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Abstract. This paper puts forth a class of algebraic structures, relativized Boolean algebras
(RBAs), that provide semantics for propositional logic in which truth/validity is only defined
relative to a local domain. In particular, the join of an event and its complement need not be
the top element. Nonetheless, behavior is locally governed by the laws of propositional logic.
By further endowing these structures with operators—akin to the theory of modal Algebras—
RBAs serve as models of modal logics in which truth is relative. In particular, modal RBAs
provide semantics for various well-known awareness logics and an alternative view of possibility
semantics.

§1. Introduction. In many applications of logic, it is desirable that truth (and
validity) is not defined globally, but relative to some local domain. Nonetheless, we
may still want the logic to behave in a classical manner when examined locally, that is,
when fixing the domain. For example:

• One may not want to discuss the properties of objects when they do not exist, or
the necessity, knowledge, or obligation of statements when they are not defined.
That is, different domains may represent differential states of existence.

• A special case of the above: one may want to consider agents who have
differential awareness. Here, different domains represent the agents’ different
conceptions of what might exist. In fact, this relative definition of truth has
become commonplace in the epistemic formalization of (un)awareness, where
an agent’s reasoning is restricted by her awareness but is otherwise rational
(hence classical) on her local domain of awareness [10, 14].

• Another special case: when considering dynamic environments, one may want
to discuss truth at a certain point in time, relative to the current extant state of
affairs. Here domains would be linearly ordered and indexed by time.

• One may want to consider truth in a system that is only partially determined,
in other words, allowing some statements to be neither true nor false. Here,
different domains represent different levels of resolution, and requiring the
determined statements to be logically consistent again requires locally classical
behavior.
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• A special case of this: one may want to consider an agent who envisages, hence
reasons about, vague worlds. Possibility semantics model partial resolution in
this way, within a possible worlds framework [15, 21].

This paper puts forth a class of algebraic structures, relativized Boolean algebras
(RBAs), that provide semantics for propositional logic in which truth is only defined
relative to a local domain, but within a given domain behavior is classical. By further
endowing these structures with operators—akin to the theory of modal algebras or
Boolean algebras with operators—RBAs serve as models of modal logics in which truth
is relative. In particular, RBAs can serve as model of differential existence (showcased
by Example 1), unawareness and knowledge under unawareness (Example 2) and
partial resolution (Example 3).

Like a Boolean algebra an RBA is a set endowed with meet, join, and negation
operations, and bottom and top elements: RB = 〈RB,∧,∨,¬, 0, 1〉. These operations
satisfy the axioms of Boolean algebras except X ∨ ¬X , which we denote by 1X , need
not be the top element, and 0 need not be the identity for ∨. The elements of RBAs
can be ordered via the usual condition X ≥ Y iff X ∧ Y = Y .

In place of these Boolean axioms are the weakened versionsX ∨ 1 = 1X andX ∧ 0 =
0. Theorem 1 shows that under these two relaxations �1(X ) = {Z | 1Z = 1X } is itself
a Boolean algebra. Hence, if we think of �1(X ) as the domain on which the truth of X
is defined, then within a domain, truth behaves classically.

Without additional structure, these domains bear little relation to one another. Of
course, in the applications referenced above, the various domains are related: becoming
more aware or resolving some vagueness generally does not overturn all previously
held truths. To restrict how truth in one domain relates to truth in another, we add
an additional requirement to the definition of RBAs. The property—that 1X ≥ 1Y
implies ¬(X ∧ 1Y ) = ¬X ∧ 1Y—ensures that ifX ≥ Y thenZ �→ Z ∧ 1Y is a Boolean
homomorphism from �1(X ) to �1(Y ). Hence, RBAs are naturally equipped with an
ordering on domains and a sense of projection between them.

Example 1. There are two planets, one whose atmosphere filters out all but blue light
(the blue planet) and the other whose atmosphere filters all but red light (the red planet).
The sentient inhabitants of each planet have been working hard to classify the plant life
they see. The red taxonomists have concluded that all plants use one of two methods of
photosynthesis: XR or YR. The blue taxonomists have, in contrast, observed three types
of photosynthesis, XB , YB , and ZB .

Although the planets are distant in time and space, it turns out that red plants, should
they somehow be transported to the blue planet, would continue to photosynthesize
as usual—that is, the pairs (XR,XB), and (YR,YB) refer to the same method of
photosynthesis. ZB plants, however, require blue light specifically, and such a process
does not and cannot exist on the red planet.

Red taxonomists have concluded that “if notXR thenYR.” When modeling both the red
and blue planets together, the machinery of classical logic does not permit this conclusion.1

Nonetheless, it feels unsatisfactory to call the red scientists wrong since within their local
domain of their existence YR is indeed the negation of XR.

1 That is, if we wish to maintain also “XR if and only if XB” and “YR if and only if YB” then
“not XR implies YR” implies the impossibility of ZB .
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156 EVAN PIERMONT

Figure 1. The RBA from Example 1. The arrows indicate the partial ordering ≥. The blue
elements compose B, and the red elements, R.

RBAs offer a way of reconciling conflicting local and universal observations, by defining
truth relative to a domain. To wit: Let RB consist of the union of the elements of Boolean
Algebras, B ( for blue) and R ( for red ), generated by {XB,YB,ZB} and {XR,YR},
respectively. Moreover, define the Boolean homomorphism hBR : B → R defined by XB �→
XR, YB �→ YR and ZB �→ 0R. The operations on RB, when restricted to either Boolean
algebra, coincide with the Boolean operations thereon. For WB ∈ B and WR ∈ R, set
WB ∧WR = hBR (WB) ∧WR, and WB ∨WR = hBR (WB) ∨WR. The top element is 1B
and the bottom is 0R. This algebra is visualized by Figure 1.2

RB models the situation in which ¬XR is indeed YR, but XR ∨ YR = 1R 
= 1. That is,
where “if not XR then YR” is valid in the particular sense that it is true whenever it is
defined, but it is not defined universally. Likewise since XB projects to YB , they refer to
the same event should both be defined.

Just as powersets serve as concrete examples of Boolean algebras, given a set W, we
can defined a concrete RBA over

{(A,B) | B ⊆W,A ⊆ B}
and with operations defined by

neg. ¬(A,B) = (B \ A,B);
meet. (A,B) ∧ (A′, B ′) = (A ∩ A′, B ∩ B ′);

2 Although every RBA can be constructed as the disjoint union of Boolean algebras and
homomorphisms between them, as above, these Boolean algebras do not need to be ordered
(in the sense that the homomorphisms are surjective) as in Example 1.
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Figure 2. The RBA from Example 1 as embedded into the CRBA generated byW = {x, y, z}.
The blue arrows are the elements of B and the red the elements of R.

join. (A,B) ∨ (A′, B ′) = ((A ∪ A′) ∩ (B ∩ B ′), B ∩ B ′).

Theorem 2 is a Stone-like representation theorem, showing that every RBA can be
embedded into a concrete RBA. This inclusion, for the RBA considered in Example 1,
is shown in Figure 2.

As hinted at in Example 1, RBAs serve as models of propositional logic in which
truth and validity are relative by considering a homomorphism, h : L → RB, between
a propositional language, L, and an RBA (i.e., a map such that h(¬ϕ) = ¬h(ϕ),
h(ϕ ∧ �) = h(ϕ) ∧ h(�), etc.) In concrete RBAs, the association between the formula
ϕ and the event (A,B) is intended to be thought of as specifying that ϕ is defined at B
and true at A. Hence the complement of (A,B) is not (Ac, Bc) but rather (B \ A,B)—
the event where ϕ is defined but not true. A similar interpretation holds for the meets
and joins. ϕ is valid in RB if h(ϕ) = (B,B), if ϕ is true wherever it is defined.

1.1. Modalities. To accommodate reasoning about knowledge or other modalities,
we can enrich an RBA, RB, with an operator, a functionf : RB → RB . To capture the
standard properties of modalities in normal modal logics, we require that f respects
meets and maps the top element to itself.

When discussing knowledge and awareness, the interpretation is as in the state-
space models: f(X ) is the element representing knowledge of the element X. As such,
we also require 1f(X ) = 1X , that knowledge of an element must be defined in the
same domain as the element itself. From f we can define fA, representing awareness,
as fA(X ) = f(1X ). The definition of fA, in addition to ensuring that awareness is
domain specific, also embodies a weakened form of necessitation: the agent knows all
(and only) tautologies she is aware of.

Example 2. We can reuse the RBA from Example 1 to capture an alternative story
about awareness. Consider the proposition p representing “cryptographic protocol x
is insecure” and q representing “there is a quantum algorithm breaking protocol x.”
Associate p to the eventXB and q to the eventXR. Then RB models the situation in which
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Figure 3. On the left, the RBA from Example 1 endowed with the operator fK from Example
2, as represented by the arrows. The right side shows a Kripke frame where the awareness sets
are the languages generated by the propositions modeled and the accessibility relation, R, is
partitional and given by the lines above the worlds. The (Boolean) algebra generated by the red
worlds is R, and by the blue, B. The association of ϕ �→ {�|� |= ϕ}, produces the same model
as in Example 1, and fK , from Example 2, then corresponds to X �→ {� | R(�) ⊆ X}.

p is always either true or false (since ¬XB = YB ∨ ZB so that XB ∨ ¬XB = 1) but q is
true or false only on the local domain where quantum computers exist (since ¬XR = YR
so that XB ∨ ¬XB = 1R 
= 1).

