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Abstract

We show that there is nonuniqueness for the Calderón problem with partial data for Riemannian
metrics with Hölder continuous coefficients in dimension greater than or equal to three. We provide
simple counterexamples in the case of cylindrical Riemannian manifolds with boundary having
two ends. The coefficients of these metrics are smooth in the interior of the manifold and are only
Hölder continuous of order ρ < 1 at the end where the measurements are made. More precisely, we
construct a toroidal ring (M, g) and we show that there exist in the conformal class of g an infinite
number of Riemannian metrics g̃ = c4g such that their corresponding partial Dirichlet-to-Neumann
maps at one end coincide. The corresponding smooth conformal factors are harmonic with respect
to the metric g and do not satisfy the unique continuation principle.

2010 Mathematics Subject Classification: 81U40, 35P25 (primary); 58J50 (secondary)

1. Introduction

1.1. The anisotropic Calderón problem with partial data. The anisotropic
Calderón problem on compact connected Riemannian manifolds with boundary
is one of the most famous examples of inverse problems for an elliptic equation.
The original problem that Calderón considered was whether one can recover the
physical properties of a medium (like its electrical conductivity) by making only
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voltage and current measurements at its boundary. This latter problem can be
naturally formulated as a problem of geometric analysis in terms of the Dirichlet-
to-Neumann map (DN map in short), for the Laplace–Beltrami operator on
Riemannian manifolds with boundary. We refer to surveys [18, 30, 41, 44] for
a description of the current state of the art on the general anisotropic Calderón
problem and also to [2, 4, 10, 11, 16, 17, 24, 25, 27–29, 31, 33, 34, 36]
for important contributions to the question of uniqueness. On one hand, the
uniqueness issue in the Calderón problem is still far from being completely
understood in the case of smooth Riemannian manifolds of dimension greater
than or equal to three and remains a major open problem. On the other hand, some
counterexamples to uniqueness in the case in which the Dirichlet and Neumann
data are measured on disjoint subsets of the boundary were found in our recent
papers [6–8].

The main goal of this paper is to give some nonuniqueness results for the
anisotropic Calderón problem with partial data (that is, in the case where the
Dirichlet and Neumann measurements are made on the same open subset Γ of
the boundary), for a class of metrics whose coefficients are smooth in the interior
of the manifold and Hölder continuous on the subset of the boundary where the
measurements are made.

In order to state our main result, let us first recall the definition of the DN
map (see for instance [36] for the geometric formulation of the DN map for
smooth Riemannian manifolds that we use here and [1] for the formulation of the
DN map corresponding to the original Calderón problem in terms of anisotropic
conductivities with coefficients, which are only L∞). Let M be an n-dimensional
smooth compact connected manifold with smooth boundary ∂M . We assume
that this manifold M is equipped with a Riemannian metric g = (gi j) with
measurable bounded coefficients satisfying (in local coordinates) the uniform
ellipticity condition∑

i, j

gi j(x)ξiξ j > c|ξ |2 for a.e x ∈ M and ξ ∈ Rn, (1.1)

where the constant c is strictly positive and where (gi j) is the inverse of (gi j).
On the Riemannian manifold (M, g), we consider the Laplace–Beltrami

operator ∆L B given in local coordinates by

∆L B = −∆g = −
1
√
|g|
∂i(
√
|g|gi j∂ j),

where |g| = det(gi j) is the determinant of the metric tensor (gi j) and where we use
the Einstein summation convention. It is well known that the Laplace–Beltrami

https://doi.org/10.1017/fms.2020.1 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.1


On nonuniqueness for the anisotropic Calderón problem 3

operator−∆g with Dirichlet boundary conditions on ∂M is self-adjoint on L2(M,
dVolg) and that 0 is not an eigenvalue of −∆g.

