimentally and
numerically. There exist only a few experimental and numerical realisations of equilibrium
APG and FPG TBLs with varying degrees of success (see Devenport & Lowe 2022). The
interest of equilibrium TBLs lies in the fact that they represent theoretically simpler forms
of TBLs, as they can be described by local parameters alone.

The Rotta–Clauser pressure gradient parameter, βRC, is a commonly used pressure
gradient parameter in the literature:

βRC = δ∗

ρu2
τ

dpe

dx
, (1.1)
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TBL response to uniform changes of the pressure force

where ρ is density, δ∗ is the displacement thickness, uτ is friction velocity and pe is the
mean pressure at the edge of the boundary layer. It can be obtained from the momentum
integral equation as the ratio of the total streamwise pressure force to the wall shear force
acting on the whole boundary layer momentum defect. Therefore, it is not an inner or outer
pressure gradient parameter but rather a global one that encompasses the entire boundary
layer. Although this paper utilises pressure gradient parameters specific to the inner and
outer layers, βRC will also prove useful in analysing non-equilibrium effects in the current
paper.

In general PG TBLs, the overall local dynamic state of the inner region can be expressed
with the pressure gradient parameter βi (Mellor 1966), which represents the ratio of
pressure force and apparent turbulent force (gradient of Reynolds shear stress)

βi = �p+= ν

ρu3
τ

dpw

dx
, (1.2)

where ν is viscosity and pw is the mean pressure at the wall. In the literature, βi is also
denoted �p+ or p+ and considered as the local pressure gradient in wall units. Equilibrium
in the near-wall region implies that βi remains constant.

Equilibrium in the outer region, including the overlap layer, is more difficult to achieve
because of the inertia forces. For this reason, the various existing similarity analyses
(Townsend 1956; Rotta 1962; Mellor & Gibson 1966; Castillo & George 2001; Maciel et al.
2006) find necessary conditions for self-similarity, and thus equilibrium, expressed with
outer layer parameters. The main (driving) condition is that the outer pressure gradient
parameter, in any chosen form as long as it represents a ratio of forces, must remain
constant. By using five non-equilibrium and one equilibrium APG TBL databases, Maciel
et al. (2018) showed that the ratio of forces in the outer layer can be accurately followed
with three parameters when these parameters are expressed with Zagarola–Smits scales
as the outer scales: Uo = UZS = (δ∗/δ)Ue and Lo = δ, where δ is the boundary layer
thickness and Ue is the velocity at the edge of the boundary layer. Such a correspondence
was not achieved with the friction velocity or the outer pressure gradient velocity scale,
U2

po = (δ∗/ρ)(dpe/dx) whatever the length scales chosen. The outer pressure gradient
parameter is therefore expressed with Zagarola–Smits scales in the present study:

βZS = δ

ρU2
ZS

dpe

dx
, (1.3)

and it precisely follows the ratio of pressure force to turbulent force in the outer region
of the six APG TBLs in the study of Maciel et al. (2018) and in the APG TBL region
of the current flow. The present study suggests that the correspondence is not as accurate
for FPG TBLs, at least for the present one which is recuperating from strong downstream
APG effects, but βZS still follows the variation of the force ratio in the FPG region of the
flow.

From the previous discussion, it becomes clear that a TBL which is in a non-equilibrium
state in the outer region because of the pressure force is basically a TBL for which the
pressure gradient parameter βZS varies. It is important to stress that it is not the pressure
gradient in itself that causes a non-equilibrium state, but rather the streamwise evolution
of the pressure gradient parameter. In other words, dβZS/dx is a measure of the local
disequilibrating effect of the pressure force whereas βZS is a measure of the local direct
effect of the pressure force. This study illustrates this point further by showing that the sign
of the pressure gradient does not always reflect the type of disequilibrating effects. It will
be seen that, as counterintuitive as it may appear, a positive pressure gradient (dp/dx > 0;
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APG) can lead to the boundary layer filling up with momentum if dβZS/dx < 0. We will
call the disequilibrating effects of dβZS/dx < 0 as momentum-gaining conditions since
the qualifier favourable refers in the literature to dp/dx < 0.

In addition to not fully understanding such local pressure gradient effects on the
evolution of a TBL, we are unable to make a clear distinction between them and Reynolds
number and upstream history effects. In the case of mild APG effects, Sanmiguel Vila
et al. (2020a), Pozuelo et al. (2022) and Deshpande et al. (2023) provide insights on the
differences between APG and Reynolds number effects. If the imposed pressure gradient
effect is strong (large βZS and/or dβZS/dx) and the Reynolds number is high, Reynolds
number effects can probably be neglected. The question of upstream history effects is
more complex since they cannot be neglected and they can hardly be represented by a
local parameter. Upstream history effects are, by definition, cumulative effects that can
only be taken into account with the integration of the governing equations. They have
been studied for different types of non-equilibrium PG TBLs, including cases where
the transition from APG to FPG, or vice versa, is considered. Three recent studies have
focused on comparing APG TBLs with different upstream histories at locations where
both βRC and the friction Reynolds number Reτ match (Bobke et al. 2017; Vinuesa
et al. 2017; Tanarro, Vinuesa & Schlatter 2020). The findings revealed that upstream
non-equilibrium APG conditions affect the outer region more significantly than the inner
region. The latter is found to be more dependent on the local value of βRC. However,
these studies assume that upstream history effects are the same for both the inner and
outer regions by using only βRC as the pressure gradient parameter, but in reality, they
differ.

Although the boundary layer does not respond in the same manner to continuous gradual
changes in the force balance and to rapid or step changes of flow conditions, the latter cases
can nonetheless help us understand the response of the boundary layer to non-equilibrium
conditions. From the equations of motion, it can be deduced that the mean shear rate
∂U/∂y in the outer region cannot respond immediately to a step change in the pressure
gradient since viscous diffusion is negligible there (Smits & Wood 1985). Consequently,
turbulence in the outer layer cannot also respond immediately to a step change in the
pressure gradient. Based on scaling arguments, Devenport & Lowe (2022) suggest that it
takes tens of boundary layer thicknesses for both the mean flow and turbulence to adjust
to pressure gradient changes. This is consistent with the boundary layer recovery distances
observed by Volino (2020) downstream of a FPG-to-ZPG transition.

The extended recovery in the outer region is also observed in channel flows with a step
change from rib- or cube-roughened surface to a smooth wall (Ismail, Zaki & Durbin
2018) and in pipe flows subjected to various strong localised perturbations (Van Buren
et al. 2020; Ding & Smits 2021; Ding et al. 2021). In their studies on pipe flows, Smit’s
research group found that turbulence recovery in the far-field was oscillatory, resembling a
second-order dynamical system, overshooting the eventual fully developed condition. This
oscillatory behaviour is due to the asynchronous recovery between the mean velocity and
the Reynolds shear stress.

In contrast to the situation in the outer layer, turbulence in the inner layer adjusts itself
very quickly. For instance, in experiments with rods placed inside ZPG TBLs (Clauser
1956; Marusic et al. 2015), the inner layer recovers after a few boundary layer thicknesses,
whereas the outer layer takes tens or even hundreds of boundary layer thicknesses to
recover. A similar situation occurs in the TBL recovery from separation due to a step,
where the outer region is strongly energised by the perturbation (Vaquero, Renard &
Deck 2022). Cases of a very fast transition from FPG to APG (Tsuji & Morikawa 1976;
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TBL response to uniform changes of the pressure force

Parthasarathy & Saxton-Fox 2023) also show that the near-wall region adapts more rapidly
than the outer region. In such cases, a new internal layer grows inside the APG TBL,
starting from the wall, in reaction to the change, whereas the upper part of the TBL
responds much more slowly. Parthasarathy & Saxton-Fox (2023) found that this internal
layer establishes its own inner and outer regions. The triggering of an internal layer is
more commonly found in TBLs with abrupt changes of wall conditions: surface curvature,
roughness, wall heat flux (Smits & Wood 1985). In the case of rough-wall TBLs with
step changes in roughness, it has been shown that the outer-layer recovery is nonlinear and
depends on the sign of the step change (Smits & Wood 1985). The return to an equilibrium
state in the outer region is more rapid when turbulence is augmented (smooth-to-rough
step change) than when turbulence is reduced (rough-to-smooth step change). Turbulence
appears to take more time to decay than to build up in the outer region of TBLs.

The response of turbulence in the outer region is known to lag even in cases of
continuous changes of the pressure force. For example, Devenport & Lowe (2022) remark
that at the streamwise location where βRC ≈ 2, the Reynolds shear stresses in the cases of
an increasing pressure force effect (dβRC/dx > 0) of Nagano, Tagawa & Tsuji (1993) and
Spalart & Watmuff (1993) are about half of those of the equilibrium case of Bobke et al.
(2017).

To better understand the direct local pressure force effect, the local disequilibrating
effect of the pressure force and the upstream history effect, we have designed a
non-equilibrium flow with an almost linear increase followed by an almost linear decrease
of the pressure gradient parameter βZS, as shown in figure 2(a). The local pressure gradient
effects start therefore as momentum-losing conditions, of constant strength, followed by
momentum-gaining conditions of the same strength. The momentum-gaining conditions
(dβZS/dx < 0) are maintained on a long length to also include a zone of FPG (dp/dx < 0)
at the end of the domain. Note that the middle region of the flow is a zone of APG
(dp/dx > 0) that is momentum-gaining for the flow (dβZS/dx < 0). In other words, the
boundary layer is filling up with momentum even if the external flow is still decelerating.
Although this may appear counterintuitive as stated previously, it is consistent with an
analysis of the mean momentum equation, boundary layer computations of the current
flow and the results presented in the paper. This is a unique feature that has not been
specifically studied, although it is also encountered in the TBLs alternating from mild
APG to mild FPG of Tsuji & Morikawa (1976) or Fritsch et al. (2022a).