Consider an agent whose awareness and knowledge are given by the operator fK :
RB → RB as given by fK (XR) = fK (YR) = 0R, fK (XB) = fK (YB) = 0B , fK (XB ∨
ZB) = fK (YB ∨ ZB) = ZB and which coincides with the identity map everywhere else.
This is visualized by the left side of Figure 3. Then fA is simply the mapW �→ 1W .

Going back to our propositions p and q, fK represents the epistemic state of affairs
such that, if the agent is aware of quantum computers (i.e., is aware of q), then she
is necessarily uncertain about the security of the protocol (i.e., does not know p). This
is because the two elements resolving the truth of p and representing awareness of q,
namely, XR and YR, are known only at the bottom element. Conversely, if the agent who
is unaware of q, she may be certain of ¬p; this is represented by ZB .

Propositions 6 and 7 show that modal RBAs are equivalent to awareness models
(Kripke semantics for awareness logics) in exactly the same manner that modal algebras
and Kripke frames are equivalent. For every modal RBA there is an awareness model
that models the same theories and that constructed out of its ultrafilters. Conversely,
for every awareness model there is a modal RBA constructed from the powerset of its
worlds and that models the same theories. For example, the concrete RBA that embeds
the RBA from Example 1, itself visualized in Figure 2, models the same theories as the
Kripke frame shown on the right side of Figure 3.

A shift in perspective shows that RBAs can capture other types of modal
environments where truth is not absolute:

Example 3. A runner is standing at the start line of the 800m race. Let p denote the
statement “The runner is the winner of the 800m.” It is reasonable to say that in the current
state-of-affairs, p is neither true nor false, but rather undetermined. This indeterminacy
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arises specifically because there is some further resolution of the state-of-affairs which
resolves p to be true and another that resolves it to be false. Now consider a spectator, who
is sure of the current state-of-affairs and set Kp as the statement “The spectator knows
p.” Surely Kp is not true, but arguably, it is also philosophically sensible that it is not
false either. That is, this is good reason to leave “The spectator knows p” undetermined
just as p is—the utility in not determining the truth assignment is that it distinguishes
not knowing because of uncertainty about the state-of-affairs (the usual not knowing)
with not knowing because the statement in question is undetermined and hence cannot be
known. Nonetheless, if the runner wins the race, so that indeterminacy resolves p to be
true, then the spectator will know p; likewise if ¬p then ¬Kp: indeterminacy of the modal
statement arises, just as before, because the state-of-affairs can be further determined
towards Kp or its negation.

This can be captured by the RBA consisting of the union of the elements of Boolean
Algebras, B, generated by the sets {XB,¬YB}, and R, the trivial algebra {1R, 0R}. Let
1R ∧WB =WB for and 0R ∧WB = 0B for anyWB ∈ B. Let fk be the identity map.

By associating p to the element XB , the domain R represents the state-of-affairs where
p is not determined, and B the possible resolutions of this indeterminacy. In contrast to
the case of differential existence/awareness, p ∨ ¬p is determined even if p is not, as its
truth does not depend on how the indeterminacy of p resolves. Thus, the state-of-affairs
where p is not determined is not specified by R alone but rather by the ways that R can be
extended to all of RB: the event 1R can be extended to a “consistent and complete set3 of
elements” of RB in two ways: {1R, 1B,XB} and {1R, 1B,¬XB}. Now p is undetermined
at 1R because neither XB (the element associated to p) nor ¬XB (the element associated
to ¬p) appears in every extension. p ∨ ¬p, on the other hand, being associated to 1B
which resides in the intersection of all extensions, is determined to be true. The same holds
for various modal formulae.

Proposition 8 shows that this “extension process,” lifting an element to the
intersection of all complete and consistent extensions of it, reconstructs possibility
semantics. That is, from an RBA, we can construct a persistent and refinable Kripke
model with vague worlds ordered by their level of determinacy. Informally, the dictum
of persistence and refinability ensures that, as in the example, indeterminacy of a
formulaϕ arises exactly when there are a further resolution makingϕ true and another
making it false.

1.2. Projection. The extant models of semantic awareness [10, 14] and possibility
semantics [15] all explicitly define their domains and the ordering over them (state-
spaces and projections for awareness models; partial resolutions and an ordering
relation for possibility semantics). By contrast, for an RBA, the local domains and
the order over them arise as derived objects from the algebraic relations. Thus, when
interpreting an RBA as representing some logical system, the structure of the system
(i.e., the domains and their order) and the logical relationships between the formulae
themselves arise from the same algebraic restrictions.

For a concrete benefit of this vantage, consider the class of algebraic structures that
generalize RBAs so as to allow ¬(Y ∧ 1X ) 
= ¬Y ∧ 1X (for Y ≥ X ). It follows from
the results below (Theorem 1) that for such structures, local domains still exist, and
are still Boolean algebras, but the canonical projection maps might not exist. Thus, we

3 Technically, we are extending ultra-filters of a domain to ultra-filters of RB.
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can see that the structural assumption in models of semantic awareness regarding the
existence of projection maps equates to a logical assumption about the distributivity
of negation with the local ∧-identity.

§2. Relativized Boolean algebras.

2.1. Preliminaries/definitions. Call A = 〈A,∧,∨,¬, 0, 1〉 an algebra of Boolean
similarity type when A is a set, 0, 1 ∈ A, ∧ and ∨ are binary operations taking
A× A→ A, referred to as the meet and join, receptively, and ¬ is a unary operation
taking A→ A referred to as the complement. A homomorphism h : A→ A′ is a
function h : A→ A′ that maps h(1) = 1′ and that respects the operations (i.e.,
h(X ∧ Y ) = h(X ) ∧ h(Y ), etc.).

If A is an algebra whose elements are partially ordered by ≥, then a filter, u, on the
algebra A is a subset of A such that (i) 1 ∈ u, (ii) if X ∈ u and Y ≥ X then Y ∈ u
(i.e., u is an ≥-upset) and (iii) if X,Y ∈ u then X ∧ Y ∈ u (i.e., u is meet closed). A
filter is called proper if u is a proper subset of A and strongly proper it does not contain
X ∧ ¬X for any X ∈ A.

An ultrafilter, u, is a filter that (iv) is strongly proper and there is no strongly proper
filter, v, on A such that u is a proper subset of v. Let F (A) and U(A) denote the set of
filters and ultrafilters on A.4

Of special importance is the class of Boolean algebras (whose elements are
generically referred to as B) that satisfy the axioms of Boolean algebras (see for
example [18]), written here for convenience:

ba1. ∧ and ∨ are associative, communicative, and distributive.
ba2. X ∨ ¬X = 1.
ba3. X ∧ ¬X = 0.
ba4. X ∨ 0 = X ∧ 1 = X .

Let BA denote the class of Boolean Algebras. The operations induce a partial ordering
on B via Y ≥ X iff X ∨ Y = Y iff X ∧ Y = X . It is well known that condition (iv)
in the definition of an ultrafilter is, for Boolean algebras, equivalent to: for all X ∈ B
either X ∈ u or ¬X ∈ u, but not both.

2.2. Axioms and characterization. An algebra of Boolean similarity type, RB =
〈RB,∧,∨,¬, 0, 1〉, is a relativized Boolean algebra if it satisfies the laws below. To
expedite their description, set the following notation 1X ≡ X ∨ ¬X , 0X ≡ X ∧ ¬X ,
and Y ≥ X iff X ∧ Y = X . Let �2(RB) = {1X | X ∈ RB}. For any X ∈ RB let
�1(X ) = {Z ∈ RB | 1Z = 1X }.

For a garden variety Boolean algebra, X ∨ ¬X = 1 for all elements X ; viewed as
a model of classical logic, 1 is the unique the element corresponding to tautologies.
An RBA, intended to capture the notion of relative truth, encompasses multiple local
domains each of which entertain their tautologies. Specifically, the join operation is
relative, in the sense its identity, i.e., 0X , will depend on the domain of the elements on
which it is acting.5

4 In Boolean algebras or other structures where X ∧ ¬X = 0 for all X, there is no distinction
between proper and strongly proper filters.

5 Although 1 is globally the identity for ∧, the meet operation is also relative in the following
sense: X ∧ ¬X = 0X where 0X is not necessarily equal to 0. The asymmetry between what is
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�2(RB) collects these domains, as indexed by their top elements. For each
1X ∈ �2(RB), the corresponding domain is �1(1X ): the set of all elements Z whose
operational identities coincide with those of X, i.e., such that Z ∨ ¬Z = 1X . Thus,
definitionally, for all Z ∈ �1(1X ), we have �1(Z) = �1(1X ).6

Theorem 1 will establishes that the operations of an RBA, axiomatized below, will
obey the laws of Boolean algebras locally, within the set of elements which have the
same operational identities. That is, �1(X ) forms a Boolean algebra. Moreover, the set
of these local Boolean structures form a semi-lattice and the projection maps between
them are homomorphisms.

