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Abstract
There are many deviation sources in the assembly process of aircraft complex thin-walled structures. To get impor-
tant factors that affect quality, it is crucial to diagnose the key deviation resources. The deviation transfer between
deviation sources and assembly parts has the characteristics of small sample size, nonlinearity, and strong coupling,
so it is difficult to diagnose the key deviation sources by constructing assembly dimension chains. Therefore, based
on the deviation detection data, transfer entropy and complex network theory are introduced. Integrating the depth-
first traversal algorithm with degree centrality theory, a key deviation diagnosis method for complex thin-walled
structures is proposed based on weighted transfer entropy and complex networks. The application shows that key
deviation sources that affect assembly quality can be accurately identified by the key deviation source diagnosis
method based on complex networks and weighted transfer entropy.

Nomenclature

Symbols Connotation
F Assembly feature
U Network nodes
L Assembly level
Z The number of nodes
δ Assembly feature deviation
T Transfer entropy
p Probability density
H Information entropy
e Information entropy weight
λ Kendall coefficient weight
C Degree centrality
ψ Contribution
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1.0 Introduction
Complex thin-walled structure products such as aircraft have the characteristics of poor stiffness, high
assembly accuracy, complex structures and many assembly levels. Deformation recovery of thin-walled
parts, part manufacturing errors and installation positioning errors will cause assembly deviations and
then lead to assembly over-tolerance easily [1–3]. If the deviation transfer model can’t be established to
diagnose the key deviation sources that affect the assembly quality, the aircraft assembly quality can’t
be improved efficiently and at a low cost. Therefore, it is the key for the deviation source diagnosis to
build a deviation transfer model.

In recent years, many universities and researchers have conducted research on the calculation and
analysis of deviation transfer. For instance, Chase et al. proposed the mathematical model of transfer and
accumulation by regarding assembly parts as rigid bodies [4, 5]. Based on the rigid body assumption
of assembly parts, Mantriparagada et al. applied a mathematical model of assembly deviation trans-
fer and accumulation to the calculation and analysis of multi-station assembly deviations [6]. Zhang
et al. achieved the identification of key influencing factors by combining the complex networks and
entropy weight method [7]. McKenna et al. first presented a variation propagation model for over-
constrained assemblies and develops a novel modeling method to connect variations with production
costs [8]. Considering the deformation of thin-walled parts during assembly, Falgarone et al. used the
finite element method to calculate assembly deviations of thin-walled parts [9]. Zhang et al. applied
the finite element method to the deformation analysis of the riveting assembly of thin-walled parts
[10–12]. Simulation modeling and large-scale calculation are needed by the finite element method. This
method has the disadvantages of long cycles and high costs. It is difficult to meet the tolerance design
and product analysis of complex structures such as aircraft. To make full use of assembly deviation data,
Chen Hui et al. proposed a statistical analysis method for thin-walled parts, based on normal distribution
[13]. High-precision digital measuring equipment has been successfully applied to all stages of aircraft
assembly, such as laser tracker [14–16]. Real and reliable data of aircraft assembly deviation transfer and
accumulation can be measured by using high-precision digital measurement equipment. It is of great
significance for finding the key deviation sources that affect the assembly quality to mine the information
contained in the data [17, 18].

Small batch production is often used in large complex thin-walled structures products, such as air-
craft. Small batch production will lead to a small sample size of detection data and has many assembly
features. The detection data of assembly deviation has the characteristics of high dimension and small
sample size. The detection data of assembly deviation can’t be calculated and analysed by traditional
statistical methods. In addition, the deviation transfer between deviation sources and assembly parts
has the characteristics of nonlinearity and strong coupling. Therefore, it is difficult to calculate the
assembly deviation by building assembly dimension chains. Transfer entropy can not only describe the
information quantity between systems but also describe the directivity and the dynamic nonlinearity
of information transfer [19–21]. In addition, it has no requirement for the sample size. Topological
structures of complex systems can be described by complex networks [22–24]. It is suitable for air-
craft product assembly which has a large number of assembly parts and complex structures. Taking
the assembly deviation of aircraft complex thin-walled structures as the object, a key deviation sources
diagnosis method of complex structures is proposed based on complex networks and weighted trans-
fer entropy. Firstly, the complex network is used to describe the topological relationship of product
structure. Then, the transfer entropy is used to quantify the deviation transfer relationship in com-
plex networks. Secondly, considering the difference in the importance of each node in the complex
network, the information entropy and Kendall coefficient are used to obtain the weighted transfer
entropy. Furthermore, the contribution between nodes is obtained. Finally, from the perspective of
the entire complex network structure, the depth-first traversal algorithm is used to obtain the devia-
tion transfer path, and the degree centrality theory is used to define the global importance of each
node, which the total contribution of each deviation source to assembly deviation of the product is
calculated.
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Figure 1. Assembly feature tree of complex thin-walled structures.

