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Periodic Solutions of an Indefinite Singular
Equation Arising from the Kepler Problem
on the Sphere

Robert Hakl and Manuel Zamora

Abstract. We study a second-order ordinary diòerential equation coming from the Kepler problem
on S2 . _e forcing term under consideration is a piecewise constant with singular nonlinearity that
changes sign. We establish necessary and suõcient conditions to the existence and multiplicity of
T-periodic solutions.

1 Introduction and Main Result

_e purpose of this paper is to investigate the existence of T-periodic solutions to
equations of the type

(1.1) ü = h(t)
cos2 u

,

where, generally speaking, h∶R → R is a T-periodic (nontrivial) locally integrable
function. Note that if there exists a T-periodic solution to (1.1), then h necessarily
changes its sign. Obviously, the right-hand side of (1.1) has singularities at the points
u = π/2 + kπ (k ∈ Z). We will focus on T-periodic solutions u lying in the strip
(−π/2, π/2), i.e., u(t) ∈ (−π/2, π/2) for all t ∈ [0, T].

It is worth mentioning here that we are dealing with a class of indeûnite singu-
lar equations with two singularities. _e problems with more than one singularity
have received little attention in literature; however, they are very interesting from a
theoretical point of view.

One of important goals of this paper is to establish criteria guaranteeing the solv-
ability of an indeûnite periodic problem associated with a singular diòerential equa-
tion with two singularities.

In an applied situation, the idea of exploring the Kepler problem on a non-Eu-
clidean space started around 1840. Lobachevsky [6] and Bolyai [1] studied indepen-
dently the Kepler problem where the attraction force is inversely proportional to the
surface of S2. In 1860, Serret resolved the Kepler problem deûned on S2 by using
a suitable extension to the motion of a gravitational force (see [9]). Recently, some
mathematicians of the Russian school, including V. Kozlov and A. Harin [5] and
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A. Shchepetilov [8], have made important contributions to this area using the cotan-
gent potential deûned onS2. From this point of view themotion of a particle subjected
to the in�uence of an electric ûeld created by a charge of a time-dependingmagnitude
ûxed in the north pole can be modelled by the equations

ü = −h(t)uw
(1 −w2) 3

2
− (u̇2 + v̇2 + ẇ2)u,

v̈ = −h(t)vw
(1 −w2) 3

2
− (u̇2 + v̇2 + ẇ2)v ,

ẅ = h(t)
(1 −w2) 1

2
− (u̇2 + v̇2 + ẇ2)w ,

where h is an integrable T-periodic function corresponding to the magnetic interac-
tion between the charges. When our free-particle has angular moment equal to 0 (if
we restrict our movement to a circle), by using a change of variable to polar coordi-
nates, we obtain that the above system of diòerential equations can be written in the
form

(1.2) ü = h(t) cosu
∣ cosu∣3 .

_is problem models the dynamical behaviour of a particle moving on the S1 under
the in�uence of the Newton’s law (Kepler problem on S1).
From the above-mentioned point of view, our purpose is to investigate the exis-

tence of T-periodic motions to (1.2). If we restrict the movement of our particle to
S1
±
∶= {(x , y) ∈ S1 ∶ sgn x = ±1}, then equation (1.2) can be viewed as two independent

equations, namely, equation (1.1) if u ∈ (−π/2, π/2) and

(1.3) ü = − h(t)
cos2 u

if u ∈ (π/2, 3π/2). Note that the existence of a T-periodic solution to (1.1) in the case
when u ∈ (−π/2, π/2) implies the existence of (another) T-periodic solution of (1.3),
and vice versa.
As it was previously mentioned, in this paper we are going to study the solvability

of theT-periodic problemdepending on the parameter λ associatedwith the equation

(1.4) ü = λ2h(t)
cos2 u

,

under the following assumptions: T > 0 is a ûxed period and h is a T-periodic
piecewise-constant function composed by two weights, i.e.,

h(t) =
⎧⎪⎪⎨⎪⎪⎩

−h1 , for t ∈ [kT , kT + a),
h2 , for t ∈ [kT + a, (k + 1)T),

k ∈ Z,

where a ∈ (0, T), and h1, h2 are positive constants. _ese conditions simplify the
physical interpretation tomodel given by (1.4), making it clearer and less complicated.
Furthermore, the study of the existence of T-periodic solutions to an indeûnite singu-
lar equation is a diõcult problem to solve, especially under the presence of more than
one singularity at the spatial variable. It thereforemakes sense to consider the external
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force h deûned as above, which is the case studied in [2] (one of the ûrst works deal-
ing with indeûnite singular problems). By a solution to equation (1.4) we understand
a function u∶R → (−π/2, π/2) that is locally absolutely continuous together with its
ûrst derivative and satisûes (1.4) almost everywhere in R.