The axioms of RBAs are:

rb1. ∧ and ∨ are associative, communicative, and distributive and with ¬ satisfy
DeMorgan’s laws.

rb2. X ∧ X = X ∨ X = X ∧ 1 = ¬¬X = X .
rb3. X ∨ 1 = 1X .
rb4. X ∧ 0 = 0.

Let RBA◦ denote the class of weak relativized Boolean algebras—those structures
that adhere to (rb1)—(rb4). The class of relativized Boolean algebras, denoted RBA,
are the elements of RBA◦ that also satisfy

rb5. X ≥ Y implies ¬(X ∧ 1Y ) = ¬X ∧ 1Y .

Notice, unlike in Boolean Algebras, X ≥ Y (i.e., that Y ∧ X = Y ) need not be
equivalent to Y ∨ X = X . It is immediate from (rb2) and (rb4) that 1 ≥ X ≥ 0 for
all X.

The axioms (rb1)–(rb4) find immediate counterparts in the rules of Boolean
algebras.7 (rb5) requires some motivation. If the various local domains bare no relation
to each other, it would suffice to represent each independently; thus the value of
RBAs lies in their ability to model connections between these domains of discourse,
reconciling the local and global views. If X ≥ Y then X ∧ 1Y can be thought of as the
representation of X within the domain �1(Y )—indeed it is the ≥-closest element to X
inside �1(Y ).

(rb5) ensures that the map from �1(X ) to �1(Y ), defined by hXY : X → X ∧ 1Y ,
respects negation, and therefore (given the rest of the structure of RBAs) is a
homomorphism. Thus, as will be established by Theorem 1, the �(X )-relative notion
of truth can be projected onto �(Y ) via hXY . Further, these maps compose with one
another so as to from inverse system.

Example 4. Let RB consist of the union of the elements of Boolean Algebras, B ( for
blue) and R ( for red ), generated by the sets {YB,¬YB} and {XR,¬XR}, respectively.
Moreover, define the Boolean homomorphism hBR : B → R defined by YB �→ 1R.
The operations on RB, when restricted to either Boolean algebra, coincide with the

preserved under the meet and under the join arises from the fact that both operations move
in the same ≥-direction across domains, while they move in the opposite ≥-directions within
a domain.

6 Of course RBAs generalize BAs. A Boolean algebra is an RBA for which �2(RB) is a
singleton and �1(X ) = RB for all X.

7 Where (rb3) is a relativized version of the classical rule, and implies that the domain of a
disjunction be lower (as ordered by ≥) than its constituent clauses: see Lemma 1(v).
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Figure 4. The RBA from Example 4. The arrows indicate the partial ordering ≥. The blue
elements compose B, and the red elements, R.

Boolean operations thereon. ForWB ∈ B andWR ∈ R, setWB ∧WR = hBR (WB) ∧WR,
and WB ∨WR = hBR (WB) ∨WR. The top element is 1B and the bottom is 0R. This
algebra is visualized in Figure 4. Notice that hBR (B) 
= R but rather is the trivial 0 – 1
algebra.

Building to the characterization of local domains and the projections between them,
take first the following facts about RBAs.

Lemma 1. The following are true for all RB ∈ RBA◦.

(i) ≥ is a weak order.
(ii) If X ≥ Y and X ′ ≥ Y then X ∧ X ′ ≥ Y and X ∨ X ′ ≥ Y .
(iii) If X ≥ Y then 1X ≥ 1Y and X ∧ 0Y = 0Y .
(iv) If 1X ≥ 1Y then X ∧ 1Y ∈ �1(Y ).
(v) 1X ∧ 1Y = 1X∧Y = 1X∨Y = 1X ∨ 1Y .

Lemma 1 is proved in Appendix B and characterizes the relation between the
domains via the ordering of elements: (iv) shows that our notion of projecting is
well founded, and (v) shows that the domains inherent the lattice structure from the
elements themselves. These results position us to show that these domains indeed
capture relative, and via the projections, interconnected, notions of truth.

Theorem 1. Let RB ∈ RBA◦. Then:

1. For each X, �1(X ) = {Z ∈ RB | 1Z = 1X } is a Boolean Algebra (with 1X and
0X as the top and bottom elements, and the inherited operations).
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2. RB ∈ RBA (i.e., satisfies (rb5)) if and only if for all X ≥ Y the map hXY : Z �→
Z ∧ 1Y is a homomorphism from �1(X ) to �1(Y ). Moreover, in such cases, if
X ≥ Y ≥ Z, then hXY ◦ hYZ = hXZ .

Proof. (1) That �1(X ) is closed under ¬,∧, and ∨ is immediate. That these
relations satisfy (ba1) follows from (rb1). Let Y ∈ �1(X ). Then Y ∨ ¬Y = Y ∨
1 = X ∨ 1 = X ∨ ¬X = 1X . Likewise, Y ∧ ¬Y = ¬(Y ∨ ¬Y ) = ¬(X ∨ ¬X ) = X ∧
¬X = 0X . So (ba2) and (ba3) hold. Finally, consider Y ∧ 1X and Y ∨ 0X . We
have Y ∧ 1X = Y ∧ (Y ∨ 1) = (Y ∧ Y ) ∨ (Y ∧ 1) = Y ∨ Y = Y and also Y ∨ 0X =
Y ∨ (Y ∧ ¬Y ) = (Y ∨ Y ) ∧ (Y ∨ ¬Y ) = Y ∧ 1X = Y , indicating (ba4).

(2) Assume (rb5) holds, and let X ≥ Y and consider the map hXY . Lemma
1(iv) states that the image of hXY is indeed �1(Y ). Now let Z,Z ′ ∈ �1(X ). We
have ¬hXY (Z) = ¬(Z ∧ 1Y ) = ¬Z ∧ 1Y = hXY (¬Z) by (rb5). We have hXY (Z ∧ Z ′) =
(Z ∧ Z ′) ∧ 1Y = (Z ∧ 1Y ) ∧ (Z ′ ∧ 1Y ) = hXY (Z) ∧ hXY (Z ′). The case for∨ is identical.
So hXY is a homomorphism.

Next, letX ≥ Y and assume hXY is a homomorphism. Then¬(X ∧ 1Y ) = ¬hXY (X ) =
hXY (¬X ) = ¬X ∧ 1Y . So (rb5) holds.

Finally, let X ≥ Y ≥ Z and W ∈ �1(X ). Then hYZ (hXY (X )) = (W ∧ 1Y ) ∧ 1Z =
W ∧ (1Y ∧ 1Z) =W ∧ 1Z = hXZ (W ), where the penultimate equality arises from the
fact that 1Y ≥ 1Z , so 1Y ∧ 1Z = 1Z .

2.3. Concrete relativized Boolean algebras. Just as the powerset of a set forms the
prototypical example of a BA, RBAs can also be given concrete instantiations as (a
subset of) a powerset. A concrete RBA based on a set W has elements which are of
the form (A,B) where both A and B are subsets of W and A ⊆ B . The operations
are relative versions of the usual powerset Boolean algebra operations: for example
¬(A,B) = (B \ A,B).

In this section we will establish a version of Stone’s representation theorem forRBAs,
showing that each RBA can be embedded into a concrete relative Boolean algebra.

If W is a set, let 2W denote 〈{(A,B) | B ⊆W,A ⊆ B},∧,∨,¬, (∅, ∅), (W,W )〉 with
the operations being defined as follows:

neg. ¬(A,B) = (B \ A,B);
meet. (A,B) ∧ (A′, B ′) = (A ∩ A′, B ∩ B ′);
join. (A,B) ∨ (A′, B ′) = ((A ∪ A′) ∩ (B ∩ B ′), B ∩ B ′).

Let CRBA be the class of all such algebras. It is easy to check that 2W
is a relativized Boolean algebra, with �2(2W) = {(B,B) | B ⊆W } ∼= P (W ) and
�1(A,B) = {(A′, B) | A′ ⊆ B} ∼= P (B) both being Boolean algebras. Notice here that
the ordering,≥, is simply the product ordering on P (W ): (A,B) ≥ (A′, B ′) if and only
if A ⊇ A′ and B ⊇ B ′. Also notice that 1(A,B) = (B,B) and 0(A,B) = (∅, B).

Theorem 2 shows that every RB ∈ RBA can be embedded into the concrete RBA
based on the set F RB. While the result is a reasonably straightforward generalization
of Stone-like representation, it has some specific philosophical value in the present
context. While is clearly possible to represent each local domain (being a classical
Boolean algebra) as a concrete entity, it is much less clear that one could represent
the connection between various local notions of truth in a concrete way. Indeed, many
extant models of local truth (e.g., [9, 11, 15]) construct disjoint local state spaces and
then explicitly and externally model the relation between them. By contrast, Theorem 2
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ensures it is always possible to represent via a single set, both the local domains and
their relation to one another.

