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Abstract. An intense non-thermal background of cosmic gravitational radiation in the Megaparsec wave 
band could be detected by its influence on many astrophysical processes. In particular, it may give an 
explanation of the so-called redshift anomalies. 

1. Introduction 

An intense experimental search for cosmic gravitational radiation has been started 
by many groups, based on the pioneering work by Weber (1969, 1970a, b, 1972) and 
by Braginski (1972). Although the results of these experiments are still under dis­
cussion, and positive effects could be explained perhaps more successfully by solar-
terrestrial or associated geophysical effects (Tyson et a/., 1973), the possible existence 
and effect of cosmic gravitational radiation in astrophysical processes remain an 
interesting problem. If strong time-dependent gravitational fields with GM/Rc2 of 
order 1 occur in relativistic objects such as black holes, pulsars and possibly also 
quasars, we expect appreciable amounts of gravitational radiation from these sources. 
Both the gravitational wavelengths and the wave amplitudes are subject to upper 
bounds: since only in highly relativistic objects is the output expected to be large, 
the wavelengths do not exceed the geometrical dimensions of the sources by a very 
large factor. The intensity is limited by the available amount of rest mass - at least 
as long as gravitational theories with matter creation are excluded. 

A possible source of non-thermal gravitational radiation of both much larger 
wavelengths and presumably much higher intensity is the fireball state of the meta­
galaxy (Zel'dovich, 1966; Zipoy, 1966; Ruffini and Wheeler, 1969; Dautcourt, 1969a, b; 
Rees, 1971, 1972a, b; Gowdy, 1971). The radiation may either result from turbulent 
motion of primordial matter or the transverse degrees of freedom of the cosmological 
gravitational field are a priori excited. In the latter case the active gravitational mass 
of background radiation fields may be high enough to fill the cosmological density 
gap and create - assuming homogeneity and isotropy of the radiation in the mean -
a Tolman radiation universe, a simple example of an unstable 'gravitational geon' 
in Wheeler's language. There is in general no upper bound to the range of wavelengths 
in an open universe, the amplitudes only being limited for long wavelengths to ensure 
sufficient homogeneity on the large scale. Rees (1971) was the first to face the inter­
esting astrophysical consequences of this possibility. 

The intensity of the gravitational background radiation can be measured either by 
its energy density gc2 (which according to Isaacson (1968) can be defined in a co-
variant way for sufficiently high-frequency radiation) or by the dimensionless am­
plitudes h of the perturbation in the metric tensor, representing the wave fields. Both 
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quantities are connected by an order-of-magnitude relation 

, c*h2 c*h2

0 , 

*~vrok (1+2)' 01 

if the wave amplitudes are measured in a locally Minkowskian coordinate system. X is 
the dominant wave length. With cosmological epoch h and X change as / i ~ ( l +z) h0, 
X = (l + z)~l X09 where the subscript zero refers to the present epoch z = 0. Thus, as 
must be expected for cosmic background radiation, the energy density increases as 
~ (1 + z ) 4 into the past. 

The dynamical effect of the wave field on matter depends on the field strength h, 
while its contribution to the smoothed-out cosmological background metric is mea­
sured by the equivalent active gravitational mass density Q. From Equation (1) it is 
seen that for a given energy density - which can not of course greatly exceed the 
critical energy density QC = 3HQ/K - the amplitude h and therefore the influence on 
the motion of matter and radiation increases with wavelength and becomes ap­
preciable if X reaches some fractional value of the world horizon distance XH ~ 3000 
(100/// 0 ) Mpc. For ultra low-frequency gravitational waves with X between 1 and 
3000 Mpc, h ranges from 3 x 1 0 " 4 to 1. These values may be compared with the 
much lower metric amplitudes h^l0~18 detectable by Weber's experiment (Press 
and Thorne, 1972). They may also be compared with the dimensionless Newtonian 
gravitational potential of galaxies, </>/c 2~10~ 6 . Thus, if an appreciable amount of 
intergalactic gravitational radiation is stored in the Megaparsec wave band, rather 
remarkable observational effects must be expected. It is suggested here that the ef­
fects may be those known as redshift anomalies and discussed extensively in recent 
years (Burbidge and Sargent, 1969; Burbidge, 1968; Arp, 1970, 1971; Burbidge and 
Sargent, 1971; Burbidge and O'Dell, 1972; Tifft, 1972, 1973). Independent of this 
possible relation, a study of observable effects produced by low-frequency waves 
leads to new upper limits for the low-frequency end of the spectrum of gravitational 
background radiation. 

