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Abstract A conjecture of Gromov states that a one-ended word-hyperbolic group must contain a
subgroup that is isomorphic to the fundamental group of a closed hyperbolic surface. Recent papers by
Gordon and Wilton and by Kim and Wilton give sufficient conditions for hyperbolic surface groups to be
embedded in a hyperbolic Baumslag double G. Using Nielsen cancellation methods based on techniques
from previous work by the second author, we prove that a hyperbolic orientable surface group of genus 2
is embedded in a hyperbolic Baumslag double if and only if the amalgamated word W is a commutator:
that is, W = [U, V ] for some elements U, V ∈ F . Furthermore, a hyperbolic Baumslag double G contains
a non-orientable surface group of genus 4 if and only if W = X2Y 2 for some X, Y ∈ F . G can contain
no non-orientable surface group of smaller genus.
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1. Introduction

A Baumslag double is an amalgamated product of the form

G = F �
{W=W̄}

F̄ ,

where F is a finitely generated free group, F̄ is an isomorphic copy, W is a non-trivial word
in F and W̄ is its copy in F̄ . An orientable surface group of genus 2 is a Baumslag double
and, in fact, Baumslag doubles were introduced in [2] to prove that surface groups are
residually free. If G is a Baumslag double and if the identified word W is not a proper
power in F , it follows from the combination theorems of Juhasz and Rosenberger [7],
Kharlampovich and Myasnikov [8] and Bestvina and Feighn [3] that the group G is
hyperbolic. In fact, the Baumslag double G is hyperbolic if and only if W is not a proper
power in F because W is a proper power in F if and only if W̄ is a proper power in F̄ .

An open conjecture of Gromov [6] states that a one-ended word-hyperbolic group must
contain a subgroup that is isomorphic to the fundamental group of a closed hyperbolic
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surface. Recent work by Gordon and Wilton [6] and by Kim and Wilton [9] gives sufficient
conditions for hyperbolic surface groups to be embedded in a Baumslag double G. The
work of Gordon and Wilton uses group cohomology and 3-manifold theory, while that of
Kim and Wilton proceeds by realizing a Baumslag double as the fundamental group of
a non-positively curved square complex.

In this paper, we use Nielsen cancellation methods based on the techniques in [12] to
prove that a hyperbolic orientable surface group of genus 2 is embedded in a hyperbolic
Baumslag double if and only if the amalgamated word W is a commutator: that is,
W = [U, V ] for some elements U, V ∈ F . Since an orientable surface group of genus 2
contains surface groups of all finite genus, it follows that G contains hyperbolic surface
groups of all finite genus if and only if W is a commutator in F . Furthermore, a Baumslag
double G contains a non-orientable surface group of genus 4 if and only if W = X2Y 2

for some X, Y ∈ F .

2. Main result

As mentioned in § 1 it follows from the combination theorems of Juhasz and Rosenberger
[7], Kharlampovich and Myasnikov [8] and Bestvina and Feighn [3] that the Baumslag
double

G = F �
{W=W̄}

F̄

is hyperbolic if and only if the identified word W is not a proper power in F . We call
such a group a hyperbolic Baumslag double. Here we assume that W is a reduced word
in the free group F . Our main result is the following.

Theorem 2.1. Let
G = F �

{W=W̄}
F̄

be a hyperbolic Baumslag double. Then G contains a hyperbolic orientable surface group
of genus 2 if and only if W is a commutator: that is, W = [U, V ] for some elements
U, V ∈ F . Furthermore, a Baumslag double G contains a non-orientable surface group of
genus 4 if and only if W = X2Y 2 for some X, Y ∈ F .

Since an orientable surface group of genus 2 contains an orientable surface group of
any finite genus as a subgroup, we immediately get the following corollary.

Corollary 2.2. Let
G = F �

{W=W̄}
F̄

be a hyperbolic Baumslag double. Then G contains orientable surface groups of all finite
genus if and only if W is a commutator.

Before giving the proof we recall some material about surface groups and cyclically
pinched one-relator groups.