Because �2(RB) need not be a Boolean algebra, the filters we must work with are
not ultrafilters. Towards this, if u is a filter of RB, then let �2(u) = u ∩ �2(RB) and
�1(u,X ) = u ∩ �1(X ). With these definitions, we can define the following filters on
RB, which may not be ultrafilters themselves but whose projections are either empty
or are ultrafilters:

F RB = {u ∈ F (RB) | �1(u,X ) ∈ U(�1(X )), for all 1X ∈ �2(u)}.
Using these filters, we can construct our concrete representation. It is a consequence
of Lemma B.1 that F RB is non-empty.8

Theorem 2. The map h : RB → 2P (F RB) defined by

X �→ ({u ∈ F RB | X ∈ u}, {u ∈ F RB | 1X ∈ u})

is an injective homomorphism.

Proof. Clearly h(1) = (F RB, F RB). Take h(X ) = (A,B) and h(Y ) = (A′, B ′). By
(rb3), 1X = 1¬X ; we have {u ∈ F RB | 1¬X ∈ u} = B . If u /∈ B , then ¬X /∈ u, and if
u ∈ B then u ∩ �1(X ) is an ultrafilter on �1(X ). Hence for all u ∈ B , either X ∈ u or
¬X ∈ u. This indicates that h(¬X ) = (B \ A,B) as desired.

Since a filter contains X ∧ Y if and only if it contains X and it contains Y,
{u ∈ F RB | X ∧ Y ∈ u} = A ∩ A′. Further, by Lemma 1(v), 1X∧Y = 1X ∧ 1Y , so
{u ∈ F RB | 1X∧Y ∈ u} = B ∩ B ′: h(X ∧ Y ) = (A ∩ A′, B ∩ B ′).

Next, by Lemma 1(v), 1X∨Y = 1X ∧ 1Y , so {u ∈ F RB | 1X∨Y ∈ u} = B ∩ B ′, as
well. Now: If u /∈ B ∩ B ′, then X ∨ Y /∈ u, and if u ∈ B then u ∩ �1(X ∨ Y ) is an
ultrafilter on �1(X ∨ Y ). It is well known that an ultrafilter on a Boolean algebra
contains X ∨ Y if and only if it contains X or it contains Y. This indicates that
h(X ∨ Y ) = ((A ∪ A′) ∩ (B ∩ B ′), B ∩ B ′), as desired.

Finally to see that h is injective, assume X 
= Y . If 1X 
= 1Y then assume without
loss of generality that 1Y 
≥ 1X . So {1Z | 1Z ≥ 1X ,Z ∈ RB} is a strongly proper filter
on RB and can, by Lemma B.1, be extended to an element of F RB that does not include
1Y . Thus B 
= B ′.

If 1X = 1Y , and (without loss if generality Y 
≥ X ), then {Z | Z ≥ X} is a strongly
proper filter on RB not containing Y. By Lemma 5 again, we can extend to an element
of F RB that does not include Y. Thus A 
= A′.

It is worth pointing out that this construction can be applied, mutatis mutandis, to
arbitrary Boolean algebras. That is, starting with a Boolean algebra B, we can construct
an RBA 2B by taking the set of pairs (X,Y ) ∈ B × B with Y ≥ X and defining the
operation in analogy with the above rules. While it is the content of Theorem 2 that all
RBAs can be homomorphically embedded in 2B for some B ∈ BA, the class of RBAs
is far richer than those constructed in this manner as evidenced by Example 4: To see
this, note that if B has n generators, then it has

∑n
r=0

(
n
r

)
= 2n elements, and 2B has∑n

r=0 2r
(
n
r

)
= 3n elements. In contrast, the RBA in Example 4 has eight elements.

For an inverse system of Boolean algebras—a set of Boolean algebras partially
ordered by a set of commuting homomorphisms—the inverse limit collects those

8 Assuming 1 �= 0.
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elements in the product algebra that are consistent with the projections. The inverse
limit itself forms a Boolean algebra under the induced ordering [5]. For an RBA RB,
the local domains and projection maps form an inverse system of Boolean algebras,
({�1(1X ) | 1X ∈ �2(RB)}, {hXY | X ≥ Y}} and the inverse limit is the set

←−
RB = {α ∈

∏
�2(RB)

�1(1X ) | αY = hXY (αX ) for X ≥ Y},

where we write αX to refer 1X component of α.
←−
RB forms a Boolean algebra under the

ordering α ≥ � if and only if αX ≥ �X for all 1X ∈ �2(2B).
As such, we have an operation B �→ 2B fromBA → RBA and an operation RB �→ ←−

RB
from RBA → BA: a natural question arises regarding the relation between these two
operations. While these operations cannot be inverses, since, as outlined just above,
B �→ 2B is not surjective, the inverse limit operation is (isomorphic to) a retraction of
the relativizing operation, specifically:

Theorem 3. For B ∈ BA, B ∼=
←−
2B.

Proof. The RBA 2B consists of the set of pairs (X,Y ), with X,Y ∈ B and Y ≥ X .
Notice that 1(X,Y ) = (Y,Y ) so that �2(2B) ∼= B. Now consider the map r : B → ←−

2B

defined by r : Z �→ {(Y ∧ Z,Y )}(Y,Y )∈�2(2B). If (X,X ) ≥ (Y,Y ) then h(X,X )
(Y,Y ) (r(Z)X ) =

h(X,X )
(Y,Y ) (X ∧ Z,X ) = (X ∧ Z,X ) ∧ (Y,Y ) = (Y ∧ Z,Y ) = r(Z)Y , so r(Z) is indeed an

element of the inverse limit
←−
2B.

To show that r is a Boolean isomorphism, it suffices to show that r is strictly order
preserving. Let Z ≥ Z ′. Then Z ∧ Z ′ = Z ′, so (Y ∧ Z) ∧ (Y ∧ Z ′) = Y ∧ Z ′, so for
all (Y,Y ) ∈ �2(2B), we have (Y ∧ Z,Y ) ≥ (Y ∧ Z ′, Y ): r(Z) ≥ r(Z ′). Now assume
that Z 
≥ Z ′. Then Z ∧ Z ′ 
= Z ′, and in particular—where 1 is the top element of
B—(Z, 1) ∧ (Z ′, 1) = (Z ∧ Z ′, 1) 
= (Z ′, 1), so r(Z) 
≥ r(Z ′).

2.4. Modal RBs. As many of the interpretations of relative truth arise from a
modal/relational structure, we introduce a modal RBA, an RBA equipped with an
operator. Specifically, if RB ∈ RBA, then (RB, f) is a modal relativized Boolean
algebra, or MRBA, if

f : RB → RB

such that the following conditions hold:

f1. f(1) = 1.
f2. f(X ∧ Y ) = f(X ) ∧ f(Y ).
fD. f(0X ) = 0X .

Let MRBA denote the class of modal RBAs.
These conditions reflect the properties of normal modal logics: (f1) reflects our

weakened form of necessitation: something which is tautological and always defined
is necessary/known; (f2) encodes the distributive property of normal modalities. As
always, we have that (f2) implies that f is monotone. Finally, (fD) ensures non-
triviality, in the same manner as D does in frame semantics—that not not everything is
known/necessary.
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§3. Models of propositional logic. For P, a set of propositional variables, let L(P)
be the language defined by the grammar

ϕ ::= p | 1 | ¬ϕ | (ϕ ∧ ϕ),

where p ∈ P. We employ the standard logical abbreviations: 0 ≡ ¬1, (ϕ ∨ �) ≡
¬(¬ϕ ∧ ¬�) and (ϕ → �) ≡ (¬ϕ ∨ �). For ϕ ∈ L(P) let P(ϕ) collect those proposi-
tional variables which are subformula of ϕ.

In an abuse of notation, we let L(P) also denote the algebra of Boolean similarity
type in which the base set is L(P) itself and the meet, join, and complement operations
and the top and bottom elements are denoted by their grammatical counterparts. This
is the free algebra of Boolean similarity type generated by P.

Say that ϕ ∈ L(P) is valid in RB, denoted RB |= ϕ, if for all homomorphisms h :
L(P) → RB we have that h(ϕ) = 1X for some X ∈ RB . Moreover say ϕ is valid in
RBA (or just valid), denoted RBA |= ϕ, if it is valid in RB for all RB ∈ RBA. While
this notion of validity is non-standard, it is well adapted to the “local” notion of truth;
Section 6 provides motivation for this definition and discussion of similar notions from
the larger literature.

Proposition 4. ϕ is a theorem of classical propositional logic if and only if RBA |= ϕ.