Let us consider the Dirichlet problem{
−∆gu = 0, on M,
u = ψ, on ∂M. (1.2)

A classical result (see for instance [1, 13, 41, 43]) ensures that for any ψ ∈
H 1/2(∂M), there exists a unique weak solution u ∈ H 1(M) of the Dirichlet
problem (1.2). We recall that u is a weak solution of (1.2) if∫

M
〈du, dw〉g dVolg = 0 for all w ∈ H 1

0 (M), (1.3)

where 〈du, dw〉g is the pointwise scalar product of the 1-forms du, dv on M
induced by g and given in local coordinates by 〈du, dw〉g = gi j∂i u ∂ jw, and if
the trace of u on the boundary is equal to ψ . So, we can define the DN map as an
operator Λg from H 1/2(∂M) to H−1/2(∂M) by

〈Λgψ |φ〉 =

∫
M
〈du, dv〉g dVolg, for all ψ, φ ∈ H 1/2(∂M), (1.4)

where u is the unique weak solution of the Dirichlet problem (1.2), v is any
element of H 1(M) such that v|∂M = φ, and 〈·|·〉 is the standard L2 duality pairing
between H 1/2(∂M) and its dual. In the case where the metric g and the function
ψ are smooth, this definition coincides with the usual one

Λg(ψ) = (∂νu)|∂M , (1.5)

where (∂νu)|∂M is the normal derivative of u with respect to the unit outer normal
ν on ∂M .

As mentioned earlier, we are interested in the case in which the Dirichlet
and Neumann data are measured on the same nonempty open subset Γ of the
boundary ∂M . Let us introduce the subspace of H 1/2(∂M) defined by

H 1/2
co (Γ ) = { f ∈ H 1/2(∂M) | supp f ⊂ Γ }. (1.6)

The partial DN map is defined in a weak formulation as the operator Λg,Γ such
that

〈Λg,Γ (ψ)|φ〉 =

∫
M
〈du, dv〉g dVolg, for all ψ, φ ∈ H 1/2

co (Γ ), (1.7)

where u is the unique weak solution of the Dirichlet problem (1.2) and where v is
any element of H 1(M) such that v|∂M = φ. As previously, for smooth metrics g
and smooth boundary data ψ , the partial DN map is simply given by

Λg,Γ (ψ) = (∂νu)|Γ . (1.8)
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In its simplest form, the anisotropic Calderón problem with partial data can be
stated as follows:

If a pair of partial DN mapsΛg1,Γ andΛg2,Γ coincide, is it true that the metrics
g1 and g2 are the same?

Because of several natural and geometric gauge invariances, the answer to the
question stated above turns out to be negative. These lead to refined formulations
of the Calderón problem that we shall present shortly and that constitute the actual
statement of this inverse problem. Indeed, it results from definition (1.2)–(1.7)
that the partial DN map Λg,Γ is invariant when the metric g is pulled back by any
diffeomorphism of M whose restriction to Γ is the identity, that is,

∀φ ∈ Diff(M) such that φ|Γ = Id, Λφ∗g,Γ = Λg,Γ . (1.9)

In dimension two, there is another gauge invariance of the DN map due to the
conformal invariance of the Laplace–Beltrami operator. More precisely, recall that
in dimension two,

∆cg =
1
c
∆g,

for any smooth function c > 0. Therefore, we have in dimension two

∀c ∈ C∞(M), c > 0 and c|Γ = 1, Λcg,Γ = Λg,Γ (1.10)

since the unit outer normal vectors νcg and νg are identical on Γ .
It follows that the appropriate question (called the anisotropic Calderón

conjecture with partial data) to address is the following:
Let M be an n-dimensional smooth compact connected manifold with smooth

boundary ∂M. Let g, g̃ denote Riemannian metrics on M with measurable
bounded coefficients and let Γ be an open subset of ∂M. Suppose that

Λg,Γ = Λg̃,Γ .

Does it follow that g = g̃ up to gauge invariance (1.9) if n > 3 and up to gauge
invariances (1.9) and (1.10) in dimension n = 2?