2. Random Wave Fields 

The possibility of intergalactic gravitational radiation with wavelengths comparable 
to the Hubble distance was apparently first considered by Kristian and Sachs (1966). 
A description of wave fields in terms of a spatially homogeneous and isotropic random 
process analogous to methods employed in optical coherence theory (Mandel and 
Wolf, 1965) seems appropriate. Solutions of the first order wave equation for pertur­
bations 0 O O = 0 O . = O, 0i*7*O with gu = 0, gikyk=0 to a flat Robertson-Walker model 

i i i i 
Goo — — h 0oi = O, 0ijk = ( fAo) n $ik w i H t>e employed (Sachs and Wolfe, 1967). The gen-
o o o 
eral solution of the wave equation in this cosmological model may be represented 
by a spatial Fourier integral 

9ik = J ytk(K t) ei<p dk + complex conjugate, (2) 
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where the phase <f) = k x + k(XHnz/(\ -n)(\ +z)) describes null planes in the back­
ground metric. The Fourier components yik are time dependent and satisfy, apart 
from the algebraic conditions yikkk = 0, yH = 0, an ordinary linear differential equation 

2ik R\ [6R 2R2 2ikR 
y , - y ^ T 4 - - J - y , ^ + ^ - ^ ) = o (3) 

w'\\hR = (t/t0)n. 

An interpretation of the right-hand-side of Equation (2) as stochastic Fourier in­
tegrals accounts for the expected random behaviour of intergalactic waves. The 
average structure of the wave field is described by the mutual covariance functions 
(mcfs) for the perturbation of the metric tensor. The most general mcf which could 
be formed from the random components gik(x, t) is given by 

i 
c',t')> = 2 J <0»(X> 0 9lm(*', 0> = 2 d k y . W m ( k , t, f) X 

where according to standard theorems in spectral theory 

<yik(k, t) r f m ( k ' , t')>=yMm(K t, f) 8(k - k ' ) 
(5) 

has been used. Requirements of isotropy and homogeneity for the tensor quantities 
gik restrict the form of the spectral density 
i 

yikimiK t, t') = oc(k, t, t') biklm 

<>iklm = $ii$km + $im$kl ~ $iJ>lm (6) 
$ik = $ik~ kMk2 • 

a = a(/c, r, t') is a single real function of /c, k = N / k k , as well as of t and t'. Apart from 
problems of stochastic particle acceleration by wave fields - which will be discussed 
elsewhere - the mcf s are needed at time r = r' only; thus only a(/c, r) = a(fc, r, t) is con­
sidered below. One may also introduce mcf's involving first derivatives of gik, these 

1 

quantities can be reduced to the corresponding spectral densities 

<yikyL> =/J<W (k-k ' ) (7) 

<yf*y l M >=r<W(k-k ') (8) 

with real P(k, t) and complex T(/c, t). Since every realization of gik satisfies the wave 
i 

equation, second time derivatives of gik can be replaced by at least first-order time 
i 

derivatives. Thus spectral densities corresponding t to higher derivatives may be re­
duced to the basic spectral densities a, /? and f. Differentiating the defining Equa-
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tions (5), (7) and (8) with respect to t and using again the generalized wave equation, 
one obtains a coupled system of equations for a, /?, T, which can be reduced to a 
non-linear differential equation 

a 2 R . 2ock2 4R2OL 12R 2k2oL2

0R2 

~2a~R°C + ~R2 R2 W 
a ~ " o " + - ^ > 7T0C= : (9) 

for a alone, with a 0 = const. Solving this equation in the high-frequency approxima­
tion / d H > 1, or more generally, for R/R<£ck, 

oc0(k) 
a = -

( l+z ) 2 

follows. Similarly one obtains 

P = k(a1+2x0k) (11) 
y = Re(r) = ( a 1 + 2 a 0 / c ) / ( l + z ) , (12) 

where a x is a further arbitrary function of k. In the same high-frequency approxima­
tion the energy-momentum tensor of the gravitational wave fields can be calculated 
according to the description given by Isaacson (1968), with the averaging process in 
this procedure corresponding to an ensemble average. The energy-momentum tensor 
is that of ideal fluid matter with an ultra-relativistic equation of state, p = g/3, where 

/ce=87r(i+z) 4 a0(fc)fc4dfc. (13) 

Equation (1) essentially follows from Equation (13) in the approximation of mono­
chromatic radiation, where the spectral density a 0 is replaced by an expression pro­
portional to the Dirac delta function d(k — k0) around a wavelength A0 = 2n/k0. 