2.0 Assembly deviation transfer complex networks of complex thin-walled structures
2.1 Assembly feature tree
During the assembly process of complex thin-walled structures, assembly feature surfaces contact each
other. With the contact, assembly feature deviations will be transferred to the next level of assembly
parts. Eventually, it forms the deviation of complex thin-walled structures. Different from error, assembly
deviation refers to the difference between the theoretical position and the actual position of the assembly
part. The assembly deviation of the assembly feature contains the geometric relationship and deviation
data.

In view of this, according to the assembly process information of complex thin-walled structures,
assembly part features are obtained and assembly sequences are defined. The assembly feature tree is
constructed, as shown in Fig. 1.

2.2 Complex networks of assembly deviation transfer
A lot of information can be described by the assembly feature tree, including the assembly levels, assem-
bly relationships between parts and the feature information extracted from each assembly part. However,
it can’t obtain the importance of each assembly feature. Nodes and connection edges of complex
network theory agree with part features and deviation information transfer in the assembly process.
From network topology, the importance of each node can be described by degree centrality theory. It
makes the key deviation source diagnosis more accurate.

Therefore, complex networks are introduced to describe the deviation transfer process. Network
nodes represent assembly features, such as the position of the assembly hole. Connection edges rep-
resent assembly relationships between features. Complex networks of assembly deviation transfer are
constructed. Complex networks of assembly deviation transfer are denoted as G = {U, E, W}. Where
U represents a set of network nodes, namely, assembly features of each part. E represents a set of
connection edges of complex networks, namely, assembly relations between assembly features. W rep-
resents the deviation transfer relationships between nodes, namely, the size of deviation information
transfer between assembly features. In addition, Z represents the number of nodes. Z×Z Adjacency
matrix M represents the assembling condition of each node in deviation transfer networks. Among them,
M(i, j)= 1 represents that node Ui and node Uj have an assembly relationship, otherwise it is 0.
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3.0 Assembly deviation transfer based on weighted transfer entropy
3.1 Quantitative description of assembly deviation transfer based on transfer entropy
The assembly feature deviation of the node Uμ

Lα is denoted as δUμLα
=

{
δUμ1

Lα
, δUμ2

Lα
, · · · , δUμn

Lα

}
in the Lα

level of the deviation transfer networks. The assembly feature deviation of the node Uν
Lβ

is denoted as

δUνLβ
=

{
δUν1

Lβ
, δUν2

Lβ
, · · · , δUνn

Lβ

}
in the Lβ level, where n denotes the assembly number of times.

Transfer entropy can quantify the information transfer between variables. Transfer entropy TUμLα→UνLβ

is used to quantify the deviation transfer relationship between Uμ

Lα and Uν
Lβ

.

TUμLα→UνLβ
=

∑
p
(
δUμ(n+1)

Lα
, δUμn

Lα

(τ1), δUνn
Lβ

(τ2)
)

log
p
(
δUμ(n+1)

Lα

∣∣∣δUμn
Lα

(τ1), δUνn
Lβ

(τ2)
)

p
(
δUμ(n+1)

Lα

∣∣∣δUμn
Lα

(τ1)
) , (1)

where p
(
δUμ(n+1)

Lα
, δUμn

Lα

(τ1), δUνn
Lβ

(τ2)
)

denotes the joint probability density of δUμ(n+1)
Lα

, δUμn
Lα

(τ1) and δUνn
Lβ

(τ2)

respectively. p
(
δUμ(n+1)

Lα

∣∣∣δUμn
Lα

(τ1)
)

denotes the conditional probability density. p
(
δUμ(n+1)

Lα

∣∣∣δUμn
Lα

(τ1), δUνn
Lβ

(τ2)
)

denotes the conditional probability density function of δUμ(n+1)
Lα

. τ1 and τ2 denote the power of δUμn
Lα

and
δUνn

Lβ
respectively.

To avoid the calculation of a high-dimensional probability density function, let τ1 = τ2 = 1.
Equation (1) is rewritten as

TUμLα→UνLβ
=

∑
p
(
δUμ(n+1)

Lα
, δUμn

Lα
, δUνn

Lβ

)
log

p
(
δUμ(n+1)

Lα

∣∣∣δUμn
Lα

, δUνn
Lβ

)

p
(
δUμ(n+1)

Lα

∣∣∣δUμn
Lα

) . (2)

According to the calculation formula of conditional probability

p
(
δUμ(n+1)

Lα

∣∣∣δUμn
Lα

)
= p

(
δUμ(n+1)

Lα
δUμn

Lα

)/
p
(
δUμn

Lα

)
. (3)

As shown in Equation (2), effective probability density estimation is needed to calculate TUμLα→UνLβ
.