The current TBL is experiencing moderate APG disequilibrium (indicated by a
moderate value of dβZS/dx > 0). However, due to the long length of the imposed
pressure force increase, it attains a significant velocity defect (H = 2.87). This places
it between quasi-equilibrium APG TBLs with large velocity defects (Skåre & Krogstad
1994; Kitsios et al. 2017) and our recent APG TBL, which is in a state of strong
disequilibrium (Maciel et al. 2018; Gungor, Maciel & Gungor 2022). This feature,
combined with the previous one, makes it an excellent intermediate test case to determine
what distinguishes equilibrium and disequilibrium APG TBLs in strong pressure gradient
conditions. Likewise, the slow deceleration of the TBL in a long domain helps us
determine under what conditions the classical law of the wall starts to lose its validity.

Because of the switch from momentum-losing to momentum-gaining pressure
conditions, it is possible to study the delayed response of the mean flow and turbulence in
both the inner and outer layers. In addition, the final segment of the domain represents an
FPG TBL at high Reynolds number with a distinctly unique flow history.

The present work aims to better understand and distinguish the three different effects of
the pressure force, local direct, local disequilibrating and upstream variation, on TBLs.
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2. The database

2.1. The numerical details
The novel flow case is generated using a direct numerical simulation (DNS) code
that employs a fractional step method to solve the three-dimensional incompressible
Navier–Stokes equations with primitive variable formulation within a three-dimensional
rectangular volume. The methodology for this DNS code is based on Kim & Moin
(1985). In terms of computational specifics, the grid is structured and staggered. Spatial
discretisation entails a fourth-order compact finite-difference scheme for convective
and viscous terms, as well as a standard second-order discretisation for the pressure
term in both the streamwise and wall-normal directions. The spanwise direction uses
spectral expansion, de-aliased via the 2/3 rule, for discretisation (Lele 1992). Temporal
advancement is accomplished through a semi-implicit three-step Runge–Kutta method.
For more comprehensive insights into the DNS code and further particulars, refer to
Simens et al. (2009), Borrell, Sillero & Jiménez (2013) and Sillero (2014).

The DNS computational set-up consists of two simultaneous simulation domains,
depicted in figure 1 and elaborated on further in Borrell et al. (2013). The auxiliary DNS,
possessing coarser resolution, aims to deliver realistic turbulent inflow data for the primary
DNS. It involves a ZPG TBL, where inlet conditions are derived from a recycling plane
within the domain. Data from this recycling plane (πr in figure 1) are rescaled using a
modified version of method of Lund, Wu & Squires (1998) and Simens et al. (2009).
The positioning of the recycling plane with respect to the inlet is determined to ensure
sufficient distance for flow decorrelation from inlet effects (Simens et al. 2009). A transfer
plane (πt in figure 1) from the auxiliary simulation is designated as the source of temporal
data for inflow conditions in the main simulation. For the transfer plane, the data from
the auxiliary domain are extrapolated in the freestream because the wall-normal height of
both domains are different from each other. The recycling and transfer planes are located at
approximately x = 46δ0,a and 124δ0,a, where δ0,a is δ at the inlet of the auxiliary domain.
The adoption of two domains is needed to provide inflow conditions for the main DNS at
a lower computational cost.

Regarding the other boundary conditions, the lower surface represents a flat plate
with a no-slip (zero velocity) and impermeability condition. As for the upper boundary,
wall-normal velocity is applied via suction and blowing, generating favourable/adverse
pressure gradients. In addition, the free-slip conditions are enforced for the wall-parallel
components. At the exit of the domain, convective boundary conditions are employed. In
addition, the auxiliary domain was initialised with a flow realisation of a ZPG TBL.

The computational domains of the main and auxiliary cases are rectangular volumes.
The domain length and grid properties are given in table 1 for both cases. Here, the average
boundary layer thickness (δav) is calculated within the useful range of the main domain.
The useful range is 36δav long. For domain sizes, the wall-normal length of the domain
is chosen as approximately 3 times δ at the exit and spanwise length is chosen based on
two-point correlations. The Reynolds number based on momentum thickness (Reθ ) of the
main case ranges from 1941 to 12 970.

Spatial resolutions, �x+ and �z+, range from 1.56–9.84, and 1.18–7.37, respectively,
with the coarsest resolutions near the inlet and finest resolutions where the flow exhibits
a significant velocity defect. Furthermore, �y+ at the wall does not exceed 0.49, and the
maximum �y+ across the boundary layer remains below 11.06. The time step size, �t+,
is maintained below 0.17 throughout the domain.

The data for the statistics were collected by averaging over time and the spanwise
direction. The duration of data collection was 11.5 and 7.7 flow-through times based on
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Figure 1. Spatial evolution of the turbulent kinetic energy, normalised with Ue,0 and δ0, in the auxiliary
(a) and main (b) domain as a function of x/δ0 and y/δ0 where δ0 is the boundary layer thickness at the inlet
of the main domain. Here πr and πt indicate the location of the recycling and transfer planes, which are
represented by the black vertical lines. The vertical lines on the main domain indicate the streamwise stations
selected for the detailed analysis. The x-axis is not scaled proportionally to the y-axis. Only the lower half of
the domain is shown for both domains.

Domain (Lx, Ly, Lz)/δav (Lx, Ly, Lz)/δe Nx, Ny, Nz Reθ Reτ

Auxiliary 12.0, 1.2, 6.3 46.7, 4.2, 16.5 2161, 316, 2700 620–2380 260–810
Main 40.2, 4.7, 6.3 26.1, 3, 4.1 12 801, 770, 2700 1941–12 970 654–2489

Table 1. Domain properties of the main and auxiliary DNS. Here δav is the average thickness of the boundary
layer of the main domain in the useful range and δe is the thickness of the boundary layer at the exit of each
domain.

the edge velocity, Ue, at the inlet and exit, respectively. The eddy-turnover time, based on
uτ , is highest at the inlet, 85.9. It decreases to 2.2 at x/δav ≈ 20, which is very close to
SP5. However, in TBLs with a large-velocity defect, uτ is no longer a characteristic scale
for large-scale structures. Therefore, we also computed the eddy-turnover time using UZS,
which gives an eddy-turnover time of 323 at the inlet and a minimum value of 21. The
simulations were performed on the Marconi KNL and Marconi100 clusters at Cineca, as
well as on the Niagara cluster of the Digital Research Alliance of Canada. The cost of the
simulation for collecting statistics is approximately 10 million core-hours on Niagara of
Digital Alliance of Canada.

3. Results

Before discussing the results, the edge of the boundary layer needs to be defined clearly.
The definition of the boundary layer edge and edge velocity in the case of pressure
gradient TBLs and TBLs over complex geometries is challenging due to variations in
freestream velocity. Griffin, Fu & Moin (2021) provide a review of eight methods of
computing the boundary layer thickness in such cases. We have tested several methods,
and a summary of the main results are presented in the Appendix. The method based
on the local reconstruction of the inviscid-flow velocity profile by Griffin et al. (2021) is
the most theoretically rigorous and empirically consistent. Unfortunately, we cannot use it
in the present study because it requires mean static pressure data, which we lack for the
near-equilibrium TBL database of Kitsios et al. (2017) used for comparison. Instead, we
chose the recent method of Wei & Knopp (2023), because it yielded the most consistent
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results across all tested databases, although, like most methods, it lacks a theoretical basis.
In this method, the boundary layer thickness, represented as δ, is defined as the location
near the freestream where the Reynolds shear stress reaches 5 % of its maximum. The edge
velocity, denoted as Ue, is defined as the mean streamwise velocity at that location.

3.1. The mean flow and force balance
To first understand the local and upstream effects of the pressure force on the mean
flow, we investigate global flow parameters, mean momentum equation budgets and mean
velocity profiles separately for the outer and inner layers. The streamwise mean momentum
equation where each term can be viewed as a force acting on the flow is given in

0 =
(

−U
∂U
∂x

− V
∂U
∂y

)
− 1

ρ

dpe

dx
− ∂〈uv〉

∂y
+ ν

∂2U
∂y2 , (3.1)

where U and V are the mean velocities in the streamwise and wall-normal directions, u
and v are the fluctuation velocities, ν is the viscosity and 〈·〉 indicates ensemble averaging.
The terms on the right-hand side of the equation represent the inertia force, the pressure
force, the turbulent force (the gradients of the normal stresses are not considered because
they are negligible) and the viscous force, respectively.

3.1.1. Outer layer
The global parameters of the flow and the ratio of forces in the inner and outer layers are
presented in figure 2 as a function of x/δav . Figure 2(a) presents the outer-layer pressure
gradient parameter βZS and the ratio of pressure force at the edge of the boundary layer
(Fp,o) to the maximum of turbulent force in the outer layer (Fto,max), where the outer layer
is defined as the region above 0.1δ. Maciel et al. (2018) demonstrated that βZS follows
the ratio of pressure to turbulence force in the outer region using six APG TBLs. This is
confirmed in the present flow as βZS and the ratio of forces follow each other very closely
in the region where the pressure gradient is positive (adverse). However, βZS and the force
balance do not correspond in the FPG region, although the trend is still the same for both.
This could be due, at least partly, to the delay in turbulence response to the flow changes.
As presented in § 3.2, Reynolds shear stresses remain very high in the outer region of the
whole momentum-gaining zone, even higher than downstream. Their expected decay only
starts at x/δav ≈ 28. This could explain why the absolute value of the ratio of pressure
force to turbulence force is low.