The simple description of random wave fields in a spatially flat universe, given by 
Equations (2)—(13) may be used to predict several observable effects, as discussed 
below. Some restrictions on this description should be kept in mind. 

(i) While the approach appears acceptable for the wave amplitudes, appreciable 
errors could be introduced in the phases, which are calculated to zero order only, 
using the cosmological background metric. As must be expected from the geometrical 
interpretation of the gravitational wave fields, a phase-amplitude relation exists, 
which causes the first-order phase correction to depend on the metric fluctuations 
gik. The effect distorts phase coherence properties and may have an influence on 
I 

observable effects, even for small phase corrections. 
(ii) The solutions (10}-{12) for the mcf's are confined to sufficiently high frequencies 

or to wavelengths small compared to the horizon distance. Since the ratio wavelength 
to horizon distance changes as (A./AH)/(A/AH)0=(1 + z ) 1 / w ~ 1 , this approach breaks down 
for z > z * , where (A/AH) 0(1 + z * ) 1 / w - 1 ~ 1. In this case more general solutions can be 
found, in general, only by numerical calculation. 
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Note also that a basic postulate which should be fulfilled for real wave fields is 
the property of ergodicity. It should be possible to replace ensemble averages by 
space averages. Otherwise, a determination of the spectral density from observa­
tions in a limited space-time domain would not be possible. 

3. Variations in the Microwave Background 

The intensity of electromagnetic radiation from distant sources will show spatial and 
temporal fluctuations due to an interaction with gravitational background radiation, 
see Zipoy (1966) and Kaufmann (1970). In particular, electromagnetic background 
radiation is influenced and should vary in intensity across the sky. If at any time t* 
in the past the intensity Jv of background radiation can be described by a Planck 
spectrum, the same description applies for t>t*, with a space-time and direction 
depending temperature field T. Its anisotropic part T = - T 0 + T has at the present 
instant of time a Fourier decomposition 

T = j* f (k)e l k x - I ^-hcomplex conjugate. (14) 

The integration of the equation of radiative transfer for T, with Thomson scattering 
as well as interaction with gravitational waves taken into account, leads to an ex­
plicit expression for f , given by ( f is supposed to be zero at some initial time tx): 

T ( k ) = - w ^ v c l + Z i ] e x p L ~ 4 q + 

(15) 

Here 

q{z'){\+z')2-'in&z', Ac=\/n0cjT, (16) 

where q(z') is the degree of ionization of intergalactic matter, n0 the present density 
of matter and aT the Thompson cross section. 

It is seen from Equation (15) that f contains two parts. One component varies 
slowly across the sky, the other component, proportional to the exponential function, 
oscillates rapidly with the direction of observation. The slowly varying component 
results from the local gravitational wave field in the neighbourhood of the observer; 
the fluctuating part arises from the interaction of the blackbody radiation with the 
gravitational wave field at some early instant of time prior to the pre-galactic plasma 
recombination (Dautcourt, 1974). 

The temperature variation on a large angular scale may be decomposed into 
spherical harmonics. The complex Fourier components yik of the local wave field can 
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be represented algebraically by 

(17) 

where lh mk are two unit directions orthogonal to each other and to k/fc, and P, Q 
are two complex functions of k, describing the amplitude and phase of the local wave 
field. The resulting large-scale temperature variation depends only on the real part 
of the arbitrary functions P and Q. It should be noted that P and Q may take any 
value: their ensemble mean only is restricted by the requirement of yielding no con­
tribution to the energy density and pressure of the wave field that exceeds the cosmo­
logical limit. Furthermore, since Px = Re(P) and Ql = Re(Q) are independent of each 
other, their ratio is also arbitrary. Nothing is known of the probability distribution 
of P and Q. 

If Px and Qx depend only on the wave number fc but not on the wave direction 
k/fc, a numerical evaluation of the coefficients of the dipole and quadrupole compo­
nents of T has shown (Dautcourt, 1974), that the dipole contribution is only about 
1% of the anisotropic part in T, provided Py and Qx are of comparable order. The 
main component of % would be of quadrupole type, given by 

(9 is an azimuthal angle in a wave orientated coordinate system). Several measure­
ments of possible variations of the 3 K radiation on large angular scales have been 
made (Partridge and Wilkinson, 1967; Conklin and Bracewell, 1967a, b; Conklin, 
1972), only Conklin (1972) reports a possibly positive results, ( T / T 0 ) d i p o l e = ( 8 . 5 - 3.4) x 
x 1 0 " 4 and ( T / T 0 ) q u a d r u p o l e = (5.3 —3.0) x 10~ 4 , respectively. The dipole component, if 

real, may correspond to the Earth's motion with respect to the cosmological frame 
of reference (Sciama, 1967). The quadrupole component gives an upper limit 

for the local wave field. 
Turning to small-scale variations, the observable quantities are the rms temper­

ature fluctuation 

( 1 8 ) 