_e main result gives the following relation.

_eorem 1.1 _ere exists a critical parameter λ∗ > 0 such that
● there is no T-periodic solution to (1.4) provided λ > λ∗;
● there exists at least one T-periodic solution to (1.4) provided λ = λ∗;
● there exist at least two T-periodic solutions to (1.4) provided λ < λ∗.

It is worth mentioning here that the both analytical and numerical estimates of the
value λ∗ are established in Section 5.

_e following physical interpretation of the result obtained can be deduced: the
existence of an electrically charged particle moving periodically on S1 under a ûxed
electrical ûeld with alternating charge periods of attractive and repulsive interaction
occurs only in the case when the electrical ûeld has low voltage or its polarity reverses
quickly.

_eorem 1.1 motivates the question on the exact number of T-periodic solutions
in each of the cases λ = λ∗ and λ < λ∗. _is interesting problem remains open.

_e rest of the paper is devoted to the proof of _eorem 1.1, the estimation of λ∗,
and examples illustrating the result. In Section 2, we construct a continuous func-
tion Ψ∶R2 → R2 so that there is a one-to-one correspondence between T-periodic
solutions to (1.4) and zeroes of Ψ. _e properties of the function Ψ are discussed in
Section 3. Conditions guaranteeing the existence, resp. non-existence of zeroes of the
function Ψ are established in Section 4 using the topological degree method. In Sec-
tion 5, we give the estimates of λ∗, i.e., of the critical value such that equation (1.4) has
no T-periodic solution provided λ > λ∗. In this context we discuss a problem with an
important physical interpretation. Finally, the conclusions and some open problems
are presented in Section 6.

2 Construction of T-periodic Solutions

_e model under consideration has a special symmetric aspects due to the external
force h. In fact, equation (1.4) can be studied as two alternating autonomous equations

ü = − λ2h1

cos2 u
, t ∈ [0, a),(2.1)

ü = λ2h2

cos2 u
, t ∈ [a, T),(2.2)

subjected to the boundary value conditions

(2.3) u(0) = u(T), u′(0) = u′(T).

In this context the following lemma plays a key role in the proof of _eorem 1.1, es-
tablishing that if u is a T-periodic solution to (1.4), then its value at a is necessarily
equal to its values at the extreme points of the interval [0, T].
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Lemma 2.1 If u is a T-periodic solution to (1.4), then

tanu(0) = tanu(a) = h1 tan x0 − h2 tan y0
h1 + h2

,

where

(2.4) x0 = max{u(t) ∶ t ∈ [0, T]}, y0 = −min{u(t) ∶ t ∈ [0, T]}.

Proof According to sign properties of the function h, there exist tM ∈ (0, a) and
tm ∈ (a, T) such that x0 = u(TM) and y0 = −u(tm). Multiplying both sides of (2.1)
by u̇ and integrating on [tM , a], we obtain
(2.5) u̇2(a) = −2λ2h1( tanu(a) − tan x0) .
Further, multiplying both sides of (2.2) by u̇ and integrating on [a, tm], we get
(2.6) u̇2(a) = 2λ2h2( tan y0 + tanu(a)) .
In view of (2.5) and (2.6), we conclude that

tanu(a) = h1 tan x0 − h2 tan y0
h1 + h2

.

Arguing analogously as before on the intervals [0, tM] and [tm , T], respectively, we
can prove, using (2.3), that

(2.7) h1( tan x0 − tanu(0)) = h2( tanu(0) + tan y0) .
From (2.7) it follows that tanu(0) = tanu(a), concluding the proof.

As a consequence of the previous lemma we get the following assertion that any
T-periodic solution to (1.4) attains its maximum and minimum values at the points
a/2 and (a + T)/2, respectively.

Lemma 2.2 If u is a T-periodic solution to (1.4), then

max{u(t) ∶ t ∈ [0, T]} = u( a
2
) , min{u(t) ∶ t ∈ [0, T]} = u( a + T

2
) .