One may also consider a simpler inverse problem by assuming that the
Riemannian manifolds (M, g) and (M, g̃) belong to the same conformal class,
that is, g̃ = cg for some positive smooth function c on M . In that case, the
anisotropic Calderón problem amounts to the following statement:

Let M be an n-dimensional smooth compact connected manifold with smooth
boundary ∂M. Let g denote a Riemannian metric on M with measurable bounded
coefficients and let Γ be an open subset of ∂M. Let c be a smooth positive function
on M. If

Λcg,Γ = Λg,Γ ,

https://doi.org/10.1017/fms.2020.1 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.1


On nonuniqueness for the anisotropic Calderón problem 5

then is it true that
c = 1, on M? (1.11)

In fact, according to (1.9), the assumption Λcg,Γ = Λg,Γ should entail the
question: Does there exist a diffeomorphism φ : M −→ M with φ|Γ = Id such
that

φ∗g = cg? (1.12)

But, as was proved by Lionheart [37] for smooth metrics, any diffeomorphism
φ : M −→ M that satisfies φ∗g = cg and φ|Γ = Id for a nonempty open subset
Γ of ∂M is the identity on the whole manifold M . Thus, condition (1.12) may
therefore be replaced by condition (1.11).

Finally, there exists the last version of the anisotropic Calderón problem with
partial data on Γ involving an external potential. Consider the Dirichlet problem
for the Schrödinger equation on (M, g) with potential V ∈ L∞(M){

(−∆g + V )u = 0, on M,
u = ψ, on ∂M, (1.13)

where ψ ∈ H 1/2
co (Γ ). We assume that 0 does not belong to the Dirichlet spectrum

of−∆g+ V . Then, there exists a unique weak solution u ∈ H 1(M) of (1.13) (see
for instance [10, 41]). As previously, this allows us to define in the same way (that
is, in a weak sense) the partial DN map Λg,V,Γ (ψ) for all ψ ∈ H 1/2

co (Γ ).
For smooth Riemannian metrics g, it is well known that there is a close

connection between the anisotropic Calderón problem for Schrödinger operators
and the anisotropic Calderón problem within the conformal class of a fixed metric
g. It is based on the transformation law for the Laplace–Beltrami operator on an n-
dimensional Riemannian manifold (M, g) under conformal changes of the metric,
that is,

−∆c4gu = c−(n+2)(−∆g + qg,c)(cn−2u), (1.14)

where the potential qg,c is given by

qg,c = c−n+2∆gcn−2. (1.15)

As a by-product, we get for instance the following result for smooth metrics
(see [7], Proposition 1.1).

PROPOSITION 1.1. Let Γ be any fixed open set of ∂M. Assume that c is a smooth
positive function on M such that c = 1 on Γ and ∂νcn−2

= 0 on Γ . Then

Λc4g,Γ = Λg,qg,c,Γ . (1.16)
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T. Daudé, N. Kamran and F. Nicoleau 6

In particular, if the potential qg,c = 0, that is, if the conformal factor c satisfies
additionally

∆gcn−2
= 0, on M, (1.17)

we get immediately
Λc4g,Γ = Λg,Γ .

Note that in dimension n = 2, (1.17) is automatically satisfied and (1.16)
corresponds simply to gauge invariance (1.12). In dimension n > 3 and for
smooth metrics g, the unique continuation principle implies that c = 1 on M
(recall that not only (1.17) is satisfied, but c must be identically 1 on Γ and ∂νc
must be 0 on Γ ). Thus, if we want to use the result in Proposition 1.1 to obtain a
counterexample to uniqueness for the anisotropic Calderón problem with partial
data, we need to construct a metric g in such a way that the Laplace–Beltrami
operator −∆g does not satisfy the unique continuation principle.

We recall that, in dimension n > 3, the unique continuation principle holds for a
uniformly elliptic operator on a domain Ω if the coefficients of the principal part
of this operator are locally Lipschitz continuous, whereas in dimension n = 2,
the unique continuation principle holds if the coefficients of the principal part
are L∞ (see for instance [21, 22, 42]). Nevertheless, in dimension n = 3, if the
coefficients of the principal part are only Hölder continuous, there exist examples
of nonunique continuation. The first such example was given in 1963 by Pliś [40],
and later in 1972, a sharper counterexample was found by Miller [39] for an
elliptic equation in divergence form. This divergence form is very well adapted to
our Riemannian setting. So, the main and basic idea of our paper is to construct
a metric g on a suitable manifold M such that the Laplacian ∆g is nothing but
Miller’s elliptic operator and the conformal factor c is very close to Miller’s
solution.

