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Abstract

For a prime p and a field k of characteristic ?, we define Steenrod operations %=
:

on motivic cohomology with F?-

coefficients of smooth varieties defined over the base field :. We show that %=
:

is the pth power on �2=,= (−, F?) �
��= (−)/? and prove an instability result for the operations. Restricted to mod p Chow groups, we show that the

operations satisfy the expected Adem relations and Cartan formula. Using these new operations, we remove previous

restrictions on the characteristic of the base field for Rost’s degree formula. Over a base field of characteristic 2, we

obtain new results on quadratic forms.
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1. Introduction

Voevodsky constructed motivic reduced power operations %=
�

for = ≥ 0 where the base field � is

a perfect field with char(�) not equal to the characteristic ? > 0 of the coefficient field [35]. These

operations were used in the proof of the Bloch–Kato conjecture. Hoyois, Kelly and Østvær later obtained

operations and completeley determined the Steenrod algebra for a general base field � with char(�) ≠ ?

[17]. Brosnan gave an elementary construction of Steenrod operations on mod ? Chow groups over a

base field of characteristic ≠ ? [1]. Steenrod operations on Chow groups have been used succesfully

in the study of quadratic forms over a base field of characteristic ≠ 2 and to prove degree formulas in

algebraic geometry, as in [6] and [24].
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For a prime ?, Voevodsky’s construction of Steenrod operations for the coefficient field F?
uses the calculation of the motivic cohomology of �(? . However, when defined over a base field

: of characteristic ?, �Z/? is contractible [25, Proposition 3.3]. Hence, over the base field : ,

�∗,∗(�(? , F?) � �
∗,∗(:, F?), and so one cannot carry out Voevodsky’s construction. It has also been

an open problem to just define Steenrod operations on the mod ? Chow groups of smooth schemes

over a field of characteristic ?. Haution made progress on this problem by constructing the first ? − 1

homological Steenrod operations on Chow groups mod ? and ?-primary torsion over any base field

[12], defining the first Steenrod square on mod 2 Chow groups over any base field [13] and con-

structing weak forms of the second and third Steenrod squares over a field of characteristic 2 [15].

Note that in articles where Steenrod squares (or weak forms of Steenrod squares) on mod 2 Chow

groups are used, the =th Steenrod square on mod 2 Chow groups corresponds to the 2=th Steen-

rod square on mod 2 motivic cohomology, since the Bockstein homomorphism is 0 on mod 2 Chow

groups.

For ? a prime, we use the results of Frankland and Spitzweck in [8] to define Steenrod operations

%=
:

: �8, 9 (−, F?) → �8+2=(?−1) , 9+=(?−1) (−, F?) for = ≥ 0 on the mod ? motivic cohomology of smooth

schemes over a field : of characteristic ?. Note that some authors use the notation �8 (−,Z( 9)) in

place of �8, 9 (−,Z) to denote motivic cohomology. For = ≥ 1, we show that %=
:

is the ?th power on

�2=,= (−, F?) = ��
= (−)/?, and we prove an instability result for the Steenrod operations. Restricted

to mod ? Chow groups, I prove that the %8
:

satisfy expected properties such as Adem relations and

the Cartan formula. we also show that the operations %=
:

agree with the operations %=
 

, constructed by

Voevodsky for char( ) = 0, on the mod ? Chow rings of flag varieties in characteristic 0.

To show that the %8
:

satisfy the Adem relations and Cartan formula on mod ? Chow groups, we

show that the Steenrod operations satisfy the Adem relations and Cartan formula on mod ? motivic

cohomology up to some error terms. These error terms vanish when we restrict to mod ? Chow groups.

If the dual Steenrod algebra has the conjectured form (meaning that the map Ψ: from Theorem 2.3

is an isomorphism), then the error terms encountered in these arguments vanish on mod ? motivic

cohomology. Our proofs would then simplify to give the Adem relations and Cartan formula for motivic

cohomology with mod ? coefficients.

In Section 9, I extend Rost’s degree formula [24, Theorem 6.4] to a base field of arbitrary characteristic.

The degree formula we obtain at odd primes seems to be new.

In Section 11, we use the new operations to study quadratic forms defined over a base field of

characteristic 2. Previous results or proofs have avoided the case of quadratic forms in characteristic

2, since Steenrod squares were not available. We recall a conjecture of Hoffmann and Totaro on the

possible values of the first Witt index of an anisotropic quadratic form.

Conjecture 1.1. Let i be an anisotropic quadratic form over a field � such that dimi ≥ 2. Then
i1(i) ≤ 2E2 (dimi−i1 (i)) .

As documented in [20], Conjecture 1.1 was first made by Hoffmann in 1998 assuming that the base

field is of characteristic ≠ 2. Using Steenrod squares on mod 2 Chow groups, Karpenko proved this

conjecture for anisotropic quadratic forms over base fields fields of characteristic ≠ 2 [18]. In [31],

Totaro extended Conjecture 1.1 to fields of characteristic 2. Using algebraic methods, Scully proved

Conjecture 1.1 for totally singular anisotropic quadratic forms over base fields of characteristic 2 [28].

We also remark that Haution previously used a weak form of the first homological Steenrod square to

prove a result on the parity of the first Witt index for nonsingular anisotropic quadratic forms over a

field of characteristic 2 [14, Theorem 6.2].

In this article, we prove Conjecture 1.1 for nonsingular anisotropic quadratic forms over base fields

of characteristic 2. Our My proof copies the arguments of [18] and makes use of the new Steenrod

squares defined on mod 2 Chow groups over base fields of characteristic 2. In a recent preprint,

Karpenko proved Conjecture 1.1 for the remaining cases of anisotropic quadratic forms over base fields of

characteristic 2 [20]. That proof uses the Steenrod squares constructed in this article, along with other new

ideas.
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Other new results on quadratic forms over base fields of characteristic 2 are also included in Section 11.

Using the Steenrod squares defined in this article, it should be possible to extend other results on

quadratic forms to the case where the base field has characteristic 2.

2. Prior results on the dual Steenrod algebra and setup

Let : be a field of characteristic ? > 0. For a base scheme (, let Sm( denote the category of quasi-

projective separated smooth schemes of finite type over (, let� (() denote the unstable motivic homotopy

category of spaces over ( defined by Morel and Voevodsky [25], let �•(() denote the pointed unstable

motivic homotopy category of spaces over ( and let (� (() denote the stable motivic homotopy category

of spectra over ( [33]. Let

Σ∞
+ : Sm( → (� ((),

Σ∞
+ : � (() → �•(() → (� (()

denote the infinite P1-suspension functors.

We recall some results from [8] and [30] in the categories � (:) and (� (:). Let �`? ∈ � (:)
denote the geometric motivic classifying space of the group scheme `? over : of the ?th roots of

unity. Let �F:? ∈ (� (:) denote the motivic Eilenberg–MacLane spectrum representing mod ? motivic

cohomology. Let E ∈ �2,1(�`? , F?) denote the pullback of the first Chern class 21 ∈ �2,1(�G<, F?).
From the computation of the motivic cohomology of �`? in [35, Theorem 6.10], there exists a unique

D ∈ �1,1 (�`? , F?) such that V(D) = E, where V denotes the Bockstein homomorphism on mod ?

motivic cohomology. The class of d = −1 in �1,1 (:, F?) = :
∗/:∗ ? is 0, and the class g ∈ �0,1 (:, F?) =

`? (:) = 0 described in [35, Theorem 6.10] is also 0. We need the following computation, which can

be deduced from [35, Theorem 6.10] by setting d = 0 and g = 0.

Theorem 2.1. There is an isomorphism

�∗,∗(�`? , F?) � �
∗,∗(:, F?)ÈE, DÉ/(D

2).

Note that �∗,∗(�`? , F?) is defined in [35] as a limit of motivic cohomology rings of smooth schemes

over the base field. This explains why power series appear in this theorem.

Let A:∗,∗ ≔ c∗,∗(�F
:
? ∧ �F

:
?). As described in [30, Chapter 10.2], there is a coaction map

�∗,∗(�`? , F?) → A
:
−∗,−∗⊗̂c−∗,−∗�F:?�

∗,∗(�`? , F?). (1)

We use the left �F:?-module structure on �F:? ∧ �F:? for this coaction map. For 8 ≥ 0 and 9 ≥ 1,

classes g8 ∈ A
:
2?8−1, ?8−1

and b 9 ∈ A
:
2? 9−2, ? 9−1

are defined by the coaction map:

D ↦→ D + Σ8≥0g8 ⊗ E
?8 ,

E ↦→ E + Σ 9≥1b 9 ⊗ E
? 9 .

Proposition 2.2. g2
8 = 0 for all 8 ≥ 0.

Proof. We use the argument of [35, Theorem 12.6]. First, we assume that char(:) = 2. Under the

coaction map 1,

D2 = 0 ↦→ D2 + Σ8≥0g
2
8 ⊗ E

28+1

= 0.

For 8 ≥ 0, the coefficient of E28+1
equals 0 = g2

8 .

Now we assume that ? = char(:) is odd. Let 8 ≥ 0. As A:∗,∗ is graded-commutative under the first

grading, we have g2
8 = (−1) (2?

8−1) (2?8−1)g2
8 = −g2

8 , which implies that g2
8 = 0. �
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In this article, we shall consider finite sequences U = (n0, A1, n1, A2, . . .) of integers such that n8 ∈
{0, 1} and A 9 ≥ 0 for all 8 ≥ 0 and 9 ≥ 1. From now on, it will be assumed that any sequence U in this

article satisfies these conditions. To a sequence U, associate a monomial l(U) = g n0
0
b
A1
1
g
n1
1

· · · ∈ A
:
∗,∗

of bidegree (?U, @U). The sequences U induce a morphism

Ψ: :
⊕

U

Σ?U ,@U�F:? → �F:? ∧ �F
:
?

of left �F:?-modules. Frankland and Spitzweck proved the following theorem [8, Theorem 1.1], which

allows us to define Steenrod operations on mod ? motivic cohomology over the base field : .

