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INDECOMPOSABLE POSITIVE QUADRATIC FORMS 

BY 

MARTIN KRÛSKEMPER 

ABSTRACT. Let F be a formally real field. A quadratic form q is called 
positive if sgn^ ^ 0 for all orderings P of F. A positive q is called de­
composable if there exist positive forms q\, <?2 such that q — q\±.qi. 
Otherwise it is called indecomposable. In a first part we ask for which 
F there exist indecomposable three dimensional forms over F. We show 
that such forms exist iff F does not satisfy the property (A) defined in (J. 
K. Arason, A. Pfister: Zur Théorie der quadratischen Formen iiber formal 
reellen Kôrpern, Math Z. 153, 289-296 (1977)). We use an indecom­
posable three dimensional form defined by Arason and Pfister to construct 
indecomposable forms of arbitrary dimension. Then we examine the ques­
tion for which fields F every positive form over F represents a nonzero 
sum of squares. 

Let F be a formally real field and X = XF the space of orderings of F. A quadratic 
form <p over F is called positive if sgnpy> ^ 0 for all P G X. A positive form (p 
is called decomposable if there exist positive forms i/>i, i/>2 such that (f — ̂ l-Mfe-
Otherwise it is called indecomposable. 

In the first part of this paper we ask for which F there exist indecomposable three 
dimensional forms over F. We show that such forms exist iff F does not satisfy 
the property (A) defined in the paper [1]. Then we use an indecomposable three 
dimensional form defined by Arason and Pfister to construct indecomposable forms 
of arbitrary dimension. In a third part we examine the question for which fields F 
every positive form over F represents a nonzero sum of squares. 

1. The property (P3). Let F be a formally real field. Let F'• = F - {0} and for 
0 i , . . . ,tf„ G F let 

H(au . . . ,an) = {P eX \at G P for / = 1, . . . ,«}. 

Let T — Tp denote the sums of squares of F and let t = T — {0}. 
First examples of indecomposable forms are obviously (1) and (1 , -1) . But one 

sees soon that finding an indecomposable three dimensional form is a far more difficult 
and interesting problem. Obviously a positive form <p — (a, b, c) is decomposable iff 
<p represents some t G t. We therefore say that F satisfies (P3) if every positive three 
dimensional form over F represents a t G 7>. 
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Let us recall some notations of the paper [1]. Arason and Pfister called a torsion 
form (p of dimension In (i.e., sgnp(/? = 0 for all P G X) strongly balanced if there 
are two dimensional torsion forms ^ i , . . . , ipn such that <p = (f\ + • • • + ipn where '+' 
denotes the orthogonal sum. A field F is said to satisfy (A) if every torsion form over 
F is strongly balanced. Thus F satisfies (A) iff every torsion form over F of dimension 
greater than two is decomposable. The connection between the properties (A) and (P^) 
is given by the following theorem: 

THEOREM 1. Let F be a formally real field. Then the following statements are equiv­
alent: (i) F satisfies (P3). (ii) Every torsion quaternion form (1, <2, b, ab) with a,b G F' 
represents an s G —t. (ni) F satisfies (A). 

The equivalence of (//) and (///) is given by [1] Satz 4. For the remaining part of the 
proof we need: 

LEMMA 1. Let a,b G F such that H {a) C H(b). Then there exist s,t G T such that 
b = ta + s. 

PROOF, (see also [5] Lemma 6.3). The forms (I,a) and (b,ba) have the same 
signature values. Thus they are risometric in the sense of [7]. By [7] (1.19) we have 
beDT(l,a). D 

PROOF OF THEOREM 1: (/) —> (ii) : (—l1—a1—bJ—ab) represents an s G f iff the 
positive form (—a1 —b, —ab) does. (//) —• (/): Let (a, b, c) be a positive form over F. 
Then we have H (—a, —b) — </> and H(—c) C //(«, b) = H(ab). Thus there are t,s G T 
such that c = s — abt. We can assume t ^ 0. Now the torsion form (—1,^ , bt, —ab) 
represents an element of t and so does (t)(at, bt, —ab). Now if r = g2a + h2b — abtj2 

for gjhj G F and r G t, it follows that r -1- sj2 G t is represented by (a, b,c). • 

REMARKS, a) Let K be an algebraic number field. Then by [1] Satz 5 the rational 
function field K(x) satisfies (P3). b) Let W(F) be the Witt ring of F and 1(F) the 
augmentation ideal. If I3(F) is torsion free then F satisfies (P3). 