Prior knowledge of data distribution is not needed for kernel density estimation. Any assumed data
distribution is not included in kernel density estimation. It meets the characteristics of aircraft small
batch production. Therefore, kernel density estimation is introduced to define the probability density of
assembly feature deviations in the Lα level.

p
(
δUμx

Lα

)
= 1

n − 2h − 1

n∑
y=1

K
(
ε−

∥∥∥δUμx
Lα

− δUμy
Lα

∥∥∥)
, (4)

where h is the Theiler window size. It is used to eliminate deviations from kernel density estimation.
ε denotes the bandwidth of the kernel density function. K(·) denotes the unit step function.

K
(
ε−

∥∥∥δUμx
Lα

− δUμy
Lα

∥∥∥)
=

⎧⎪⎨
⎪⎩

1 ε−
∥∥∥δUμx

Lα
− δUμy

Lα

∥∥∥ ≥ 0

0 ε−
∥∥∥δUμx

Lα
− δUμy

Lα

∥∥∥< 0
, (5)

where
∥∥∥δUμx

Lα
− δUμy

Lα

∥∥∥ is the distance norm of assembly feature deviations.
Similarly, the probability density of assembly feature deviations is defined in the Lβ level.

Incorporating Equations (2)–(5), transfer entropy between assembly feature deviations can be obtained.

TUμLα→UνLβ
= 1

n

∑
log

p
(
δUμ(n+1)

Lα
, δUμn

Lα
, δUνn

Lβ

)
p
(
δUμn

Lα

)

p
(
δUμn

Lα
, δUνn

Lβ

)
p
(
δUμ(n+1)

Lα
, δUμn

Lα

) . (6)
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3.2 Node importance empowerment
The difference of importance from each node fails to be considered by transfer entropy. The deviation
information quantity of nodes can be measured by information entropy. The correlation between nodes
can be measured by the Kendall coefficient. Therefore, the information entropy and Kendall coefficient
are introduced to objectively quantify the node importance from two different aspects. One is the size of
the information quantity, the other is the correlation degree between nodes. It overcomes shortcomings
of the node importance empowerment based on experience.

1 Deviation Matrix A of each node

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

δ1
U1
δ1

U2
· · · δ1

UZ

...
... · · · ...

δk
U1
δk

U2
· · · δk

UZ

...
... · · · ...

δn
U1
δn

U2
· · · δn

UZ

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where Z denotes the number of complex network nodes. δk
UZ

denotes deviation detection data
of nodes.

2 Proportion matrix P of deviation detection data

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

P1
U1

P1
U2

· · · P1
UZ

...
... · · · ...

Pk
U1

Pk
U2

· · · Pk
UZ

...
... · · · ...

Pn
U1

Pn
U2

· · · Pn
UZ

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where Pk
UZ

denotes the proportion of deviation detection data of the k-th assembly in all number
of assemblies.

Pk
UZ

= δk
UZ

n∑
k=1

δk
UZ

. (7)

3 Calculation of node information entropy HUi .

HUi = − 1

ln n

n∑
k=1

Pk
Ui

ln Pk
Ui
(i = 1, 2, · · · , z) . (8)

4 Solution of node information entropy weight eUi .

eUi =
1 − HUi

Z∑
i=1

1 − HUi

. (9)

5 Kendall correlation coefficient between two assembly nodes.

Because the number of assemblies is n, each assembly will produce deviation data. Node Ui

and Node Uj have n deviation data, and the deviation data represents assembly feature deviation,
namely, Ui =

{
δ1

Ui
, δ2

Ui
, · · · , δn

Ui

}
and Uj =

{
δ1

Uj
, δ2

Uj
, · · · , δn

Uj

}
. The data pair denotes the deviation data

of two nodes corresponding to simultaneous assembly, namely,
(
δx

Ui
, δx

Uj

)
or

(
δ

y
Ui

, δy
Uj

)
. According to

https://doi.org/10.1017/aer.2023.63 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2023.63


The Aeronautical Journal 817

Equation (10), the data pairs are calculated to determine whether
(
δx

Ui
, δx

Uj

)
and

(
δ

y
Ui

, δy
Uj

)
are correlated.

⎧⎨
⎩

Correlated data pairs
(
δx

Ui
− δ

y
Ui

) (
δx

Uj
− δ

y
Uj

)
> 0

Uncorrelate data pairs
(
δx

Ui
− δ

y
Ui

) (
δx

Uj
− δ

y
Uj

)
< 0

. (10)

According to Equation (11), the Kendall correlation coefficient gi,j of Ui and Uj is calculated.

gi,j = 2(nc − nd)

n(n − 1)
, (11)

where nc and nd are the number of correlated and uncorrelated data pairs, respectively.