Theorem 2.3. The morphism

Ψ: :
⊕

U

Σ?U ,@U�F:? → �F:? ∧ �F
:
?

is a split monomorphism of left �F:?-modules.

It is conjectured that Ψ: is an isomorphism. Frankland and Spitzweck proved this theorem by

comparing Ψ: to the corresponding isomorphism

Ψ :
⊕

U

Σ?U ,@U�F ? → �F ? ∧ �F ? (2)

of left�F ? -modules for char( ) = 0. From now on,
⊕
U

Σ?U ,@U�F ? will be identified with�F ? ∧�F
 
?

as left �F ? -modules through Ψ whenever  is a field of characteristic 0. Let � be a complete

unramified discrete valuation ring with closed point 8 : Spec(:) → Spec(�) and generic point 9 :

Spec( ) → Spec(�), where  = Frac(�). For example, when : = F? , � = Z? and  = Q? .

For a morphism 5 : (1 → (2 of base schemes, let 5∗ ≔ ' 5∗ : (� ((1) → (� ((2) and

5 ∗ ≔ ! 5 ∗ : (� ((2) → (� ((1) denote the right derived push-forward and left derived pull-

back functors, respectively. Pullback 5 ∗ is strongly monoidal, while 5∗ is lax monoidal. Further-

more, 5∗ commutes with all suspensions Σ8, 9 [8, Lemma 7.5]. Note also that 5∗ preserves coproducts

[8, Lemma 7.4].

For a separated Noetherian scheme ( of finite dimension, let �̂Z( ∈ (� (() denote the motivic

�∞ ring spectrum constructed by Spitzweck in [30] and let �̂F(? ≔ �̂Z(/? . Let � (�̂Z() denote the

homotopy category of left �̂Z(-modules. See [3, Section 7.2] and [8, Sections 2 and 3] for a discussion

on the homotopy category of left '-modules � (') for a highly structured ring spectrum '. There is a

forgetful functor*( : � (�̂Z() → (� (().
The spectrum �̂Z( enjoys a number of desirable properties. It is Cartesian, which means that for a

morphism 5 : (1 → (2 of base schemes, the induced morphism 5 ∗�̂Z(2 → �̂Z(1 is an isomorphism in

(� ((1) of �∞ ring spectra [30, Chapter 9]. Throughout this article, we will frequently identify 5 ∗�̂Z(2

with �̂Z(1 whenever we are given a morphism 5 : (1 → (2 of base schemes (see also [8, Section 2]).

Hence, the square

� (�̂Z(2 ) � (�̂Z(1 )

(� ((2) (� ((1)

5 ∗

*(2
*(1

5 ∗

commutes.

For ( = Spec(�) with � a field, �̂Z( is isomorphic as an �∞ ring spectrum to the usual Eilenberg–

MacLane spectrum �Z( constructed by Voevodsky [30, Theorem 6.7]. For the discrete valuation ring

�, �̂Z� represents Bloch–Levine motivic cohomology as defined in [23].
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We briefly describe the definition of Bloch–Levine motivic cohomology in [23] for a discrete

valuation ring �. Let - → Spec(�) be a morphism of finite type with - irreducible. If the image

of the generic point [- of - is Spec(:), then define dim(-) ≔dim(-Spec(:) ). Otherwise, define

dim(-) ≔dim(-Spec( ) ) + 1. For = ≥ 0, let Δ= ≔ Spec(� [C0, . . . , C=]/Σ8C8 − 1) denote the algebraic

=-simplex over �. Let I@ (-, A) denote the free abelian group generated by all irreducible closed

subschemes� ⊂ ΔA ×Spec(�) - of dimension A+@ such that� meets each face ofΔA ×Spec(�) - properly.

Then set I@ (-, A) = Idim(- )−@ (-, A) to get a pullback homomorphism I@ (-, A) → I@ (-, A −1) for each

face of ΔA . Then the Zariski hypercohomology of the complex I@ (-, ∗) with alternating face maps is

Bloch–Levine motivic cohomology (with the appropriate shift).

Theorem 2.4. The morphism �F:? � 8∗(�̂F�? ) → 8∗ 9∗�F
 
? � 8∗ 9∗ 9

∗�̂F�? in � (�F:?) induced by

adjunction induces a splitting 8∗ 9∗�F ? � �F:? ⊕ Σ−1,−1�F:? in � (�F:?). There is also a splitting

8∗ 9∗�Z
 
� �Z: ⊕ Σ−1,−,1�Z: in � (�Z: ) [8, Lemma 4.10].

Definition 2.1. Let c : 8∗ 9∗�F
 
? → �F:? and c0 : 8∗ 9∗�F

 
? → Σ−1,−1�F:? denote the projections

induced by the splitting from Theorem 2.4.

Let [ : 83. → 9∗ 9
∗ denote the unit map. From now on, we shall denote all adjunction morphisms

8∗� → 8∗ 9∗ 9
∗� for � ∈ (� (�) by 8∗[. We will also denote all ΣB,Cc, ΣB,Cc0 by c and c0, respectively,

to make the text easier to read. The morphisms Ψ: and Ψ lift to a morphism

Ψ� :
⊕

U

Σ?U ,@U �̂F�? → �̂F�? ∧ �̂F�?

in � (�̂F�? ) [8, Lemma 3.10]. Applying 8∗[ to Ψ� gives a commuting square

⊕
U

Σ?U ,@U�F:? �F:? ∧ �F
:
?

⊕
U

Σ?U ,@U 8∗ 9∗�F
 
? 8∗ 9∗(�F

 
? ∧ �F ? )

Ψ:

8∗[ 8∗[

8∗ 9∗Ψ 

(3)

in � (�F:?). Let A : �F:? ∧ �F
:
? →

⊕
U

Σ?U ,@U�F:? be the retraction of Ψ: defined by the following

composite [8, Theorem 5.1]:

�F:? ∧ �F
:
? 8∗ 9∗(�F

 
? ∧ �F ? )

⊕
U

Σ?U ,@U 8∗ 9∗�F
 
?

⊕
U

Σ?U ,@U�F:? .

8∗[ 8∗ 9∗Ψ
−1
 

⊕c

For ( = :,  , or � (use �̂F�? ), let `(
1

: �F(? ∧ �F
(
? → �F(? denote the multiplication morphism.

There is also a multiplication morphism

`(2 : (�F(? ∧ �F
(
?) ∧ (�F(? ∧ �F

(
?) → �F(? ∧ �F

(
?

defined in the standard way by interchanging the two middle �F(? terms and then applying `(
1
∧ `(

1
.
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For a sequence U0, define 8∗[U0
: �F:? ∧ �F

:
? → Σ?U0

,@U0�F:? in � (�F:?) to be the composite

�F:? ∧ �F
:
? 8∗ 9∗(�F

 
? ∧ �F ? )

⊕
U

Σ?U ,@U 8∗ 9∗�F
 
?

Σ?U0
,@U0 8∗ 9∗�F

 
?

Σ?U0
,@U0�F:? .

8∗[ 8∗ 9∗Ψ
−1
 

?A> 9.

c

(4)

The morphism 8∗[U0
is a retraction of the morphism

�F:? ∧ l(U0) : Σ?U0
,@U0�F:? → �F:? ∧ �F

:
? .

From the work of Friedlander and Suslin [9, Corollary 12.2] and Voevodsky [34], Bloch’s higher

Chow groups are isomorphic to motivic cohomology as defined by Voevodsky. The isomorphism

between motivic cohomology and Bloch’s higher Chow groups is compatible with pullback maps and

product structures [30, Theorem 6.7]. See also [22].

Theorem 2.5. Let � be a field and let - ∈ Sm� . Then

�=,8 (-,Z) � ��8 (-, 28 − =)

for all = and 8 ≥ 0.

Let =, 8 ≥ 0 such that = > 28. From Theorem 2.5, �=,8 (-, �) = 0 for any coefficient ring � and

- ∈ Sm� .

3. Definition of operations

In this section, we use the results of Frankland and Spitzweck in [8] to define new Steenrod operations

%=
:

for = ≥ 0. Let

8! , 8' : �F(? → �F(? ∧ �F
(
?

denote the left and right �F(?-module maps, respectively, for ( = � (use �̂F�? ), : , or  . Motivated by

the corresponding duality in characteristic 0, we want to define operations %=
:
∈ �F: ∗,∗? �F:? for = ≥ 0

by taking operations dual to the b=
1
.

Definition 3.1. Let U be a sequence. Define %U
:

∈ �F
: ∗,∗
? �F:? by %U

:
≔ 8∗[U ◦ 8'. For = ≥ 0, let

%=
:
= %

(0,=,0,...)
:

. Let V: = %
(1,0,...)
:

.

There are corresponding operations %U
 

in characteristic 0 defined from 2 by

�F ? �F ? ∧ �F ? Σ?U ,@U�F ? .
8' ?A> 9.

Definition 3.2. To define a homomorphism

Φ : �F ∗,∗
? �F ? → �F: ∗,∗? �F:?
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of graded additive groups, let 5 : �F ? → Σ:,;�F ? be given. Define Φ( 5 ) : �F:? → Σ:,;�F:? by

Φ( 5 ) = c ◦ 8∗ 9∗( 5 ) ◦ 8
∗[.

�F:? 8∗ 9∗�F
 
? Σ:,;8∗ 9∗�F

 
? Σ:,;�F:? .

8∗[ 8∗ 9∗ ( 5 ) c
(5)

From the definition of Φ, it is clear that Φ(83.) = 83. The following lemma will be important for

proving that the operations %=
:

restricted to mod ? Chow groups satisfy the Adem relations and Cartan

formula:

Lemma 3.1. Let - ∈ Sm: and let 5 : Σ∞
+ - → Σ2<,<�F:? be given.