Proof Deûne x0 and y0 by (2.4) and let tM ∈ (0, a), tm ∈ (a, T) be such that x0 =
u(TM), y0 = −u(tm). We will prove that tM = a/2. Indeed, since ü(t) < 0 for
t ∈ [0, tM), u̇(t) > 0 for t ∈ [0, tM) (note that u̇(tM) = 0). Multiplying both sides of
(2.1) by u̇ and integrating over [t, tM], we arrive at

u̇(t) = λ
√

2h1
√

tan x0 − tanu(t) for t ∈ [0, tM],
and, consequently,

∫
x0

u(0)

ds√
tan x0 − tan s

= λtM
√

2h1 .

Analogously, the double integration over the interval [tM , t], with respect to the fact
that u̇(t) < 0 for t ∈ (tM , a], yields

∫
x0

u(a)

ds√
tan x0 − tan s

= λ(a − tM)
√

2h1 .
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According to Lemma 2.1, by subtracting the above-mentioned identities we obtain
that tM = a/2.

_e proof of the relation tm = (a + T)/2 is analogous, and it will be omitted.

To conclude this section we characterize the existence of a T-periodic solution
to (1.4) in terms of the existence of a solution to algebraic equations involving the
functions F1 and F2 deûned on ∆ = {(x , y) ∈ (−π/2, π/2) × (−π/2, π/2) ∶ x + y > 0}
by

F1(x , y) = ∫

√

h2(tan x+tan y)
h1+h2

0

2dz
1 + (tan x − z2)2 ,

F2(x , y) = ∫

√

h1(tan x+tan y)
h1+h2

0

2dz
1 + (tan y − z2)2 .

It can be easily veriûed that

(2.8) F1(x , y) > 0, F2(x , y) > 0 for (x , y) ∈ ∆.

Proposition 2.3 Let (x0 , y0) ∈ ∆. _en the following assertions are equivalent:
(i)

(2.9) F1(x0 , y0) = λa
√

h1

2
, F2(x0 , y0) = λ(T − a)

√
h2

2
;

(ii) there exists a T-periodic solution to (1.4) such that (2.4) is fulûlled.

Proof Note that, using the substitutions tan s = tan x − z2 and tan s = z2 − tan y,
respectively, the functions F1 and F2 can be equivalently rewritten in the forms

F1(x , y) = ∫
x

γ(x ,y)

ds√
tan x − tan s

,(2.10)

F2(x , y) = ∫
γ(x ,y)

−y

ds√
tan y + tan s

,(2.11)

where γ(x , y) = arctan[(h1 tan x − h2 tan y)/(h1 + h2)].
[(i)⇒ (ii)]. Deûne functions ρ1 and ρ2 by

∫
x0

ρ1(t)

ds√
tan x0 − tan s

= λ( a
2
− t)

√
2h1 for t ∈ [0, a/2],

∫
ρ2(t)

−y0

ds√
tan y0 + tan s

= λ( t − a + T
2

)
√

2h2 for t ∈ [(a + T)/2, T],

and put

u(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ρ1(t) for t ∈ [0, a/2],
ρ1(a − t) for t ∈ (a/2, a],
ρ2(a + T − t) for t ∈ (a, (a + T)/2),
ρ2(t) for t ∈ [(a + T)/2, T].

It can be easily veriûed that the function u∶ [0, T] → (−π/2, π/2) is absolutely con-
tinuous together with its ûrst derivative, and it satisûes (2.1)–(2.4). Consequently, its
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T-periodic prolongation to the whole real axis is a T-periodic solution to (1.4) satis-
fying (2.4).
[(ii)⇒ (i)]. Let u be a T-periodic solution to (1.4) satisfying (2.4). _en, according

to Lemmas 2.1 and 2.2, we have

u(0) = γ(x0 , y0), u( a
2
) = x0 , u̇( a

2
) = 0.

Multiplying both sides of (2.1) by u̇ and integrating over [t, a/2] we obtain
u̇(t)√

tan x0 − tanu
= λ

√
2h1 for t ∈ [0, a/2).

_e integration over [0, a/2] then implies

∫
x0

γ(x0 ,y0)

ds√
tan x0 − tan s

= λa
√

h1

2
.

Consequently, according to (2.10) we obtain that the ûrst equality in (2.9) holds.
If we handle with the equation (2.2) on the interval [(a + T)/2, T] in analogous

way, we arrive at

∫
γ(x0 ,y0)

−y0

ds√
tan y0 + tan s

= λ(T − a)
√

h2

2
.

_erefore, according to (2.11), we get the second equality in (2.9).

3 Some Properties of the Functions F1 and F2

To prove that the algebraic system (2.9) possesses (or not) a solution on ∆, we will use
some important properties of the above-deûned functions F1 and F2. However, we
ûrst introduce a function F∶ [−π/2, π/2] → [0,+∞) deûned by

F(x) = π
√

(1 + sin x) cos x
2

,

which plays an important role throughout the paper. Now, we will state some basic
properties of F1 and F2 that can be veriûed by direct calculation; therefore, the proofs
are omitted.