As was already presented in the introduction, in the first part of the domain, until
approximately x/δav = 12, βZS increases at a fairly constant rate as it was aimed for in
the design of this flow. Afterwards, it decreases at a similar absolute rate until the end
of the domain. Such a streamwise evolution of βZS implies a non-equilibrium boundary
layer with a constant increase in importance of the pressure force with respect to the
other forces followed by a constant decrease as it can be seen with Fp,o/Fto,max. Until
approximately x/δav ≈ 21.5 where the shape factor reaches its maximum (figure 2d), the
flow is similar to some strong non-equilibrium APG TBL cases in the literature (Hickel
& Adams 2008; Gungor et al. 2016; Hosseini et al. 2016; Gungor et al. 2022). In this
region, the boundary layer constantly loses momentum (H increases) because the pressure
force’s importance increases upstream for a long extent, as reflected by Fp,o/Fto,max and
βzs. Afterwards, the flow is still under the effect of an APG until x/δav = 28. However, the
flow gains momentum in this region because the pressure force’s importance decreases
(βZS decreases), which is a particular behaviour not studied previously, as discussed in
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Figure 2. Streamwise development of the main parameters of the APG TBL. The vertical lines indicate the
streamwise stations selected for the detailed analysis.

the introduction. The rest of the domain is an FPG TBL where the pressure gradient is
maintained with a negative dβZS/dx similar to that upstream.

Although we present the remaining parameters in figure 2 later, for now, we focus on
discussing the mean momentum budgets to provide a more comprehensive description of
the streamwise evolution of the force balance. Figure 3 presents the outer-scaled mean
momentum budgets for various streamwise positions. These positions are identified with
vertical lines in figure 2. Details of these positions, including the acceleration parameter
(K = (νU2)/(dUe/dx)), are given in table 2 and the corresponding mean velocity profiles
are shown in figure 4. In figure 3, the x-axis ranges have been selected to ensure that the
reference turbulent force value (Fto,max) is approximately located at the same position in
all subfigures.
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Figure 3. The mean momentum budget profiles of the eight streamwise positions as functions of y/δ. The
budget terms are normalised with Ue and δ. The x-axis ranges are chosen so that the reference turbulent force
value Fto,max is approximately at the same location in all subfigures.

The momentum budgets reveal the non-equilibrium nature of the flow since the balance
of forces changes from one station to another. The budgets of the first two stations (S1
and S2) show explicitly that the pressure force increases in importance with respect to
the turbulent force in the outer region. Further downstream, the pressure force’s relative
magnitude with respect to the other forces begins to decrease as can be seen with the
momentum budgets starting from S3. This decrease continues until the pressure force
becomes zero at S7. Afterwards, the pressure gradient becomes negative (FPG zone) until
the end of the domain.
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TBL response to uniform changes of the pressure force

Position x/δav H Cf Reτ Reθ βZS βi βRC K× 10−6

S1 3.8 1.41 0.0034 809 2486 0.093 0.0016 0.22 0.18
S2 11.5 1.60 0.0020 1012 4931 0.352 0.0168 3.47 0.53
S3 16.1 2.16 0.0007 865 7961 0.185 0.0729 17.21 0.54
S4 18.8 2.65 0.0003 702 9635 0.093 0.1575 33.49 0.29
S5 21.6 2.87 0.0002 709 10 952 0.055 0.1607 30.59 0.18
S6 24.6 2.65 0.0004 1006 12 099 0.037 0.0476 9.83 0.11
S7 28.2 2.16 0.0009 1489 12 827 0.000 0.0028 0.00 −0.01
S8 34.1 1.60 0.0019 2181 12 278 −0.223 −0.0051 −2.11 −0.12
ZPG N/A 1.38 0.0030 1334 3904 0.000 0.0000 0.00 —
EQ1 N/A 1.57 0.0025 811 3358 0.104 0.0056 1.04 —
EQ2 N/A 2.57 0.0004 698 8584 0.090 0.1058 34.24 —

Table 2. The main parameters of selected streamwise positions in the present case along with the ZPG TBL
of Sillero, Jiménez & Moser (2013) and the near-equilibrium APG TBL cases of Kitsios et al. (2017).
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0.4

0.6

0.8

1.0
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y/
δ

ZPG
S1
EQ1
S2
S3
EQ2
S4
S5
SA
S6
S7
S8

Figure 4. The mean velocity profiles for nine streamwise positions of the present case along with the ZPG
TBL and near-equilibrium cases EQ1 and EQ2 as a function of y/δ. The profiles are normalised with Ue.

In the momentum budgets of S1 to S6, the inertia term indicates that the fluid is losing
momentum in the streamwise direction (dU/dx < 0), except near the wall for S6. This
is confirmed by the mean velocity profiles in figure 4, but it is important to note that
these are normalised profiles U/Ue as a function of y/δ that are representative of U
variation in approximate streamline directions, not x. This explains why the fluid has
gained momentum from S5 to S6 in the normalised representation of figure 4 although
figure 3 indicates that dU/dx is still negative at S6 in most of the outer region.

Indeed, while it was constantly losing momentum upstream, the fluid starts to gain
momentum around S5 because of the decrease of the pressure force’s relative magnitude
(dβZS/dx < 0) that began slightly after S2. The fact that momentum gain only starts at
S5, and not right after S2, shows that the mean flow responds with a delay to changes in
the force balance because of inertia. As explained in the introduction, it is not the sign
of the pressure gradient that indicates momentum gain or loss (disequilibrium), but the
streamwise evolution of the relative magnitude of the pressure force, reflected by dβZS/dx
in the outer layer and dβi/dx in the inner layer. The present flow was specifically designed
to produce a zone, from S5 to S7, where the fluid gains momentum in the boundary layer
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(in the normalised representation U/Ue as a function of y/δ of figure 4) even if the pressure
gradient is still positive (APG).

The momentum changes observed in figure 4 can also be followed with the distribution
of the shape factor, H, as presented in figure 2(d), with increasing H indicating momentum
loss and vice versa. The velocity defect is small at S1 (H = 1.41), increases to become
large and maximal at S5 (H = 2.87) and then monotonously decreases downstream.
The shapes of the profiles in the momentum-losing (streamwise positions S2 to S4)
and momentum-gaining zones (S6 to S8) are different from each other at matching or
very close shape factors as illustrated in figure 4. This happens due to the different
upstream flow history in the two zones. The main difference is that the profiles in the
momentum-gaining region are fuller in the inner layer due to the faster response of the
flow in that layer.

To examine how the momentum gain starts in the boundary layer, we consider two
streamwise positions, S5 and the position denoted as SA, where the shape factor is 2.78,
located just slightly downstream of S5. As it can be seen from figure 4, the inner layer gains
momentum at SA but the defect in the outer layer remains almost the same. The inner layer
therefore starts gaining momentum before the outer layer even if the momentum-gaining
effect of the pressure force initiates earlier in the outer layer (dβzs/dx becomes negative
before dβi/dx). This implies that the inner layer reacts to the pressure gradient much more
rapidly than the outer layer. This is consistent with the fact that, in the inner layer, inertia
forces are small and turbulence adjusts more quickly.

As mentioned in the introduction, βRC is not an outer pressure gradient parameter,
but a global pressure gradient parameter for the whole boundary layer. It is presented
in figure 2(b) and a comparison of Fp,o/Fto,max and βRC shows that βRC indeed is not an
outer region pressure gradient parameter for large-defect TBLs. It follows in fact more
closely, but not exactly, the ratio of pressure to turbulent forces in the inner region given
by the inner-layer pressure gradient parameter, βi (figure 2c).

To enhance our understanding of how the present flow responds to disequilibrium
conditions, figure 4 illustrates mean velocity profiles from the two near-equilibrium APG
TBLs of Kitsios et al. (2017). These near-equilibrium flows correspond to cases of small
velocity defect (H = 1.57), denoted herein as EQ1, and large velocity defect (H = 2.57),
denoted as EQ2. The main parameters of these flows are given in table 2. Figure 4
illustrates that S2 and EQ1, sharing similar H values, exhibit comparable velocity, but
the near-equilibrium profile is fuller in the inner region. However, the near-equilibrium
TBL attains this state with a globally smaller local pressure force effect (smaller βRC)
and a smaller effect in the outer region (smaller βZS). This suggests that the current
non-equilibrium flow does not attain the anticipated equilibrium state corresponding to
a given local pressure force effect (βZS = 0.352 and βi = 0.0168). In other words, if the
flow were to respond immediately to the pressure force, S2 would exhibit a larger velocity
defect than EQ1, given that βZS = 0.352 at S2 compared with βZS = 0.104 at EQ1.

Mellor & Gibson (1966) showed that for equilibrium boundary layers (at infinite
Reynolds number) there is a unique relationship between the Rotta–Clauser defect
shape factor G and βRC, where G = (Ue/uτ )(1 − 1/H). The relationship was obtained
numerically from their similarity equation computations. A plot of G as a function of βRC
effectively illustrates, in a single graph, the departure from equilibrium of a TBL. Such
plots have been used recently, for instance, by Knopp et al. (2021), Fritsch et al. (2022b)
and Volino & Schultz (2023). We also use here G as a function of βRC instead of H as a
function of βZS for three reasons: G is less sensitive to Reynolds number effects than H,
the pressure gradient parameter that is compatible with G from the similarity analysis is
βRC (not βZS), plots of G as a function of βRC are commonly used.
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Figure 5. The defect shape factor as a function of βRC for the present DNS (blue and orange are for the regions
where dβZS/dx > 0 and dβZS/dx < 0, respectively), near-equilibrium cases from the literature (Bradshaw
1967; East & Sawyer 1980; Skåre & Krogstad 1994; Bobke et al. 2017; Kitsios et al. 2017; Sanmiguel Vila
et al. 2020b), computations of Mellor & Gibson (1966) and correlation of Cousteix (1989).