But, before giving this construction, our first task is to slightly extend
Proposition 1.1 for metrics g having coefficients in L∞(M) since, in this
case, the potential qg,c only has a distributional sense. In other words, we have
to write Proposition 1.1 (with qg,c = 0) in a weak sense. To do this, we remark
that, for a smooth metric g and for a smooth conformal factor c, the conditions
∂νc = 0 on Γ and ∆gcn−2

= 0 on M are equivalent to∫
M
〈d(cn−2), dw〉g dVolg = 0, ∀w ∈ H 1(M) such that supp w|∂M ⊂ Γ, (1.18)

thanks to Green’s formula∫
M
∆g(cn−2)w dVolg +

∫
M
〈d(cn−2), dw〉g dVolg =

∫
∂M
∂νcn−2w dσg, (1.19)
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where dVolg denotes the Riemannian volume element and dσg denotes the volume
element induced by g on ∂M .

Now, we can state the following extension of Proposition 1.1 for metrics with
bounded measurable coefficients, which is one of the main arguments of our
counterexamples for the anisotropic Calderón problem with partial data.

PROPOSITION 1.2. Let Γ be any fixed open set of ∂M. Assume that c is a smooth
positive function on M such that c = 1 on Γ and such that∫

M
〈d(cn−2), dw〉g dVolg = 0, ∀w ∈ H 1(M) such that suppw|∂M ⊂ Γ. (1.20)

Then,
Λc4g,Γ = Λg,Γ . (1.21)

Proof. For any ψ, φ ∈ C∞0 (Γ ), the partial DN mapΛc4g,Γ is given by the relation

〈Λc4g,Γψ |φ〉 =

∫
M
〈du, dw〉c4g dVolc4g, (1.22)

where u ∈ H 1(M) is the unique weak solution of (1.2) associated with the
metric c4g with u|∂M = ψ and w ∈ C∞(M) is any extension of φ. Note that the
existence of such an extension is given for instance in monograph [35], Corollary
6.27, together with the Tietze extension theorem. As a consequence, the function
cn−2uw ∈ H 1(M) and its trace on the boundary has its support in Γ . Now, a
straightforward algebraic calculation gives∫

M
〈du, dw〉c4g dVolc4g =

∫
M
〈d(cn−2u), d(cn−2w)〉g dVolg

−

∫
M
〈d(cn−2), d(cn−2uw)〉g dVolg. (1.23)

Thus, thanks to hypothesis (1.20), we get

〈Λc4g,Γψ |φ〉 =

∫
M
〈d(cn−2u), d(cn−2w)〉g dVolg. (1.24)

Let us now prove that v = cn−2u is a weak solution of (1.2). Indeed, since u is
the unique weak solution of (1.2) associated with the metric c4g, we have for any
ϕ ∈ C∞0 (M), ∫

M
〈du, dϕ〉c4g dVolc4g = 0. (1.25)
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Using again relation (1.23) (with w replaced by ϕ) and (1.18), we get for any
ϕ ∈ C∞0 (M), ∫

M
〈d(cn−2u), d(cn−2ϕ)〉g dVolg = 0. (1.26)

It follows that v = cn−2u is a weak solution of (1.2) for the metric g, which
satisfies v|∂M = ψ since c = 1 on Γ .

Then, using the definition of the partial DN map Λg,Γ and (1.24) again, we get
immediately

〈Λc4g,Γψ |φ〉 = 〈Λg,Γψ |φ〉 for all ψ, φ ∈ C∞0 (Γ ). (1.27)

We conclude the proof by a standard density argument.

1.2. Statement of the main result. Let us introduce first some notations. We
consider the n-dimensional manifold

M = [0, 1] × T n−1,

where T n−1 denotes the (n − 1)-dimensional torus (n > 3). This manifold has
the topology of a cylinder. Using the standard toroidal coordinates, we can also
interpret M as a toroidal ring (see [12], Remark 2.5). Note that the boundary of
M is disconnected and consists in the disjoint union of two copies of T n−1 (which
we call ends in this paper), more precisely,

∂M = Γ0 ∪ Γ1, Γ0 = {0} × T n−1, Γ1 = {1} × T n−1.