Proof. For RB ∈ RBA, let h : L(P) → RB and let h(ϕ) = X for some classical
validity, ϕ. Note that for all subformula, �, of ϕ, it must be that 1h(�) ≥ 1X (this
is the consequence of Lemma 1). Now, define the homomorphism h′ : L(P) → �1(X )
via

h′ : p �→
{

(h(p) ∧ 1X ), if 1h(p) ≥ 1X ,
0X , otherwise.

By Theorem 1, it must be that for all subformula, �, of ϕ, that

h′(�) = (h(�) ∧ 1X ) = hh(�)
X (h(�)) ∈ �1(X ).

Since ϕ is a theorem of classical logic and h′ is a homomorphism to �1(X ) ∈ BA, it
must be that h′(ϕ) = 1X , and hence h(ϕ) = 1X as desired.

Completeness follows from the fact that BA ⊂ RBA.

§4. Awareness semantics. There are two interrelated methods of capturing aware-
ness within a formal epistemology. First are the models that capture awareness
semantically, where knowledge and awareness are understood in terms of the subsets
of a set called a state-space [3, 10, 14]. Second are models that capture awareness
syntactically, where knowledge and awareness are understood in terms of statements
about the world [1, 4, 8, 16].9

In state-space models, knowledge and awareness are represented by operators, f
and fA that map events (subsets of the state-space) to events. The event that an agent
knows E is f(E); and that she is aware of event E is fA(E). Dekel et al. [3] showed
that under mild and intuitive conditions on these operators, the only possibility was
being aware of everything or nothing.

9 There have also been several papers examining the connection/equivalence between extant
models of the two approaches [7, 11].
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To circumvent this impossibility result, Heifetz, Meier, and Schipper [10] and Li [14]
consider an ordered set of state-spaces. State-spaces higher in the ordering project onto
the lower spaces, in the sense that they are strictly more expressive. Then, roughly, an
agent in state � is aware of those events which are in state-spaces lower in the ordering
than the space containing �. By considering multiple state-spaces, the definition of
truth becomes inherently relative: there are states that are neither contained in an event
nor contained in its complement. Nonetheless, when restricted to events in a particular
state-space, behavior is classical.

Syntactic models of awareness, conversely, are necessarily contingent on a logical
language, L, with two modalities A and K, respectively. The truth of formulas is then
modeled via Kripke frames/models where at each possible world, � ∈W , the agent is
aware of a subset of the underlying logical language, A(�) ⊆ L, and considers a subset
of the worlds R(�) ⊆W , possible. Often each state � in endowed with only a subset
of the full language, L(�) ⊆ L, and ϕ ∈ L is modeled as true of false only at those
states where ϕ ∈ L(�) [6, 9, 17]. Again, truth is relatively defined: the worlds where
¬ϕ is true are the relative complement of those worlds where ϕ is true—relative to the
worlds where it is defined. Validity is likewise relative; ϕ is considered valid if it is true
in all states where it is defined.

4.1. Awareness models. Let LA,K (P) denote the extension of L(P) to include the
modalities A and K : LA,K (P) is defined by

ϕ ::= p | 1 | ¬ϕ | (ϕ ∧ ϕ) | Aϕ | Kϕ.
An ordered frame is a pre-ordered set (W,≥) endowed with a serial binary relation,

R. We will set R(�) = {�′ ∈ Ω | �R�′}. Although we refer to the elements of W as
worlds or states, note they will not have the standard interpretation of specifying the
truth of all formulas, but will rather model only a subset of the language.

An awareness model for the language LA,K (P) is an ordered frame, (W,≥, R)
along with two functions, L : P → P (W ) and V : P → P (W ) such that (i) L(p)
is ≥ upwards closed, and (ii) V (p) ⊆ L(p) for all p ∈ P. Abusing notation let
LA,K (�) = LA,K (L(�)) specify the language at world �. It is the content of (i) that if
� ≥ �′ then LA,K (�) ⊇ LA,K (�′).

An awareness modelM = (W,≥, R, L,V ) defines, at every � ∈W the truth of all
formulas in LA,K (�). Truth is defined recursively via the operator |= as:

• 〈M,�〉 |= p iff � ∈ V (p),
• 〈M,�〉 |= ¬ϕ iff 〈M,�〉 
|= ϕ,
• 〈M,�〉 |= ϕ ∧ � iff 〈M,�〉 |= ϕ and 〈M,�〉 |= �,
• 〈M,�〉 |= Aϕ iff for all �′ ∈ R(�), ϕ ∈ LA,K (�′),
• 〈M,�〉 |= Kϕ iff for all �′ ∈ R(�), 〈M,�′〉 |= ϕ.

For a model M, let V (ϕ) = {� ∈W | 〈M,�〉 |= ϕ} collect the worlds in which ϕ
holds, and L(ϕ) = {� ∈W | ϕ ∈ LA,K (�)} the worlds where ϕ is defined. The reuse
of V and L is desired, as V and L are extensions of the functions in the definition
of M.

Call ϕ valid in M if it is true everywhere it is defined: if V (ϕ) = L(ϕ). Call ϕ valid
in the class of awareness models, denoted AM |= ϕ, if it is valid in all M.

The awareness models considered here are slightly different than those proposed
by Fagin and Halpern [4]. For propriety, this equivalence is formalized and proven
in Appendix A, Proposition 1. In the Fagin and Halpern approach, the language is

https://doi.org/10.1017/S1755020323000308 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020323000308


168 EVAN PIERMONT

state-invariant and the awareness of an agent is given by an explicit set of statements
A(�) ⊆ L. Then 〈M,�〉 |= Aϕ iff ϕ ∈ A(�). As evidenced by Proposition 1, the
present model is equivalent to the Fagin–Halpern approach (under AGP) and it yields
two benefits: (i) it makes the proofs in the next sections more straightforward, and (ii)
it makes explicit the relation between A and K, as both arise from the same relation,R.
In contrast to the purely syntactic approach of assigning to each state a set of formula
about which the agent is aware, here, the agent’s awareness, like her knowledge, arises
from the possibilities she envisages.

Notice that Necessitation (from ϕ inferKϕ) is not sound in AM. Indeed, consider a
model M and some valid ϕ which is not in LA,K (�′) for some �′. Then if �′ ∈ R(�)
with ϕ ∈ LA,K (�) we have that 〈M,�〉 |= ϕ (since ϕ was valid and defined at �, but
not 〈M,�〉 
|= Kϕ (since ϕ is not defined at �′, hence 〈M,�′〉 
|= ϕ). Necessitation is
sound and (along with the other axioms) complete within the class of frames where
R(�) ⊆ {�′ ∈W | �′ ≥ �}. However, this class of models is remarkably boring as
evidenced by the validity of ϕ → Aϕ.

4.2. Modal RB’s and awareness. Let MRBAk denote the class of modal RBAs,
(RB, fk), that satisfy the following additional restriction on the operator fk :

fk. 1fk (X ) = 1X .

This conditions reflect the property specific to knowledge and awareness in relation
to the elements where they are defined: (fk) states that knowledge (and awareness)
of an element is defined exactly when the event itself is defined—it is not possible to
know or not know something which does not itself exist. From fk we can define the
additional map fA : RB → RB via fA : X �→ fk(1X ).

If (RB, fk) is an MRBA and h : L(P) → RB is a homomorphism we can extend
h to h+ : LA,K (P) → RB via (inductively) h+(Aϕ) = fA(h+(ϕ)) and h+(Kϕ) =
fk(h+(ϕ)). Then say that ϕ ∈ LA,K (P) is valid in MRBAk, denoted MRBAk |= ϕ,
if for all (RB, fk) ∈ MRBAk and all homomorphisms from h : L(P) → RB we have
that h+(ϕ) = 1X for some X ∈ RB .

Theorem 5. MRBAk |= ϕ iff AM |= ϕ.

The proof of Theorem 5 is the conjunction of the following two propositions.
Proposition 6 constructs, for each awareness model, a corresponding MRBA (and
homomorphism) such that for each formula, (V (ϕ), L(ϕ)) = h+(ϕ). Then, in converse
fashion, Proposition 7 constructs an awareness model, for each (RB, fk, h), such that
h+(ϕ) = (V (ϕ), L(ϕ)).

4.3. Powerset MRBAs. If F = (W,≥, R) is an ordered frame, define the concrete
MRBA, (2W, fK,R) and

fK,R : (A,B) �→ ({� | RK (�) ⊆ A} ∩ B,B).

Verifying that fK,R satisfies (f1), (f2), and (fk) is straight forward. (fD) follows from
the assumption that R is serial.

Proposition 6. Let F = (W,≥, R) and M = (F,L,V ) be an awareness model and
take hM : L(P) → 2W to be the homomorphism defined by hM (p) = (V (p), L(p)) then
hM+(ϕ) = (V (ϕ), L(ϕ)).

Proof. This is done by induction of the structure of formulae. The base case is the
definition of hM , and the steps for ∧ and ¬ are immediate. We show the inductive steps
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for Kϕ and Aϕ:

hM+(Kϕ) = fK,R(hM+(ϕ))

= fK,R(V (ϕ), L(ϕ))

= ({� | R(�) ⊂ V (ϕ)} ∩ L(ϕ), L(Kϕ))

= ({� | �′ ∈ R(�) =⇒ 〈M,�′〉 |= ϕ,ϕ ∈ LA,K (�)}, L(Kϕ))

= (V (Kϕ), L(Kϕ)).