1. Let U0 be a sequence. Consider the morphism

6U0
: �F:? → Σ?U0

−1,@U0
−1�F:?

given by the composite

�F:? 8∗ 9∗�F
 
? 8∗ 9∗Σ

?U0
,@U0�F ? Σ

?U0
−1,@U0

−1�F:? .
8∗[ 8∗ 9∗ (%

U0
 

) c0

Then Σ2<,<6U0
◦ 5 = 0.

2. The composite

Σ∞
+ - Σ2<,<�F:? Σ2<,<�F:? ∧ �F

:
?

8∗ 9∗(Σ
2<,<�F ? ∧ �F ? )

⊕
U

Σ?U+2<,@U+<8∗ 9∗�F
 
?

⊕
U

Σ2<+?U−1,<+@U−1�F:?

5 8'

8∗[

8∗ 9∗Ψ
−1
 

⊕c0

is equal to 0.
3. Let 6 : Σ∞

+ - → 8∗ 9∗Σ
2<,<�F ? for some< ∈ N. Then 6 = 8∗[◦60 for some 60 : Σ∞

+ - → Σ2<,<�F:? .

Here we can take 60 = 6 ◦ A0, where A0 is any retraction of 8∗[.

Proof. Note that for any sequence U of bidegree (?U, @U), ?U ≥ 2@U, which implies that ?U − 1 >

2(@U − 1). For (1) and (2), Theorem 2.5 implies that

Hom(� (:) (Σ
∞
+ -, Σ

2<+?U−1,<+@U−1�F:?) = �
2<+?U−1,<+@U−1 (-, F?) = 0

for any sequence U. �

Theorem 3.2.

1. We have Φ(�∗,∗( , F?)) ⊂ �∗,∗(:, F?).
2. Let U be a sequence. Then Φ(%U

 
) = %U

:
. In particular, for the Bockstein V and reduced power

operations %=
 

constructed by Voevodsky in characteristic 0,Φ(%=
 
) = %=

:
for = ≥ 0 andΦ(V ) = V: .

Also, %0
:

is the identity, since %0
 

is the identity.
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3. Let - ∈ Sm: and let 5 : Σ∞
+ - → Σ2<,<�F:? be given. Let U be a sequence and let ℎ : �F ? →

Σ8, 9�F ? be given. Then

Φ(ℎ ◦ %U ) ( 5 ) = Φ(ℎ) (%U: ( 5 )).

Proof. We first prove (1). Let 0 ∈ �∗,∗( , F?). The element 0 corresponds to a morphism 50 :

�F ? → Σ<,=�F ? in � (�F ? ). The functors 8∗, 9∗ restrict to functors 8∗ : � (�̂F�? ) → � (�F:?) and

9∗ : � (�F ? ) → � (�̂F�? ). Hence, 8∗ 9∗( 50) is a morphism in � (�F:?). From the definition of Φ, it

follows that Φ( 50) is a morphism in � (�F:?). Thus, Φ(0) ≔ Φ( 50) ∈ �
∗,∗(:, F?).

We now prove (2). Let U be a sequence. Applying the natural transformation 8∗ → 8∗ 9∗ 9
∗ to

8' : �̂F�? → �̂F�? ∧ �̂F�? , we obtain the following commuting square in (� (:):

�F:? �F:? ∧ �F
:
?

8∗ 9∗�F
 
? 8∗ 9∗(�F

 
? ∧ �F ? ).

8'

8∗[ 8∗[

8∗ 9∗ (8')

From the definition of 8∗[U 4, the following diagram commutes:

�F:? ∧ �F
:
? Σ?U ,@U�F:?

8∗ 9∗(�F
 
? ∧ �F ? ) 8∗ 9∗Σ

?U ,@U�F ? .

8∗[U

8∗[

?A> 9.

c

Putting these two diagrams together yields the following commuting diagram:

�F:? �F:? ∧ �F
:
? Σ?U ,@U�F:?

8∗ 9∗�F
 
? 8∗ 9∗(�F

 
? ∧ �F ? ) 8∗ 9∗Σ

?U ,@U�F ? .

8'

8∗[

8∗[U

8∗[

8∗ 9∗ (8') ?A> 9.

c (6)

The top row of this diagram gives %U
:

, while the composite starting at �F:? in the top left and continuing

along the bottom, row ending with c, gives Φ(%U
 
). Hence, Φ(%U

 
) = %U

:
.

Now we prove (3). Consider the following diagram:

Σ∞
+ -

Σ2<,<�F:? Σ2<+?U ,<+@U�F:? Σ8+2<+?U , 9+<+@U�F:?

8∗ 9∗Σ
2<,<�F ? 8∗ 9∗Σ

2<+?U ,<+@U�F ? 8∗ 9∗Σ
8+2<+?U , 9+<+@U�F ?

Σ8+2<+?U , 9+<+@U�F:? .

5

%U
:

8∗[

Φ(ℎ)

8∗[ 8∗[

8∗ 9∗%
U
 8∗ 9∗ℎ

c

(7)

As Φ(%U
 
) = %U

:
, Lemma 3.1 implies that the composite

8∗[ ◦ %U: ◦ 5 : Σ∞
+ - → 8∗ 9∗Σ

2<+?U ,<+@U�F ?

in diagram (7) is equal to

8∗ 9∗%
U
 ◦ 8∗[ ◦ 5 .
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Thus, from diagram (7),

Φ(ℎ) (%U: ( 5 )) = c ◦ 8
∗[ ◦Φ(ℎ) ◦ %U: ◦ 5 = c ◦ 8∗ 9∗(ℎ) ◦ 8

∗ 9∗(%
U
 ) ◦ 8

∗[ ◦ 5 = Φ(ℎ ◦ %U ) ( 5 )

as desired. �

Remark 1. Theorem 3.2 says that Φ commutes with compositions, up to some error terms. These error

terms vanish on mod ? Chow groups. In the next section, we will use the third part of this theorem to

get Adem relations for the Steenrod operations %=
:

restricted to mod ? Chow groups. Essentially, we

just apply Φ to the Adem relations in characteristic 0.

We next prove that the operations %=
:

commute with base change of the field : on mod ? Chow groups.

For a morphism of fields 5 : Spec(�1) → Spec(�2), the pullback functor 5 ∗ : (� (�2) → (� (�1)
induces a homomorphism �F

�2 ∗,∗
? �F

�2
? → �F

�1 ∗,∗
? �F

�1
? . For char(�2) ≠ ?, 5 ∗(%=

�2
) = %=

�1
, since the

dual Steenrod algebra has the expected form in this case [17, Theorem 1.1]. However, for our situation

where the base field is of characteristic ?, we do not yet know the full structure of the dual Steenrod

algebra.

Let 51 : Spec(:) → Spec(F?) be the structure map. In the following commuting diagram, 52, 53, 80,

and 90 are maps compatible with 51:

Spec(:) Spec(F?)

Spec(�) Spec(Z?)

Spec( ) Spec(Q?).

51

8 80

52

53

9 90

Proposition 3.3. Let - ∈ Sm: and let 6 : Σ∞
+ - → Σ2<,<�F:? be given. Then %=

:
(6) = 5 ∗

1
(%=
F?
) (6) for

all = ≥ 0.

Proof. Let [0 : 1 → 90 ∗ 9
∗
0

denote the unit map. Let 5 ∗
2
�̂F
Z?
? → 5 ∗

2
90 ∗�F

Q?
? be the map 5 ∗

2
[0 induced by

the isomorphism 9∗
0
�̂F
Z?
? → �F

Q?
? . The exchange transformation 5 ∗

2
90 ∗ → 9∗ 5

∗
3

induces a morphism

5 ∗
2
90 ∗�F

Q?
? → 9∗ 5

∗
3
�F
Q?
? . Let 5 ∗

2
�̂F
Z?
? → 9∗ 5

∗
3
�F
Q?
? be the map [ 5 ∗

2
induced by the isomorphism

9∗ 5 ∗2 �̂F
Z?
? � 5 ∗3 9

∗
0 �̂F

Z?
? → 5 ∗3 �F

Q?
? .

Putting these maps together, we get the following square, which commutes by adjunction:

5 ∗
2
�̂F
Z?
? 5 ∗

2
90 ∗�F

Q?
?

5 ∗
2
�̂F
Z?
? 9∗ 5

∗
3
�F
Q?
? .

5 ∗
2
[0

83.

[ 5 ∗
2

(8)

Applying the exchange transformation 5 ∗
2
90 ∗ → 9∗ 5

∗
3

to %=
Q?

, we get the following commuting square:

5 ∗
2
90 ∗�F

Q?
? 5 ∗

2
90 ∗Σ

2=(?−1) ,=(?−1)�F
Q?
?

9∗�F
 
? 9∗Σ

2=(?−1) ,=(?−1)�F ? .

5 ∗
2
90 ∗%

=
Q?

9∗%
=
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Applying 8∗ (and the connection isomorphism 8∗ 5 ∗
2
� 5 ∗

1
8∗
0
) to these two squares and combining with

6 : Σ∞
+ - → Σ2<,<�F:? , we obtain the following commuting diagram:

Σ∞
+ - Σ2<,<�F:? 5 ∗

1
8∗
0
90 ∗Σ

2<,<�F
Q?
? 5 ∗

1
8∗
0
90 ∗Σ

2(<+=(?−1) ) ,<+=(?−1)�F
Q?
?

Σ∞
+ - Σ2<,<�F:? 8∗ 9∗Σ

2<,<�F ? 8∗ 9∗Σ
2(<+=(?−1) ) ,<+=(?−1)�F ? .

6

83.

5 ∗
1
8∗
0
[0

83.

