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INDECOMPOSABLE POSITIVE QUADRATIC FORMS

BY
MARTIN KRUSKEMPER

ABSTRACT. Let F be a formally real field. A quadratic form g is called
positive if sgnp = 0 for all orderings P of F. A positive g is called de-
composable if there exist positive forms q;, ¢, such that ¢ = gq;1g,.
Otherwise it is called indecomposable. In a first part we ask for which
F there exist indecomposable three dimensional forms over F. We show
that such forms exist iff F does not satisfy the property (A) defined in (J.
K. Arason, A. Pfister: Zur Theorie der quadratischen Formen iiber formal
reellen Korpern, Math Z. 153, 289-296 (1977)). We use an indecom-
posable three dimensional form defined by Arason and Pfister to construct
indecomposable forms of arbitrary dimension. Then we examine the ques-
tion for which fields F every positive form over F represents a nonzero
sum of squares.

Let F be a formally real field and X = Xy the space of orderings of F. A quadratic
form ¢ over F is called positive if sgn,o = 0 for all P € X. A positive form ¢
is called decomposable if there exist positive forms 1;, 1, such that ¢ = 9| L.
Otherwise it is called indecomposable.

In the first part of this paper we ask for which F there exist indecomposable three
dimensional forms over F. We show that such forms exist iff ' does not satisfy
the property (A) defined in the paper [1]. Then we use an indecomposable three
dimensional form defined by Arason and Pfister to construct indecomposable forms
of arbitrary dimension. In a third part we examine the question for which fields F
every positive form over F represents a nonzero sum of squares.

1. The property (P3). Let F be a formally real field. Let F- = F — {0} and for
ai, ... ,ap €EF let

H@i, ... ,ay)={P€X |a, €Pfori=1, ... ,n}

Let T = Tr denote the sums of squares of F and let T = T — {0}.

First examples of indecomposable forms are obviously (1) and (1, —1). But one
sees soon that finding an indecomposable three dimensional form is a far more difficult
and interesting problem. Obviously a positive form ¢ = (a, b, c) is decomposable iff
¢ represents some ¢ € T. We therefore say that F satisfies (P3) if every positive three
dimensional form over F represents a ¢t € Tr.
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Let us recall some notations of the paper [1]. Arason and Pfister called a torsion
form ¢ of dimension 2n (i.e., sgn,¢p = 0 for all P € X) strongly balanced if there
are two dimensional torsion forms ¢y, ..., ¢, such that ¢ = ¢ +--- + ¢, where ‘+’
denotes the orthogonal sum. A field F is said to satisfy (A) if every torsion form over
F is strongly balanced. Thus F satisfies (A) iff every torsion form over F of dimension
greater than two is decomposable. The connection between the properties (A) and (P3)
is given by the following theorem:

THEOREM 1. Let F be a formally real field. Then the following statements are equiv-
alent: (i) F satisfies (P3). (ii) Every torsion quaternion form (1, a, b,ab) with a,b € F-
represents an s € —T. (iii) F satisfies (A).

The equivalence of (ii) and (iii) is given by [1] Satz 4. For the remaining part of the
proof we need:

LemMMA 1. Let a,b € F* such that H(a) C H(b). Then there exist s,t € T such that
b=ta+s.

ProoF. (see also [5] Lemma 6.3). The forms (1,a) and (b,ba) have the same
signature values. Thus they are T-isometric in the sense of [7]. By [7] (1.19) we have
b € Dr(1,a). 0

ProOF OF THEOREM 1: (i) — (ii) : (—1,—a,—b, —ab) represents an s € T iff the
positive form (—a, —b, —ab) does. (ii) — (i): Let {a, b, ¢) be a positive form over F.
Then we have H(—a,—b) = ¢ and H(—c) C H(a,b) = H(ab). Thus there are t,s € T
such that ¢ = s — abt. We can assume ¢ # 0. Now the torsion form (—1, at, bt, —ab)
represents an element of T and so does (t){at, bt, —ab). Now if r = ga+h>b — abtj?
for g,h,j € F and r € T, it follows that r +sj> € T is represented by (a,b,c). O

REmMARks. a) Let K be an algebraic number field. Then by [1] Satz 5 the rational
function field K(x) satisfies (P3). b) Let W(F) be the Witt ring of F and /(F) the
augmentation ideal. If /3(F) is torsion free then F satisfies (Ps3).