6 Overall Kendall correlation coefficient ηUi between nodes

ηUi =

Z∑
j=1

gi,j

Z
. (12)

7 Kendall coefficient weight λUi of each node

λUi =
ηUi

Z∑
i=1

ηUi

. (13)

8 Integrating information entropy weight and Kendall coefficient weight, the weight of deviation
transfer ρUi of each node is obtained

ρUi =
eUi
λUi

Z∑
i=1

eUi
λUi

. (14)

In Equation (14), the weight ρUi represents the importance of nodes in deviation transfer.

3.3 Construction of assembly deviation transfer function based on weighted transfer entropy
According to ρUi , the deviation transfer entropy is weighted, and the deviation transfer relationship
between node Uμ

Lα and node Uν
Lβ

is obtained.

δUμLα→UνLβ
= ρUμLα

TUμLα→UνLβ
. (15)

Extending Equation (15), the deviation transfer relationship between node Uν
Lβ

and node Uν
Lβ

is
obtained at the Lα level.

δ∗
UνLβ

=
zα∑
μ=1

δUμLα→UνLβ
. (16)

Incorporating Equations (15) and (16), the deviation transfer contribution between node Uμ

Lα and node
Uν

Lβ
is obtained.

ωUμLα→UνLβ
=
δ

UμLα→UνLβ

δ∗
UνLβ

, (17)

where the larger ω
UμLα→UνLβ

is, the larger influence of the node Uμ

Lα on the node Uμ

Lα is.
As shown in Fig. 2, the weighted deviation transfer entropy obtained by Equation (17) is used to

describe relationships of transfer and accumulation between assembly deviations.
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Figure 2. Assembly deviation transfer complex networks of complex thin-walled structures.
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Figure 3. Key deviation source diagnosis of complex thin-walled structures.

4.0 The key deviation source diagnosis of complex thin-walled structures
4.1 The process of key deviation source diagnosis of complex thin-walled structures
The complex networks of deviation transfer have complex structures and many nodes. If it is directly
used for assembly quality control without distinction, it will not be able to grasp the key factors. As
shown in Fig. 3, the topological relationship of assembly structures is described by complex networks,
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and the causality of assembly deviation transfer is described by assembly feature transfer entropy. First,
according to the assembly process information of complex thin-walled structures, assembly units are
divided and the assembly sequences are defined. The assembly feature tree is constructed based on
assembly units and assembly sequences. Then, assembly features are regarded as network nodes. The
complex networks of assembly deviation transfer are constructed. Secondly, the information entropy
theory of information theory is introduced to define the deviation transfer entropy. The assembly devi-
ation transfer function based on transfer entropy is constructed to quantify the size and direction of
deviation transfer between network nodes. Thirdly, the information entropy and Kendall coefficient are
introduced to quantify the importance of network nodes objectively. The deviation transfer entropy is
weighted according to the importance weight. Finally, the depth-first traversal algorithm is used to search
deviation transfer paths. The size of the deviation transfer is quantified by transfer entropy. The degree
centrality of complex networks is integrated to identify key deviation sources that affect the assembly
quality of complex thin-walled structures.

4.2 Deviation transfer path search based on depth-first traversal algorithm
As shown in Fig. 4, the depth-first traversal algorithm is introduced to search the deviation transfer
paths. First, the deviation source is recorded as the start point of deviation transfer paths. Second, tak-
ing the deviation source as the start point, the next assembly feature node that the deviation source
can transmit to is explored, and the assembly feature node is recorded. Third, based on this assem-
bly feature node, the algorithm will continue to explore and record the next assembly feature node
that the deviation can transmit to until the next assembly feature node is not found. Moreover, the
algorithm judges whether all assembly feature nodes are explored. If there exist unexplored assem-
bly feature nodes, the algorithm returns to the superior to explore. Finally, if the algorithm returns to
the deviation source, there still exist unrecorded assembly feature nodes. The algorithm will search
other deviation sources until all assembly feature nodes are found and all deviation transfer paths are
recorded.

4.3 Key deviation source diagnosis based on degree centrality and global transfer entropy
4.3.1 Quantification of node importance
Degree centrality is an index for judging the importance of network nodes. The degree centrality is
used to quantify the importance of nodes, which is calculated according to the number of edges in com-
plex networks. Therefore, degree centrality is introduced to represent the importance CUμLα

in deviation
transfer networks.