5 ∗
1
8∗
0
90 ∗%

=
Q?

6 8∗[ 8∗ 9∗%
=
 

(9)

Let c′ : 8∗
0
90 ∗�F

Q?
? → �F

F?
? and c′

0
: 8∗

0
90 ∗�F

Q?
? → Σ−1,−1�F

F?
? be projection morphisms induced

by the isomorphism 8∗
0
90 ∗�F

Q?
? � �F

F?
? ⊕Σ−1,−1�F

F?
? of Theorem 2.4. Consider the following diagram:

Σ2(<+=(?−1) ) ,<+=(?−1)�F:?

Σ∞
+ - Σ2<,<�F:? 5 ∗

1
8∗
0
90 ∗Σ

2<,<�F
Q?
? 5 ∗

1
8∗
0
90 ∗Σ

2(<+=(?−1) ) ,<+=(?−1)�F
Q?
?

Σ∞
+ - Σ2<,<�F:? 8∗ 9∗Σ

2<,<�F ? 8∗ 9∗Σ
2(<+=(?−1) ) ,<+=(?−1)�F ?

Σ2(<+=(?−1) ) ,<+=(?−1)�F:? .

6

83.

5 ∗
1
8∗
0
[0

83.

5 ∗
1
8∗
0
90 ∗%

=
Q?

5 ∗
1
c′

6 8∗[ 8∗ 9∗%
=
 

c

(10)

From Theorem 3.2, the composite Σ∞
+ - → Σ2(<+=(?−1)) ,<+=(?−1)�F:? given by the upper half of

diagram (10) is equal to 5 ∗
1
(%=
F?
) (6), and the composite Σ∞

+ - → Σ2(<+=(?−1)) ,<+=(?−1)�F:? given by

the lower half is equal to %=
:
(6). As diagram (9) commutes, Lemma 3.1 then implies that 5 ∗

1
(%=
F?
) (6) =

%=
:
(6). �

We can now prove that the Steenrod operations %=
:

commute with base change on mod ? Chow

groups. Let 5 : Spec(:1) → Spec(:2) be given, where :1, :2 are fields of characteristic ?. Let

ℎ : Spec(:2) → Spec(F?) be the structure map.

Corollary 3.4. Let - ∈ Sm:2
. Let = ≥ 0. The following square commutes:

��∗(-)/? ��∗(-)/?

��∗(-:1
)/? ��∗(-:1

)/?.

%=
:2

5 ∗ 5 ∗

%=
:1

Proof. From Proposition 3.3, ℎ∗%=
F?

agrees with %=
:2

on ��∗(-)/? and 5 ∗ℎ∗%=
F?

agrees with %=
:1

on

��∗ (-:1
)/?. Let 6 : Σ∞

+ - → Σ2<,<�F
:2
? be given. Then

5 ∗(%=:2
(6)) = 5 ∗(ℎ∗%=F? (6)) = 5 ∗ℎ∗(%=F? ) ( 5

∗6) = %=:1
( 5 ∗6),

as required. �

Proposition 3.5. The morphism V: = %
(1,0,...)
:

defined in Definition 3.1 is equal to the Bockstein
homomorphism V on mod ? motivic cohomology.

Proof. We let V denote the Bockstein homomorphism on mod ? motivic cohomology over any base

scheme. The Bockstein homomorphism V in characteristic 0 is known to be dual to g0. Hence,
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V = %
(1,0,...)
 

= V . Applying the natural transformation 8∗ → 8∗ 9∗ 9
∗ to the diagram

�̂Z� �̂Z� (�̂Z�)/? Σ1,0�̂Z� Σ1,0�̂Z�/?
·?

V

?A> 9.

in (� (�) yields the following commuting diagram in (� (:):

�Z: �Z: �F:? Σ1,0�Z: Σ1,0�F:?

8∗ 9∗�Z
 8∗ 9∗�Z

 8∗ 9∗�F
 
? Σ1,08∗ 9∗�Z

 Σ1,08∗ 9∗�F
 
?

Σ1,0�F:? .

·?

8∗[

?A> 9.

8∗[

V

8∗[

?A> 9.

8∗[ 8∗[

·? ?A> 9.

8∗ 9∗V 

?A> 9.

c

(11)

From Theorem 3.2, Φ(V ) = V: . The composite in diagram (11) that starts at �F:? in the top row and

goes immediately down to Σ1,0�F:? is equal to Φ(V ). As the diagram commutes and c ◦ 8∗[ = 83., it

follows that Φ(V ) = V = V: . �

4. Adem relations

In this section we use the map Φ : �F ∗,∗
? �F ? → �F

: ∗,∗
? �F:? 5 and Theorem 3.2 to show that the

operations %=
:

for = ≥ 0 satisfy the expected Adem relations when restricted to mod ? Chow groups. The

proof uses the corresponding Adem relations in characteristic 0, which can be found in [27, Théorème

4.5.1] for ? = 2 and [27, Théorème 4.5.2] for odd ?. First we state the Adem relations for ? = 2 over the

base  of characteristic 0. Let g ∈ �0,1 ( , F2) denote the class of −1 ∈ `2 ( ) and let d ∈ �1,1 ( , F2)
denote the class of −1 ∈  ∗/ ∗ 2. Set Sq2=

:
≔ %=

:
and Sq2=+1

:
= V:Sq2=

:
for = ≥ 0.

Theorem 4.1. Let 0, 1 ∈ N with 0 < 21.

1.

Sq0 Sq1 =

⌊ 02 ⌋∑

9=0

(
1 − 1 − 9

0 − 2 9

)
Sq
0+1− 9
 

Sq
9

 
+

⌊ 02 ⌋∑

9=1
9 >33

d

(
1 − 1 − 9

0 − 2 9

)
Sq
0+1− 9−1
 

Sq
9

 

if 0 is even and 1 is odd.
2.

Sq0 Sq1 =

⌊ 02 ⌋∑

9=0
9 >33

(
1 − 1 − 9

0 − 2 9

)
Sq
0+1− 9
 

Sq
9

 

if 0 and 1 are odd.
3.

Sq0 Sq1 =

⌊ 02 ⌋∑

9=0

g 9 mod 2

(
1 − 1 − 9

0 − 2 9

)
Sq
0+1− 9
 

Sq
9

 

if 0 and 1 are even.
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4.

Sq0 Sq1 =

⌊ 02 ⌋∑

9=0
9 4E4=

(
1 − 1 − 9

0 − 2 9

)
Sq
0+1− 9
 

Sq
9

 
+

⌊ 02 ⌋∑

9=1
9 >33

d

(
1 − 1 − 9

0 − 1 − 2 9

)
Sq
0+1− 9−1
 

Sq
9

 

if 0 is odd and 1 is even.

Next we state the characteristic 0 Adem relations for ? odd.

Theorem 4.2. 1. Let 0, 1 ∈ N with 0 < ?1. Then

%0 %
1
 =

⌊ 0
?
⌋∑

9=0

(−1)0+ 9
(
(? − 1) (1 − 9) − 1

0 − ? 9

)
%
0+1− 9
 

%
9

 
.

2. Let 0, 1 ∈ N with 0 ≤ ?1. Then

%0 V %
1
 =

⌊ 0
?
⌋∑

9=0

(−1)0+ 9
(
(? − 1) (1 − 9) − 1

0 − ? 9

)
V %

0+1− 9
 

%
9

 
+

⌊ 0−1
?

⌋∑

9=0

(−1)0+ 9+1

(
(? − 1) (1 − 9) − 1

0 − ? 9 − 1

)
%
0+1− 9
 

V %
9

 
.

The Adem relations can now be proven for the operations %=
:

restricted to mod ? Chow groups.

Theorem 4.3. Let - ∈ Sm: and let G ∈ �2<,<(-, F?) = ��
<(-)/? for some < ≥ 0. Let 0, 1 ∈ N

such that 0 < ?1. Then

%0: (%
1
: (G)) =

⌊ 0
?
⌋∑

9=0

(−1)0+ 9
(
(? − 1) (1 − 9) − 1

0 − ? 9

)
%
0+1− 9
:

(%
9

:
(G)).

Proof. From Theorem 3.2, %0
:
(%1
:
(G)) = Φ(%0

 
%1
 
) (G). Then use the Adem relations in characteristic

0 to rewrite %0
 
%1
 
∈ �F ∗,∗

? �F ? . Note that the Bockstein V: is the 0 homomorphism on mod ? Chow

groups. If ? = 2, Φ(Sq= ) (G) = Sq=
:
(G) = 0 whenever = is odd. Thus, applying Theorem 3.2 yields

%0
:
(%1
:
(G)) = Φ(%0 %

1
 ) (G) = Φ(

⌊ 0
?
⌋∑

9=0

(−1)0+ 9
(
(? − 1) (1 − 9) − 1

0 − ? 9

)
%
0+1− 9
 

%
9

 
) (G)

=

⌊ 0
?
⌋∑

9=0

(−1)0+ 9
(
(? − 1) (1 − 9) − 1

0 − ? 9

)
%
0+1− 9
:

(%
9

:
(G)). �

5. Coaction map for smooth X

In this section, for - ∈ Sm: , we describe a coaction map

_- : �∗,∗(-, F?) → c−∗,−∗

(⊕

U

Σ?U ,@U�F:?

)
⊗c−∗,−∗�F:? �

∗,∗(-, F?)

such that the actions of the cohomology operations %=
:

defined in Section 3 on �∗,∗(-, F?) are deter-

mined by _- . We show that _- is a ring homomorphism when restricted to mod ? Chow groups. This

will allow us to prove the Cartan formula in the next section.
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There is a multiplication morphism

< :
(⊕

U

Σ?U ,@U�F:?

)
∧
(⊕

U

Σ?U ,@U�F:?