/ c^dfc jg 2 . 4 x l ( T 4 (19) 

<X=<T 2 > , 2 \ , l / 2 (20) 

and the angular correlation function 

r(9) = <T(x,y)T(x + u,y + v)>/a2, 
(21) 

where 02 = u2 4- v2 and x, y are rectangular coordinates in a small region on the sky. 
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From Equation (15), the fractional temperature fluctuation is given by 

a / r 0 = ( l + * i ) ' i ( y I OLo^dkViKz,) 
(22) 

where ¥*(/:, z x ) is a function accounting for a deviation of the spectral density a from 
a ~ (1 + z ) ~ 2 dependence for large z, as mentioned above. z x has to be chosen suffi­
ciently large, z x > 2 x 10 3 , to ensure that those variations in the background radiation 
which might be present at z = zt are nearly completely damped out-by Compton 
scattering in pre-galactic matter - at the present instant of time. The remaining 
fluctuations in the 3 K radiation arise at redshifts smaller than z = zx and are given 
by Equation (22). Their amplitude depends critically on the exponential damping 
factor rx in Equation (22). rl is a function of the ratio of the present matter density 
to the Hubble constant H0 and also depends on the scale factor index n. In a low-
density universe, the existing upper limits (Parijskij and Pyatunina, 1970; Boynton 
and Partridge, 1973), in particular the extremely low value of T / T 0 < 3 x 10" 5 found 
recently by Parijskij (1973) on angular scales between 3' and 1°, confine gravitational 
background radiation to small amplitudes with energy densities below the critical 
cosmological density. On the other hand, primordial small-scale variations are damp­
ed out if the present matter density is sufficiently large, gm>g*. The matter density 
g* for which small-scale variations induced by gravitational radiation with critical 
cosmological energy density could just have been detected by Parijskij's measure­
ment, depends on the gravitational wavelengths and on the value of the Hubble con­
stant. For the range k = 3... 100 Mpc and H o = 50. . . 100 km s " 1 Mpc" 1 , g* hast a 
value between 1 0 " 3 0 and 1 0 " 2 9 g c m " 3 (Dautcourt, 1973). 

The angular correlation length AO for small-scale temperature fluctuations arising 
at z < z x is approximately given by 

which gives A0° ~ 2 x 10" 2 k for zx = 2 x 10 3 . This covers the range of scales for which 
Parijskij gives his limit. 

To summarize, the microwave anisotropy measurements do not necessarily exclude 
the existence of gravitational background radiation, even if it reaches the critical 
energy density and has large mean wavelengths. They would do so, however, if the 
microwave background is not of primordial origin but arises from the superposition 
of radiation from many discrete sources, since here the reduction factor r x in Equa­
tion (22) is no longer small compared to 1. 

t Provided that the phase perturbation mentioned above - which corrects the zero-order phase calculation 
- is not large enough to cast doubt on the application of the method of stationary phase, that has been 
used to derive Equation (15). 

AO* 
k 1 + z 

(23) 
A , 
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4. Redshift Fluctuations 

The particular interest in low-frequency gravitational waves comes from the existence 
of a fluctuating component in the redshifts of galaxies and other distant objects. It 
is well known that gravitational waves cause a beam of photons to experience fluc­
tuations in frequency (Zipoy, 1966; Kaufmann, 1970). Let V®, be the four-velocities 
of a light source and an observer, respectively. The redshift measured by the observer 
at the world point P is given by 

l+Zu** = P*V?/rV,p

9 (24) 

where P* is the ray direction. 
Provided that source and observer have no peculiar velocity, a simple calculation 

gives for z t o t a l 

l + Z t o t a i = l + z + <^. (25) 

Here z is the non-random mean of the redshift, connected with distance by the Hubble 
relation D = cz/H0 for small z. The second component Sz is given by 

Sz = - it0 J ^ j* dk yei(p(kn + k) + complex conjugate ~ 

o 

~ J dk 7i (1 - [14- z x ] cos </>) + (1+ zj) J dk y2 sin (f>, (26) 

y = yl+iy2 = yiknink, 

± AH(kn + /c)z (27) 