PROOF. For every torsion quaternion form <p over F we have 2 x ip = 0 in W(F). 
Now apply [12] 2.13.14. • 

EXAMPLE. 1. We want to construct a field satisfying (F3) and having arbitrarily high 
Pythagoras number, «-invariant and stability index. (For the definition of these field in­
variants see [7], [10], [12].) Let F{ = K((h)) . . . ((*„)) and F2 = Z/3Z((f0) . . . ((tn)). 
By [10] 2.1 there exists a unique ordered field F3 such that the Pythagoras number 
of F3 is 2n. Now let s(F;) denote the quadratic form scheme of Fj in the sense of 
[4]. The property (P3) is closed under formation of direct sums and group extensions. 
Now by [6] the direct sum 0?=1.s(F/) is a field scheme which satisfies (P3). 

From [3] it follows that fields with \F• /F2\ ^ 32 satisfy (P3). It is unknown 
whether there exist fields which satisfy SAP (see [7]) but do not satify (P3). 

EXAMPLE. 2. Using methods of Cassels, Arason and Pfister constructed a torsion 
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quaternion form over Q(JC,J) which is not strongly balanced. From [A,P] Beispiel 1 
it follows that the positive form p — (— JC, 1 + y2 + 3JC, x + y2 + 3JC2) over Q(JC,J) is 
indecomposable. 

2. Indecomposable positive forms. In this section we want to construct indecom­
posable positive forms of arbitrary dimension n. 

Case A) n is even. Let F = R(z) and F(n) := F((t\)) . . . ((tn)). First, we define 
for every r G N a subset Hr of //(z). Let 

Hr :={P eH(z)\r<pz<pr + l} 

= # (<*r) 

where a r := (z — r)(r + 1 — z). Then we have 

H(z)D\jH(ar). 
reN 

For all / ^ 7 we have //(«;) n / / (« / ) — </>. For « = 0, 1, . . . we define the form <̂ n 

over F(n) in the following way: 

n 

Lpn = (\1z) + ^2(l,ai)ti. 
/=i 

Now dim y?„ = 2n + 2 and the signature values of tpn are 0, 2 and 4. Assume that ipn 

is decomposable: ^„ = p\ + p2 with p b p2 7̂  0 positive. Every decomposition of this 
kind is compatible with the orthogonal decomposition in residue class forms. Thus 
we can assume that (l,z) is a summand of p\ and p^ is a sum of the (1, a,-)*/, which 
is impossible. Therefore ipn is indecomposable. 

Case B) n is odd. We set F = Q(JC,)>,Z) and F(w) := F((t{)) . . . ((*„)). Now, 
over F we define ^ = (— x, 1 + y2 + 3JC, JC + y2jc + 3JC2 + z2). For the embedding 
F ^->L := Q(JC,^)((Z)) we have <pL = p where p is defined as in example 1. Thus (p 
is indecomposable. We also have 

/ 3 if F G//(det <p), 
I 1 otherwise. 

Let a := JC + J2JC + 3JC2. Then the determinant of <p is — 1 — (z2)/a mod squares. 
One sees immediately that for all r G N there is an ordering P G XF such that 
r <P —{z2)/a <p r + 1. Now as above we set 

Hr = H(ar), 

^2 

ar (HH-7) 
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and have 

H(det<p)D\jH(ar) 

and all H(ar) are non-empty. For n = 0, 1, . . . we define the form (pn over F(n) as 

n 

Vn = y? + y^(l,Qf,-)^. 
/ = 1 

Then dim <pn — In + 3 and the signature values of ipn are 1, 3 and 5. As above we 
get that (fn is indecomposable. 

3. The property (P). We say that a formally real field F satisfies (P) if every 
positive form over F represents a nonzero sum of squares. We now want to study 
this property and soon find a large class of fields which satisfy (P), the pythagorean 
fields. To show this we use Marshall's language of spaces of orderings (see [8]). The 
definition of the property (P) carries over to spaces of orderings in the obvious way. 

THEOREM 2. Let (X,G) be a space of orderings. Then (X,G) satisfies (P). 

PROOF. Let <p be positive over (X, G). To show that <p + (—1) is isotropic we apply 
the isotropy theorem [9] (1.4) and can therefore assume that X is finite. The property 
(P) is closed under formation of direct sums. We can therefore assume (X, G) to be 
a group extension of (X', G') and that (X', G') satisfies (P). But if ip is positive so is 
the first residue class form of (p. Hence ip represents 1. • 

The example (f, — It) over Q((0) motivates a necessary condition for F to satisfy 
(P). Let v be a valuation of F, R = Rv the valuation ring, V = Fv the value group, 
k — kv the residue class field and n = nv : F —• k the projection. We say that F 
satisfies (PYT) if for every valuation v of F one of the following conditions is satisfied: 
(/) Tv is 2-divisible; (//) kv is pythagorean of not formally real. 