Lemma 3.1 _e following identities hold:

lim
y→π/2

F1(x , y) = F(x) for every x ∈ (−π/2, π/2);(i)

lim
x→π/2

F2(x , y) = F(y) for every y ∈ (−π/2, π/2);(ii)

lim
x+y→0

F1(x , y) = lim
x+y→0

F2(x , y) = 0;(iii)

∂F1

∂y
(x , y) > 0,

∂F2

∂x
(x , y) > 0 for (x , y) ∈ ∆.(iv)

From Lemma 3.1 we immediately obtain the following lemma.
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Lemma 3.2 _e following relations hold:

lim
x→π/2

F1(x , y) = 0 uniformly on (−π/2, π/2);(i)

lim
y→π/2

F2(x , y) = 0 uniformly on (−π/2, π/2).(ii)

Proof According to Lemma 3.1 and (2.8) we have

0 < F1(x , y) ≤ lim
z→ π

2

F1(x , z) = F(x) for (x , y) ∈ ∆,

0 < F2(x , y) ≤ lim
z→ π

2

F1(z, y) = F(y) for (x , y) ∈ ∆.

_us, taking the limits as x → π/2 and y → π/2, respectively, we get the assertion.

Remark 3.3 By virtue of Lemmas 3.1 and 3.2 we can also extend continuously the
functions F1 and F2 to ∂∆ and deûne them to be zero on

{(x , y) ∈ [−π/2, π/2] × [−π/2, π/2] ∶ x + y < 0} .

4 Conditions for the Existence and Multiplicity of T-periodic Solu-
tions

In this section we complete the proof of _eorem 1.1. We use Proposition 2.3 to es-
tablish eõcient conditions guaranteeing the existence (resp. nonexistence) of a T-pe-
riodic solution to (1.4). With this aim, we introduce the set

A = {(x , y) ∈ ∆ ∶ (T − a)F1(x , y)
√

h2 = aF2(x , y)
√

h1} .

Obviously, every solution (x0 , y0) to the algebraic system (2.9) belongs to A. Note
also that on the set A, for arbitrary λ > 0, the following relation holds:

(4.1) sgn[F1(x , y) − λa
√

h1

2
] = sgn[F2(x , y) − λ(T − a)

√
h2

2
] .

Lemma 4.1 _e following statements hold:
(i) If F1(x , y) < λa

√
h1/2 for all (x , y) ∈ A, then there is no T-periodic solution to

(1.4).
(ii) If F1(x0 , y0) = λa

√
h1/2 for some (x0 , y0) ∈ A, then there exists at least one

T-periodic solution to (1.4).
(iii) If F1(x0 , y0) > λa

√
h1/2 for some (x0 , y0) ∈ A, then there exist at least two

T-periodic solutions to (1.4).

Proof Assertions (i) and (ii) immediately follow from relation (4.1) and Proposi-
tion 2.3. As for assertion (iii), with respect to Remark 3.3, we introduce the functions
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G1 and G2 deûned on [−π/2, π/2] × [−π/2, π/2] as follows:

G1(x , y) = F1(x , y) − λa
√

h1

2
,

G2(x , y) = F2(x , y) − λ(T − a)
√

h2

2
.

According to Proposition 2.3, it is necessary to show that the mapping G = (G1 ,G2)
has at least two diòerent zeroes in ∆. In view of (4.1), we have G1(x0 , y0) > 0 and
G2(x0 , y0) > 0. According to Lemma 3.1(iv) and Lemma 3.2, we have

G1(x0 , y) > 0, G1(
π
2
, y) < 0 for y ∈ [y0 , π/2],

G2(x , y0) > 0, G2(x ,
π
2
) < 0 for x ∈ [x0 , π/2].

Put Ω0 = (x0 , π/2) × (y0 , π/2) and let (α, β) ∈ Ω0 be arbitrary but ûxed. Deûne the
homotopy as follows:

H1∶ [0, 1] ×Ω0 → R2 , H1(µ, x , y) ∶= (1 − µ)G(x , y) + µ(α − x , β − y).
Obviously the homotopy is admissible, because H1(µ, x , y) /= 0 for all (µ, x , y) ∈
[0, 1] × ∂Ω0. _us,

dB[G , Ω0 , 0] = dB[H1(0, ⋅ , ⋅ ), Ω0 , 0] = dB[H1(1, ⋅ , ⋅ ), Ω0 , 0] = 1

(dB denotes the Brouwer degree). On the other hand, according to Lemma 3.2 and
Remark 3.3, we have

G2(x ,−
π
2
) < 0, G2(x ,

π
2
) < 0 for x ∈ [−π/2, π/2],

G1(−
π
2
, y) < 0, G1(

π
2
, y) < 0 for y ∈ [−π/2, π/2].