1 + z 

where n is the source direction and the approximation holds for small redshifts or, 
for arbitrary z, after using the method of stationary phase (Copson, 1965) to carry 
out the z integration. Equations (26) and (27) as well as the formula below hold for 
a Tolman universe (R~t1/2). From the random character of the metric quantities it 
follows that the fluctuating redshift component is also a random quantity, changing 
irregularly with the source position. If the wavelengths are confined to a small range 
around the mid frequency k (this corresponds to quasimonochromatic gravitational 
radiation) Sz shows periodicities with periods in source distance and in angular dis­
tance of the order 

Az^j-{l+z), (28) 

A ( 1 + Z ) 

XH z 
A9~—- (29) 
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respectively. Another interpretation of A z, A 6 as given by Equations (28), (29) is in 
terms of a correlation length with respect to depth and to angular separation. The 
basic quantity in this connexion is the redshift fluctuation autocovariance function 

<6z16z2> = S(zl9z2,0). (30) 

S is equal to the ensemble averaged mean of the product dzx Sz2 of two fluctuating 
redshift components Szl95z2, associated with two sources within different depths, 
corresponding to the mean redshifts zu z 2 , and separated by an angular distance 
0 = arc cos(n\n2) on the sky. In full generality S turns out to be complicated. For 
particular cases, analytic expressions are available. For zero angular lag (0=0); 

00 
1671 f 

S(zuz2,0) = ^ | J d * [ 1 " ( I + 
0 

- (1 + z2) f(x2) + (1 + zx) (1 + z 2 ) f(Xl - x 2 ) ] , (31) 

X! =kXHzJ{\ + z x ) , x2 = kXHz2/(l + z 2 ) , 

with f(x) as an oscillating function tending to 1 for x-»0: 

cosx . 15 f s inx cosx 
/ ( X ) = - T C O S X 3 — = — 3 

v x 3 L x2 x -sinx (32) 

The amplitude (Sz2} is given by 

00 
16 f 

<^2 2> = - f | J a 0 f c 2 d f c [ l + ( l + z 1 ) 2 - 2 ( l + z 1 ) / ( * i ) ] ^ 

32n ( z 2 

'- l + z + — 
15 V 2 

a 0fc 2d/c, (33) 

where the approximation is valid for large values of kXHz/(\ + z), with the oscillating 
terms being damped out. Finally, in the case of quasi-monochromatic background 
radiation, 

From Equations (33) and (34) an important conclusion can be derived: distances 
to extragalactic objects - if determined by redshift measurement - are generally un­
certain by an amount of the order c/H0. (Sz2}1,2*2in the mean, that is of the order 
of the dominant wavelength, if the wave energy reaches the critical density. 

With a wave induced fluctuating redshift component, a number of anomalous red-
shift effects can be explained, although not all of them, in particular not those in-
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volving luminosity changes. A connexion between a fluctuating redshift component 
and a corresponding intensity variation exists, both produced by the same gravita­
tional waves. The relative intensity change is, however, only of relative order XjkH. 
This is too small to explain, for instance, the band pattern in the magnitude-redshift 
plot of galaxies in the Coma cluster found by Tifft (1972, 1973a, b). As noted above, 
the theory employed here is incomplete and should be supplemented by a more ac­
curate treatment of phases. It is still an open question if a more accurate wave theory 
could describe all redshift anomalies. In the following, some effects are noted, which 
could be explained by the theory already in its present form. 

5. Mass Discrepancy in Galaxy Clusters 

The fluctuating redshift component (26) increases the velocity dispersion of galaxies 
in clusters and groups and may be the cause of the mass discrepancy. Introducing a 
mass weighted average distance r of galaxies in the cluster by r = M2/Y,A,B MAMB/RAB 
(M = Y,AMA> MA t h e individual masses, 4 = 1. . . AT), and defining V2 = Y,MA^A2/^ 
with VA/c as the observed redshifts VA/c minus a mass weighted average of VA/c (thus 
X KiMA = 0), the 'virial mass' MVT is usually defined by 

MVT/M=V2r/MG (35) 

(projections factors are neglected here). If gravitational waves are present, the value 
of MVT/M, defined by the operation described above, is given by 

rc2 

GM2 
MVT/M=1 ( Y,mA Sz2

A--| X mA bzx 

A 
(36) 

if the intrinsic dynamical motion of galaxies satisfies the virial theorem. For a given 
cluster of galaxies, 8zA varies as a function of both the distance and the apparent 
sky position of the galaxy (a slight position displacement, also caused by the low-
frequency waves as discussed below, may be neglected in this context). If the coherence 
length of the waves is of the order of or small compared with the mean distance be­
tween galaxies, the redshift fluctuations are only partly correlated for neighbouring 
galaxies. In this case the term involving ]T mA 8zA becomes small, if the number N 
of cluster members is sufficiently large, and the virial discrepancy attains its maximal 
value, with an ensemble average given by 

Rc2J3 r ~ l + — ^ ~ MVT/M^l+^-_(8z2>. (37) 
GM 

Note, Sz in Equation (37) refers to the fluctuating component in the redshift change 
(a redshift component equal for all galaxies does not contribute to the discrepancy). 