The second equality is our inductive hypothesis. For awareness:

hM+(Aϕ) = fA,R(hM+(ϕ))

= fK,R(hM+(ϕ ∨ ¬ϕ))

= fK,R(V (ϕ ∨ ¬ϕ), L(ϕ))

= ({� | R(�) ⊂ V (ϕ ∨ ¬ϕ)} ∩ L(ϕ), L(Aϕ))

= ({� | �′ ∈ R(�) =⇒ 〈M,�′〉 |= ϕ ∨ ¬ϕ,ϕ ∈ LA,K (�)}, L(Aϕ))

= ({� | �′ ∈ R(�) =⇒ ϕ ∈ LA,K (�′) ∩ LA,K (�)}, L(Aϕ))

= (V (Aϕ), L(Aϕ))s

where again the third equality is our inductive hypothesis and the penultimate
inequality from the fact that each state models the tautologies in its language, that
is, 〈M,�〉 |= ϕ ∨ ¬ϕ if and only if ϕ ∈ LA,K (�).

Proposition 6 proves that MRBAk |= ϕ implies AM |= ϕ. To see this, notice that if
MRBAk |= ϕ then for every (RB, fk), and for every homomorphism h : L(P) → RB,
we have h+(ϕ) = 1X for some X ∈ RB . In particular, for each model (F,L,V ) this is
true for 2W and hM : p �→ (V (p), L(p)). Thus, Proposition 6 requires that V (ϕ) =
L(ϕ). Since this holds for all models, we have that ϕ is valid in AM.

4.4. Ultrafilter frames. In dual fashion, the next proposition shows that AM |= ϕ
implies MRBAk |= ϕ by constructing an awareness model for each (RB, fk, h) that
yield the same validities. As usual, the worlds will be sets of ultrafilter like objects. By
the reasoning outlined in Section 2, we consider the filters

F RB = {u ∈ F (RB) | �1(u,X ) ∈ U(�1(X )), for all X ∈ �2(u)}.

Then, if (RB, fk) ∈ MRBAk, define the ultrafilter frame as (F RB,≥RB, RRB) where
u ≥RB v iff �2(u) ⊇ �2(v) and uRRBv iff fk(X ) ∈ u implies X ∈ v.

Proposition 7. Let h : L(P) → RB be a homomorphism and h+ its extension to
LA,K (P) → 2W. LetM = (F RB,≥RB, RRB, Lh, V h) whereLh(p) = {u ∈ F RB | 1h(p) ∈
u} and V h(p) = {u ∈ F RB | h(p) ∈ u}. Then for all ϕ ∈ LA,K (P),

Lh(ϕ) = {u ∈ F RB | 1h+(ϕ) ∈ u}
and

V h(ϕ) = {u ∈ F RB | h+(ϕ) ∈ u}.
Proof. As always, the proof is by induction on the structure of formula. This is

straightforward with the help of the following lemma:

Lemma 2. Let u ∈ F RB. Then R(u) ⊆ {v ∈ F RB | X ∈ v} iff fk(X ) ∈ u.
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Proof. The “if” direction is immediate given the definition of R. We show the “only
if” via its contrapositive: if fk(X ) /∈ u then there exists some v ∈ F RB such that
fk(X ′) ∈ u implies X ′ ∈ v and X /∈ v.

Define v– = {X ′ ∈ RB | fk(X ′) ∈ u}. By assumption X /∈ v–. By (f1), 1 ∈ v–, by
(f2) v– is an upset and is closed under meets, hence v– ∈ F (RB). By (fD) 0Y /∈ v– for
any Y ∈ RB , so v– is strongly proper. Lemma 5 allows us to extend v– to v ∈ F RB

such that �2(v) = �2(v–) and with X /∈ v.
We first show that for all ϕ, Lh(ϕ) = {v ∈ F RB | 1h+(ϕ) ∈ v}. This is by induction

of the complexity of ϕ. The base case is the definition of L. We will show the cases for
∧ and K (negation is trivial and the argument for A is exactly the argument for K).

Let u ∈ Lh(ϕ ∧ �). So, ϕ ∧ � ∈ L(u) iff ϕ ∈ L(u) and � ∈ L(u). By the inductive
hypothesis, this is iff 1h+(ϕ) ∈ u and 1h+(�) ∈ u. Since u ∈ F RB, this is iff 1h+(ϕ) ∧
1h+(�) = 1h+(ϕ)∧h+(�) = 1h+(ϕ∧�) ∈ u.

Let u ∈ Lh(Kϕ). So,Kϕ ∈ L(u) iff ϕ ∈ L(u). By the inductive hypothesis, this is iff
1h+(�) = 1fk (h+(�)) = 1h+(K�) ∈ u. Where the second equality is via (f1).

Next, we show that for all ϕ, V h(ϕ) = {v ∈ F RB | h+(ϕ) ∈ v}. Again, this is
by induction of the complexity of ϕ, and again, we will just show the interesting
steps: Let u ∈ V h(Kϕ). So, 〈M,u〉 |= Kϕ; iff for all v ∈ R(u), 〈M,v〉 |= ϕ. By the
inductive hypothesis, this is iff R(u) ⊆ {v ∈ F RB | h+(ϕ) ∈ v}, which, by Lemma 2 is
iff fk(h+(ϕ)) = h+(Kϕ) ∈ u.

Let u ∈ V h(Aϕ). So, 〈M,u〉 |= Aϕ; iff for all v ∈ R(u), v ∈ Lh(ϕ). By the previous
part of the proof (concerning Lh), this is iffR(u) ⊆ {v ∈ F RB | 1h+(ϕ) ∈ v}, which, by
Lemma 2 is iff fk(1h+(ϕ)) = fA(h+(ϕ)) = h+(Aϕ) ∈ u.

To see that Proposition 7 shows that AM |= ϕ implies MRBAk |= ϕ (and thus
completes the proof of Theorem 5), let ϕ be valid in AM and pick your favorite
MRBAk, (RB, fk) and homomorphism h : L(P) → RB. Then in particular,ϕ is valid in
M = (F RB,≥RB, RRB, Lh, V h), meaningV h(ϕ) = Lh(ϕ). Proposition 7 then indicates
that

{u ∈ F RB | h+(ϕ) ∈ u} = {u ∈ F RB | 1h+(ϕ) ∈ u},
which can only be true if h+(ϕ) = 1h+(ϕ), indicating validity in (RB, h).

§5. Possibility semantics. The above discussion focused on the interpretation of
local domains as representing differential existence of propositions. That is, in different
domains, different things exist, and truth is relative to this existence (for the case of
an unaware agent, existence might refer to what exists in the states she considers
possible in her internal representation of the world). Local domains of truth can
also model differential determinacy of propositions: states can be vague so that not
every proposition is determined. This was the motivation of Humberstone [15] in the
invention of possibility semantics: a possible world semantics where each world is a
partial resolution in the sense that it may leave some propositions indeterminate. These
worlds are partially ordered by vagueness so that worlds higher in the ordering refine
those below. Formally:

Let L�(P) denote the extension of L(P) to include the modality �. A possibility
model is an ordered frame (W,≥, R) along with a partial functionV : P×W → {T,F}
that jointly satisfy:
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persistence.For all p ∈ P and � ∈W if V(p,�) is defined, then V(p,�′) =
V(p,�) for all �′ ≥ �.

refinability. For all p ∈ P and � ∈W if V(p,�) is undefined then there exist a
� ≥ � such that V(p, �) = T and a � ′ ≥ � such that V(p, � ′) = F.

On these conditions Humberstone motivates

Persistence is required because further delimitation of a possible
state of affairs should not reverse truth values, but only reduce
indeterminacies, and Refinability says that (for atomic formulae at
least) such a reduction is possible in either of the relevant ways: this
is a sort of “principle of subdivision” for possibilities.

Truth in a possibility model is defined recursively via the operator |= as:

• 〈M,�〉 |= p iff V(p,�) = T,
• 〈M,�〉 |= ϕ ∧ � iff 〈M,�〉 |= ϕ and 〈M,�〉 |= �,
• 〈M,�〉 |= ¬ϕ iff for all �′ ≥ �, 〈M,�′〉 
|= ϕ,
• 〈M,�〉 |= �ϕ iff for all �′ ∈ R(�), 〈M,�′〉 |= ϕ.

In possibility model, the truth of a formula is relative to which atomic formulas
have been determined and so is not always defined. Notice that unlike the awareness
models, where p ∨ ¬p is not defined when p is not, in possibility models, the former
is always determined (to be true) since it is independent of knowing the truth of p.
Indeed, non-modal classical validities will be true at every state of a possibility model.