_erefore, setting Ω = (−π/2, π/2) × (−π/2, π/2), the homotopy

H2∶ [0, 1] ×Ω → R2 , H2(µ, x , y) = (1 − µ)G(x , y) + µ(−1,−1)
is admissible and

dB[G , Ω, 0] = dB[H2(0, ⋅ , ⋅ ), Ω, 0] = dB[H2(1, ⋅ , ⋅ ), Ω, 0] = 0.

Consequently, dB[G , Ω ∖ Ω0 , 0] = −1. Hence, it follows that there exist at least two
diòerent zeroes of G; one of them belongs to Ω0 and the other one is in Ω ∖Ω0.

Lemma 4.2 _e set A is nonempty.

Proof For every c ∈ (0, π) we deûne the function

gc ∶ ( c −
π
2
,
π
2
) Ð→ R, gc(x) =

√
h2(T − a)F1(x , c − x) −

√
h1aF2(x , c − x).

According to Remark 3.3, we observe that

lim
x→π/2

gc(c − x) > 0 and lim
x→π/2

gc(x) < 0

for every c ∈ (0, π). _us the continuity of gc yields the existence of a point x0 ∈
(c − π/2, π/2) such that gc(x0) = 0. However, that means that (x0 , c − x0) ∈ A.
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Since A is a bounded and closed (compact) set with inner points, with respect to
Remark 3.3, we can deûne

(4.2) λ∗ = max
(x ,y)∈A

F1(x , y)a−1
√

2
h1

.

Obviously, themaximumvalue is attached at some point ofA. _erefore, let (x0 , y0) ∈
A be such that

λ∗ = F1(x0 , y0)a−1
√

2
h1

.

_en the assertion of _eorem 1.1 immediately follows from Lemma 4.1 and (4.2).

5 Estimations of λ∗

In the previous section we have deûned the number λ∗ (see (4.2)). However, the set
A was deûned implicitly, which may cause problems in computation of the explicit
value of λ∗. _e aim of this section is to prove some lemmas in order to establish the
estimates for this value.

Our ûrst task will consist of ûnding an upper bound for λ∗. We introduce the
notation

(5.1) f1
def= max

φ
F1(x , y), f2

def= max
φ
F2(x , y),

where φ is a curve given parametrically by φ = (φ1 , φ2)∶ [0, 1] → R2 such that

φ(0) ∈ {(x ,−x) ∶ x ∈ [−π/2, π/2]}, φ(1) = (π/2, π/2),
φ(t) ∈ ∆ for t ∈ (0, 1),

and it separates ∆ into two nonempty connected parts.

Lemma 5.1 _e inequality

(5.2) λ∗ ≤
√

2max{ f1
a
√

h1
,

f2
(T − a)

√
h2

}

holds, where f1 and f2 are deûned by (5.1).

Proof We deûne the sets

B1 ∶= {(x , y) ∈ ∆ ∶ F1(x , y) = λ∗a
√

h1

2
} ,

B2 ∶= {(x , y) ∈ ∆ ∶ F2(x , y) = λ∗(T − a)
√

h2

2
} .

Note that from the deûnition of λ∗, we have

(5.3) B1 ∩ B2 /= ∅.

Assume, on the contrary, that (5.2) does not hold. _en

(5.4) (B1 ∪ B2) ∩ φ = ∅.
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Indeed, if there exists (x0 , y0) ∈ B1 ∩ φ, then

a−1
√

2
h1
F1(x0 , y0) = λ∗ > a−1

√
2
h1
f1 .

However, this contradicts the deûnition of f1 as (x0 , y0) ∈ φ. Analogously, we con-
clude that B2 ∩ φ = ∅.
As, according to our assumptions, the curve φ divides ∆ into two disjoint parts, we

denote by Φ+ (resp. by Φ−) the upper part (resp. the below part) of ∆ with respect to
the curve. _e remainder of the proof is devoted to checking that

(5.5) B1 ⊆ Φ+ , B2 ⊆ Φ− .