)
→

⊕

U

Σ?U ,@U�F:? (12)

defined as < = A ◦ `:
2
◦ (Ψ: ∧ Ψ: ). The morphism < defines multiplication on

(⊕

U

Σ?U ,@U�F:?

)∗,∗
(Σ∞

+ -)

and

c∗,∗

(⊕

U

Σ?U ,@U�F:?

)
.

For sequences U1, U2, Proposition 2.2 allows us to calculate the product

A∗(l(U1))A∗(l(U2)) ∈ c∗,∗

(⊕

U

Σ?U ,@U�F:?

)

in terms of another sequence U1 + U2 by using the relations g2
8 = 0 for 8 ≥ 0.

Proposition 5.1. The natural ring homomorphism

c−∗,−∗

(⊕

U

Σ?U ,@U�F:?

)
⊗c−∗,−∗�F:?

�∗,∗ (-, F?) →
(⊕

U

Σ?U ,@U�F:?

)∗,∗
(Σ∞

+ -)

is an isomorphism.

Proof. The suspension spectrum Σ∞
+ - ∈ (� (:) is compact. Hence,

Hom(� (:) (Σ
B,CΣ∞

+ -,
⊕

U

Σ?U ,@U�F:?) �
⊕

U

Hom(� (:) (Σ
B,CΣ∞

+ -,Σ
?U ,@U�F:?)

for all B, C ∈ Z. �

Definition 5.1. Using the isomorphism
(⊕

U

Σ?U ,@U�F:?

)∗,∗
(Σ∞

+ -) � c−∗,−∗

(⊕

U

Σ?U ,@U�F:?

)
⊗c−∗,−∗�F:?

�∗,∗ (-, F?)

from Proposition 5.1, define an additive homomorphism of graded abelian groups

_- : �∗,∗(-, F?) → c−∗,−∗

(⊕

U

Σ?U ,@U�F:?

)
⊗c−∗,−∗�F:? �

∗,∗(-, F?)

by the composite

�F
: ∗,∗
? (Σ∞

+ -) (�F:? ∧ �F
:
?)

∗,∗(Σ∞
+ -)

c−∗,−∗

(⊕
U

Σ?U ,@U�F:?

)
⊗c−∗,−∗�F:? �

∗,∗(-, F?).

8' ∗

A∗ (13)

Proposition 5.2. Restricted to mod ? Chow groups, _- preserves multiplication.

Proof. Let 5 : Σ∞
+ - → Σ2<,<�F:? and 6 : Σ∞

+ - → Σ2=,=�F:? be given. We need to show that

_- ( 5 6) = _- ( 5 )_- (6). The right �F:? map 8' is a morphism of commutative ring spectra. Hence, 8'∗
is a homomorphism of rings. Hence, we need to prove that A∗ (8'∗( 5 )8'∗(6)) = A∗(8'∗( 5 ))A∗(8'∗(6)).
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Applying the natural transformation 8∗ → 8∗ 9∗ 9
∗ to `�

2
, we get a commuting diagram:

(�F:? ∧ �F
:
?) ∧ (�F:? ∧ �F

:
?) �F:? ∧ �F

:
?

8∗ 9∗((�F
 
? ∧ �F ? ) ∧ (�F ? ∧ �F ? )) 8∗ 9∗(�F

 
? ∧ �F ? )

⊕
U

Σ?U ,@U�F:? .

`:
2

8∗[ 8∗[

8∗ 9∗`
 
2

⊕c

(14)

We will factor the left vertical morphism in this diagram. Consider the triangle

(�̂F�? ∧ �̂F�? ) ∧ (�̂F�? ∧ �̂F�? ) 9∗ (�F
 
? ∧ �F ? ) ∧ 9∗ (�F

 
? ∧ �F ? )

9∗ (�F
 
? ∧ �F ? ∧ �F ? ∧ �F ? ),

[∧[

[ (15)

where the morphism on the hypotenuse is defined by the lax monoidal property of 9∗. Note that the
counit morphism n : 9∗ 9∗ → 83. is an isomorphism, since 9 is open. By adjunction, the morphism on
the hypotenuse of diagram (15) is induced by the isomorphism

n ∧ n : 9∗ 9∗ (�F
 
? ∧ �F ? ) ∧ 9∗ 9∗ (�F

 
? ∧ �F ? ) → (�F ? ∧ �F ? ) ∧ (�F ? ∧ �F ? ).

The morphism [ on the left leg of triangle (15) is induced by the isomorphism

9∗[ : 9∗((�̂F�? ∧ �̂F�? ) ∧ (�̂F�? ∧ �̂F�? )) → (�F ? ∧ �F ? ) ∧ (�F ? ∧ �F ? ).

Using the property that pullback is strongly monoidal, we then have the following commuting triangle:

9∗ (�̂F�? ∧ �̂F�? ) ∧ 9∗ (�̂F�? ∧ �̂F�? ) 9∗ 9∗ (�F
 
? ∧ �F ? ) ∧ 9∗ 9∗ (�F

 
? ∧ �F ? )

(�F ? ∧ �F ? ) ∧ (�F ? ∧ �F ? ).

9∗[∧ 9∗[

9∗[
n∧n

Thus, by adjunction, triangle (15) commutes.

Applying 8∗ to triangle (15) shows that the commuting diagram (14) is a subdiagram of the commuting

diagram

(�F:? ∧ �F
:
?) ∧ (�F:? ∧ �F

:
?) �F:? ∧ �F

:
?

8∗ 9∗(�F
 
? ∧ �F ? ) ∧ 8

∗ 9∗(�F
 
? ∧ �F ? )

8∗ 9∗(�F
 
? ∧ �F ? ∧ �F ? ∧ �F ? ) 8∗ 9∗(�F

 
? ∧ �F ? )

⊕
U

Σ?U ,@U�F:? .

`:
2

8∗[∧8∗[

8∗[

8∗ 9∗`
 
2

⊕c

(16)

From diagram (3),

(8∗[ ∧ 8∗[) ◦ (Ψ: ∧ Ψ: ) :
(⊕

U

Σ?U,@U�F:?

)
∧
(⊕

U

Σ?U,@U�F:?

)
→ 8∗ 9∗ (�F

 
? ∧ �F ? ) ∧ 8

∗ 9∗ (�F
 
? ∧ �F ? )

is equal to the composite (8∗ 9∗Ψ ∧ 8∗ 9∗Ψ ) ◦ (8∗[ ∧ 8∗[). Hence, diagram (16) implies that the

multiplication morphism < = A ◦ `:
2
◦ (Ψ: ∧ Ψ: ) on
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(⊕

U

Σ?U ,@U�F:?

)
∧
(⊕

U

Σ?U ,@U�F:?

)

is equal to the following composite:
(⊕
U

Σ?U ,@U�F:?

)
∧
(⊕
U

Σ?U ,@U�F:?

)

8∗ 9∗(�F
 
? ∧ �F ? ) ∧ 8

∗ 9∗(�F
 
? ∧ �F ? )

8∗ 9∗(�F
 
? ∧ �F ? ∧ �F ? ∧ �F ? ) 8∗ 9∗(�F

 
? ∧ �F ? )

⊕
U

Σ?U ,@U�F:? .

( (8∗ 9∗Ψ )◦8∗[)∧( (8∗ 9∗Ψ )◦8∗[)

8∗ 9∗`
 
2

⊕c

(17)

To show that A∗(8'∗( 5 )8'∗(6)) = A∗(8'∗( 5 ))A∗(8'∗(6)), consider the following commuting diagram,
where Δ is the diagonal morphism:

Σ∞
+ -

Σ∞
+ - ∧ Σ∞

+ -

Σ2<,<�F:? ∧ Σ2=,=�F:?

(Σ2<,<�F:? ∧ �F:?) ∧ (Σ2=,=�F:? ∧ �F:?) Σ2<,<�F:? ∧ Σ2=,=�F:?

8∗ 9∗ (Σ
2<,<�F ? ∧ �F ? ) ∧ 8

∗ 9∗ (Σ
2=,=�F ? ∧ �F ? )

8∗ 9∗ (Σ
2(<+=) ,<+=�F ? ∧ �F ? ∧ �F ? ∧ �F ? ) 8∗ 9∗ (Σ

2(<+=) ,<+=�F ? ∧ �F ? )

⊕
U

Σ?U+2<+2=,@U+<+=�F:? .

Δ

5 ∧6

8'∧8'

8∗[∧8∗[

`:
2

8∗[

8∗ 9∗`
 
2

⊕c

(18)

The composite ⊕c ◦ 8∗[ ◦ `:
2
◦ (8' ∧ 8') ◦ ( 5 ∧ 6) ◦Δ in this diagram is equal to A∗(8'∗( 5 )8'∗(6)). From

Lemma 3.1, we can replace 8∗[ ∧ 8∗[ in this diagram with 8∗[ ∧ 8∗[ ◦ A ∧ A to obtain an equivalent map:

Σ∞
+ -

Σ∞
+ - ∧ Σ∞

+ -

Σ2<,<�F:? ∧ Σ2=,=�F:?

(Σ2<,<�F:? ∧ �F:?) ∧ (Σ2=,=�F:? ∧ �F:?)

(
⊕
U

Σ?U+2<,@U+<�F:?) ∧ (
⊕
U

Σ?U+2=,@U+=�F:?)

8∗ 9∗ (Σ
2<,<�F ? ∧ �F ? ) ∧ 8

∗ 9∗ (Σ
2=,=�F ? ∧ �F ? )

8∗ 9∗ (Σ
2(<+=) ,<+=�F ? ∧ �F ? ∧ �F ? ∧ �F ? ) 8∗ 9∗ (Σ

2(<+=) ,<+=�F ? ∧ �F ? )

⊕
U

Σ?U+2<+2=,@U+<+=�F:? .