Figure 5 presents such a plot with the current flow case, together with three types of
equilibrium or near-equilibrium data to appreciate its departure from equilibrium. The
latter are the equilibrium TBL data of Mellor & Gibson (1966) from their similarity
analysis, an empirical correlation from Cousteix (1989) based on near-equilibrium TBL
data from the 1968 Stanford conference (Kline, Coles & Hirst 1969) that allows a
comparison at high values of βRC, and six cases of near-equilibrium APG TBLs from
the literature (Bradshaw 1967; East & Sawyer 1980; Skåre & Krogstad 1994; Kitsios et al.
2016; Bobke et al. 2017; Kitsios et al. 2017; Sanmiguel Vila et al. 2020b). The Mellor and
Gibson equilibrium data are probably reliable; however, a turbulence closure model had to
be employed for its computation. The near-equilibrium flow case at βRC = 34.2 of Kitsios
et al. (2017) seems to deviate from the trend given by both the case of East & Sawyer
(1980) at βRC = 61.6 and Cousteix’s empirical correlation, but it is impossible to know
which dataset might be more biased. The departure from equilibrium of the present flow
case can still be appreciated despite these discrepancies.

Indeed, the response lag of the mean flow (mean velocity defect) can be seen throughout
the streamwise evolution of the present case. At the start, the defect shape factor G is
very slightly lower than the equilibrium case for a given value of βRC, indicating that
the momentum-losing effect of the pressure force is not immediate. At βRC ≈ 6, the
pressure force starts decreasing in importance in the outer region which should lead to
momentum gain. However, the momentum defect continues to increase substantially due to
the influence of the upstream momentum-losing effect in the outer region and the increased
impact of the pressure force in the inner region. The momentum defect even becomes
superior to the equilibrium one at identical βRC. Figure 5 illustrates that the Rotta–Clauser
parameter βRC effectively reflects the momentum-losing effect of the pressure gradient
across the entire boundary layer. The defect eventually starts decreasing, but it always
remains higher than the equilibrium case. In the FPG zone at the end (βRC < 0), the defect
remains significantly higher than that in equilibrium FPG TBLs.

3.1.2. The inner layer
As described in the introduction, βi represents the ratio of pressure force to turbulent
force in the inner layer. Figure 2(c) displays both βi and the ratio of pressure force to the
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Figure 6. The mean momentum budget profiles of the eight streamwise positions as functions of y+. The
budget terms are normalised with friction-viscous scales. The x-axis ranges are chosen so that Fti,max is
approximately at the same location in all subfigures.

maximum turbulent force in the inner layer, where Fp,w is the pressure force at the wall.
Although the distributions of force balance and βi do not follow each other as close as
βZS and the force balance in the outer layer, the trend is the same. Here βi shows the
changes in force balance well and its behaviour is consistent with the behaviour of Cf as
given in figure 2(d). Figure 6 displays the force balance at the eight streamwise positions
for the inner layer as a function of y+. The βi distribution indicates that the pressure
force’s relative importance (as a momentum-losing force) in the inner layer increases
until approximately 21δav (between S4 and S5). The force balance from S1 to S4 also
demonstrates this as the pressure force’s relative importance in the inner layer with respect
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Figure 7. The friction-viscous scaled mean velocity profile of the eight streamwise positions, the
near-equilibrium cases and the ZPG TBL case in the viscous sublayer as a function of y+. The black line
(ZPG TBL) is hidden behind the purple line (S1) as they coincide within the viscous sublayer.

to the other forces increases and later decreases from S5 to S7, and becomes a positive force
(FPG) at S8.

This change in force balance affects the mean velocity significantly in the inner layer.
Figure 7 displays the mean velocity as a function of y+ for the eight streamwise positions
along with the ZPG TBL case in the viscous sublayer. Note that the ZPG TBL curve,
in black, is hidden behind the purple curve of S1 as both curves coincide in the viscous
sublayer. As the pressure force’s relative importance increases (βi increases), U+ increases
and deviates from the linear law. This increase is expected as it reflects the change
from a linear law to a quadratic law at the wall when the pressure force increases in
importance with respect to the wall shear stress force (Patel 1973; Skote & Henningson
2002). This behaviour of U+ in the viscous sublayer of APG TBLs was already reported
before by Gungor et al. (2016). The deviation from the ZPG TBL curve reaches its
maximum near the position where βi is the highest. After βi reaches its maximum,
U+ constantly decreases, which means the pressure force’s relative importance begins
decreasing. Figure 7 shows that the mean velocity reacts almost instantly to the relaxation
of the pressure force in the viscous sublayer. This immediate response of the mean flow
to the decrease of the pressure force’s relative importance suggests that the effect of flow
history is small in the viscous sublayer. This is consistent with the fact that inertia forces,
which are linked to the flow history’s effect, are small in the viscous sublayer.

There is still a deviation from the ZPG TBL profile in S6 to S8 which are located in
the region where dβi/dx is negative, albeit the deviation is mild. The decrease of pressure
force’s importance from S6 to S8 leads to a decrease in U+ in the viscous sublayer. In the
last position, the pressure force is positive (FPG) which makes S8 different from all other
positions. It is important to highlight that the flow would have not become a ZPG TBL if
we had kept maintaining dβZS/dx < 0 in a longer domain. The boundary layer would have
eventually relaminarised.

Now, we discuss the overlap layer. It is important to state that there is no consensus
regarding the nature of the overlap layer and the presence of the logarithmic law in APG
TBLs in the literature, particularly when considering large-defect APG TBLs and those
in disequilibrium. Furthermore, the overlap layer may be small or non-existent due to the
current flow being at a moderate Reynolds number. To investigate the potential presence of
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Figure 8. Diagnostic plots for the logarithmic law (a) and the half-power law (b) as a function of y+. Straight
red line in the top plot indicates the traditional Kármán constant value 1/κ = 1/0.41.

a logarithmic law, figure 8(a) displays the diagnostic plot associated with such a law. The
canonical logarithmic law does not hold, even in the small-defect case S1, as well as in the
equilibrium cases EQ1 and EQ2. Nonetheless, the trends with respect to the logarithmic
behaviour can be analysed. Figures 8 and 9(c,d) show that the flow deviates from the
logarithmic law with the traditional values of κ and B, 0.41 and 5, respectively, even at S1
and S2 which are small-defect cases. Figure 9(a,b) illustrate that the consistently positive
βi from S1 to S7 results in a drop of U+ below the log law. Such an effect has been
documented in numerous studies of non-equilibrium APG TBLs (Gungor et al. 2016).
What is perhaps more surprising is its presence in the near-equilibrium cases depicted in
figure 9(a). This suggests that the phenomenon is, in part, a direct effect of the pressure
gradient, rather than solely its disequilibrating nature (as indicated by an increasing βi).
In the case of three equilibrium APG TBLs with mild APGs, Lee (2017) also observed a
decreasing trend of U+ below the log law with increasing βRC, though these cases were at
very low Reynolds numbers. Past experimental studies of near-equilibrium TBLs tended
to confirm a log law behaviour (Clauser 1954; East & Sawyer 1980; Skåre & Krogstad
1994; Elsberry et al. 2000), even for cases with very large velocity defects, but since the
wall shear stress was not measured directly, it is impossible to know if these flows follow
the classical log law. Note that the large-defect near-equilibrium case EQ2 in figure 8(a)
does not show a log law behaviour, which could be due to the moderate Reynolds number
of the flow.
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Figure 9. (a,b) Mean velocity profile of various streamwise positions, the ZPG TBL case and equilibrium
cases in the overlap layer as a function of y+. The streamwise positions from S1 to S5 are given on the left and
the streamwise positions from S5 to S8 on the right for the sake of clarity. (c–e) Mean velocity profiles of three
streamwise positions, S1 (c), S2 (d) and S8 (e) along with the logarithmic law using the traditional constants
and values obtained with the correlations of Nickels (2004), which were used in Knopp et al. (2021).

Knopp et al. (2021) found similar deviations from the classical log law for an APG
TBL with values of H and βi close to those of S2 but with Reθ an order of magnitude
higher, above 20 000. But as they pointed out, the logarithmic law may exist with different
values of κ and B. Figure 9(c,d) show that the mean velocity at S1 and S2 approaches
the logarithmic law obtained with the correlations of Nickels (2004) based on βi, which
were used in Knopp et al. (2021) for APG TBLs. The wall-normal extent of the approach
towards a logarithmic law is thin in part because of the low Reynolds number. However, it
is thinner in S2 than in S1 even though the Reynolds number is higher. This indicates that
as the pressure force strength increases, the logarithmic layer becomes thinner, eroding
from above, as was found by Alving & Fernholz (1995), Knopp et al. (2021) and Knopp
(2022).