Our main result is the following.

THEOREM 1. There exists a Riemannian metric g on M whose coefficients are
smooth in [0, 1)× T n−1 and Hölder continuous of order ρ < 1 on the end Γ1, and
there exist an infinite number of smooth positive conformal factors c that are not
identical to 1 on M such that the following partial DN maps on Γ1 are identical:

Λc4g,Γ1 = Λg,Γ1 . (1.28)

As we have mentioned earlier, the proof of this theorem is rather simple and
relies on Miller’s famous counterexample to unique continuation for a uniformly
elliptic equation in divergence form in dimension three (see [39]). Assume for a
moment that the dimension of our manifold M is three, and let us summarize the
strategy of the proof. We consider first a metric g on M such that ∆g is precisely
the uniformly elliptic operator from Miller’s construction. Note in passing that the
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elliptic operator from [39] naturally lives on the cylinder M = [0, 1] × T 2 as was
observed by Gianotti in [12]. Then, using Miller’s solution of this elliptic partial
differential equation (PDE), we shall construct in Section 2 an infinite family of
smooth conformal factors c satisfying the assumptions of Proposition 1.2, that is,
c = 1 on Γ1 and ∆gcn−2

= 0, ∂νc = 0 on Γ1 in the following weak sense:∫
M
〈d(cn−2), dw〉g dVolg = 0, ∀w ∈ H 1(M) such that suppw|∂M ⊂ Γ1. (1.29)

This leads automatically to counterexamples to uniqueness for the Calderón
problem with partial data in dimension three since the metrics g and c4g are not
isometric (see the proof of Theorem 1). The proof in the case of higher dimensions
is similar.

REMARK 1.1. It is important to stress that, even though two of the coefficients
(namely, A1(t) and A3(t)) of the elliptic operator ∆g are only Hölder continuous
functions, ∆gcn−2 is classically well defined since these two functions are not
differentiated with respect to t in the expression of ∆g (see [39], Theorem 1, or
Proposition 2 in this paper). In other words, the equation ∆gcn−2

= 0 on M can
be also understood in the classical sense.

REMARK 1.2. All the derivatives of the conformal factors c at the end Γ1 are
equal to zero as one would expect from boundary determination results (see [26]).

REMARK 1.3. We emphasize that this theorem is of a local nature. We cannot
obtain with the same approach a counterexample for the anisotropic Calderón
problem with global data, that is, when Γ = ∂M . Indeed, if the smooth conformal
factor satisfies c = 1 on ∂M and∫

M
〈d(cn−2), dw〉g dVolg = 0, ∀w ∈ H 1(M), (1.30)

then, choosing w = cn−2 in (1.30), we obtain immediately that c is identical to 1
on M . An alternative interpretation is to say that 0 is not a Dirichlet eigenvalue of
the Laplace–Beltrami operator ∆g.

1.3. A brief history of known results on the anisotropic Calderón problem.
In this last part of the Introduction, we give a brief and nonexhaustive survey of
some of the most important known results on the anisotropic Calderón conjecture.

In dimension two, the anisotropic Calderón conjecture for global and partial
data has been settled positively for compact connected Riemannian surfaces
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in [34, 36]. We also refer to [2, 4] for similar results for global and partial data
in the case of anisotropic conductivities, which are only L∞ on bounded domains
of R2. In dimension n > 3, if the Riemannian manifold is real analytic, compact
and connected, with real analytic boundary, a positive answer for global (that is,
when Γ = ∂M) and partial data has been given in [33, 34, 36]. Similarly, the
global anisotropic Calderón problem has been answered positively for compact
connected Einstein manifolds with boundary in [16].