Δ

5 ∧6

8'∧8'

A∧A

8∗[∧8∗[

8∗ 9∗`
 
2

⊕c

(19)
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From diagram (17), the composite given by diagram (19) is equal to Σ2(<+=) ,<+=< ◦ (A ∧ A) ◦ (8' ∧ 8') ◦
( 5 ∧ 6) ◦ Δ = A∗(8'∗( 5 ))A∗(8'∗(6)). Thus, A∗(8'∗( 5 )8'∗(6)) = A∗(8'∗( 5 ))A∗(8'∗(6)), as desired. �

6. Cartan formula

In this section, we use the coaction map constructed in the previous section to prove a Cartan formula

for the operations %=
:

restricted to mod ? Chow groups. Let - ∈ Sm: . Let 〈·, ·〉 denote the pairing

between A
:
∗,∗ and �F

: ∗,∗
? �F:? . Let = ≥ 0. For G ∈ �∗,∗(-, F?) with _- (G) = ΣH8 ⊗ G8 , we have

%=
:
(G) = Σ〈H8 , %

=
:
〉G8 .

Proposition 6.1. Let G, H ∈ ��∗(-)/? and 8 ≥ 0. Then

%8: (GH) =
8∑

9=0

%
9

:
(G)%

8− 9
:

(H).

Proof. From the definition of %8
:
, 〈b8

1
, %8

:
〉 = 1 and 〈l(U), %8

:
〉 = 0 for all sequences U ≠ (0, 8, 0, 0, . . .).

Using coaction map (13), write

_- (G) =
∑

@

l(U1
@) ⊗ G@

and

_- (H) =
∑

A

l(U2
A ) ⊗ HA

for some sequences U1
@ , U

2
A . Then

_- (GH) =
∑

@,A

((l(U1
@)l(U

2
A ) ⊗ G@HA ).

For any 2 sequences U1
@ , U

2
A appearing in these sums, we have l(U1

@)l(U
2
A ) = 0 if the relation g2

< = 0

from Proposition 2.2 applies for some < ≥ 0, or else l(U1
@)l(U

2
A ) = ±l(U1

@ + U
2
A ).

From the definition of _- ,

%8: (GH) =
∑

@,A

〈(l(U1
@)l(U

2
A ), %

8
:〉G@HA .

Proposition 2.2 implies that if l(U1)l(U2) = 0b
8
1

for two sequences U1, U2 and 0 ≠ 0 ∈ �∗,∗(:, F?),

then 0 = 1 and l(U1) = b
9

1
, l(U2) = b

8− 9
1

for some 0 ≤ 9 ≤ 8. As %8
:

is dual to b8
1
, the only terms for

which 〈l(U1
@ + U

2
A ), %

8
:
〉 ≠ 0 are of the form l(U1

@ 9
) = b

9

1
, l(U2

A 9
) = b

8− 9
1

for 0 ≤ 9 ≤ 8. Hence,

%8: (GH) =
8∑

9=0

〈l(U1
@ 9

+ U2
A 9
), %8:〉G@ 9 HA 9 =

8∑

9=0

%
9

:
(G)%

8− 9
:

(H), (20)

as required. �

7. pth power and instability

In this section, for = ∈ N, we prove that %=
:

is the ?th power on ��= (−)/?. Letting 5 : Spec(:) →
Spec(F?) denote the structure map, it suffices to prove that 5 ∗(%=

F?
) (]=) = ]

?
= for the canonical element

]= ∈ �2=,= ( =,: , F?), where  =,: ∈ � (:) is the motivic Eilenberg–MacLane space representing

�2=,= (−, F?). This proof makes use of Morel’s (1-recognition principle.
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We refer to [7, Section 3] as a reference for the (1-recognition principle. For a base scheme (, let

PShnis(Sm() denote the category of Nisnevich local presheaves of spaces on Sm( . The unstable motivic

homotopy category � (() can be described as the full subcategory of PShnis(Sm() of presheaves that are

A1-invariant. Let !mot : PShnis(Sm() → � (() denote the A1-localization functor. Let (�(
1
(() denote

the stable motivic homotopy category of (1-spectra. For a morphism 5 : (1 → (2 of base schemes, we

have the adjoint functors of pullback 5 ∗ ≔ ! 5 ∗ and push-forward 5∗ ≔ ' 5∗:

5 ∗ : � ((2) ⇄ � ((2) : 5∗.

For 5 : (1 → (2 smooth, 5 ∗ admits a left adjoint 5# such that 5#(-) = - ∈ � ((2) for any - ∈ Sm(1
.

For � = PShnis (Sm(), consider the =-fold bar constructions B=nis that are adjoint to the =th (1-

deloopings Ω=:

B=nis : MonE= (�) ⇄ � : Ω=.

We also consider the infinite bar construction

B∞
nis : CMon(�) = MonE∞ (�) ⇄ Stab(�) : Ω∞,

where Stab(�) ≔ � ⊗ Spt denotes the (1-stabilization of �. Similarly, for � = � (() we have the =th

(1-deloopings Ω=:

B=mot : MonE= (�) ⇄ � : Ω=

and infinite bar construction

B∞
mot : CMon(�) = MonE∞ (�) ⇄ Stab(�) : Ω∞.

For later use, note that B=nis and B∞
nis commute with pullbacks.

Definition 7.1. Define - ∈ Mon(� (()) to be strongly A1-invariant if Bnis- ≃ Bmot- . Define - ∈
CMon(� (()) to be strictly A1-invariant if B=nis- ≃ B=mot- for all = ≥ 0.

Most of the proof of the following proposition was suggested by Marc Hoyois.

Proposition 7.1. Let : be a perfect field of characteristic ? and let 8 : Spec(:) → Spec(�) be
a closed embedding where � is a complete unramified discrete valuation ring with generic point
9 : Spec( ) → Spec(�). Fix = > 0. Let  =,� ≔ Ω∞

P1Σ
2=,=�̂F�? . Then the morphism 8∗ =,� →  =,:

induced by 8∗Σ2=,=�̂F�? � Σ2=,=�F:? is an isomorphism in � (:).

Proof. We first prove that  =,� is connected. Let ' be a Henselian local ring that is essentially smooth

over �. From [11, Corollary 4.2], the Bloch–Levine Chow groups ��< (') of ' vanish for < ≥ 1.

Thus, cnis
0
( =,� (Spec('))) ≃ ∗, since  =,� ∈ � (�) represents the codimension = mod ? Bloch–

Levine Chow group.

Now we prove that 8∗ =,� is connected. As 9 : Spec( ) → Spec(�) is smooth, 9∗ =,� ≃  =, .

Consider the homotopy pushout % in PShnis(Sm�) of the following diagram:

9# =,  =,�

Spec( ).

The morphism 9# =, → Spec( ) induces a bijection on cnis
0

. Hence, cnis
0
( =,�) ≃ c

nis
0
(%). From the

gluing square [25, Theorem 2.21],

!mot (%) ≃ 8∗8
∗( =,�).
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From [25, Corollary 3.22], it follows that 8∗8
∗( =,�) is connected, since  =,� is connected. Let : → (:

be an essentially smooth homomorphism of rings, where (: is Henselian local. The ring (: admits

a lift (� where � → (� is essentially smooth and (� is Henselian local. Hence, 8∗( =,�) ((: ) ≃
8∗8

∗( =,�) ((�) is connected. Thus, 8∗ =,� ∈ � (:) is connected. In particular, cnis
0
(8∗( =,�)) is strongly

A1-invariant. The (1-recognition principle [7, Theorem 3.1.12] then implies that 8∗ =,� is strictly A1-

invariant. Note that  =,: is also strictly A1-invariant, since cnis
0
( =,: ) is strongly A1-invariant.

From [30, Theorem 8.18], we have

B∞
mot8

∗ ( =,�) � 8
∗ (B∞

mot =,�) � 8
∗ (Ω∞
G<

Σ2=,=�̂F�? ) � Ω∞
G<

Σ2=,=�F:? � B∞
mot =,:

in (�(
1
(:). Then [7, Corollary 3.1.15] implies that 8∗ =,� �  =,: in � (:). �

Proposition 7.2. Let : be a field of characteristic ? with structure map 5 : Spec(:) → Spec(F?) and
let ]= ∈ �2=,= ( =,: , F?) be the canonical element. Then 5 ∗%=

F?
(]=) = ]

?
= .

Proof. First, assume that : is perfect. Let � be a discrete valuation ring having : as a residue field

with inclusion morphism 8 : Spec(:) → Spec(�) and generic point 9 : Spec( ) → Spec(�). From

Proposition 7.1, 8∗ =,� �  =,: . Over all base schemes (, let ]= denote the canonical element in

�2=,= ( =,( , F?). Apply 8∗ → 8∗ 9∗ 9
∗ to the natural morphism ]= : Σ∞

+  =,� → Σ2=,=�̂F�? to get the

following commuting square:

Σ∞
+  =,: Σ2=,=�F:?

8∗ 9∗Σ
∞
+  =, Σ2=,=8∗ 9∗�F

 
? .

]=

8∗[ 8∗[

8∗ 9∗ ]=

Apply 8∗[ : 8∗ → 8∗ 9∗ 9
∗ to the morphism Σ∞

+  =,� → Σ2?=,?=�̂F�? in (� (�) corresponding to ]
?
= to

get the commutative diagram

Σ∞
+  =,: Σ2?=,?=�F:?

8∗ 9∗Σ
∞
+  =, 8∗ 9∗Σ

2?=,?=�F ? Σ2?=,?=�F:? .

]
?
=

8∗[ 8∗[

8∗ 9∗ ]
?
= c

(21)

From [35, Lemma 9.8], 8∗ 9∗]
?
= = 8∗ 9∗%

=
 
(]=). Hence, the bottom row of diagram (21) can be rewritten as

8∗ 9∗Σ
∞
+  =, 8∗ 9∗Σ

2=,=�F ? 8∗ 9∗Σ
2?=,?=�F ? Σ2?=,?=�F:? .