Assume on the contrary, that there exists (x0 , y0) ∈ B1 ∩ Φ−. According to
Lemma 3.1(i), (iv), we have

F(x0) > λ∗a
√

h1

2
, F( π

2
) = 0.

_us, there exist x1 ∈ (x0 , π/2) such that F(x1) = λ∗a
√

h1/2 and a connected set
Σ1 ⊆ B1 joining (x0 , y0)with (x1 , π/2). _is contradicts (5.4) (see le� side of Figure 1).

If there exists (x0 , y0) ∈ B2 ∩Φ+, according to Lemma 3.1(ii), (iv), we have

F(y0) > λ∗(T − a)
√

h2

2
, F( π

2
) = 0.

_us, there exist y1 ∈ (y0 , π/2) such that F(y1) = λ∗(T − a)
√

h2/2 and a connected
set Σ2 ⊆ B2 joining (x0 , y0) with (π/2, y1). _is contradicts (5.4) (see right side of
Figure 1).

(x0 , y0)

Σ1

(x1 , π
2 )

Φ+

Φ−

Σ2
(
π
2 , y1)

(x0 , y0)
Φ+

Φ−

Figure 1: _e triangle represents the region ∆.

Finally, according to (5.5) we conclude that B1 ∩ B2 = ∅, which contradicts (5.3).

_e next result shows a lower bound for λ∗.
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Lemma 5.2 _e following inequality holds:

(5.6) λ∗ ≥
√

2min{F1(x , y)
a
√

h1
,
F2(x , y)

(T − a)
√

h2
} for (x , y) ∈ ∆.

Proof It is suõcient to show that for every (x , y) ∈ ∆, there exists (x0 , y0) ∈ A
(depending on (x , y)) such that

min{F1(x , y)
a
√

h1
,
F2(x , y)

(T − a)
√

h2
} ≤ F1(x0 , y0)

a
√

h1
;

then the assertion follows from (4.2).
Let, therefore, (x , y) ∈ ∆ be arbitrary but ûxed. If

F1(x , y)
a
√

h1
= F2(x , y)

(T − a)
√

h2
,

then (x , y) ∈ A, and we can put (x0 , y0) def= (x , y).
Now assume that

F1(x , y)
a
√

h1
< F2(x , y)

(T − a)
√

h2
.

According to Lemma 3.1(iv) and Lemma 3.2(ii), with respect to the continuity of the
functions F1 and F2, there exists y0 ∈ (y, π/2) such that

F1(x , y)
a
√

h1
< F1(x , y0)

a
√

h1
= F2(x , y0)

(T − a)
√

h2
,

and we put (x0 , y0) def= (x , y0).
Analogously, if

F1(x , y)
a
√

h1
> F2(x , y)

(T − a)
√

h2
,

then, in view of Lemma 3.1(iv) and Lemma 3.2(i) and with respect to the continuity
of the functions F1 and F2, there exists x0 ∈ (x , π/2) such that

F2(x , y)
(T − a)

√
h2

< F2(x0 , y)
(T − a)

√
h2

= F1(x0 , y)
a
√

h1
.

Consequently, we put (x0 , y0) def= (x0 , y).

_e deûnition of λ∗ in (4.2) and the estimation (5.6) yield the identity where the
set A is not involved.

Proposition 5.3

λ∗ =
√

2max{min{F1(x , y)
a
√

h1
,
F2(x , y)

(T − a)
√

h2
} ∶ (x , y) ∈ ∆} .

In what follows we establish some eõcient estimations for λ∗ using the above-
proven results. Deûne the function F̃∶ [0, π/2] → [0,+∞):

F̃(x) = ∫
√

tan x

0

2dz
1 + (tan x − z2)2
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and put φ(t) = ( πt
2 , arctan(

h1
h2

tan πt
2 )). _en it can be easily veriûed that

max
φ
F1(x , y) = max

φ
F2(x , y) = max

x∈[0,π/2]
F̃(x),

and from Lemma 5.1 we obtain the following consequence.

Corollary 5.4 _e following estimate holds:

λ∗ ≤
√

2 max
x∈[0, π2 ]

F̃(x)max{ 1
a
√

h1
,

1
(T − a)

√
h2

} .

Remark 5.5 Numerically, we have

max
x∈[0, π2 ]

F̃(x) ≈ 1.3821093976,

and the maximum value is attained at some x ∈ (5π/21, π/4).