A surface group is the fundamental group of a compact orientable or non-orientable
surface. If the genus of the surface is g, then we say that the corresponding surface group
also has genus g.
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An orientable surface group Sg of genus g � 1 has a one-relator presentation of the
form

Sg = 〈a1, b1, . . . , ag, bg; [a1, b1] · · · [ag, bg] = 1〉,

while a non-orientable surface group Tg of genus g � 1 also has a one-relator presentation,
which now has the form

Tg = 〈a1, a2, . . . , ag; a2
1a

2
2 · · · a2

g = 1〉.

Much of combinatorial group theory originally arose out of the theory of one-relator
groups and the concepts and ideas surrounding the Freiheitssatz or Independence The-
orem of Magnus (see [11] or [10]). Going backwards, the ideas of the Freiheitssatz were
motivated by the topological properties of surface groups [1].

The algebraic generalization of the one-relator presentation type of a surface group
presentation leads to cyclically pinched one-relator groups. These groups have the same
general form as a surface group and have proved to be quite amenable to study. In
particular, a cyclically pinched one-relator group is a one-relator group of the following
form:

G = 〈a1, . . . , ap, ap+1, . . . , an; U = V 〉,

where 1 �= U = U(a1, . . . , ap) is a cyclically reduced, non-primitive (i.e. not part of a free
basis) word in the free group F1 on a1, . . . , ap and where 1 �= V = V (ap+1, . . . , an) is a
cyclically reduced, non-primitive word in the free group F2 on ap+1, . . . , an.

Clearly, such a group is the free product of the free groups on a1, . . . , ap and
ap+1, . . . , an, respectively, amalgamated over the cyclic subgroups generated by U and V .
Cyclically pinched one-relator groups have been shown to be extremely similar to surface
groups [1].

A cyclically pinched one-relator group is hyperbolic if either U or V is not a proper
power in its respective free group factor [3,7,8].

In [2], Baumslag introduced a double of a free group, now called a Baumslag double,
in order to prove that orientable surface groups are residually free. In that paper he also
proved that if neither U nor V is a proper power, then a cyclically pinched one-relator
group is 2-free: that is, any 2-generator subgroup must be free. This was generalized by
Rosenberger, who proved the following result [12, Theorem 3.3, p. 335] using Nielsen
cancellation methods. This result is one of the bases for the proof of Theorem 2.1.

Theorem 2.3 (Rosenberger [12]). Let G be a cyclically pinched one-relator group
of the form

G = 〈a1, . . . , ap, ap+1, . . . , an; W = V 〉,

where 1 �= W = W (a1, . . . , ap) is a cyclically reduced, non-primitive (i.e. not part of a
free basis) word in the free group F1 on a1, . . . , ap and where 1 �= V = V (ap+1, . . . , an)
is a cyclically reduced, non-primitive word in the free group F2 on ap+1, . . . , an. Suppose
that neither W nor V is a proper power in its respective free group factor. Then we have
the following.
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(a) Every subgroup H ⊂ G of rank 3 is free of rank 3.

(b) Let H ⊂ G be a subgroup of rank 4. One of the following two cases then occurs.

(i) H is free of rank 4.

(ii) If {x1, x2, x3, x4} is a generating system of H, then there is a Nielsen transfor-
mation from {x1, x2, x3, x4} to a system {y1, . . . , yn} with y1, y2 ∈ zF1z

−1 and
y3, y4 ∈ zF2z

−1 for some z ∈ G. Moreover, there is a one-relator presentation
for H on the generating system {x1, x2, x3, x4}.