CUμLα
= 1

Z − 1

ϑ∑
φ=1

zφ∑
χ=1

mUμLαUχLφ
, (18)

where CUμLα
denotes the degree centrality of node Uμ

Lα . Uχ

Lφ denotes the χ th network node in the Lφ
level. zφ denotes the total number of nodes in the Lφ level. ϑ denotes the total number of assembly
levels.

mUμLαUχLφ
=

{
1
0

Deviation of node Uμ

Lα can be passed to node Uχ

Lφ

Deviation of node Uμ

Lα can not be passed to node Uχ

Lφ

.

4.3.2 Calculation of assembly deviation contribution
Incorporating Equations (17) and (18), key factors that affect the assembly accuracy of complex thin-
walled structures are mined from two different perspectives, including network topology structures and

https://doi.org/10.1017/aer.2023.63 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2023.63


820 Zhu et al.

Start

Search the
deviation source

Search

Record the start point of
deviation transfer path

Search

Search the next
feature nodes

Record feature
nodes

Continue to
search

All nodes are
recorded

Node is deviation
source

Return

Search other
deviation sources

End

yes

yes

Yes

No

Yes

No

No

No

Figure 4. Depth-first traversal algorithm to search deviation transfer path.

deviation information transfer. The contribution ψ of deviation sources for the assembly deviation of
complex thin-walled structures is defined as

ψUμLα
=

∏(
ωUμLα→UνLβ

CUμLα

)
zα∑
μ=1

(∏(
ωUμLα→UνLβ

CUμLα

)) , (19)

whereψUμLα
is the contribution of deviation source Uμ

Lα for the assembly deviation of complex thin-walled
structures.

According to ψ , the ranking is carried out. If the value of ψ is large, it represents that this deviation
source has a great influence on the assembly deviation of complex thin-walled structures, namely this
deviation source is more likely to be the key deviation source.
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Table 1. Overall size of assembly units

Name Overall size (mm)
Upper and lower panel skin 3,000 × 2,200 × 5
Upper and lower panel stringer 30 × 2,800 × 44
Front and back spar 3,000 × 640 × 10
Root rib 2,200 × 680 × 200
Internal rib 2,200 × 680 × 10

Upper

panel skin

Upper

panel stringer

Back spar

Root rib 1

Internal rib 1 Lower

panel skin

Lower

panel stringer

Front spar

Root rib 2

Internal rib 2

Internal rib 3

Figure 5. Central wing box of an aircraft.

5.0 Application
The central wing box is a typical complex thin-walled structure. As shown in Fig. 5, taking a certain
type of aircraft central wing box as the object, the central wing box of the aircraft is riveted by many
parts, including upper panel skin, upper panel stringer, lower panel skin, and lower panel stringer.

3DCS software is a typical simulation software of aircraft assembly tolerance. It can be used to cal-
culate the assembly deviations of rigid-flexible coupling parts. First, 3DCS software is used to simulate
the assembly deviation of the central wing box to obtain deviation data of assembly features. Second,
based on the assembly feature deviation data, complex network theory, and transfer entropy theory are
used to calculate the assembly deviation transfer. Finally, by comparing the calculation results of assem-
bly deviation transfer and direct simulation results of 3DCS software, the correctness, and feasibility of
the assembly deviation transfer and key deviation source diagnosis method are verified for complex
thin-walled structures. The overall sizes of the central wing box are shown in Table 1, and the material
of assembly parts is aluminum-lithium alloy. As shown in Fig. 6, assembly levels are divided and the
assembly sequences are clarified, according to the assembly process of the central wing box.

5.1 Assembly feature definition
According to the assembly process information of the central wing box, assembly features are defined
as shown in Tables 2, 3 and 4. The meaning of position degree is position deviation of the axis of the
hole relative to the central axis.

5.2 Assembly deviation transfer network node definition
According to assembly levels, assembly sequences shown in Fig. 6, and assembly characteristics shown
in Table 2, 3 and 4, assembly deviation transfer network nodes of the central wing box are defined as
shown in Table 5.
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Table 2. Assembly features of the first level

Part Assembly feature
Front spar 1 Position degree of front spar positioning hole

2 Upper assembly surface profile of front spar

Back spar 3 Position degree of back spar positioning hole
4 Upper assembly surface profile of back spar

Root rib 1 5 Position degree of root rib 1 positioning hole
6 Upper assembly surface profile of root rib 1

Root rib 2 7 Position degree of root rib 2 positioning hole
8 Upper assembly surface profile of root rib 2

Upper panel skin 9 Position degree of upper panel skin positioning hole
10 Inner surface profile of upper panel skin

Table 3. Assembly features of the second level

Name Assembly feature
Skeleton feature 1 Upper surface of front spar
Skeleton feature 2 Upper surface of back spar
Skeleton feature 3 Upper surface of root rib 1
Skeleton feature 4 Upper surface of root rib 2
Upper panel Inner surface of upper panel skin