In the case where a = T/2 and h1 = h2, the equality F1(x , y) = F2(x , y) holds if
and only if x = y. _erefore, in that case we have A = {(x , x) ∶ x ∈ (0, π/2)} and
F1(x , x) = F2(x , x) = F̃(x). _us, directly from (4.2) we obtain

Corollary 5.6 If a = T/2 and h1 = h2, then

λ∗ = 2
3
2

T
√

h1
max

x∈[0, π2 ]
F̃(x) ≈ 3.90919571

T
√

h1
.

_e following example illustrates the obtained results and conjectures the exact
number of solutions.

Example 5.7 Consider the case h1 = h2 = 1, T = 2π, and a = π. According to
Corollary 5.6, we have λ∗ ≈ 0.622167821. Based on numerical evidence we ûnd:
● if λ > λ∗, then (1.4) has no 2π-periodic solution (see Figure 2);
● if λ = λ∗, then (1.4) has a unique 2π-periodic solution (see Figure 3);
● if λ < λ∗, then (1.4) has exactly two 2π-periodic solutions (see Figure 4).
_e exact number of 2π-periodic solutions is a conjecture based on numerical exper-
iments.

We proceed to the following problem. Given parameters h1, h2, λ, and T , we will
study the existence of T-periodic solutions based on the parameter a. _e physi-
cal interpretation is the following: how long should the electrical ûeld generated by
the particles preserve positive or negative charge in order to a free-particle moves
T-periodically at the time variable on S1? Note that a corresponds to the time in
which the electrical potential ûeld is negative, and T − a when it is positive. In other
words, is there a value a ∈ (0, T) such that, for given h1, h2, λ, and T , the equation
(1.4) has a T-periodic solution?

Obviously, according to the numerical evidence, it seems that such a value a does
not exist for any inputs (e.g., the case when h1 = 1, h2 = 10, λ = 1, and T = 2π).
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Figure 2: _e level curves F1(x , y) = λa
√

h1/2 and F2(x , y) = λ(T − a)
√

h2/2 with h1 =

h2 = 1, T = 2π, a = π, and λ > λ∗.

However, assuming that

(5.7) λ ≤ max
(x ,y)∈∆

√
2(F2(x , y)

√
h1 + F1(x , y)

√
h2

T
√

h1h2
) ,

we can prove the following assertion.

Corollary 5.8 Let (5.7) hold. _en there exists a ∈ (0, T) such that (1.4) has at least
one T-periodic solution. If, furthermore, the inequality (5.7) is strict, then (1.4) has at
least two T-periodic solutions.

Proof Let (x0 , y0) ∈ ∆ be the point where the maximum value of the right-hand
side of (5.7) is attained. We deûne a function γ∶ (0, T) → R by

γ(a) =
√

2min{F1(x0 , y0)
a
√

h1
,
F2(x0 , y0)
(T − a)

√
h2

} .

_e function γ is continuous and attains its maximum value at

aM = F1(x0 , y0)T
√

h2

F2(x0 , y0)
√

h1 + F1(x0 , y0)
√

h2
.

Note that

(5.8)
F2(x0 , y0)

√
h1 + F1(x0 , y0)

√
h2

T
√

h1h2
= F1(x0 , y0)

aM
√

h1
.
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Figure 3: _e level curves F1(x , y) = λa
√

h1/2 and F2(x , y) = λ(T − a)
√

h2/2 with h1 =

h2 = 1, T = 2π, a = π, and λ = λ∗.

By Lemma 5.2 we have that λ∗(a) ≥ γ(a) for all a ∈ (0, T) (λ∗(a) is the critical value
for which (1.4) has at least one T-periodic solution corresponding to the parameter
a). On the other hand,

γ(aM) =
√

2
F1(x0 , y0)
aM

√
h1

whence, in view of (5.7), (5.8), and the choice of (x0 , y0), it follows that λ ≤ γ(aM).
Since γ(aM) ≤ λ∗(aM), we obtain λ ≤ λ∗(aM) and the latter inequality is strict if
the inequality in (5.7) is strict. Consequently, the assertion follows from _eorem 1.1
(with a = aM).

Example 5.9 Assume that h1 = 10, h2 = 0.1, λ = 1, and T = 2π. It can be numerically
veriûed that

1 < F2(π/6, π/6)
√

10 + F1(π/6, π/6)
√

10−1

2π
.