If the background metrics are not assumed to be analytic, the general
anisotropic Calderón problem in dimension n > 3 is still a difficult open problem,
whether one is dealing with the case of full or partial data. Nevertheless, some
important results have recently appeared in [10, 11, 29] for special classes of
smooth compact connected admissible Riemannian manifolds with boundary.
By definition, admissible manifolds (M, g) are conformally transversally
anisotropic,

M ⊂⊂ R× M0, g = c(e ⊕ g0),

where (M0, g0) is an (n−1)-dimensional smooth compact connected Riemannian
manifold with boundary, e is the Euclidean metric on the real line and c is a
smooth strictly positive function in the cylinder R × M0. It has been shown
in [10, 11] that for admissible manifolds and under some geometric assumptions
on the transverse manifolds M0 (see for instance [11] for a precise statement), the
conformal factor c is uniquely determined from the knowledge of the DN map.
These results have been further extended to the case of partial data in [29]. We
also refer to [17, 23, 25] for additional results in the case of local data and to
surveys [18, 30] for further references.

Let us also mention several papers dealing with the Calderón problem for more
singular metrics or conductivities in dimension n > 3. Haberman and Tataru [20]
showed uniqueness in the global Calderón problem for uniformly elliptic isotropic
conductivities that are Lipschitz and close to the identity. The latter condition was
relaxed by Caro and Rogers in [5]. In dimensions three and four, these results were
slightly improved by Haberman in [19] to the case of conductivities that belong
to W 1,n . Related to the partial Calderón problem, Krupchyk and Uhlmann in [32]
proved that an isotropic conductivity with—roughly speaking— 3

2 derivatives in
the L2 sense is uniquely determined by a DN map measured on a possibly very
small subset of the boundary.

Finally, we conclude this introduction mentioning the series of papers on
invisibility by Greenleaf, Kurylev, Lassas and Uhlmann (see [15] for the original
paper, [3] for an extension of this work in dimension two and [14, 45] for thorough
surveys in this field). In these works, some counterexamples to uniqueness to the
global Calderón problem were described. These counterexamples are obtained
for a class of metrics that are highly singular at a given closed hypersurface
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lying within the manifold in the sense that the metric degenerates or blows up
at this hypersurface. This is a situation in sharp contrast to the one obtained in the
present work in which the metrics remain positive definite and Hölder continuous
everywhere in the manifold (and even smooth in the interior). Coming back to
invisibility, we also refer to our recent paper [9], where similar nonuniqueness
results were obtained for singular warped product metrics on the same class of
manifolds M as the ones used in this paper.

2. Counterexamples to uniqueness

2.1. Miller’s counterexample to the unique continuation principle. In this
section, we recall the remarkable counterexamples obtained by Miller [39] to the
unique continuation principle, counterexamples that were slightly improved later
by Mandache [38]. We say that a PDE P(x, D)u = 0 on a domain Ω possesses
the unique continuation property if the equality u = 0 in some ball within Ω
implies the equality u = 0 on Ω .

In dimension n > 3, the unique continuation property holds for a uniformly
elliptic operator on a domain Ω if the coefficients of the principal part of this
operator are locally Lipschitz continuous (see for instance [21, 22, 42]). If the
coefficients are only Hölder continuous, then there exist examples of nonunique
continuation. The first one was given in 1963 by Pliś [40]. He considered a
uniformly elliptic equation on a domain of R3 having the form

3∑
i, j=1

ai j(x)∂2
i j u +

3∑
i=1

bi(x)∂i u + c(x)u = 0, (2.31)

where the coefficients of this equation are Hölder continuous with order less than
1. The coefficient of the zero-order term c(x) has no constant sign and might
explain the existence of this counterexample. In 1972, a sharper counterexample
(without the zero-order term) was found by Miller [39]. He constructed a smooth
solution u(t, x, y) of a uniformly elliptic equation in divergence form:

div (A ∇u) = 0, (2.32)

where the (3× 3) symmetric matrix A is given by

A =

1 0 0
0 1+ a1(t, x, y)+ A1(t) a2(t, x, y)
0 a2(t, x, y) 1+ a3(t, x, y)+ A3(t)

 . (2.33)

This matrix A has its eigenvalues in [α, α−1
] with elliptic constant α ∈ ]0, 1[.