Table 4. Assembly features of the third level

Name Assembly feature
Centre wing box Upper surface of central wing box

first level

second level

third level

Spar Root rib Internal rib
Lower panel

stringer

Lower

panel skin

Upper panel

stringer

Upper panel

skin

Central wing box

Wing box skeleton Lower panel Upper panel

Figure 6. Assembly level division of central wing box.
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Table 5. Assembly deviation transfer network nodes of the central wing box

Assembly feature Node Assembly feature Node
Position degree of front spar

positioning hole
U1

1 Position degree of skin positioning
hole

U9
1

Upper surface profile of front spar U2
1 Inner surface profile of skin U10

1

Position degree of back spar
positioning hole

U3
1 Upper surface of front spar U1

2

Upper surface profile of back spar U4
1 Upper surface of back spar U2

2

Position degree of root rib1
positioning hole

U5
1 Upper surface of root rib 1 U3

2

Upper surface profile of root rib 1 U6
1 Upper surface of root rib 2 U4

2

Position degree of root rib 2
positioning hole

U7
1 Inner surface of upper panel skin U5

2

Upper surface profile of root rib 2 U8
1 Upper surface of central wing box U1

3

Table 6. Assembly feature deviation of the first level (mm)

1 2 3 4 5 6 7 8 9 10 11 12
U1

1 ±0.25 ±0.25 ±0.25 ±0.4 ±0.4 ±0.4 ±0.5 ±0.5 ±0.5 ±0.3 ±0.3 ±0.3
U2

1 ±0.25 ±0.4 ±0.5 ±0.25 ±0.4 ±0.5 ±0.25 ±0.4 ±0.5 ±0.25 ±0.4 ±0.5
U3

1 ±0.25 ±0.25 ±0.25 ±0.4 ±0.4 ±0.4 ±0.5 ±0.5 ±0.5 ±0.3 ±0.3 ±0.3
U4

1 ±0.25 ±0.4 ±0.5 ±0.25 ±0.4 ±0.5 ±0.25 ±0.4 ±0.5 ±0.25 ±0.4 ±0.5
U5

1 ±0.25 ±0.25 ±0.25 ±0.4 ±0.4 ±0.4 ±0.5 ±0.5 ±0.5 ±0.3 ±0.3 ±0.3
U6

1 ±0.25 ±0.4 ±0.5 ±0.25 ±0.4 ±0.5 ±0.25 ±0.4 ±0.5 ±0.25 ±0.4 ±0.5
U7

1 ±0.25 ±0.25 ±0.25 ±0.4 ±0.4 ±0.4 ±0.5 ±0.5 ±0.5 ±0.3 ±0.3 ±0.3
U8

1 ±0.25 ±0.4 ±0.5 ±0.25 ±0.4 ±0.5 ±0.25 ±0.4 ±0.5 ±0.25 ±0.4 ±0.5
U9

1 ±0.25 ±0.25 ±0.25 ±0.4 ±0.4 ±0.4 ±0.5 ±0.5 ±0.5 ±0.3 ±0.3 ±0.3
U10

1 ±0.25 ±0.4 ±0.5 ±0.25 ±0.4 ±0.5 ±0.25 ±0.4 ±0.5 ±0.25 ±0.4 ±0.5

Table 7. Assembly feature deviation of the second level (mm)

1 2 3 4 5 6 7 8 9 10 11 12
U1

2 0.206 0.311 0.383 0.229 0.330 0.399 0.247 0.345 0.413 0.214 0.317 0.388
U2

2 0.203 0.307 0.379 0.225 0.325 0.393 0.241 0.338 0.406 0.210 0.312 0.383
U3

2 0.205 0.307 0.378 0.231 0.328 0.396 0.250 0.344 0.410 0.213 0.314 0.383
U4

2 0.205 0.307 0.377 0.230 0.328 0.395 0.249 0.344 0.410 0.213 0.314 0.383
U5

2 0.325 0.451 0.538 0.402 0.520 0.602 0.457 0.570 0.650 0.350 0.473 0.558

3DCS software is used to simulate 12 times. Assembly deviation transfer data are obtained as shown
in Tables 6, 7 and 8. The values in Table 6 are input data, and the values in Table 7 and 8 are output data.