To illustrate the history effects on the mean flow in the overlap layer, we can consider
another streamwise position (named SB) where βi has the same value 0.0167 as S2
but with H = 2.40 (between S6 and S7). The mean velocity profile of SB is shown in
figure 9(b), and its log-law diagnostic curve in figure 8(a). The main differences between
this position and S2 are the flow history and the sign of dβi/dx (positive in S2 and
negative in SB). At SB, the flow does not follow the classical log law at all and it behaves
completely differently from S2 due to upstream history effects. As another illustration that
the non-equilibrium nature of the TBL transforms the overlap layer, βi is nearly zero at S7
but the mean velocity profile in the overlap region is very different from the ZPG TBL,
where βi is nearly zero too. The behaviour of this non-equilibrium TBL clearly shows
that it is not only the local balance of forces that matters, as reflected by βi, but also the
upstream history and the local type of disequilibrating effect of the pressure force (dβi/dx).
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Because of these effects, the correlations of Nickels (2004) and Knopp et al. (2021) do
not work for the other stations from S3 to S8. Figure 9(e) shows the mean velocity profile
and the logarithmic law for S8. The mean velocity profile seems to approach the modified
logarithmic law between y+ = 30 and 50 but it cannot be considered as such because the
profile is not logarithmic there as can be seen from figure 8(a). The profile at S8 might
actually approach a log law between y+ = 100 and 200. It should also be noted that the
flow at S8 is an FPG TBL so if the decrease of βZS (and βi and βRC) would have been
maintained in a longer domain, which means stronger FPG effects, the velocity profile
would have eventually risen above the log law (Patel & Head 1968; Warnack & Fernholz
1998; Dixit & Ramesh 2008). Such a rise above the log law was found in the transition
from an APG TBL to an FPG TBL studied by Tsuji & Morikawa (1976)

We also examine the presence of the half-power law which is expected to exist for
large-defect TBLs (Stratford 1959; Perry, Bell & Joubert 1966; Coleman et al. 2017;
Coleman, Rumsey & Spalart 2018; Knopp et al. 2021). Figure 8(b) shows the diagnostic
plot for the half-power law. It seems there is an approach towards the half-power law
in large-defect cases S4, S5 and S6. The region where this approach occurs is located
above the region where the mean flow approaches the logarithmic law as discussed
previously. Therefore, the wall-normal location of the half-power region is consistent with
the literature (Perry 1966; Knopp et al. 2021). As with the logarithmic layer, the half-power
region is thin.

3.2. Turbulence

3.2.1. Outer layer
The local and upstream pressure force effects on turbulence are now examined. Figure 10
presents outer-scaled Reynolds stresses normalised with Ue. As was reported numerous
times for APG TBLs, outer-layer turbulence becomes dominant and inner-layer turbulence
loses its importance as the velocity defect increases in the momentum-losing zone (Gungor
et al. 2016; Maciel et al. 2018). Moreover, the Reynolds stress levels in the outer layer
increase with increasing velocity defect when they are normalised with Ue. However,
the continuing rise of the Reynolds stresses while the flow is under turbulence-reducing
conditions (dβzs/dx < 0), starting at S3, is indicative of the delayed response of turbulence
to changes in the pressure force. This delayed response of turbulence is even more
pronounced than that observed in the mean flow. As the velocity defect decreases in the
outer layer, the mean shear also decreases (see figure 4) and turbulence is expected to
decay. But figure 10 shows that outer turbulence keeps increasing all the way down to S7
due to the delay in response of turbulence to the changes in the pressure gradient and mean
velocity. The delay in response is more pronounced for normal stresses 〈v2〉 and 〈w2〉,
which continue to rise further downstream than 〈u2〉. This is reasonable since their energy
depends on the redistribution from 〈u2〉 through pressure strain. The Reynolds shear stress
follows the same trend as 〈v2〉 and 〈w2〉, with levels at S8 still higher than those of S5. It
is important to remember that in an equilibrium FPG TBL or an FPG TBL monotonously
evolving from a ZPG TBL, the Reynolds stresses in the outer region are lower than those of
the ZPG TBL when scaled with Ue (Harun et al. 2013; Volino 2020). The Reynolds stress
levels at S8 are therefore extremely high for an FPG TBL and this is due to the persistent
effect of the upstream flow history.

We now compare the near-equilibrium flow cases EQ1 and EQ2 with the present flow
to isolate the effect of flow history. We first focus on the small-defect cases: S2 and EQ1.
Similar to our approach in analysing the mean flow, we choose S2 because both cases
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Figure 10. Reynolds stress profiles normalised with the outer scales as functions of y/δ for the eight
streamwise positions, the ZPG TBL case and the near-equilibrium cases of EQ1 and EQ2.

exhibit a comparable velocity defect. The mean velocity profile, and consequently the
mean shear profile, are similar in both cases. However, the local pressure force effect at S2
is stronger, as indicated by the values of βZS and βRC in table 2. In addition, S2 is at a higher
Reynolds number. Despite the similarities in the mean velocity profiles, the Reynolds
stress profiles differ. There exists a disparity in the distribution of intensity among the
Reynolds stress components. Specifically, the transverse Reynolds stresses (〈v2〉 and 〈w2〉)
exhibit higher intensity in the case of EQ1. Furthermore, the outer maxima of all Reynolds
stress components are situated farther away from the wall in EQ1. In the current flow at
S2, the pressure force has reached its local level through a ramp-up process. Consequently,
the flow lacks the time needed to generate as much turbulence in the middle of the outer
region compared with the near-equilibrium TBL. Moreover, there is insufficient time for
the flow to redistribute as much energy to the transverse Reynolds stresses.

Now, we compare the large-defect flow cases, S4 and EQ2, which exhibit similar
mean velocity profiles. In this case, the disparity in Reynolds stress levels is even more
pronounced. The Reynolds stress levels at S4 are considerably lower than those in the
near-equilibrium case. However, unlike the small defect cases, the difference in the
wall-normal positions of the outer maxima is less significant, although they still remain
lower in the current non-equilibrium flow. The redistribution of energy to the transverse
Reynolds stresses continues to be less important in the non-equilibrium flow.

The delayed response of turbulence can be observed more comprehensively through the
streamwise evolution of the outer maxima of the Reynolds stresses and turbulent kinetic
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Figure 11. The spatial development of H, βZS/max(βZS) and βRC/max(βRC) (a), the maxima of turbulent
kinetic energy (k) and the Reynolds stresses (b) and source terms, which are production for k and 〈u2〉, and
pressure-strain for 〈v2〉 and 〈w2〉 components (c) in the outer layer as a function of x/δav . Data only shown
when an outer maximum is present. The levels are normalised with Ue and δ.

energy, k, as depicted in figure 11(b). For ease of comparison with the pressure force effect
and the mean flow response, figure 11(a) reproduces the streamwise distributions of βZS,
βRC, and H, also available in figure 2. The starting points of the curves in figure 11(b)
correspond to the positions where the outer maxima of the Reynolds stresses begin to
manifest. We have already seen that the mean flow responds with a delay, as evident
from the H distribution in figure 11(a), which is shifted downstream by approximately
10δ compared with the distribution of βZS. As mentioned earlier, the delay is even more
significant for the Reynolds stresses in the outer region and it varies among the different
Reynolds stress components. The maxima of 〈u2〉 and k peak at x/δav ≈ 27 and 28,
respectively, which is roughly 14δ downstream of the maximum of βZS. The delay is more
pronounced for 〈v2〉 and even more so for 〈w2〉, again underscoring the delay in energy
redistribution.

Outer turbulence therefore continues to increase for a considerable distance even
after the pressure force begins to diminish. Furthermore, figure 11(b) illustrates that the
subsequent decay of turbulence is slower than the initial upstream turbulence growth,
even if the increase and decrease in pressure force are of the same amplitude (comparable
to |dβZS/dx|). This slow turbulence decay cannot be solely attributed to the prolonged
survival of energetic turbulence structures convected from upstream, as this cannot explain
the observed turbulence buildup where the pressure force is decreasing. A tentative
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Figure 12. The ratio of production to dissipation of turbulent kinetic energy as a function of y/δ.

explanation can be offered by analysing the source and sink terms of k and Reynolds
stresses. Figure 11(c) illustrates the streamwise evolution of the maxima of the source
terms of k and the Reynolds stresses. In the case of k and 〈u2〉, the source term
is the corresponding production term whereas the main contribution comes from the
pressure-strain (redistribution) term for 〈v2〉 and 〈w2〉. In addition, the 〈v2〉 production
is considered for 〈v2〉, albeit its contribution is small. It is observed in this figure that the
production of k and 〈u2〉 has peaked around S5. One might expect a subsequent decrease
of k; however, as noted earlier, k continues to increase up to x/δav ≈ 28 (figure 11b).
This growth is attributed to an increase of the ratio of production to dissipation of k
in the middle of the boundary layer, from S5 to S7, as illustrated in figure 12. Indeed,
figure 12 demonstrates that the ratio of production to dissipation increases after S5 in
the approximate wall-normal range y/δ = 0.3 to 0.8. Given that this wall-normal range
corresponds to the zone where production is maximal, the rise in the ratio of production
to dissipation results in the continued increase of k between S5 and S7 even if production
has decreased in absolute terms.

As a concluding exploration of outer region turbulence, we examine the budget of
turbulent kinetic energy to gain a deeper understanding of turbulence behaviour in the
current non-equilibrium flow. The transport equation for the turbulent kinetic energy is
given as follows:

0 = −
(

U
∂k
∂x

+ V
∂k
∂y

)
−

(
∂U
∂x

〈u2〉 + ∂U
∂y

〈uv〉 + ∂V
∂x

〈uv〉 + ∂V
∂y

〈v2〉
)

−ε − 1
2

(
∂〈uk〉
∂x

+ ∂〈vk〉
∂y

)
+ ν

(
∂2k
∂x2 + ∂2k

∂y2

)
− 1

ρ

(
∂〈pu〉
∂x

+ ∂〈pv〉
∂y

)
. (3.2)

The terms are (in order) mean convection, production, dissipation, turbulent transport,
viscous diffusion and pressure transport. The budgets are illustrated in figure 13. For the
sake of simplicity, for the current flow, we focus only on four representative stations that
depict distinct flow situations: the small-defect case S2, the largest defect cases S4 and S5,
and the small-defect case in the FPG region S8 which shares the same shape factor as S2.
In each plot, a near-equilibrium case (ZPG, EQ1 or EQ2) is included as a reference for
comparison.
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Figure 13. The turbulent kinetic energy budget for S2, S8, EQ1, ZPG, S4, S5 and EQ2 as a function of y/δ.
The terms are normalised with outer scales (Ue and δ). The straight, dashed, dashed-dotted and dotted lines are
for the present case, EQ1, EQ2 and ZPG, respectively.