More precisely, Miller proved the following result.
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THEOREM 2 (Miller [39]). There exists an example of nonunique continuation
on the half-space E = [0,+∞[×R2 for a uniformly elliptic equation

∂2
t u + ∂x((1+ a1 + A1)∂x u)+ ∂x(a2∂yu)+ ∂y(a2∂x u)+ ∂y((1+ a3 + A3)∂yu)
= 0 in E . (2.34)

(1) The classical solution u(t, x, y) is C∞ on E, identically zero for t > T > 0,
but not identically zero in any open subset of [0, T [×R2.

(2) The coefficients a1(t, x, y), a2(t, x, y), a3(t, x, y) are C∞ on E and are
identically zero for t > T .

(3) The coefficients A1(t), A3(t) are Hölder continuous of order 1
6 on [0,∞[,

C∞ on [0, T [, and identically zero for t > T .

(4) All functions u, a1, a2, a3 are periodic in x and y with period 2π .

(5) Although the coefficient matrix A is only Hölder continuous at t = T , u is a
classical (as well as weak) solution of (2.34) on E.

We emphasize that this theorem can be improved as follows. Modifying slightly
Miller’s initial proof, the coefficients A1(t), A3(t) can be actually constructed
in such a way that they are Hölder continuous functions of fixed order ρ < 1
(see [39], Remarks p. 115) as in Mandache’s paper [38]. But, we prefer to use
Miller’s work rather than Mandache’s paper [38] since it is not clear for us that
the coefficients of the elliptic operator constructed by Mandache are smooth on
[0, T [. It is also important to say again that this function u is a classical solution
of elliptic equation (2.34) since we do not differentiate the Hölder functions A1(t)
and A3(t) with respect to t in elliptic equation (2.34).

Moreover, since the solution u(t, x, y) is periodic in (x, y) with period 2π ,
as was observed by Giannotti in [12], Miller’s solution can be considered as a
solution to an elliptic equation on the toroidal ring M = [0, T ] × T 2, where T 2 is
the usual two-dimensional torus.

Note that, in the following section, and in order to simplify the notation, we
assume (without loss of generality) that T = 1.

2.2. Construction of counterexamples on a toroidal ring of R3. In this
section, we consider a Riemannian manifold (M, g), which has the topology of a
cylinder M = [0, 1] × T 2. We denote by (t, x, y) a global coordinate system on
M . The manifold M can be interpreted as a toroidal ring (see [12], Remark 2.5).
We equip this manifold with the Riemannian metric

g = D dt2
+ (1+ a3 + A3) dx2

− 2a2 dx dy + (1+ a1 + A1) dy2, (2.35)
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where the coefficients a1, a2, a3, A1, A3 are given by Theorem 2, and

D = detA= (1+A1(t)+a1(t, x, y))(1+A3(t)+a3(t, x, y))−a2
2(t, x, y). (2.36)

Observe that we have
√
|g| (g−1) = A and that this metric is well defined on M

since all the coefficients are periodic in the variables x, y with period 2π . We
recall that the boundary ∂M of M is disconnected and consists in the disjoint
union of two copies of T 2, precisely,

∂M = Γ0 ∪ Γ1, Γ0 = {0} × T 2, Γ1 = {1} × T 2.

We emphasize that our metric g is smooth everywhere inside the manifold
(precisely on M̄ \ Γ1) and Hölder continuous of order ρ < 1 on the end Γ1.
Thanks to Theorem 2 and as was observed before, Miller’s solution is a classical
harmonic function for the Laplace–Beltrami operator ∆g, that is, it satisfies the
Laplace equation in the classical sense

∆gu = 0 in M. (2.37)

Moreover, since the solution u(t, x, y) is smooth on E and is vanishing for t > 1,
all the derivatives of u are also equal to zero at t = 1. In particular, one has

u|Γ1 = 0, ∂νu|Γ1 = 0, (2.38)

where ∂ν is the normal derivative on Γ1 with respect to the unit outer normal vector
ν on ∂M .

Now, let us define our infinite family of conformal factors cε(t, x, y). We set

cε(t, x, y) = 1+ ε u(t, x, y), (2.39)

where ε > 0 ranges over an interval (0, ε0) chosen sufficiently small to ensure
that cε(t, x, y) > 1

2 on the compact manifold M for all ε ∈ (0, ε0).