In the other case, if the wave coherence lengths are considerably larger than the 
distances between galaxies, there is a high probability that all galaxies will attain the 
same value of the anomalous redshift. There is then some cancellation of terms in 
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Equation (36), MVT/M tends to 1, and the discrepancy vanishes. Thus very low-fre­
quency waves with wavelengths greatly exceeding the cluster diameters will not 
contribute to the velocity dispersion. The possible existence of 100 Mpc waves - which 
might explain a number of other effects (see below) - is not restricted by the virial data. 

From Equation (36) it is seen that instead of M K r / M , the quantity MVT — M is a 
useful measure of the virial discrepancy, since this quantity should be a function of 
the cluster extension only, independent of the cluster mass M. To obtain an approxi­
mate value for MVT — M with the assumption mA = m we note that 

(i) averaging the square of bzA over the cluster members gives a sample estimate of 
<<5z2>, and 

(ii) averaging dzA SzB with A^B over the cluster members gives an approximate 
sample estimate of the covariance function S(z, z + HAr/c, 9\ where Ar is the mean 
space distance between the galaxies and 9 the mean angular distance of galaxies. Thus 

M VT~ • M ~ -rc « 5 2 2 > - < f e ^ z 2 » : 

rc S[z, z , 0 ] - S 
HAr 

z, z + ,6 (38) 

In Figure 1 this function is plotted as a function of r for monochromatic gravitational 
background radiation with a wave length A = 1 0 Mpc at the critical cosmological 
energy density, together with data for some clusters of Abell richness class 2, compiled 
by Silk and Tarter (1973). The radii r are taken from this publication, the unweighted 
radii Ar and 9 = Ar/A (A the distance to the cluster) are from the work by Rood et al 
(1971). Although these data should be considered only as an illustration of the general 
idea, it appears that gravitational wave induced redshift components could account 
for the observed increase Of MVT — M with the cluster diameters. Also, since M -M 
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1. Virial discrepancy according to Equation (38), for monochromatic gravitational background 

radiation of critical cosmological density, with / . = 10 Mpc . 
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is essentially mass independent, the high velocity dispersion found for less massive 
groups (Rood, 1971) may be explained as caused by the same spectral band (this band 
is probably not restricted to a single line but may have a rather broad appearance). 

6. Systematic Redshifts in Chains of Galaxies 

An effect related to the mass discrepancy in groups of galaxies is a variation of the 
measured redshift across a group or cluster. A systematic change of the wave induced 
redshift component over a cluster should appear, if the apparent cluster diameter is 
comparable with the angular correlation length A9 given by Equation (28). 

Recently Gregory and Connolly (1973) reported redshift measurement of two 
groups which belong to the cluster Zw CI 1609.0 + 82? 12. One group, listed separately 
as Abell cluster A 2247, contains a chain of galaxies, which extends over a distance of 
approximately ~ 9 ' . The redshifts seem to change systematically along the chain, 
leading to a difference of the order ~ 750 km s " 1 at the ends. The mean redshift of the 
cluster A 2247 is of the order z ^ 4 x 10" 4 , giving D = 120 Mpc for H0 = 100 km s" 1 

Mpc" 1 . Application of the virial theorem gives an M/L ratio 200 times the solar 
value. According to Gregory and Connolly there exists no convincing interpretation 
of the systematic redshift variation in terms of peculiar motion. The hypothesis of a 
gravitational wave induced redshift component may account for the observations. 
The correlation of redshifts suggests an angular correlation length AO' of the order of 
or exceeding the angular extension / ' ^ 9 ' of the chain. Thus from Equation (29), 
X > 0.1 Mpc should hold for the dominant wave length X. If the local values of the wave 
amplitudes at the cluster are just equal to the root mean square value, then X ^ 8 Mpc, 
if a critical energy density is assumed for the waves. 

Similar remarks may be made for the more distant (z = 0.1) Zwicky cluster of 
compact galaxies,Zw CI 0152 -I- 33(Sargent, 1972), which also shows a redshift anomaly. 