In the small-defect case S2, the turbulent kinetic energy budget, shown in figure 13,
resembles that of canonical wall flows as the comparison with the ZPG TBL indicates.
However, there is an accumulation of production and dissipation in the outer region. This
characteristic is typical of small-defect APG TBLs that either originated as ZPG TBLs
(Gungor et al. 2022) or are in near-equilibrium state (Kitsios et al. 2016; Bobke et al.
2017; Kitsios et al. 2017). Nevertheless, when comparing the budget of S2 with that of the
near-equilibrium case EQ1, which shares the same shape factor but has smaller pressure
gradient parameters βi, βZS and βRC, the near-equilibrium case exhibits a local maximum
of production around y/δ = 0.35, a feature absent in S2. The absence of a production
maximum in S2 serves as another manifestation of the delay in the turbulence response of
the current flow. Turbulent transport is also much stronger in the near-equilibrium case.

The two lower plots compare the large-defect cases S4 and S5 with EQ2. In all these
large-defect cases, there is a noticeable presence of production, dissipation and turbulent
transport in the middle of the boundary layer, consistent with the heightened turbulent
kinetic energy observed in that region. The value of βZS at S4 and EQ2 is almost the
same, but the budget terms at S4 have not reached the levels observed in EQ2, once again
indicating a delay in turbulence response. S5 is the case with the largest mean velocity
defect. Even so, the budget terms are not more significant than those for EQ2.

The FPG TBL case S8 is compared with the ZPG TBL in the top-middle plot. Despite
S8 being an FPG TBL, the outer maxima of the budget terms persist in the middle of
the boundary layer due to the delayed response of turbulence, and their levels are much
stronger than those in the ZPG TBL. An equilibrium FPG TBL with the same βZS as S8
would exhibit a budget similar to the ZPG TBL, albeit with even lower levels in the outer
region due to reduced mean shear. Although production and dissipation have decreased
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Figure 14. Reynolds stress profiles normalised with friction-viscous scales as functions of y+ for the eight
streamwise positions, the ZPG TBL case and the near-equilibrium cases EQ1 and EQ2.

since S5, they remain elevated. Surprisingly, in contrast, turbulent transport at S8 is higher
than at S5. Figure 10 illustrates that the Reynolds stress profiles at S8 are wider than those
at S5 due to these sustained high levels of turbulent transport.

3.2.2. Inner layer
Figure 14 illustrates Reynolds stress profiles as functions of y+. When these profiles are
normalised with friction-viscous scales, it is observed that the Reynolds stresses increase
everywhere as βi and the velocity defect in the momentum-losing zone (until S5). This
phenomenon has been well-documented in previous studies on APG TBLs (Gungor et al.
2016; Maciel et al. 2018). The increase in Reynolds stress levels in such boundary layers
occurs because the friction velocity is inadequate as a scaling parameter for Reynolds
stresses when dealing with large-velocity-defect TBLs (Maciel et al. 2018). As the value of
βi decreases, starting from S5 and continuing onwards, the amplitude of Reynolds stresses
also decreases.

In the near-wall region where inertia effects are negligible, below y+ = 10, if turbulence
were to respond instantly to the pressure force, the Reynolds stress profiles should be
similar at identical βi. However, stations S4 and S5, with close values of βi, demonstrate
that this is not the case. The Reynolds stress levels are higher at S5 than S4 in the near-wall
region. Another indication of this discrepancy in response to the pressure force is the fact
that the Reynolds stress profiles at S8 are higher than those in the ZPG TBL. Since βi
is negative at S8 (FPG TBL), the Reynolds stress levels should be lower than those of
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Figure 15. Reynolds stress profiles normalised with friction-viscous scales as a function of y+ for the
streamwise positions of the present case along with EQ1 and EQ2 at matching βi. The arrow indicates whether
βi is increasing or decreasing.

the ZPG TBL in an equilibrium situation. These two observations suggest a delay in the
response of turbulence. However, this delay may not be solely local; it could also be an
indirect effect. As discussed later, part of the reason lies in the influence of large-scale
turbulence on the near-wall region. The delayed response of the large-scale structures
affects the near-wall region.

As for a comparison with the near-equilibrium cases, figure 15 illustrates the Reynolds
stress profiles of the present flow, EQ1 and EQ2 at matching values of βi. For the current
flow, two profiles are shown at each βi value: one closer to the beginning of the domain,
where the APG turbulence-promoting effect is increasing (dβi/dx > 0) and depicted in
orange, and another further downstream where the APG effect is decreasing (dβi/dx < 0)
and shown in purple. For the small-defect cases, a comparison between EQ1 and the first
position in the current flow (dashed orange) reveals, in the enlarged-view plots of figure 15,
that the Reynolds stresses in the inner region match up to approximately y+ = 30, 10 and
20 for 〈u2〉+, 〈v2〉+ and 〈uv〉+, respectively. For 〈w2〉+, the profiles start diverging very
near the wall and no explanation has been found for such distinctive behaviour. Overall, in
the present flow, the Reynolds stresses in the inner region have not yet attained the levels
observed in the near-equilibrium case EQ1. Nevertheless, these history effects remain
relatively minor when compared with all other stations located further downstream.
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Figure 16. The spectral distribution of 〈u2〉 as a function of λ+z and y+ for S2, S5 and S8. The spectra are
plotted for the whole wall-normal range (a–c) and for the region up to y+ = 100 (d–f ). The flooded-contour
levels are 0.3, 0.5, 0.7 and 0.95 of the maxima of each spectra. The black-line contour is 0.1 of the maxima.
The dashed black lines indicate the cutoff filter λ+z = 300 and the red dash-dotted lines indicate λ+z = δ+.

Indeed, at the second small-defect station (dashed orange), much further downstream,
the deviations from the near-equilibrium case are significant everywhere, even very near
the wall. As for the large-defect cases, the Reynolds stresses in the inner region at
the first position in the current flow (dotted orange) have not reached the levels of the
near equilibrium case EQ2. Meanwhile, at the second station (dotted purple), they have
exceeded those levels. This underscores again the substantial delay in turbulence response
to changes in the pressure force.

Turning our attention to 〈u2〉+, figure 14(a) demonstrates that the near-wall peak,
observed at y+ = 15 in the ZPG TBL, becomes less sharp and eventually disappears
as the local APG pressure force effect increases. This phenomenon, evident in both
non-equilibrium and near-equilibrium flows, is attributed to the significant increase in
〈u2〉+ above the near-wall region. The vanishing of the near-wall peak, coupled with the
rise of 〈u2〉+, has been documented previously (Nagano, Tsuji & Houra 1998; Dróżdż,
Elsner & Drobniak 2015; Gungor et al. 2016). This suggests that the small-scale near-wall
turbulence activity might be obscured by the footprints of the energetic large-scale
structures located above the near-wall region. To investigate this, we analyse the spectral
content of 〈u2〉 and 〈uv〉, along with wall-normal profiles of these Reynolds stresses
decomposed into small and large scales.

Figures 16 and 17 depict the premultiplied 〈u2〉 and 〈uv〉 one-dimensional spanwise
spectra, respectively, as functions of λ+z and y+ for S2, S5 and S8. The black dashed lines
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Figure 17. The spectral distribution of 〈uv〉 as a function of λ+z and y+ for S2, S5 and S8. The spectra are
plotted for the whole wall-normal range (a–c) and for the region up to y+ = 100 (d–f ). The flooded-contour
levels are 0.3, 0.5, 0.7 and 0.95 of the maxima of each spectra. The black-line contour is 0.1 of the maxima.
The dashed black lines indicate the cutoff filter λ+z = 300 and the red dash-dotted lines indicate λ+z = δ+.

in these figures delineate the wavenumber sharp filter cutoff that will later be employed to
decompose small and large scales. The bottom row presents the same spectra as the top row
but only up to y+ = 100 and with chosen contour values to facilitate clearer visualisation
of the energy content in the inner region.

The spectral distribution of 〈u2〉 at S2 exhibits an inner peak, indicative of the
near-wall streaks. These streaks are narrow structures with a λ+z of approximately 120,
a characteristic extensively discussed in the literature (Smith & Metzler 1983). As the
velocity defect increases from S2 to S5, the outer-layer turbulence becomes dominant,
and the inner peak vanishes from the spectra. This is consistent with the literature for
large-defect TBLs (Kitsios et al. 2017; Lee 2017; Gungor et al. 2022). Despite the absence
of the inner peak, it remains unclear whether the streaks have vanished or if they are
obscured by the presence of more intense large-scale structures (Gungor 2023; Gungor,
Maciel & Gungor 2024).