8∗ 9∗ ]= 8∗ 9∗%
=
 c

From Theorem 3.2 and the foregoing commuting diagrams, %=
:
(]=) = c ◦ (8∗ 9∗%

=
 
) ◦ (8∗ 9∗]=) ◦ 8

∗[.

Hence, from diagram (21) we have %=
:
(]=) = c ◦ (8∗ 9∗]

?
= ) ◦ 8

∗[ = ]
?
= .

For : not perfect, we have an essentially smooth morphism 5 : Spec(:) → Spec(F?), and

5 ∗( =,F? ) �  =,: [17, Theorem 2.11]. As F? is perfect, we then have 5 ∗(%=
F?
(]=)) = 5 ∗(%=

F?
) (]=) =

5 ∗(]?= ) = ]
?
= . �

From Proposition 3.3, we have the following corollary:

Corollary 7.3. Let - ∈ Sm: . Then %=
:

is the ?th power on ��= (-)/?.

Now that we know that 5 ∗(%=
F?
) is the ?th power on �2=,= (−, F?) for all = ≥ 1, we can prove an

instability result. Let 5 : Spec(:) → Spec(F?) be the structure morphism.

Proposition 7.4. Let <, @, = ≥ 0 be integers such that = > < − @ and = ≥ @. Let - ∈ � (:) and let
G ∈ �<,@ (-, F?). Then 5 ∗(%=

F?
) (G) = 0.
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Proof. Voevodsky’s proof in [35, Lemma 9.9] works here, since 5 ∗(%=
F?
) is the ?th power on

�2=,= (−, F?) by Proposition 7.2. �

Corollary 7.5. Let - ∈ Sm: . Then %=
:

is the 0 map on ��<(-)/? for < < =.

8. Proper push-forward

In this section, we restrict our attention to mod ? Chow groups on Sm: . The ring of mod ? Chow

groups is an oriented cohomology pretheory in the sense of [26, Section 1], with perfect integration

given by proper push-forward on Chow groups. Consider the total cohomological Steenrod operation

%: ≔ %0
:
+ %1

:
+ %2

:
+ · · · : ��∗(−)/? → ��∗ (−)/?. From the Cartan formula (Section 6), %: is a

ring morphism of oriented cohomology pretheories in the sense of [26, Definition 1.1.7].

Let Z[[21, 22, . . .]] denote the power series ring on Chern classes 28 for 8 ≥ 1, and let F ∈
Z[[21, 22, . . .]] denote the total characteristic class corresponding to the polynomial 5 (G) = 1+G?−1. For

? = 2,F is the total Chern class. Let - ∈ Sm: . For a line bundle ! on - ,F(!) = 1+2?−1
1

(!) ∈ ��∗(-).
For a vector bundle + on - that has a filtration by subbundles with quotients given by line bun-

dles !1, . . . , !<, F(+) = F(!1) · · ·F(!<). Let F8 denote the 8th homogeneous component of F for

8 ≥ 0. We have F8 = 0 if ? − 1 does not divide 8. Define the total homological Steenrod operation

%- ≔ F(−)- ) ◦ %: : ��∗ (-)/? → ��∗(-)/?, where )- is the tangent bundle on - . For 8 ≥ 0, let

%-8 denote the (? − 1)8th homogeneous component of %- . The following proposition is a consequence

of the general Riemann–Roch formulas proved by Panin in [26]:

Proposition 8.1. Let 5 : - → . be a projective morphism with -,. ∈ Sm: . Then

��∗(-)/? ��∗(-)/?

��∗(. )/? ��∗(. )/?

5∗

%-

5∗

%.

commutes.

Proof. This is [26, Theorem 2.5.4]. See [26, Section 2.6] for a discussion relevant to our situation. The

main ingredients are that the operations %=
:

satisfy the Cartan formula and that %=
:

is the ?th power on

��= (−)/?. �

Restricting to the case ? = char(:) = 2, we obtain a Wu formula from the work of Panin [26, Theorem

2.5.3]. Here, F = 2 is the total Chern class and Sq denotes the total Steenrod square %: on ��∗(−)/2.

Proposition 8.2. Let -,. ∈ Sm: and let 8 : - ↩−→ . be a closed embedding with normal bundle # . Then

8∗(2(#)) = Sq([-])

in ��∗(. )/2, where [-] ∈ ��∗(. )/2 denotes the mod 2 cycle class of - .

9. Rost’s degree formula

Now that we have Steenrod operations on mod ? Chow groups of Sm: , we can prove Rost’s degree

formula [24, Theorem 6.4] without any restrictions on the characteristic of the base field. We closely

follow the presentation of Merkurjev [24], where Steenrod operations (assuming restrictions on the

characteristic of the base field) are used to prove degree formulas. In [16], Haution extended the Rost

degree formulas to base fields of characteristic 2.
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For a variety - over : , let =- denote the greatest common divisor of deg(G) over all closed points

G ↩−→ - . Let - ∈ Sm: be projective of dimension 3 > 0. Applying Proposition 8.1 to the structure

morphism - → Spec(:) and [-] ∈ ��3 (-)/?, we see that ? | deg(F3 (−)- )).

Proposition 9.1. Let 5 : - → . be a morphism of projective varieties -,. ∈ Sm: of dimension 3 > 0.
Then =. | =- and

deg(F3 (−)- ))

?
≡ deg( 5 ) ·

deg(F3 (−). ))

?
mod =. .

Proof. The proof in [24, Theorem 6.4] works here. From Proposition 8.1, 5∗(F3 (−)- )) ≡
deg( 5 )F3 (−). ) ∈ ��0 (. )/?. We then take the degree homomorphism to finish the proof. �

10. Specialization map

Fix a complete unramified discrete valuation ring � with residue field 8 : Spec(:) → Spec(�) and

fraction field 9 : Spec( ) → Spec(�) as before. Let - ∈ Sm� with special fiber -: and generic fiber

- . As described in [10, Chapter 20.3], there are specialization maps f= : ��= (- ) → ��= (-: )
defined for all = ≥ 0. The specialization maps can be defined at the level of cycles. Namely, for an

irreducible closed subvariety / ⊂ - of codimension =, let /: denote the special fiber of the reduced

closed subscheme / ⊂ - associated to / ⊂ - . Then f= (〈/ 〉) = 〈/:〉 ∈ ��= (-: ). Also let f=
denote the specialization map induced on mod ? Chow groups.

We now show that the Steenrod operations %=
:

defined on ��∗(-: )/? are compatible with the

operations %=
 

defined on ��∗(- )/?.

Proposition 10.1. Let < ≥ 0 and let / ⊂ - be a closed subvariety of codimension =. Let 〈/ 〉 ∈
��= (- )/? denote the mod ? cycle class of / . Then

%<: (f= (〈/ 〉)) = f=+<(?−1) (%
<
 (〈/ 〉)) ∈ ��

=+<(?−1) (-: )/?.

Proof. The mod ? cycle class of / ⊂ - induces a map

5� : Σ∞
+ - → Σ2=,=�̂F�?

in (� (�). The map 8∗ 5� gives the mod ? cycle class of /: (the special fiber of / ⊂ -), and 9∗ 5�
gives the mod ? cycle class of / . Applying the natural transformation 8∗[ : 8∗ → 8∗ 9∗ 9

∗ to 5� gives a

commuting square:

Σ∞
+ -: Σ2=,=�F:?

8∗ 9∗Σ
∞
+ - 8∗ 9∗Σ

2=,=�F ? .

8∗ 5�

8∗[ 8∗[

8∗ 9∗ 9
∗ 5�

(22)

From Theorem 3.2, %<
:
= Φ(%<

 
) = c ◦ 8∗ 9∗%

<
 
◦ 8∗[. Hence, from diagram (22),

c ◦ 8∗[ ◦ %<: ◦ 8∗ 5� = c ◦ 8∗ 9∗%
<
 ◦ 8∗ 9∗ 9

∗ 5� ◦ 8∗[
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in the following commuting diagram:

Σ∞
+ -: Σ2=,=�F:? Σ2(=+<(?−1)) ,=+<(?−1)�F:?

8∗ 9∗Σ
∞
+ - 8∗ 9∗Σ

2=,=�F ? 8∗ 9∗Σ
2(=+<(?−1)) ,=+<(?−1)�F:?

Σ2(=+<(?−1)) ,=+<(?−1)�F:? .

8∗ 5�

8∗[ 8∗[

%<
:

8∗[

8∗ 9∗ 9
∗ 5� 8∗ 9∗%

<
 

c

(23)

Write %<
 
(〈/ 〉) =

∑@

;=1
0;

〈
/ ;
 

〉
for some @, 0; ∈ Z and closed subvarieties / ;

 
⊂ - of codi-

mension = + <(? − 1). Taking the associated reduced closed subschemes in - gives an element
∑@

;=1
0;

〈
/
;

 

〉
∈ �2(=+<(?−1)) ,=+<(?−1) (-, F?) which corresponds to a morphism

6 : Σ∞
+ - → Σ2(=+<(?−1)) ,=+<(?−1) �̂F�? .

For 1 ≤ ; ≤ @, let / ;
:

denote the special fiber of /
;

 . Taking pullbacks, 8∗6 gives

@∑

;=1

0;
〈
/ ;:

〉
∈ �2(=+<(?−1)) ,=+<(?−1) (-: , F?)

and 9∗6 =
∑@

;=1
0;

〈
/ ;
 

〉
= %<

 
(〈/ 〉). Applying 8∗[ to 6 yields a commuting diagram:

Σ∞
+ -: Σ2(=+<(?−1)) ,=+<(?−1)�F:?

8∗ 9∗Σ
∞
+ - 8∗ 9∗Σ

2(=+<(?−1)) ,=+<(?−1)�F ?