5.3 Assembly deviation transfer
5.3.1 Assembly deviation transfer based on complex networks and weighted transfer entropy
Using Equations (1)–(5), the transfer entropy between network nodes is calculated based on assembly
feature deviation data in Tables 6, 7 and 8. Using Equations (6)–(13), the importance weights of nodes
are calculated as shown in Table 10. According to Tables 9 and 10, quantitative relationships of deviation
transfer between network nodes are calculated by Equation (14), as shown in Table 11. Incorporating
Equations (15) and (16), deviation transfer contributions between network nodes are calculated as shown
in Table 12, according to Table 11.
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Table 8. Assembly feature deviation of the third level (mm)

1 2 3 4 5 6 7 8 9 10 11 12
U1

3 0.323 0.323 0.324 0.400 0.400 0.400 0.454 0.454 0.454 0.348 0.348 0.348

Table 9. Transfer entropy between network nodes

Network node Transfer entropy Network node Transfer entropy
U1

1 → U1
2 0.41 U9

1 → U5
2 0.95

U2
1 → U1

2 0.49 U10
1 → U5

2 0.55
U3

1 → U2
2 0.41 U1

2 → U1
3 0.38

U4
1 → U2

2 0.49 U2
2 → U1

3 0.38
U5

1 → U3
2 0.41 U3

2 → U1
3 0.38

U6
1 → U3

2 0.49 U4
2 → U1

3 0.38
U7

1 → U4
2 0.41 U5

2 → U1
3 0.91

U8
1 → U4

2 0.49

Table 10. Importance weight of nodes

Network Importance Network Importance
node weight ρ node weight ρ
U1

1 0.086 U9
1 0.086

U2
1 0.087 U10

1 0.087
U3

1 0.086 U1
2 0.025

U4
1 0.087 U2

2 0.025
U5

1 0.086 U3
2 0.026

U6
1 0.087 U4

2 0.026
U7

1 0.086 U5
2 0.027

U8
1 0.087 U1

3 0.009

Table 11. Deviation transfer relationship between network nodes

Network node Deviation transfer Network node Deviation transfer
U1

1 → U1
2 0.035 U9

1 → U5
2 0.081

U2
1 → U1

2 0.042 U10
1 → U5

2 0.048
U3

1 → U2
2 0.035 U1

2 → U1
3 0.009

U4
1 → U2

2 0.042 U2
2 → U1

3 0.010
U5

1 → U3
2 0.035 U3

2 → U1
3 0.010

U6
1 → U3

2 0.042 U4
2 → U1

3 0.010
U7

1 → U4
2 0.035 U5

2 → U1
3 0.025

U8
1 → U4

2 0.042

5.3.2 Assembly deviation sensitivity simulation based on 3DCS
3DCS is used to carry out the assembly deviation sensitivity simulation. Deviation transfer contributions
between network nodes are shown in Table 13.

By comparing Tables 12 and 13, deviation transfer contributions calculated by the two methods are
almost the same. The deviation range of contributions is from 0.9% to 2.6%. It verifies the correctness
of the deviation transfer method based on complex networks and weighted transfer entropy. The reasons
for some differences in contributions are as follows. When analysing the deviation transfer, the 3DCS
simulation software regards the importance of each network node as the same. Information entropy and
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Table 12. Deviation transfer contributions between network nodes based
on complex network and weighted transfer entropy

Network node Contribution Network node Contribution
U1

1 → U1
2 45.3% U9

1 → U5
2 63.1%

U2
1 → U1

2 54.7% U10
1 → U5

2 36.9%
U3

1 → U2
2 45.3% U1

2 → U1
3 14.9%

U4
1 → U2

2 54.7% U2
2 → U1

3 15.1%
U5

1 → U3
2 45.3% U3

2 → U1
3 15.5%

U6
1 → U3

2 54.7% U4
2 → U1

3 15.5%
U7

1 → U4
2 45.3% U5

2 → U1
3 39.1%

U8
1 → U4

2 54.7%

Table 13. Deviation transfer between network nodes based on 3DCS

Network node Contribution Network node Contribution
U1

1 → U1
2 43.4% U9

1 → U5
2 61.5%

U2
1 → U1

2 56.6% U10
1 → U5

2 38.5%
U3

1 → U2
2 43.4% U1

2 → U1
3 14.4%

U4
1 → U2

2 56.6% U2
2 → U1

3 16.0%
U5

1 → U3
2 44.0% U3

2 → U1
3 16.4%

U6
1 → U3

2 56.0% U4
2 → U1

3 16.7%
U7

1 → U4
2 44.0% U5

2 → U1
3 36.5%

U8
1 → U4

2 56.0%

Kendall coefficient are used to quantify the importance of deviation transfer nodes by the deviation
transfer analysis method proposed in this paper. According to this, the deviation transfer entropy is
weighted.

The sensitivity analysis method diagnoses the key deviation source exclusively dependent on the devi-
ation data and does not consider the assembly relationship between the assembly components. When the
variation propagation method is applied to diagnose the key deviation source, the variation propagation
modeling process of flexible parts is very complex and the quantity of computation is large. Compared
with the sensitivity analysis method and variation propagation method, the key deviation source diag-
nosis method proposed in this paper diagnoses the key deviation source from the two perspectives of
structural topology and deviation information transmission. This method uses the complex network to
describe the assembly relationship of each part and uses the weighted transfer entropy to quantify the
deviation transfer quantity. Therefore, the method proposed in this paper can more effectively diagnose
the key deviation source of aircraft structures.