By virtue of Corollary 5.8 there exist at least two 2π-periodic solutions to (1.4) for
some a ∈ (0, 2π) (see Figure 5). _is case corresponds to our physical model setting
(λ = 1). _erefore, under these conditions we can obtain two diòerent 2π-periodic
smooth movements for an electrical particle on S1 under the in�uence of a ûxed elec-
trical force ûeld at the north pole.

https://doi.org/10.4153/CJM-2016-050-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-050-1


Kepler Problem on the Sphere 187

Figure 4: _e level curves F1(x , y) = λa
√

h1/2 and F2(x , y) = λ(T−a)
√

h2/2with h1 = h2 = 1,
T = 2π, a = π, and λ < λ∗.

6 Conclusions and Final Remarks

We have studied the dynamical behaviour of a mathematical model proposed in the
literature for the motion of a particle (with ûxed charge) subjected to the in�uence of
an electric ûeld with alternating charge periods of attractive and repulsive interaction
(ûxed on north pole), which is moving on S1. In [5], this model is considered to
study the motion of a particle moving on S2 subjected to the gravitational attraction
of the Sun that lies at (0, 0, 1), more precisely, a singular Lagrangian system in polar
coordinates that leads to the following system of diòerential equations

ü = −huw
(1 −w2) 3

2
− (u̇2 + v̇2 + ẇ2)u,

v̈ = −hvw
(1 −w2) 3

2
− (u̇2 + v̇2 + ẇ2)v ,

ẅ = h
(1 −w2) 1

2
− (u̇2 + v̇2 + ẇ2)w .

Our model arises if we restrict the movement of our free-particle in S2 to S1 (that is,
the angular momentum is null). We have shown that periodic motions appear only
when the electrical ûeld created by the particles has low voltage or when the voltage
changes its polarity quickly.
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Figure 5: _e level curves F1(x , y) = λa
√

h1/2 and F2(x , y) = λ(T − a)
√

h2/2 with h1 = 10,
h2 = 10−1 , λ = 1, a = 0.05, and T = 2π.

Actually, there are diòerent models in the literature proposed to describe the dy-
namical behaviour of a particle moving on the space S1 under the in�uence of New-
ton’s gravitational law. For example, in [4] the authors considered two masses m1 and
m2 with respective position coordinates (sinu, cosu) and (0, 1). In view of the nature
of the space S1, they assumed that each body was attracted towards two directions. In
this way the Kepler problem on S1 was mathematically modelled as a second-order
diòerential equation

(6.1) ü = m1m2(
1
u2 −

1
(2π − u)2 ) .

It is important to note that (6.1) and equation (1.4) are not equivalent. _e diòerence
between both models is the following: in the ûrst model, the particle with the mass
m1 is attracted in two directions; however, in the second model, it is attracted just in
one direction towards the mass m2.
From the mathematical point of view, both equations, (6.1) and (1.4), are interest-

ing because they present two singularities at the spacial variable. Nevertheless, the
equations of such types seem to have received little attention in the literature, except
the pioneering work by Fonda, Manásevich and Zanolin [3].
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In short, our problem could have been studied from a diòerent point of view con-
sidering the family of equations

ü = h1(t)
u2 − h2(t)

(2π − u)2 ,

where h1 , h2 ∈ C(R/TZ) are positive functions. _is gives reasons for studying the
dynamical properties of such a family of equations, which remain insuõciently in-
vestigated.
And ûnally, we would like to point out that the question on the stability and the

exact number of solutions is not studied in the paper; this remains as an interesting
open problem. In accordance with the numerical experiments, we can establish the
following conjectures.

Conjecture 6.1 Let λ∗ be the parameter appearing in _eorem 1.1. _en
● there exists a unique T-periodic solution to (1.4) provided λ = λ∗;
● there exist exactly two T-periodic solutions to (1.4) provided λ < λ∗.

It can be easily veriûed that A = {(x , y) ∈ ∆ ∶ y = x} provided h1 = h2, a = T/2
and the shapes of the curves are such that they have at most two intersections (see
Figures 2–4). Moreover, the shapes of the curves do not change signiûcantly in the
asymmetric case (see Figure 5). _ismotivates our Conjecture 6.1. We refer the reader
interested in the number of periodic solutions to a system of diòerential equations to
the work of Nakajima and Seifert [7].

Obviously, the exact number of solutions is also related with the question on their
stability. In this sense, we can reformulate Conjecture 6.1 in the following manner.

Conjecture 6.2 Let λ∗ be the parameter appearing in _eorem 1.1. _en
● there exists a uniqueT-periodic solution to (1.4), and it is unstable, provided λ = λ∗;
● there exist exactly two T-periodic solutions to (1.4), one of them is unstable and the

other one is asymptotically stable, provided λ < λ∗.

It is a classical physical principle that could be proved by using the excision prop-
erty to the Brouwer degree.
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