Proof of Theorem 1 in dimension three. The conformal factors cε are smooth on
M . Moreover, thanks to Theorem 2, they are not identically 1 on M . Using (2.37)
and (2.38), these conformal factors cε satisfy obviously and in the classical sense:

∆gcε = 0 in M, cε|Γ1 = 1, ∂νcε|Γ1 = 0. (2.40)

Then, thanks to Green’s formula and using the fact that we have cn−2
ε = cε when

n = 3, these conformal factors cε satisfy the assumptions of Proposition 1.2, and
thus one obtains immediately

Λc4
ε g,Γ1 = Λg,Γ1 . (2.41)
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Now assume that, for all 0 < ε1 6 ε0, there exist an ε ∈ (0, ε1) and a
diffeomorphism (depending on ε) φ : M −→ M such that φ|Γ1 = Id and
φ∗g = c4

εg. In particular, since φ is a diffeomorphism, we see that Volg(M) =
Volφ∗g(M) = Volc4

ε g(M). Hence we must have∫
M
[(1+ εu)6 − 1]

√
|g| dx = 0. (2.42)

The term of order 2 of this polynomial in the variable ε must be equal to 0, that is,∫
M

u2
√
|g| dx = 0, (2.43)

which is not possible since u is not identically equal to zero. Thus, we deduce that
there exists 0 < ε1 6 ε0 such that the metrics g and c4

εg are not isometric for all
ε ∈ (0, ε1), and we see that we have found counterexamples to uniqueness for the
partial anisotropic Calderón problem in dimension three.

2.3. Generalization in the n-dimensional case. The above construction can
be generalized in a straightforward way to the n-dimensional case with n > 3.
Indeed, let us consider the manifold M = [0, 1]×T n−1, where T n−1 stands for the
(n− 1)-dimensional torus. We denote by (t, x1, x2, . . . , xn−1) a global coordinate
system on M . As in the previous section, we introduce the coefficient

D(t, x1, x2) = (1+ A1(t)+a1(t, x1, x2))(1+ A3(t)+a3(t, x1, x2))−a2
2(t, x1, x2),

(2.44)
where the coefficients a1, a2, a3, A1, A3 are still given by Theorem 2 with the
identifications x1 = x and x2 = y. Now, we equip this manifold M with the
Riemannian metric

g = D
1

n−2

(
dt2
+ D−1((1+ A3 + a3) dx2

1 − 2a2 dx1 dx2

+ (1+ A1 + a1) dx2
2)+

n−1∑
i=3

dx2
i

)
. (2.45)

As before, the metric g is smooth inside the manifold M and only Hölder
continuous at the end Γ1 = {1} × T n−1. Then, we define the conformal factors
(which will not depend on the variables xi for i > 3) as

cε(t, x1, . . . , xn−1) = (1+ ε u(t, x1, x2))
1

n−2 , (2.46)
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where u(t, x1, x2) is Miller’s solution given in Theorem 2 and ε > 0 is small
enough to ensure that cε > 0 on M . Using the same arguments as in the previous
section, one has

Λc4
ε g,Γ1 = Λg,Γ1, (2.47)

which implies that there is nonuniqueness for the partial anisotropic Calderón
problem in dimension n > 3.

REMARK 2.1. In the previous nonuniqueness results for the anisotropic Calderón
problem with partial data, we considered smooth compact connected cylindrical
manifolds equipped with a metric whose coefficients are only Hölder continuous,
and having two ends. If we remove the assumption of smoothness for the
manifold, then we can allow a connected boundary for M and obtain probably
counterexamples to uniqueness in the partial Calderón problem.

More precisely, let us consider the product manifold M = [0, 1] × Ω , where
Ω is any connected bounded open set of Rn−1 with a smooth boundary. Note that
the boundary of M is now connected and given by

∂M = ({0} ×Ω) ∪ ({1} ×Ω) ∪ ((0, 1)× ∂Ω).

Clearly, we lose the smoothness of the manifold since M has corners.
Nevertheless, if the Dirichlet and the Neumann data are measured on Γ = {1}×Ω ,
one can probably use the previous constructions to get counterexamples in this
new setting.
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20(3) (2019), 859–887.
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