Following the reversal to momentum-gaining conditions induced by the pressure
gradient effect (dβZS/dx < 0 and dβi/dx < 0), the inner peak re-emerges at S8 with a
similar λ+z , but it is weak compared with the outer peak. This finding is significant,
demonstrating that inner-layer turbulence is becoming like that of canonical flows, as
expected for an FPG TBL with a moderate βi value, despite the presence of history effects.
It is important to emphasise once again that the flow is not reverting to a ZPG TBL state,
as dβZS/dx < 0 is maintained. If the pressure force variation were imposed in a longer
domain, the flow would eventually laminarise.
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In the inner region, 〈u2〉 is also associated with wide structures at all stations. These
large-scale structures have a λz on the order of δ, as in the outer region. At S5, these
structures carry the majority of 〈u2〉 in the inner layer. Furthermore, at S8, the relative
contribution of the large scales in the inner region is higher than at S2 due to the presence
of very large and energetic structures convected from upstream. This history effect also
results in the structures being wider, with respect to δ, at S8 than S2. Gungor et al. (2024)
showed that these large-scale structures primarily belong to the outer layer.

The spectral distributions of 〈uv〉 in figure 17 exhibit similar results to those of 〈u2〉.
The inner peak is present in the small defect cases S2 and S8, although it is notably
weaker at S8 when compared with the outer peak. The spectral distribution of 〈uv〉 at
S2 is consistent with those found in the literature (Lee 2017; Gungor et al. 2022). In the
large-defect case S5, the inner peak has vanished, and 〈uv〉 is influenced significantly by
large-scale structures in the inner region, although small-scale structures still contribute.
Overall, the effect of the large-scale structures in the inner layer is less important for 〈uv〉
than for 〈u2〉, a trend also noted by Gungor et al. (2024).

To investigate small-scale properties in the inner layer, we employ a filtering process
to isolate the contributions of small scales by separating them from the large scales.
To achieve this, we decompose the Reynolds stresses using a wavenumber sharp filter
cutoff in the spectral domain, as depicted in figures 16 and 17 with vertical black dashed
lines. We set the cutoff wavelength at λ+z = 300, chosen for its effective differentiation
between small and large scales in the inner region. This value is also used in the recent
study by Deshpande et al. (2023). We have tested that the reconstructed Reynolds stress
distributions are relatively insensitive, but only qualitatively (see the discussion in the
following), to the specific filter cutoff value.

Figure 18 presents the Reynolds stress profiles of small scales (〈u2〉+SS and 〈uv〉+SS) and
large scales (〈u2〉+LS and 〈uv〉+LS) as functions of y+. The full Reynolds stress profiles are
presented at the top of the figure to facilitate comparison. In contrast to the full 〈u2〉+
profiles, the small-scale 〈u2〉+SS profiles at S3 and S7 reveal an inner peak. Furthermore,
the inner peak has become sharper at S1, S2 and S8. These results indicate that large-scale
structures indeed influence the Reynolds stress distributions in the inner layer, leading
to the obscuration of small-scale contributions and the near-wall cycle of turbulence
production.

Deshpande et al. (2023) found that the inner peak of 〈u2〉+SS collapses well across
ZPG TBLs and TBLs subjected to very mild APG (βRC < 1.7), across various Reynolds
numbers. The reported peak value of 〈u2〉+SS is 5.5 at y+ = 15. Recall that we employ the
same filtering procedure. In the current flow, the inner peak of 〈u2〉+SS closely resembles
that of Deshpande et al. (2023) only at the first station, S1, with a small velocity defect
and minimal history effects. As the velocity defect increases, the 〈u2〉+SS inner profile also
increases, eventually leading to the disappearance of the peak. Positions with substantial
velocity defects, specifically S4 to S6, do not exhibit inner peaks in the profiles, except for a
hump observed at S6. The disappearance of the near-wall peak suggests that the near-wall
cycle could be significantly attenuated or even absent in TBLs with large velocity defects.

Nevertheless, interpreting the decomposed Reynolds stresses requires caution. First,
the filtering procedure based on one-dimensional spectra has inherent limitations.
A more refined separation between small and large scales could be achieved by
employing a filtering approach based on two-dimensional streamwise–spanwise spectra,
as demonstrated by Lee & Moser (2019). Similar to Deshpande et al. (2023), Lee & Moser
(2019) reported a Reynolds number independence of the 〈u2〉+SS profile up to y/δ = 0.2 in
channel flow cases. Yet, in their case, the peak value of 〈u2〉+SS exceeded 7. Lastly, it is
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Figure 18. Reynolds stress profiles as a function of y+ for the full signal (a,b), large-scale structures (c,d) and
small-scale structures (e, f ).

plausible that the Reynolds number in our study might not be sufficiently high to achieve
a clear-cut scale separation of scales.

The inner peak of 〈u2〉+SS at S7 is rather surprising because it is below that at S1, the latter
closely following the ZPG TBL and small defect behaviour presented in Deshpande et al.
(2023). At S7, the pressure gradient is null. One could therefore expect the inner peak to
be similar to the ZPG TBL one (and, therefore, also to the S1 peak) or even higher due to
the upstream trend. The lower-level peak might suggest that the near-wall cycle has not yet
fully recovered from the upstream pressure gradient effects, if it was indeed dampened or
destroyed by them. It should be noted that, in contrast to the situation of 〈u2〉+SS, the inner
peak of the small-scale Reynolds shear stress −〈uv〉+SS at S7 is similar to that observed
at S1.
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Figure 19. The turbulent kinetic energy budget for S2, S8, EQ1, ZPG, S4, S5 and EQ2 as a function of y+.
The terms are normalised with friction-viscous scales. The straight, dashed, dashed-dotted and dotted lines are
for the present case, EQ1, EQ2 and ZPG, respectively.

Regarding the inner peak of 〈u2〉+SS at S8, it is expected that it is lower than that at S1.
FPG TBLs that are in near-equilibrium or are monotonically developing from a ZPG TBL
have lower 〈u2〉+ levels in the inner region (complete profile) compared with ZPG TBLs
(Bourassa & Thomas 2009; Harun et al. 2013; Volino 2020), even if the difference is not
as pronounced as in the outer region.

As for the small-scale Reynolds shear stress −〈uv〉+SS, it behaves similarly to 〈u2〉+SS. The
notable difference, as mentioned previously, is that the inner peak at S7 is similar to that
at S1, as would be expected if there were no history effects. The inner peak of −〈uv〉+SS is
associated with the near-wall production of 〈u2〉+SS.

The profiles of large-scale Reynolds stresses demonstrate that large scales indeed
contribute significantly to the inner region, and this contribution increases with the mean
velocity defect (not with βi). As expected from the spectral distributions, −〈uv〉+LS is small
below y+ = 10 whereas 〈u2〉+LS is significant in that region, comparable to 〈u2〉+SS. The
large-scale structures reaching the very-near-wall region cannot have a large wall-normal
velocity. They are long streaky u-structures rather than sweeps and ejections.

To gain a deeper understanding of inner layer turbulence behaviour, we analyse the
turbulent kinetic energy budget at the streamwise positions S2, S8, S4 and S5 along
with ZPG, EQ1 and EQ2. Figure 19 illustrates the budget terms, normalised with
friction-viscous scales, as functions of y+, with a similar format as the outer-scaled
budgets in figure 13. The balance of the budget terms in the inner layer at S2 closely
resembles that of canonical wall flows; however, the levels of the terms are approximately
20–30 % higher at S2. Another distinction is the higher level of production around
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y+ = 100 relative to its peak value at y+ = 10 in the APG case, aligning with the behaviour
of the Reynolds stresses depicted in figure 14. These similarities and differences have been
observed in small-defect APG TBLs, either originating as ZPG TBLs (Gungor et al. 2022)
or in near-equilibrium states (Bobke et al. 2017; Kitsios et al. 2017).

Moving from S2 to S4 and S5, the inner wall-normal distributions of the various energy
transfer mechanisms become notably different. For instance, production still exhibits an
inner maximum, but it is no longer dominant compared with the other terms due to high
levels of turbulence being transported from the outer layer. The budget terms have higher
values than those for EQ2, as can be expected given that βi is higher at S4 and S5. At S8,
the inner budget has returned to one typical of canonical wall flows, with levels comparable
to those of the ZPG TBL and smaller than at S2. However, turbulent transport remains
strong above y+ = 40 due to significant outer turbulence resulting from history effects.
These history effects likely explain why the Reynolds normal stresses in the inner layer
are much higher at S8 than at S2 (figure 14) despite the lower energy transfer terms.

4. Conclusion

The current study has investigated the response of the TBL to uniform changes in the
pressure force contribution to the force balance. The primary objective was to enhance
our understanding and differentiation of the three types of effects resulting from the
pressure force: the direct impact of the local pressure force, the influence of a local pressure
force change (local disequilibrating effect) and the impact of the upstream pressure force
evolution. The contribution of the pressure force to the force balance can be characterised
by a pressure gradient parameter. However, due to differences in this contribution between
the inner and outer regions (assuming two layers without consensus on this matter for
pressure gradient boundary layers), two pressure gradient parameters become necessary.
In this study, we have chosen the pressure gradient parameters βi and βZS for the inner
and outer regions, respectively, as we show that they follow reasonably well the ratio of
pressure force to turbulent force in each region.

To achieve the aforementioned objective, we devised a flow with a specific streamwise
distribution of the pressure force contribution in the outer region, by choosing a distinctive
distribution of βZS. The emphasis is placed on the outer region due to its more intricate and
significant response compared with the near-wall region. Consequently, the pressure force
contribution in the inner region becomes a result of this selection and, to a lesser extent,
the Reynolds number of the flow. We designed and computed, using direct numerical
simulation, a non-equilibrium flow characterised by a nearly linear increase followed by
a nearly linear decrease of βZS. In the first zone, the uniformly increasing APG impact
leads to mean momentum loss in the boundary layer and an increase in turbulence when
normalising with Ue or uτ . In the second zone, the constant dβZS/dx < 0 results in two
subzones: a first one of uniformly decreasing APG impact and a final one of uniformly
increasing FPG impact. Despite this differentiation, the global effect in both subzones
is the same: mean momentum gain in the boundary layer and a decrease in turbulence
when normalising with Ue or uτ . Notably, in the first subzone with dβZS/dx < 0, the
flow exhibits a deliberately sought-after singular region where the boundary layer gains
momentum while the external flow is still decelerating due to the APG.