There are also some well-known cases of a single very discrepant redshift in groups 
of obviously physically related galaxies (Arp, 1971; Burbidge and Sargent, 1971). The 
gravitational wave explanation also possibly covers these cases. It should be stressed 
that nothing is known of the probability distribution for a wave amplitude or a single 
redshift component Sz. Since one deals with random quantities, large deviations from 
the mean are not excluded. 

7. Local Supercluster 

A suggestive explanation for the anisotropy and non-linearity of the redshift distribu­
tion of nearby galaxies in terms of a differential rotation and expansion of the local 
supercluster has been given by de Vaucouleurs (1953,1968,1972) and others (Cooper-
Rubin, 1951; Ogorodnikov, 1952). If gravitational radiation with wavelengths of 
order 100 Mpc exists with not too small amplitudes - at least locally - this picture 
should be modified. The resulting redshift distribution for galaxies in the extreme near 
field (D < X) of the waves has some similarity with the observed pattern. The general 
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expression for the anomalous redshift distribution is given by 

Sz = J Pj (k) dk (I2 - m2) (1 - cos <j>) + 

+ 2 Jĝ k) dk /m(l-cos<£) + 

+ | p 2 ( k ) d k ( / 2 - m 2 ) sin(/> + 

+ 2 J Q2(k) dk Im s in^, 

where <f> is the phase 

/ kn\ 2nD ( kn\ , , 

* ' u " i , + j ) - ~ { i + j ) (40) 

and 
/ = / f n \ m = minl. 

It is seen from Equation (39), that the change of Sz along the supergalactic equator is 
mainly of quadrupole type. This is the main difference from the de Vaucouleurs inter­
pretation suggesting a dipole-like variation of the non-Hubble redshift component 
with supergalactic longitude. A clear decision between both possibilities seems to be 
difficult at present, in view of the scarcity of southern hemisphere data and because 
of obscuration by the Galaxy. 

Equation (39) also predicts a non-linearity of the redshift-distance relation. If 

Hen = H0(l+Sz/z) (41) 

is defined as the effective Hubble constant, with H0 as the asymptotic value behind 
the local supercluster, this quantity is a function of the distance D = cz/H0 as well as 
of the direction of observation. Its variation with D and n depends strongly on the 
wave vector dependence of the amplitudes Pu P2, Qi and Q2 as well as on the relative 
weight of these quantities. 

As a simple example, which has been discussed in detail elsewhere (to be publish­
ed), we consider Pt through Q2 as depending on the wave number k only. The terms 
involving Qx and Q2 give no contribution to <5z, the remaining terms lead to 

(3 c o s 2 0 - 1) (7c 1 /2 1 (a ) -h7r 2 A 2 (a ) ) , 

Qc 2 y/3XH with nl9 n2 as constants, a = 2nD/X and 
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, x sin<2 / sina\ /A^. 
h2(a)= =- cosa . (43) 

a2 \ a J 

The observations (de Vaucouleurs, 1972) may be represented by choosing n2 ^ 0 and 
n1 roughly of order 1. The effective Hubble constant increases up to a maximum at 
a ~ 1.8 and shows a slow decrease for a larger a. There are other peaks in the theoretical 
expression for Heff for a ~ 1.8 + 2nn, n = 1,2, 3 . . . , but with strongly reduced amplitude 
( # m a x ~ l /^ 2 ) - For a > 1, H e f f tends to its asymptotic value H0. The observational data 
suggest that the first maximum of / / e f f corresponds to a distance of ;> 25 Mpc. Thus 
the local wave field should have a wavelength of the order > 100 Mpc. 

A large local gravitational wave field also predicts a large-scale anisotropy in the 
microwave background radiation, mainly of quadrupole type, as discussed above. The 
variations reported by Conklin (1972) are only marginally compatible with the 
numerical data required to explain the local redshift anomaly within the simplified 
model. It is an open question at present if a more refined model of the local wave field 
gives a better representation of all observational data. It may be noted that redshift 
data from the Local Group also impose some upper limits to the wave amplitudes in 
Equation (39). 

8. Redshift Clustering 

An apparently non-random distribution of the redshifts of quasistellar objects and 
related sources has been suggested by many authors (Burbidge, 1968; Cowan, 1968, 
1969; Lake and Roeder, 1972; Burbidge and O'Dell, 1972). The gravitational wave 
hypothesis predicts a periodic redshift clustering for all extragalactic objects. The 
number density of sources of a given class with redshifts between z and z + dz is given by 

" t o t a l (z) = n(z)-—(nSz), (44) 
dz 

where n(z) is the corresponding density without waves. The existence of a broad wave 
spectrum would tend to smear out any periodicities in « t o t a l . If, however, k2oc0(k) is 
peaked at some wave number k0, one expects a redshift clustering on a scale given by 
Equation (28) with A = 2n/k0. A recent analysis by Burbidge and O'Dell (1972) has 
shown that a power spectrum analysis of the distribution of non-QSO redshifts gives 
a spectral maximum for a wave length A z = 0.031, which is significant at the 97 .5% 
confidence level. According to Equation (28), a gravitational wavelength / l 0 ~ 
^93(100/ / f 0 ) Mpc may cause the effect. This corresponds to the wavelength required 
to explain the anomalous redshift-distance relation of nearby galaxies by a local wave 
field. 