5.4 Key deviation source diagnosis
5.4.1 Key deviation source diagnosis based on degree centrality and global transfer entropy
Based on Table 5, the depth-first traversal algorithm is used to search deviation transfer paths. Setting
the node U1

1 as the start point, the deviation transfer of the central wing box is searched to obtain devi-
ation transfer paths as shown in Table 14. Based on Table 14, the degree centrality of network nodes is
calculated as shown in Table 15, according to Equation (17). Using Equation (18), contributions of each
deviation source to the assembly deviation of the central wing box are obtained by calculation as shown
in Table 16, according to Tables 14 and 15.
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Table 14. Deviation transfer path

Serial
number Deviation transfer path
1 U1

1 → U1
2 → U1

3

2 U2
1 → U1

2 → U1
3

3 U3
1 → U2

2 → U1
3

4 U4
1 → U2

2 → U1
3

5 U5
1 → U3

2 → U1
3

6 U6
1 → U3

2 → U1
3

7 U7
1 → U4

2 → U1
3

8 U8
1 → U4

2 → U1
3

9 U9
1 → U5

2 → U1
3

10 U10
1 → U5

2 → U1
3

Table 15. Degree centrality of network nodes

Network Degree centrality Network Degree centrality
node CU node CU

U1
1 0.07 U9

1 0.07
U2

1 0.07 U10
1 0.07

U3
1 0.07 U1

2 0.2
U4

1 0.07 U2
2 0.2

U5
1 0.07 U3

2 0.2
U6

1 0.07 U4
2 0.2

U7
1 0.07 U5

2 0.2
U8

1 0.07

Table 16. Contribution of deviation
source to assembly deviation

Deviation source Contribution ψ
U1

1 6.7%
U2

1 8.1%
U3

1 6.8%
U4

1 8.2%
U5

1 7.0%
U6

1 8.5%
U7

1 7.0%
U8

1 8.5%
U9

1 24.7%
U10

1 14.4%

5.4.2 Key deviation source diagnosis based on 3DCS
3DCS is used to simulate the contributions of deviation sources directly. Contributions of assembly
deviations are shown in Table 17.

By comparing Tables 16 and 17, some conclusions can be drawn as follows.

(1) The contribution size of each deviation source to product assembly deviation can be obtained by
two methods, and the difference of contributions is within 3%.
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Table 17. Key deviation source simulation
based on 3DCS

Deviation source Contribution ψ
U1

1 6.6%
U2

1 7.9%
U3

1 7.2%
U4

1 8.1%
U5

1 6.9%
U6

1 8.8%
U7

1 7.1%
U8

1 9.1%
U9

1 25.2%
U10

1 13.1%

(2) Key deviation sources that affect assembly quality can be diagnosed by two methods. The key
deviation source is the position deviation of the upper panel skin positioning hole.

(3) There are some differences between the two methods of contributions ranking, such as deviation
sources U3

1 and U5
1 , because the equability weight method is utilised to analyse deviation transfer.

However, the weights are assigned to deviation transfer contributions by the diagnosis method
proposed in this paper, based on the degree centrality algorithm and global transfer entropy. It can
make diagnosis results closer to the actual operation. Therefore, the diagnosis method proposed
in this paper can more objectively realise the key deviation source diagnosis.

6.0 Conclusion
Aimed at the assembly of complex thin-walled structures such as aircraft, the deviation transfer between
deviation sources and structural parts has the characteristics of small sample size, nonlinearity and
strong coupling. This paper proposes a key deviation sources diagnosis method for complex thin-walled
structure deviations based on weighted transfer entropy and complex networks. This method analyses
key deviation sources from two different aspects including network topology structures and deviation
information transfer. Transfer relationships of assembly feature deviations are quantified to accurately
diagnose key deviations that affect assembly quality.

The application shows that all key deviation sources can be diagnosed by 3DCS software simulation
and the key deviation diagnosis method proposed in this paper. And the difference of each deviation
source contribution is within 3 %, so the correctness is verified. There exists some diversity between the
two methods of contribution ranking because differences in node importance are not able to be consid-
ered by 3DCS software. The weights are assigned to contributions by the diagnosis method proposed in
this paper. It makes diagnostic results more accurate and reliable.

This method is not only suitable for the transfer and analysis of aircraft assembly deviations but
also suitable for products of complex thin-walled structures such as aerospace. It has important theo-
retical significance and practical engineering value for optimising assembly tolerance design, reducing
development costs and improving assembly quality.
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