Before presenting the proof we need two other ideas concerning Nielsen cancellation in
free products with amalgamation. A word w ∈ F , where F is a free group on x1, . . . , xn,
is regular if there exists no automorphism α : F �→ F such that α(w) = w′, when written
as a word in x1, . . . , xn, contains fewer of the generators than w itself does. An ordered
set U = {u1, . . . , un} ⊂ F is regular if there exists no Nielsen transformation from U to a
system U ′ = {u′

1, . . . , u
′
n} in which one of the elements equals 1. This type of regularity

is extended to free products with amalgamation in the following way. Suppose that G is
a free product with amalgamation with factors H1 and H2 such that G = H1 �A H2. An
ordered set U = {u1, . . . , un} ⊂ G is then regular if there exists no Nielsen transformation
from U to a system U ′ = {u′

1, . . . , u
′
n} in which one of the elements is conjugate to an

element of A.
The other crucial result for the proof of Theorem 2.1 is the following technical theorem

[5, Theorem 5.3]. Recall that if F is a free group on X = {x1, . . . , xn}, then a reduced
word w = w(x1, . . . , xn) is a quadratic word if each xi, which appears in w as xi or x−1

i ,
appears exactly twice. For example, the surface group word of genus 2, [x1, x2][x3, x4] =
x−1

1 x−1
2 x1x2x

−1
3 x−1

4 x3x4, is a quadratic word.

Theorem 2.4 (Fine et al . [5]). Suppose that G = H1 �A H2 with H1 �= A �= H2

and A malnormal in both H1 and H2. Let F be a free group of rank n with 1 � n � 4
and let 1 �= w = w(x1, . . . , xn) be a regular quadratic word on the ordered basis X =
{x1, . . . , xn}. Furthermore, let φ : F �→ G be a homomorphism such that U = φ(X)
is regular in G and φ(w) = 1. Then the pair (w, U) is Nielsen equivalent to a pair
(w′, U ′) = (α(w), α−1(U)) with α : F �→ F an automorphism such that

(1) w′ = w1w2, where w1, w2 are also quadratic in F ,

(2) for i = 1, 2 we have that φ(α−1(wi)) is conjugate to an element of A and

(3) for i = 1, 2 there is a νi ∈ {1, 2} and a gi ∈ G with φ(α−1(xj)) ∈ giHνi
g−1

i for each
xj that occurs in wi.

We now give the proof of Theorem 2.1.

Proof of Theorem 2.1. Suppose that

G = F �
{W=W̄}

F̄
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is a hyperbolic Baumslag double, where F is a free group on X = {x1, . . . , xn}. Since
we are assuming hyperbolicity, we have that W and hence W̄ are not proper powers.
Furthermore, if W were either trivial or primitive in F , then G would be a free group, so G

could not contain a surface group that is either orientable or non-orientable. Furthermore,
if G contains a surface group, then G cannot be a free group and hence W is neither
trivial nor primitive. Therefore, we may assume that the amalgamated word W is neither
trivial nor primitive.

We consider the orientable case first. Suppose that W = [u, v] in F . Then

W (W̄ )−1 = [u, v]([ū, v̄])−1 = [u, v][v̄, ū] = 1.

Consider the subgroup H = 〈u, v, ū, v̄〉 of G. We can see that H cannot be a free group
by applying Theorems 2.3 and 2.4 to the equation [u, v][ū, v̄] = 1 in G and from the fact
that G does not contain a free abelian group of rank 2. Hence H is a one-relator group
of rank 4 by Theorem 2.3. We show that a defining relation is precisely [u, v][v̄, ū] = 1.

Let G be a cyclically pinched one-relator group of the form

G = 〈a1, . . . , ap, ap+1, . . . , an; W = V 〉

as in Theorem 2.3. Let H = 〈x1, x2, x3, x4〉 be a rank 4 subgroup of G. Within the proof
of Theorem 2.3 [12, Theorem 3.3, pp. 335–340] it is shown that if H is not free, then
not only is H a one-relator group but a method is described showing how to obtain a
defining relation for H [12, p. 340]. This is done in the following manner. If there is a
Nielsen transformation from {x1, x2, x3, x4} to a system where one element is conjugate
to an element in the amalgamated subgroup, then H is free of rank 4. Now assume that
H is not free of rank 4. Then, by the statement of Theorem 2.3, G is a one-relator group,
and we may assume, possibly after a Nielsen transformation and a conjugation, that
x1, x2 are in F1, the free group on a1, . . . , ap, that x3, x4 are in F2, the free group on
ap+1, . . . , an, and that W is in 〈x1, x2〉 or V is in 〈x3, x4〉. Let W be in 〈x1, x2〉. We
consider the subgroup K = 〈V, x3, x4〉 in F2. (Recall that W = V in G.) K cannot be
a free group of rank 3 because otherwise H is free of rank 4. Hence K is a one-relator
group in V , x3, x4 and therefore H is a one-relator group in x1, x2, x3, x4. The relation
is obtained as follows. Take the relation for K and replace V by W as a word in x1, x2.