Call a possibility model modally consistent if for all ϕ ∈ L�(P), (i) if 〈M,�〉 |= ϕ
then for all �′ ≥ �, 〈M,�′〉 |= ϕ and (ii) if 〈M,�〉 
|= ϕ and 〈M,�〉 
|= ¬ϕ then there
exists some �, � ′ ≥ � such that 〈M, �〉 |= ϕ and 〈M, �〉 |= ¬ϕ. A modally consistent
model is one which meets the analogs of persistence and refinability for all formulae.
Clearly, persistence and refinability ensure these requirements are met for propositional
formulae, and the semantics (in particular the rule for negation) ensures the structure
propagates to all non-modal formulae. Modal formulae, on the other hand, need
not generally conform—Humberstone ensures modal consistency by requiring joint
conditions on ≥ and R, namely:

p. For all �,�′, � ∈W if �′ ≥ � and �′R� then �R�.
r. For �, � ∈W , if �R� then for some �′ ≥ �, �′′R� for all �′′ ≥ �′.

Example 5. ConsiderL�({p}) and letW = {�0, �1a, �1b}with�1a ≥ �0,�1b ≥ �0

and all the reflexive relations. LetR be the relation such thatR(�0) =W ,R(�1a) = �1a ,
R(�1b) = �1b . Finally, let V (p,�1a) = T and V (p,�1b) = F. This model is modally
consistent. In particular, �p is true at �1a false at �1b and undefined at �0. However, it
does not satisfy (R) since �0R�0 but there is no � such that for all �′ ≥ �, �′R�0.

The next result shows that RBAs encode possibility semantics and, in particular,
can be used to construct modally consistent models that do not necessarily adhere to
(r) or (p).

Let (RB, f�) ∈ MRBA and h : L�(P) → RB be a homomorphism. As defined
earlier, let F RB denote the set of filters on RB with empty or ultrafilter projections
onto local domains. For each u ∈ F RB define [u] = {U ∈ U(RB) | u ⊂ U} as the set
of all ultrafilters containing u. Then define ≥† via u ≥† v if [u] ⊆ [v] and R† as uR†v
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iff f�(X ) ∈
⋂

[u] implies X ∈
⋂

[v]. Finally, let V† : P×W † → {T,F} be the partial
function defined by V†(p, u) = T iff h(p) ∈

⋂
[u] and V†(p, u) = F iff h(ϕ) /∈

⋃
[u].

Proposition 8. Let (RB, f�) ∈ MRBA and h : L�(P) → RB be a homomorphism.
Then M = ((F RB,≥†, R†),V†)) is a modally consistent possibility model and, in
particular, 〈M,�〉 |= ϕ iff h+(ϕ) ∈

⋂
[u].

Proof. To see that M satisfies persistence and refinability: let u′ ≥† u, so that [u′] ⊆
[u]. ThenV (p, u) = T iff h(p) ∈

⋂
[u] ⊆

⋂
[u′]. SoV (p, u′) = T. Likewise,V†(p, u) =

F iff h(p) /∈
⋃

[u] ⊇
⋃

[u′]. SoV†(p, u′) = F. M is persistent. Now assume thatV†(p, u)
is undefined. Then there must exist someV,V ′ ∈ [u] such that h(p) /∈ V and h(p) ∈ V ′.
Further, V,V ′ ∈ F RB and, since they are ultrafilters, are ≥†-maximal. Clearly, V ≥† u
and V ′ ≥† u. M is refinable.

We next show that 〈M,�〉 |= ϕ iff h+(ϕ) ∈
⋂

[u], which will in turn prove that M is
modally consistent. We show this via induction, the base-case being the definition of
V†.

(∧) 〈M,u〉 |= ϕ ∧ ϕ iff 〈M,u〉 |= ϕ and 〈M,u〉 |= ϕ iff (by the inductive hypothe-
sis) {h+(ϕ), h+(�)} ⊂

⋂
[u] iff h+(ϕ) ∧ h+(�) = h+(ϕ ∧ �) ∈

⋂
[u] (since all

ultrafilters are ∧-closed).
(¬) 〈M,u〉 |= ¬ϕ iff for allu′ ≥ u, 〈M,u′〉 
|= ϕ, iff (by the inductive hypothesis) for

any v such that [v] ⊆ [u], h+(ϕ) /∈
⋂

[v], iff for all U ∈ [u], h+(ϕ) /∈ U , iff for
all U ∈ [u], ¬h+(ϕ) = h+(¬ϕ) ∈ U (since ultrafilters on Boolean algebras10

contain either X or ¬X ) iff h+(¬ϕ) ∈
⋂

[u].
(�) 〈M,u〉 |= �ϕ iff for all v ∈ R(u), 〈M,v〉 |= ϕ iff R(u) ⊆ {v ∈ F RB | h+(ϕ) ∈⋂

[v]} (by the inductive hypothesis) which, by (a very slight alteration of)
Lemma 2 is iff f�(h+(ϕ)) = h+(�ϕ) ∈

⋂
[u].

Now, finally, modal consistency follows from a recreation of the first paragraph of
the proof. First: let u′ ≥† u, so that [u′] ⊆ [u]. Then 〈M,u〉 |= ϕ iff h(ϕ) ∈

⋂
[u] ⊆⋂

[u′]. So 〈M,u′〉 |= ϕ. Now assume 〈M,u〉 
|= ϕ and 〈M,u〉 
|= ¬ϕ. From the first
assumption, we have that there exists some V ∈ [u] such that h(p) /∈ V . From the
second assumption we have that there exist some v′ ≥† u such that 〈M,v〉 |= ϕ and
hence some V ′ ∈ [v′] ⊆ [u] such that h(p) ∈ V ′. As above, this shows M is (modally)
refinable.

Example 3 (continued). Let RB consist of the union of the elements of Boolean
Algebras, B ( for blue) and R ( for red ), where B is generated by the sets {XB,¬YB}
and R is the trivial algebra {1R, 0R}. Let 1R ∧WB =WB for and 0R ∧WB = 0B for
any WB ∈ B. Let f� be the identity map. Take h+ : L�({p}) → RB to be given by
h+(p) = XB .

Then, F RB consists of three filters:

F RB =
{
u0 := {1R}, u1a := {1R, 1B,XB}, u1b := {1R, 1B,¬XB}

}
.

In addition, U(RB) = {u1a, u1b}, so [u0] = {u1a, u1b}, [u1a ] = u1a , and [u1b] = u1b , and⋂
[u0] = {1R, 1B},

⋂
[u1a ] = {1R, 1B,XB}, and

⋂
[u1b] = {1R, 1B,¬XB}. Finally, we

have V(p, u1a) = T and V(p, u1b) = F, whereas V(p, u0) is undefined.

10 Ah, you say, U is an ultrafilter on an RBA not a BA! But, as such, its projection on each
local domain, a Boolean algebra, is an ultrafilter, and X and ¬X live in the same domain.
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As such ≥† is reflexive and u1a ≥† u0 and u1b ≥† u0. Moreover, R† is given by
R†(u0) = F RB, R†(u1a) = u1a , R†(u1b) = u1b . Thus, the model ((F RB,≥†, R†),V†))
is, up to isomorphism, the modally consistent but not refinable model from earlier in
Example 5.

§6. Validity. When RBAs are seen as an interpretation of a logic, it is not generally
the case that formulae are globally defined—there are elements where neither ϕ nor
¬ϕ hold. While this is, essentially, the central feature of RBAs—and the feature that
positions it as well suited to model differential existence, awareness, and resolution of
vagueness—it requires that we consider a non-standard notion of validity.

Although we are unjustified to require p ∨ ¬p to be true in a state-of-affairs in
which p does not exist, it seems nonetheless reasonable from the external prospective
(outside any particular state-of-affairs) that p ∨ ¬p is a valid statement. Thus, we are
guided to the notion of validity used here: a formula is valid if it is true so long as
it is defined. Note that this is equivalent to defining a formula as valid if it is never
false.11 Halpern and Rêgo [7] refer to this notion as weak validity, and the classic
notion of “always-true-ness” as strong validity. Weak validity has kicked around in
many forms in the literatures on non-classical logics: multi-valued logic, partial logic,
quasi-truth, etc [2, 12, 13, 19, 20]. Weak validity as applied to state-spaces models in
the discussion of awareness first appeared12 in [11] and has been widely used since
[6, 9]. It is worth noting that Halpern and Rêgo [7] propose a different resolution to
the problem, choosing to augment the language to include a non-standard notion of
implication, ↪→ to capture implication by undefined statements. Then ϕ ↪→ � may be
defined even when ϕ and � are not: the authors take validity of ϕ to be the universal
truth of ¬(ϕ ↪→ 0).

Another, more roundabout, inspiration for weak validity arises from shift in
prospective given by Section 5, which represents a different notion of truth. There
we take ϕ to be “true” at X not if h(ϕ) is in the filter generated by X, but rather, if h(ϕ)
is in every ultra-filter containing X. This suggests the alternative notion of validity for
RBAs: ϕ is valid in RB iff h(ϕ) is contained in every ultra-filter on RB. Of course,
under mild conditions, this new validity is the old validity:

Proposition 9. Let RB ∈ RBA and ϕ ∈ L(P). Let �2(RB) have overlapping domains:
that is for any 1X1 ∈ �2(RB) and Y 
= 0Y we have Y ∧ 1X 
= 0Z for any Z ∈ RB . Then
RB |= ϕ iff h(ϕ) ∈

⋂
U(RB) for all homomorphisms h : L(P) → RB.