THEOREM 3. (a) if F satisfies (P) then F satisfies (PYT). (b) Assume that F is a SAP-
field. Then the following statements are equivalent: (i) F satisfies (P). (ii) F satisfies 
(PYT). (Hi) F satisfies (ED). 

REMARK. The properties SAP and (ED) are defined in [7] and [11] resp. The next 
example shows that in general (PYT) does not imply (P). 

PROOF, (a): Let v be a valuation of F such that T/2r ^ 0 and k is formally real 
and non pythagorean. Then there exist a sum of squares JLgf G k• — k2 and a d G F 
such that v(d) ^ 0 in r /2T. Choose/ G F such that n(fi) = gi and a J G F such that 
v(d) ^ 0 in T/2r. Choose f ef- such that TT(̂ -) = gt and set (p = (d)(l, - Y,f2). 
Then ip does not represent a nonzero sum of squares, (b): (//) —• (Hi): if F satisfies 
(PYT) and SAP then it follows from the characterisation theorem in [11] that F satisfies 
(ED), (iii) —> (/) is trivial. • 
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EXAMPLE 3. Let k be an algebraic number field with two orderings P\ ^ P2. Let 
R\ and R2 be real closures for P\ and P2 in some algebraic closure of k. We set 
K = Ri H R2 and F — K(x). Then every finite formally real extension of K is 
Pythagorean (see [2]) and hence F satisfies (PYT). The stability index of F is two and 
the following lemma shows that F does not satisfy (P). 

LEMMA 2. Let K be afield such that there exist two different orderings Pi, P2 ofK. 
Let a G K such that a G —P\ and a G — P2. Let F = K(x) and i/> — (<z, — a(x2 + 1)). 
Then V> does not represent a nonzero sum of squares. 

PROOF. Assume there exist polynomials g(x), h(x)1 t(x) G K[x] such that t(x) = 
a(h(x)2 — (x2 + l)g(x)2) and t(x) G 7>. We can assume (g,h) = 1. Let deg h = m. 
Then we get deg g — m — 1. Hence deg g or deg h is odd. Assume deg g is odd. 
Let gi by an irreducible divisor of g with odd degree. Then we have ah(x)2 = t(x) 
mod g\(x) where h(x) ^ 0 and t(x) is a sum of squares. But P2 has an extension to 
K[x]/g\(x). The same argument applies to the case where deg h is odd. • 

As in the case of property (P3), it seems difficult to characterize those fields satis­
fying (P). Next we give two statements equivalent to (P). For a quadratic form (p we 
set D((f) = {a E F- \ ip = (a, . . . ) } . 

THEOREM 4. Let F be formally real. Then the following statements are equivalent: 
(i) F satisfies (P). (ii) Every two dimensional torsion form over F represents a nonzero 
sum of squares. (Hi) For all a 1, . . . , Û „ G F ' , t G f we have: IfD((a\, . . . , an))nt ^ 
(j> then D({ta\, #2, • • • ? #«)) H t ^ (j). 

PROOF. (/) —> (//') is trivial, (ii) —» (///): Assume s — YTi=\ aitf for s G T, at G 
F*, hi G F. By hypothesis there exist h G F and w G —F such that «i(l — /z2r) = w. 
Then s — wb\ G F and 

s — wb\ — a\t(hb\)2 + S^jaib
2
i. 

/=2 

(///) —-> (/) follows from [7] (1.28): Let (p be a positive form over F. By theorem 2 
there is a V> such that D(t/0 nf ^ </>, dim (/? = dim ^ and $gnP(p = sgnpi/; for all 
P eXF. Now ^ can be changed to ip by a finite sequence of transformations. Hence 
by hypothesis D(tp)fit^ <f>. D 

REMARK. The field defined in example 1 also satisfies (P) since the property (P) is 
closed under formation of direct sums. 

REMARK. Let F be formally real. Then every positive form (p over F with dim 
(p è 5 is a F-form (see [5]). 

PROOF. By [5] 3.1 we can assume ip is defined over the space of orderings (Xf,F/T). 
By theorem 2 a 5-dimensional form is decomposable. Hence we can assume <p = 
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(1, *, j , xyd) where d is the determinant of (p. But the form if' = (d, x, ^, xyd) is 
also positive and hence a quaternion form over Xf. We also have ip — (pf + (1, —J) 
in W(F). D 

Note that by [5] 8.1 there exists an 8-dimensional positive form which is not a P-form. 
It is still open whether there exist such forms of dimension 6 or 7. 
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