9. Scintillation Effects 

A further interesting wave effect is the lateral displacement of light rays reaching the 
observer. This results in a time-dependent random position shift of the source on the 
sky, xA->xA + SxA(A — 1, 2, we use locally cartesian coordinates). The time scale for a 
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complete shift reversal is of the order of the wave periods. For ultra low-frequency 
waves a frozen scintillation would be observed. Displacements at different directions 
are correlated with each other. Statistically, the displacements dxA may be considered 
as the components of a two-dimensional random vector field, whose covariance func­
tion is given by 

if dxA descibes a locally isotropic and homogeneous random process. F and G are 
the lateral and longitudinal autocovariance functions. The requirement of local 
homogeneity and isotropy of 8xA is satisfied if the wave random process that causes 
the lateral displacements is - as usually assumed - also a homogeneous and isotropic 
process. In this case F and G depend on the apparent angular distance 6 = arc cos n\ n2 

of two sources as well as on the source distances (or equivalently, on the mean red-
shifts). The root mean square value of the displacement vector is given by 

the approximation holds for quasimonochromatic radiation at the center wavelength 
X. Although the amplitude of the displacement is high for large wavelengths, it must 
be noted that it is not directly observable, since neighbouring points will in general 
experience nearly the same shift. What is observable is a differential position shift, 
which is connected with the lateral derivatives of SxA. 

The angular dependence of the autocovariance functions F and G gives some 
information on what kind of observable effects could be expected. The mean parts of 
F and G smoothly decrease with increasing 0, indicating correlation over a large part 
of the sky. A small fraction (~ X/XH) of the amplitude oscillates with decreasing peak 
amplitude, on an angular scale 

(AO' in minutes of arc). Thus an increased clustering tendency for distant objects like 
faint galaxies and quasi-stellar objects can be expected. The correlation length of the 
clustering as given by Equation (47) is of the order A9° ~ 2.5°-5°, if X = 100 Mpc and z 
ranges between 0.5 and 2. A clustering tendency for radio sources and quasi-stellar 
objects on similar scales has been noted by Wagoner (1967) and Arp (1970), who discus­
sed the distribution of distances to the nearest neighbour objects. 

An increased apparent clustering must also occur for faint and distant galaxies. 
An estimate of the index of dumpiness has shown that roughly 

<<5x? 8xB

2 > = FSAB + nAnB(G - F), 

(46) 

(48) 
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where /' is the extension of the counting cell (in arc seconds) and / ( z ) = z 3 / ( l +z) for 
a Tolman radiation cosmos; the equation is restricted to a counting cell size small 
compared to the autocorrelation length (47). A dispersion-subdivision curve analysis 
of counts of galaxies, carried out on plates taken with the Schmidt telescopes at 
Tautenburg (Dautcourt et al, 1974) and at Palomar (Zwicky, 1957) suggests a rapid 
increase of the index of dumpiness with counting cell size 1. 

Zwicky explains the effect by intergalactic obscuration (see, however, Neyman et 
al, 1954). If there is a contribution from gravitational radiation, it again suggests 
the presence of an appreciable amount of radiation in the 100 Mpc wave band. 

10. Concluding Remarks 

In summary, it appears that the hypothesis of extremely low frequency cosmic gravi­
tational radiation could explain a number of puzzling observations. Other closely 
related questions are still open. The case for gravitational radiation as the source of 
the redshift anomalies would be strong, if Tifft's band structure in the m — z-plot of 
Coma cluster galacies could be understood - provided, the effect is real. Other redshift 
anomalies like the systematically higher redshifts of companion galaxies, would 
follow from an explanation of the Tifft phenomenon. 

Attention has been directed to directly observable effects of low-frequency waves. 
Intense wave fields should have had an influence on matter also at pre-galactic stages. 
Thus, a stochastic particle acceleration by wave fields - which is small at present time, 
but increases for large redshifts - might have been an energy source in pre galactic 
matter, e.g., for maintaining pre-galactic turbulence. 
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