If we apply this to the hyperbolic Baumslag double with W = [u, v], we must consider
the situation where we have a free group F = 〈a, b; 〉 of rank 2 generated by a system
{r, s, [a, b]}. However, if F = 〈a, b; 〉 is generated by a system {r, s, [a, b]}, it follows
from [12, Lemma 3.17] (see also [13, Hilfsatz 5]) that there is a free Nielsen transformation
T from {r, s, [a, b]} to {a, b, [a, b]}, where [a, b] is not replaced. Not replaced means that
in all the elementary Nielsen transformations of which T is composed, the commutator
[a, b] either remains unchanged, is changed to ([a, b])−1 or is put in a different location in
the respective triple (see [12, pp. 335–340] for more details). In the hyperbolic Baumslag
double the transformations are identical in the other factor. Therefore, [u, v] = [ū, v̄]
must be a defining relation for H. It follows that H is an orientable surface group of
genus 2 and G contains such a subgroup.
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Conversely, let H be a subgroup of G that is an orientable surface group of genus 2.
Hence H has a presentation

H = 〈x1, x2, x3, x4; [x1, x2][x3, x4] = 1〉.

Consider the system {x1, x2, x3, x4} ⊂ G and apply Nielsen cancellations within the
amalgamated free product G with respect to the quadratic word v = [x1, x2][x3, x4].

The system {x1, x2, x3, x4} is regular. That is, there is no Nielsen transformation from
{x1, x2, x3, x4} to a system that contains an element that is conjugate in G to a power
of W or W̄ . If the system {x1, . . . , xn} was not regular, then H would have to be a free
group from [12, Lemma 3.1]. Now we apply Theorem 2.4 to X = {x1, x2, x3, x4} and
w = [x1, x2][x3, x4]. Then w′ = α(w) = w1w2, with w1 and w2 both quadratic words
as described in Theorem 2.4. Since w is a product of commutators in the hyperbolic
Baumslag double G and α is an automorphism, it follows that w′ is alternating in the
same way as w: that is, each xi occurs in w′ exactly once as xi and exactly once as
x−1

i . Since both w1 and w2 are quadratic and F is a non-abelian free group, this implies,
up to conjugation and renaming, that w1 = [x, y] for some x, y ∈ F . Recall that a free
group word [a, b][c, d] is not Nielsen equivalent to a word r2s2t2p2, otherwise an orientable
surface group of genus 2 would be isomorphic to a non-orientable surface group of genus 4.
That this cannot happen is clear from abelianization. Since the amalgamated subgroup
A = 〈W 〉 is cyclic and w1 is conjugate to an element of A, it follows that [x, y] is conjugate
to Wn for some non-zero n ∈ Z. However, since a commutator in a free group is never a
proper power (see [10, p. 52] or [4]) this implies that [x, y] is conjugate to W or W−1.
Since a conjugate of a commutator is also a commutator, it follows that W = [U, V ] for
some elements U, V ∈ F , proving the theorem in the orientable case.

The proof for the non-orientable case is almost identical except that when we get
w = w1w2 we must have w1 = x2y2 for some x, y ∈ F . We must also use the analogous
argument that if a free group F = 〈a, b; 〉 is generated by a system {r, s, a2b2}, then
there is a free Nielsen transformation from {r, s, a2b2} to {a, b, a2b2} where a2b2 is not
replaced. As in the orientable case, this follows from Lemma 3.17 in [12] and the remark
immediately after that lemma. �

We note that a hyperbolic Baumslag double can never contain an orientable surface
group of genus 1 (that is, a free abelian group of rank 2) and can never contain a non-
orientable surface group of genus less than or equal to 3 by Theorem 2.4.
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