As anticipated, the mean flow’s response to changes in the force balance differs
significantly between the outer and inner layers. In the outer region, the results reveal
a substantial delay in the mean flow response for both cases of momentum-losing
(dβZS/dx > 0) and momentum-gaining (dβZS/dx < 0) pressure force effects. The order
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of magnitude of the delay is 10 boundary layer thicknesses. Comparisons with the
two near-equilibrium APG TBLs of Kitsios et al. (2017) indicate that in the first
momentum-losing zone, the delay results in an APG TBL with a smaller velocity
defect compared to a near-equilibrium APG TBL at equivalent βZS or βRC. This is a
manifestation of the delayed response to a local pressure force change. In the subsequent
momentum-gaining zone, the prolonged delay leads to an FPG TBL at the end of the
domain with a significant momentum defect in the outer region, comparable to that of APG
TBLs with a moderate defect, and a hollowed-out mean velocity profile. These are clear
effects of the upstream flow history, specifically the presence of a long momentum-losing
zone upstream.

In the momentum-gaining zone, the increase in momentum initiates near the wall due
to the rapid response of the inner region to pressure force changes. Very close to the wall,
in the viscous sublayer, the mean flow responds almost instantaneously because inertia
effects are negligible in that region. Inertia effects become noticeable above approximately
y+ = 10. Moving further away from the wall, the conventional logarithmic law of the
ZPG TBL breaks down, even for cases with small defects in the current flow and in the
near-equilibrium APG TBL of Kitsios et al. (2017). The local pressure force, therefore, has
a direct impact on the logarithmic law. It is important to note that we cannot draw definitive
conclusions about the logarithmic law due to the moderate Reynolds numbers of these
three flows. However, the results of Knopp et al. (2021) at a Reynolds number an order of
magnitude higher appear to confirm them. A positive βi results in a drop of U+ below the
log law and a change in the profile shape. This direct local effect of the pressure gradient
can be accounted for in the initial part of the flow with the modifications of the logarithmic
law proposed by Nickels (2004) and observed by Knopp et al. (2021), using the local value
of βi. However, these modifications fail further downstream due to the non-equilibrium
nature of the flow or the large values of βi. The overlap layer is indeed greatly affected by
upstream history and local changes in the pressure force. Streamwise locations with the
same value of βi exhibit significantly different inner-scaled mean velocity profiles. One
striking example occurs at a position where the pressure gradient is zero, yet the profile
deviates considerably from that of the ZPG TBL.

Turbulence responds with a delay to the mean flow changes in both the inner and outer
regions, with the delay being much more prominent in the outer region. In the current
flow, the pressure force contribution in the outer region was intentionally increased and
then decreased with the same absolute amplitude (|dβZS/dx|). The outcomes indicate that
outer turbulence takes significantly more time to decay in the second region than it takes
to build up in the initial region. In fact, turbulence continues to intensify for a considerable
length even after the pressure force begins to diminish, and its subsequent decay is very
gradual. This slow decay of turbulence is not solely attributed to the persistence of intense
turbulence structures convected from upstream. The results demonstrate that it also occurs
because of the increase of the excess of turbulence production over its dissipation in the
momentum-gaining zone of the flow. The Reynolds stress profiles also become fuller due
to sustained high levels of turbulent transport. As a result of the slow decay of turbulence,
the FPG TBL located at the end of the domain exhibits unusually high levels of outer
turbulence, significantly surpassing those in the ZPG TBL. The comparison of Reynolds
stresses in the outer region with those of the near-equilibrium APG TBLs by Kitsios et al.
(2017) also indicates a delay in the redistribution of energy form 〈u2〉 to 〈v2〉 and 〈w2〉 in
the current flow. Furthermore, the outer maxima of all Reynolds stress components do not
shift as far away from the wall as observed in the near-equilibrium cases.

Throughout the entire inner region, turbulence exhibits a delayed response to changes
in the pressure force, even in the near-wall region below y+ = 10, where mean inertia
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effects are negligible. Part of the reason for this delay can be attributed to the influence
of large-scale turbulence on the near-wall region. The one-dimensional spanwise spectra
of the Reynolds stresses reveal that large-scale structures with spanwise wavelengths on
the order of δ significantly contribute to the Reynolds stresses in the inner region. This is
particularly evident in the final momentum-gaining part of the flow, owing to the presence
of energetic structures convected from upstream. Upon filtering out the large-scale
contribution to the Reynolds stresses, the behaviour of the small-scale Reynolds stresses
aligns more consistently with the local value of βi.

As documented in previous studies of both non-equilibrium and near-equilibrium
large-defect APG TBLs, 〈u2〉+ increases in the near-wall region as the local APG effect
intensifies, similar to the behaviour in the rest of the boundary layer. Simultaneously,
the near-wall peak of 〈u2〉+ becomes less sharp and eventually disappears in the
large-velocity-defect zone of the flow. With the filtering out of the large-scale
contributions, the inner peak of small-scale 〈u2〉+ in the initial small-defect zone of the
flow resembles that of the ZPG TBL. The peak is even present in large-defect cases with
H around 2. However, it eventually disappears for larger defect cases, suggesting that the
near-wall cycle could be significantly attenuated or even absent in TBLs with very large
velocity defects.

The current study contributes to our understanding of how the boundary layer responds
to the three types of pressure force effects. Isolating the direct impact of the local pressure
force from the other two effects is relatively straightforward. However, distinguishing
between the local effect of a pressure force change (local disequilibrating effect) and the
impact of the complete upstream pressure force history is challenging. This differentiation
was achieved only in a few response situations in the present study. A more comprehensive
distinction would necessitate various flow cases at high Reynolds numbers, encompassing
a wide range of carefully selected pressure gradient parameter distributions. To complicate
matters further, even if we provide convincing evidence for the appropriateness of the
selected inner and outer pressure gradient parameters, this selection is still rightfully
debatable.

Not surprisingly, the significant cumulative effects of continuous pressure force
variation suggest that characteristic parameters based only on local variables cannot fully
capture the physics of non-equilibrium boundary layers. This limitation applies even to
the streamwise derivative of the pressure gradient parameter (dβ/dx), which characterises
the local disequilibrating effect of pressure force changes. Similarly, our preliminary
investigation into existing response length scales, derived for localised step changes in
pressure force, reveals their inadequacy in addressing continuous and gradual pressure
force changes. Our research into finding appropriate parameters and response length scales
for non-equilibrium TBLs is ongoing.
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Figure 20. The mean velocity, inviscid velocity, 〈uv〉 and 〈u2〉 profiles as a function of y/Ly (a,c,e) and y/δ
(b,d, f ) where δ is computed using the boundary layer thickness definition in the paper. Here Ly indicates the
wall-normal height of the domain.
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Appendix. The boundary layer thickness and edge velocity definitions

As discussed in the main text, defining the boundary layer thickness and edge velocity
presents challenges for TBLs subjected to a pressure gradient or over complex geometries
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where the freestream velocity varies. Here, we examine four methods outlined in the
literature: the traditional δ99 method, a vorticity-based approach proposed by Spalart
& Watmuff (1993), the method proposed by Wei & Knopp (2023) and the technique
introduced by Griffin et al. (2021). A comprehensive review of these methods, along with
others, is available in Griffin et al. (2021).

Figure 20 illustrates the comparison of the four methods for the present case and EQ2 of
Kitsios et al. (2017). We do not present the results of the method by Griffin et al. (2021) for
EQ2 because we do not have the mean pressure data. Nevertheless, the results indicate that
the method is consistently reliable, aligning with the findings of Griffin et al. (2021). It is
also the most theoretically rigorous. The method of Wei & Knopp (2023) is also reliable.
The results for the other two methods exhibit significant discrepancies. The traditional
δ99 method, which is commonly employed in the literature, performs poorly at S2 and for
EQ2. Although the vorticity method yields satisfactory results for the present case, it does
not work well for EQ2. It locates the boundary layer edge too high in the freestream. The
method proposed by Wei & Knopp (2023) remains consistent with the approach of Griffin
et al. (2021) across all cases and works well for EQ2. Consequently, since we cannot use
the method of Griffin et al. (2021) for EQ1 and EQ2 because we do not have the mean
pressure data, we have opted for this method for the present study. The edge velocity is
considered to be the velocity at the position of the boundary layer edge determined using
the aforementioned method.
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Reynolds-number effects on the outer region of adverse-pressure-gradient turbulent boundary layers. Phys.
Rev. Fluids 8 (12), 124604.

DEVENPORT, W.J. & LOWE, K.T. 2022 Equilibrium and non-equilibrium turbulent boundary layers. Prog.
Aerosp. Sci. 131, 100807.

DING, L. & SMITS, A.J. 2021 Relaxation of turbulent pipe flow downstream of a square bar roughness
element. J. Fluid Mech. 922, A34.

DING, L., VAN BUREN, T., GUNADY, I.E. & SMITS, A.J. 2021 Perspective on the response of turbulent pipe
flows to strong perturbations. Fluids 6 (6), 208.

DIXIT, S.A. & RAMESH, O.N. 2008 Pressure-gradient-dependent logarithmic laws in sink flow turbulent
boundary layers. J. Fluid Mech. 615, 445–475.
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