Σ2(=+<(?−1)) ,=+<(?−1)�F:? .

8∗6

8∗[ 8∗[

8∗ 9∗ 9
∗6

c

(24)

From diagrams (23) and (24), we get

8∗6 =

@∑

;=1

0;
〈
/ ;:

〉
= c ◦ 8∗ 9∗ 9

∗6 ◦ 8∗[ = c ◦ 8∗ 9∗(%
<
 (〈/ 〉)) ◦ 8

∗[

= c ◦ 8∗ 9∗%
<
 ◦ 8∗ 9∗ 9

∗ 5� ◦ 8∗[ = %<: (〈/:〉),

as required. �

We recall some facts about flag varieties, using [21] as a reference. Let �: be a split reductive group

over : with Borel subgroup �: and Weyl group, . From the Bruhat decomposition,

�:/�: =
∐

F ∈,

�:F�:/�: .

For F ∈ , , the closure -F
:

of �:F�:/�: in �:/�: is called a Schubert variety and

�:F�:/�: � A
; (F)
:

,
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where ; (F) is the length of F in, . Let %: ⊇ �: be a parabolic subgroup of �: . We have %: = �,%�

for some subgroup ,% ≤ , . There is a related ,% ⊂ , , such that for each F ∈ ,% , �:F�:/�: is

isomorphic to �:F�:/%: under the quotient morphism �:/�: → �:/%: [21, Lemma 1.2]. We also

have a cell decomposition

�:/%: =
∐

F ∈, %

�:F�:/%: .

This cell decomposition is independent of the field : . It follows that the total Chow group��∗(�:/%: )
is freely generated as an additive group by the cycle classes

〈
.F
:

〉
of the images .F

:
of the Schubert

varieties -F
:

for F ∈ ,% .

Chevalley [2] and Demazure [5] showed that the Chow rings

��∗(��1
/%�1

) and ��∗(��2
/%�2

)

are isomorphic for any two fields �1, �2. The isomorphism is given by mapping the class of a Schubert

subscheme.F
�1

to.F
�2

for F ∈ ,% . We now prove that the Steenrod operations %=
:

and %=
 

give the same

action on �2∗,∗(�:/%: , F?) � ��
∗(�:/%: )/? � ��

∗(� /% )/? � �
2∗,∗(� /% , F?).

Corollary 10.2. Let = ≥ 0 and let F0 ∈ ,% . Then

%= (
〈
. F0

〉
) =

∑

F ∈, %

0F
〈
. F

〉

in ��∗(� /% )/? for some 0F ∈ Z, and

%=: (
〈
. :F0

〉
) =

∑

F ∈, %

0F
〈
. :F

〉
.

Proof. We refer to [4] for facts about integral models of split reductive groups. Let F ∈ , and let

-F
�

be the reduced closed subscheme of ��/�� associated to ��F��/�� . Note that -F
�

is flat

over Spec(�). For any field � and morphism Spec(�) → Spec(�), the fiber -F
�
×Spec(�) Spec(�) in

��/�� is isomorphic to -F
�

[29, Theorem 2]. The main point to check is that the fibers of -F
�

over

Spec(�) are reduced.

Now assume that F ∈ ,% . Let.F
�

denote the image of -F
�

in��/%� . Then.F
�
×Spec(�) Spec(�) �

.F
�

for any field � and morphism Spec(�) → Spec(�). Proposition 10.1 then applies to finish the

proof. �

11. Applications to quadratic forms

In this section, we use the Steenrod squares Sq2=
:

to prove new results about nonsingular quadratic forms

over a field : of characteristic 2. The results we prove have analogues in characteristic ≠ 2 conveniently

found in [6, Sections 79–82] where the only missing ingredient for extending to characteristic 2 was the

existence of Steenrod squares satisfying expected properties.

Recall that a quadratic form (@,+) over : is nonsingular if the associated radical+⊥ is of dimension at

most 1 and @ is nonzero on+⊥ \0. Equivalently, (@,+) is nonsingular if the associated projective quadric

is smooth. Note that nonsingular quadratic forms are called nondegenerate in [6]. In characteristic 2,

anisotropic quadratic forms are not necessarily nonsingular. Let (@,+) be a nonsingular anisotropic

quadratic form defined over : and let - be the associated projective quadric of dimension �. Over

some field extension � of : , the quadric -� becomes split. A computation of ��∗(-� ) can be found

in [6, Chapter XIII]. Let ℎ ∈ ��1 (-� ) denote the pullback of the hyperplane class in P(+) and let

;3 ∈ ��3 (-� ) denote the class of a 3-dimensional subspace in -� , where 3 = ⌊�/2⌋. Let ;3−8 = ℎ
8 · ;3

for 0 ≤ 8 ≤ 3.
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Proposition 11.1. As an additive group, ��∗(-� ) is freely generated by ℎ8 , ;8 for 0 ≤ 8 ≤ 3. For the
ring structure, ℎ3+1 = 2;�−3−1, ;2

3
= 0 if 4 does not divide �, and ;2

3
= ;0 if 4 divides �.

From Corollary 10.2, the action of the Steenrod squares Sq2=
� on ��∗(-� )/2 agrees with the action

of Steenrod squares on the mod 2 Chow ring of a split quadric in characteristic 0. We refer to [6,

Corollary 78.5] for the calculation of the action of Steenrod squares on the mod 2 Chow ring of a split

quadric in characteristic 0.

Proposition 11.2. For any 0 ≤ 8 ≤ 3 and 9 ≥ 0,

Sq
2 9
�
(ℎ8) =

(
8

9

)
ℎ8+ 9 0=3 Sq

2 9
�
(;8) =

(
� + 1 − 8

9

)
;8− 9 .

To state our results, we recall the definition of relative higher Witt indices. Let i be a nonsingular

quadratic form over a field � and let � (i) denote the function field of the associated quadric. Let i0=
denote the anisotropic part of i and let i0(i), the Witt index of i, denote the dimension of a maximal

isotropic subspace for i. Start with i0 ≔ i0= and �0 ≔ �. Inductively define �8 ≔ �8−1(i8−1) and

i8 ≔ (i�8 )0= for 8 > 0. There exists an integer h(i), called the height of i, such that dimih(i) ≤ 1.

For 1 ≤ 9 ≤ h(i), we then define the 9 th relative higher Witt index i 9 (i) to be i0(i�9 ) − i0(i�9−1
).

Proposition 11.3. Let i be a nonsingular anisotropic quadratic form over : such that dimi ≥ 2. Then
i1(i) ≤ 2E2 (dimi−i1 (i)) .

Proof. The proof of [6, Proposition 79.4] works in this case and uses the computation of the Steenrod

squares on the mod 2 Chow ring of a split quadratic given by Proposition 11.2 along with Corollary

3.4 on base change of the Steenrod squares. From the Cartan formula (Section 6) and results on shell

triangles in [6, Sections 72,73] that were proved in arbitrary characteristic, we see that the conclusion

of [6, Lemma 79.3] holds for nonsingular anisotropic quadratic forms in characteristic 2. �

To finish, we extend 3 more results of Karpenko on quadratic forms in characteristic ≠ 2 to the

case of nonsingular anisotropic quadratic forms in characteristic 2. Let i be a nonsingular anisotropic

quadratic form defined over a field : of characteristic 2 with relative higher Witt indices i 9 ≔ i 9 (i) as

defined previously for 9 = 1, . . . , h ≔ h(i).

Proposition 11.4. Assume that h > 1. Then

E2 (i1) ≥ min(E2(i2), . . . , E2(ih)) − 1.

Proof. The analogue of this proposition in characteristic ≠ 2 can be found in [6, Corollary 81.19]. The

proof there works over a base field of characteristic 2 using the properties we have established for the

Steenrod squares Sq2=
:
. The conclusions of [6, Lemma 80.1] and [6, Theorem 80.2] hold in our situation,

since Sq2=
:

acts by squaring on��= (−)/2 by Proposition 7.2 and the total homological Steenrod square

commutes with proper push-forward by Proposition 8.1. �

We next discuss the characteristic 2 analogue of the “holes in �=" result [6, Corollary 82.2]. For

a field �, the quadratic Witt group �@ (�) is defined as the quotient of the Grothendieck group of the

monoid of isometry classes of even-dimensional nonsingular quadratic forms by the subgroup generated

by the hyperbolic plane [6, Section 8]. There is an action of the Witt ring , (�) of nondegenerate

symmetric bilinear forms on �@ (�). Let � (�) ⊂ , (�) denote the fundamental ideal of , (�) and set

�=@ (�) ≔ �=−1 (�) · �@ (�) for = ≥ 1. Let : be a field of characteristic 2. Mimicking the proof of [6,

Corollary 82.2], with �=@ (:) used in place of �= (:), gives the following result (let = ≥ 1):

Proposition 11.5. Let i ∈ �=@ (:) be a nonsingular anisotropic quadratic form such that dimi < 2=+1.

Then there exists 0 ≤ 8 ≤ = such that dimi = 2=+1 − 28+1.
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Our last result concerns D-invariants of fields. The D-invariant D(�) of a field � is defined to be

the smallest non-negative integer (or ∞ if there is no such integer) D(�) such that every nonsingular

quadratic form i over � with dimi > D(�) is isotropic.

In [32], Vishik constructed characteristic 0 fields of D-invariant 2A + 1 for all A ≥ 3. Karpenko used

Steenrod squares on mod 2 Chow groups to show that for any A ≥ 3 and any field � of characteristic

≠ 2, � is contained in a field of D-invariant 2A + 1 [19]. Karpenko’s constructions now extend to

fields of characteristic 2 through the use of the Steenrod squares Sq2=
:

defined in this article for : of

characteristic 2.

Proposition 11.6. Let : be a field of characteristic 2 and let A ≥ 3. Then : is a subfield of a field of
D-invariant 2A + 1.
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