Proor. For every torsion quaternion form ¢ over F we have 2 X ¢ = 0 in W (F).
Now apply [12] 2.13.14. O

ExampLE. 1. We want to construct a field satisfying (P3) and having arbitrarily high
Pythagoras number, u-invariant and stability index. (For the definition of these field in-
variants see [7], [10], [12].) Let F; = R((t1)) ... ((ty)) and F> = Z /3Z((t1)) ... ((tx)).
By [10] 2.1 there exists a unique ordered field F3 such that the Pythagoras number
of F3 is 2". Now let s(F;) denote the quadratic form scheme of F; in the sense of
[4]. The property (P3) is closed under formation of direct sums and group extensions.
Now by [6] the direct sum @?:ls(F ;) 1s a field scheme which satisfies (P3).

From [3] it follows that fields with |F-/F-?| < 32 satisfy (P3). It is unknown
whether there exist fields which satisfy SAP (see [7]) but do not satify (P3).

ExampLE. 2. Using methods of Cassels, Arason and Pfister constructed a torsion
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quaternion form over Q(x,y) which is not strongly balanced. From [A, P] Beispiel 1
it follows that the positive form p = (—x, 1+y%+3x, x +y? +3x2) over Q(x,y) is
indecomposable.

2. Indecomposable positive forms. In this section we want to construct indecom-
posable positive forms of arbitrary dimension x.

Case A) nis even. Let F = R(z) and F(n) := F((t1)) ... ((t,)). First, we define
for every r € N a subset H, of H(z). Let

H ={P€HQ@) |r<,z<,r+1}
:H(ar)

where a, := (z —r)(r + 1 — z). Then we have

H(z) D | JH(a).

reN

For all i # j we have H(a;) NH(aj) = ¢. For n = 0, 1, ... we define the form ¢,
over F(n) in the following way:

n

on = (1,2) +Z<1,a,-)t,-.

i=1

Now dim ¢, = 2n+ 2 and the signature values of ¢, are 0, 2 and 4. Assume that ¢,
is decomposable: ¢, = p; + py with p;, py # 0 positive. Every decomposition of this
kind is compatible with the orthogonal decomposition in residue class forms. Thus
we can assume that (1,z) is a summand of p; and p; is a sum of the (1, a;)t;, which
is impossible. Therefore ¢, is indecomposable.

Case B) n is odd. We set F = Q(x,y,z) and F(n) := F((t;)) ... ((t,)). Now,
over F we define ¢ = (—x, 1+y*+3x, x +y%x + 3x? + z2). For the embedding
F — L := Q(x,y)((z)) we have ¢; = p where p is defined as in example 1. Thus ¢
is indecomposable. We also have

3 if P € H(det o),

sgnpp =
Ene e { 1 otherwise.

Let @ := x + y*x + 3x%. Then the determinant of ¢ is —1 — (z%)/a mod squares.

One sees immediately that for all » € N there is an ordering P € Xg such that
r <p —(z%)/a <p r + 1. Now as above we set

H, = H(a,),

22 22
a, ::—(—+r) (r+1+—)
a a
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and have .
H(det ) > | H(a)

reN

and all H(a,) are non-empty. For n = 0, 1, ... we define the form ¢, over F(n) as
@n =@+ Z(l, (X,‘)l,’.
i=1

Then dim ¢, = 2n+ 3 and the signature values of ¢, are 1, 3 and 5. As above we
get that ¢, is indecomposable.

3. The property (P). We say that a formally real field F satisfies (P) if every
positive form over F represents a nonzero sum of squares. We now want to study
this property and soon find a large class of fields which satisfy (P), the pythagorean
fields. To show this we use Marshall’s language of spaces of orderings (see [8]). The
definition of the property (P) carries over to spaces of orderings in the obvious way.

THEOREM 2. Let (X, G) be a space of orderings. Then (X, G) satisfies (P).

PrOOF. Let ¢ be positive over (X, G). To show that ¢ + (—1) is isotropic we apply
the isotropy theorem [9] (1.4) and can therefore assume that X is finite. The property
(P) is closed under formation of direct sums. We can therefore assume (X, G) to be
a group extension of (X', G') and that (X', G’) satisfies (P). But if ¢ is positive so is
the first residue class form of . Hence ¢ represents 1. 0O

The example (¢, —2¢) over Q((¢)) motivates a necessary condition for F to satisfy
(P). Let v be a valuation of F, R = R, the valuation ring, I' = T', the value group,
k = k, the residue class field and 7 = 7, : F — k the projection. We say that F
satisfies (PYT) if for every valuation v of F one of the following conditions is satisfied:
() T, is 2-divisible; (ii) k, is pythagorean of not formally real.