Proof. It suffices to show that
⋂

U(RB) = �2(RB). That
⋂

U(RB) ⊆ �2(RB) is
obvious, since if X /∈ �2(RB) then ¬X 
= 0X and so standard arguments show we can
construct an ultrafilter containing ¬X .

So let F ∈ F (RB) be a filter that does not contain 1X . Consider v– =
⋃
{Y ∧ 1X |

Y ∈ F }. Since F is a filter, by the overlapping domains property, this does not contain
any local bottom elements, and by Theorem 1(2), v– does not contain Z and ¬Z for

11 In a bivalent framework, this is equivalent to the classical definition of validity.
12 Modica and Rustichini [17] entertain a model with two types of states, objective and

subjective, and introduce a notion of validity where a formula must be true at all “objective”
states. Since objective states model all formulas, this corresponds, at least for non-modal
formulae, to classical validity.
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any Z ∈ RB . Hence we can extend v– to a filter v: we have F � F ∪ {1X } ⊆ v, so F
was not an ultrafilter. Therefore �2(RB) ⊆

⋂
U(RB).

Therefore, our new prospective yields only change of interpretation, leaving weak
validity intact.

§A. Axiomatization of AM. Consider the following axioms over LA,K (P) all of
which are standard, and whose merits and interpretations are discussed in the literature
cited in the introduction.

Axioms:

K. (Kϕ ∧K(ϕ → �)) → K�.

D. ¬K0.

T. Kϕ → ϕ.

4. Kϕ → KKϕ.

5A. (¬Kϕ ∧ Aϕ) → K¬Kϕ.

AGP. Aϕ → A�, for all � ∈ LA,K (P(ϕ)).

A0. Kϕ → Aϕ.

KA. Aϕ ↔ KAϕ.

Rules of Inference:

MP. From ϕ and ϕ → � infer � (modus
ponens).

Sub. From ϕ infer all of its substitution
instances.

NecK . From ϕ infer Kϕ.

NecAK . From ϕ infer Aϕ → Kϕ.

Let AX denote the smallest logic containing the tautologies of propositional logic
and AGP ∪ K ∪ D ∪ A0 and which is closed under MP, Sub, and NecAK . AX is the
axiom system considered in [4] when awareness is generated by primitive propositions
and when the accessibility relation is serial.13

Proposition A.1. ϕ is a theorem of AX iff AM |= ϕ.

Proof. Soundness is straightforward. To show completeness, we follows the usual
conical construction with a slight caveat. For the frame, let Wc denote the set of all
pairs (Γ,Q) where Γ is a maximally consistent set of formula containing AX in the
language LA,K (Q) and Q ⊆ P. OrderWc via (Γ,Q) ≥c (Γ′,Q′) iff Q ⊇ Q′. Construct
the relations according to (Γ,Q)Rc(Γ′,Q′) iff {ϕ ∈ LA,K (P) | Kϕ ∈ Γ} ⊆ Γ′ and
{ϕ ∈ LA,K (P) | Aϕ ∈ Γ} ⊆ LA,K (Q′). Then to construct the canonical model, set
Lc(p) = {(Γ,Q) ∈ Ωc | p ∈ Q} andV c(p) = {(Γ,Q) ∈ Ωc | p ∈ Γ}. An induction on
the complexity of ϕ shows that, for all (Γ,Q), ϕ ∈ Γ iff 〈Mc, (Γ,Q)〉 |= ϕ. The only
nontrivial steps, forAϕ andKϕ, are direct consequences of the following lemmas:

Lemma A.1. Fix (Γ,Q). If Aϕ /∈ Γ then there exists a (Γ′,Q′) such that
(Γ,Q)R(Γ′,Q′) and ϕ /∈ Q′.

13 Our inclusion of D will, as usual, specify those models where the accessibility relation is
serial. There is no intrinsic problem considering a weaker logic without D (and therefore
without any restriction on the accessibility relation), but to obtain a complete and sound
axiomatization, we must replace it with a novel axiom: K0 → Aϕ.
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Proof. Since Γ contains AGP, we have that {� | A� ∈ Γ} = LA,K (Q′) for some
Q′ ⊂ P. SinceAϕ /∈ Γ,ϕ /∈ LA,K (Q′). Set Γ– = {� | K� ∈ Γ}. By A0, Γ– ⊆ LA,K (Q′),
and by D, Γ– 
= LA,K (Q′). Notice also that, by NecAK , we have that Γ– contains all
tautologies in LA,K (Q). This allows for the standard argument that Γ– is a consistent
set of formulas and can therefore be extended to a maximally consistent set, Γ′ ⊂
LA,K (Q′). (Γ′,Q′) is the desired world.

Lemma A.2. Fix (Γ,Q). If Kϕ /∈ Γ then there exists a (Γ′,Q′) such that
(Γ,Q)R(Γ′,Q′) and ϕ /∈ Γ′.

Proof. There are two cases to consider. First, if Aϕ /∈ Γ, then by Lemma 3, there is
an assessable world, (Γ′,Q′), such that ϕ /∈ LA,K (Q′), and hence clearly, ϕ /∈ Γ′.

So assume that Aϕ ∈ Γ. Since Γ contains AGP, we have that {� | A� ∈ Γ} =
LA,K (Q′) for some Q′ ⊆ P. Then consider the set Γ– = {¬ϕ} ∪ {� | K� ∈ Γ}. Since Γ
contains A0, we have that Γ– ⊆ LA,K (Q′). As usual, Γ– can be extended to a maximally
consistent set, Γ′ in LA,K (Q′). Again, (Γ′,Q′) is the desired world.

§B. Other proofs and lemmas.

Proof of Lemma 1. Parts (i–iii) are immediate from definitions.

(iv) (X ∧ 1Y ) ∨ 1 = 1X ∧ ((Y ∨ 1) ∨ 1) = 1X ∧ (Y ∨ 1) = 1X ∧ 1Y = 1Y .
(v) 1X ∧ 1Y = (X ∨ 1) ∧ (Y ∨ 1) = (X ∧ Y ) ∨ 1 = 1X∧Y . Further 1X ∨ 1Y =

(X ∨ 1) ∨ (Y ∨ 1) = (X ∨ Y ) ∨ 1 = ¬(¬X ∧ ¬Y ) ∨ 1 = (¬X ∧ ¬Y ) ∨ 1 =
(¬X ∨ 1) ∧ (¬Y ∨ 1) = (X ∨ 1) ∧ (Y ∨ 1) = 1X ∧ 1Y , where the elimination
of negations comes from the fact that X ∨ 1 = X ∨ ¬X = ¬X ∨ 1 via
commutativity and (rb3).

Lemma B.1. LetF ∈ F (RB) be strongly proper and letX /∈ F . Then F can be extended
to u ∈ F RB such that �2(F ) = �2(u) and X /∈ u.

Proof of Lemma B.1. We will show that if F ∈ F (RB) is strongly proper, then for all
1X ∈ �2(F ), ¬X /∈ F then F ′ = {Z ∧ Y | Z ≥ X,Y ∈ F } is in F (RB) and is strongly
proper and �2(F ) = �2(F ′) and ¬X /∈ F ′. This suffices, since we can then appeal to
the usual Zornesque arguments, to choose a maximal element of the partial order of
all extensions.

That F ′ is upwards closed, contains 1, and is closed under intersections is immediate.
Thus, we need only show that F ′ is strongly proper. Assume to the contrary that
Z ∧ Y = 0W for someW ∈ RB with Z ≥ X and Y ∈ F . Then {1Z, 1Y } ∈ F and so
are 1V = 1Y ∧ 1X and Y ∧ 1V . Since Z ∧ Y = 0W we have also that14

(Z ∧ 1V ) ∧ (Y ∧ 1V ) = 0W ∧ 1V = 0V . (B.1)

Now, (Z ∧ 1V ) ≥ (X ∧ 1V ), the fact that �1(V ) ∈ BA and (B.1) requires that ¬(X ∧
1V ) ≥ (Y ∧ 1V ). But, since F was upwards closed, this requires that ¬X ∈ F , since
¬X ≥ ¬X ∧ 1V = ¬(X ∧ 1V ) (by (rb5)). This contradicts our assumption.

Clearly, �2(F ) ⊆ �2(F ′), so to see the other direction, let Z ∧ Y = 1W for some
W ∈ RB with Z ≥ X and Y ∈ F . Then by Lemma 1(v), 1W = 1Z ∧ 1Y ≥ 1X ∧ 1Y
and so 1W ∈ �2(F ).

14 That 0W ∧ 1V = 0V follows from the fact that hV given by Lemma 1 is a homomorphism.
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