THEOREM 3. (a) if F satisfies (P) then F satisfies (PYT). (b) Assume that F is a SAP-
field. Then the following statements are equivalent: (i) F satisfies (P). (ii) F satisfies
(PYT). (iii) F satisfies (ED).

RemMaRrk. The properties SAP and (ED) are defined in [7] and [11] resp. The next
example shows that in general (PYT) does not imply (P).

PROOF. (a): Let v be a valuation of £ such that F/2F # 0 and k is formally real
and non pythagorean. Then there exist a sum of squares £g? € k' —k? andad € F-
such that v(d) # 0 in I'/2I". Choose f; € F- such that 7(f;) = g; and a d € F" such that
v(d) # 0 in T'/2T. Choose f; € f* such that n(f;) = g; and set ¢ = (d)(1,— Y_f?).
Then ¢ does not represent a norizero sum of squares. (b): (if) — (iii): if F satisfies
(PYT) and SAP then it follows from the characterisation theorem in [11] that F satisfies
(ED). (iit) — (1) is trivial. O
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ExampLE 3. Let k be an algebraic number field with two orderings P; # P,. Let
R, and R, be real closures for P; and P, in some algebraic closure of k. We set
K = R NR, and F = K(x). Then every finite formally real extension of K is
pythagorean (see [2]) and hence F satisfies (PYT). The stability index of F is two and
the following lemma shows that F does not satisfy (P).

LemMMA 2. Let K be a field such that there exist two different orderings Py, P, of K.
Let a € K such that a € —Py and a € —P,. Let F = K(x) and v = {(a, —a(x? + 1)).
Then 1) does not represent a nonzero sum of squares.

ProoF. Assume there exist polynomials g(x), ha(x), #(x) € K[x] such that #(x) =
a(h(x)? — (x*> + 1)g(x)?) and t(x) € Tr. We can assume (g,h) = 1. Let deg h = m.
Then we get deg ¢ = m — 1. Hence deg g or deg 4 is odd. Assume deg g is odd.
Let g; by an irreducible divisor of ¢ with odd degree. Then we have ah(x)? = t(x)
mod g;(x) where h(x) # 0 and #(x) is a sum of squares. But P, has an extension to
K[x]/g1(x). The same argument applies to the case where deg & is odd. O

As in the case of property (P3), it seems difficult to characterize those fields satis-
fying (P). Next we give two statements equivalent to (P). For a quadratic form ¢ we
set D(p)={a€F |p=(a,...)}

THEOREM 4. Let F be formally real. Then the following statements are equivalent:
(i) F satisfies (P). (ii) Every two dimensional torsion form over F represents a nonzero
sum of squares. (iii) For all ay, ... ,a, € F', t € T we have: If D({ay, ... ,a,)NT #
¢ then D({tay, az, ... ,a,)NT # ¢.

PrOOF. (i) — (ii) is trivial. (ii) — (iii): Assume s = Y ©_ a;b? for s € T, a; €
F-, b; € F. By hypothesis there exist # € F and w € —T such that a;(1 = h%t) = w.
Then s —wb? € T and

s —wht = art(hby)* + ) aib?.
i=2

(iii) — (i) follows from [7] (1.28): Let ¢ be a positive form over F. By theorem 2
there is a 9 such that D(¥) NT # ¢, dim ¢ = dim v and sgnpp = sgnp1) for all
P € Xr. Now 1 can be changed to ¢ by a finite sequence of transformations. Hence
by hypothesis D(p) N T # ¢. O

Remark. The field defined in example 1 also satisfies (P) since the property (P) is
closed under formation of direct sums.

ReEmaRrk. Let F be formally real. Then every positive form ¢ over F with dim
¢ =5 is a P-form (see [5]).

Proor. By [5] 3.1 we can assume ¢ is defined over the space of orderings (Xr, F / 7).
By theorem 2 a 5-dimensional form is decomposable. Hence we can assume ¢ =
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(1, x, y, xyd) where d is the determinant of . But the form ¢’ = (d, x, y, xyd) is
also positive and hence a quaternion form over Xr. We also have ¢ = ¢’ + (1, —d)
in W(F). O

Note that by [5] 8.1 there exists an 8-dimensional positive form which is not a P-form.
It is still open whether there exist such forms of dimension 6 or 7.
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