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SEMILINEAR PROBLEMS ON THE HALF SPACE
WITH A HOLE
HwAI-CHIUAN WANG

In this article we prove that there is a positive solution in Hg(f) of the equation
—Au+ du = lulp_2 u in Q where Q is the half space with a hole, A > 0 and

2 < p < 2N/(N - 2).

1. INTRODUCTION

In this article we use the following notation:
RY: the N-dimensional Euclidean space, N > 3,
RY ={(z',zn) € RV"! x R |0 < 2y < 00}: the upper half space,
RY = {(2',2zn) e RV"1 x R | —c0 < zy < 0} : the lower half space,
2, an unbounded smooth domain such that 0, C Rﬂ\_’ , ar = (a,7) & Q,,
and its complement {J,. is contained in a ball B,(a,) centred at a, with
radius p : the upper half space with a hole.
D: One of RN,Rf and Q..
For A > 0 and 2 < p < 2N/(N —2), consider the semilinear elliptic
equation:
~Au+du=|uf?x in D
(oo

H}(D): the usual Sobolev space on D under the norm

= [ (19 + 307).

For u € Hj(D), define

fo(w) = [ (1vaf +22),

Mo~ {uem)| [ up =1},
ap = inf {fp(u) | v € Mp},
Fo(u) = %/D (17uf +2?) - :—)LWF.
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Write ||-||, f, M, o, F for ||-||g~, fa~v, Mgn, agnv, Fgn , respectively.

The motivation to study our problem is as follows: by applying the compactness of
the embedding H} (RN) — L? (RN) , where H} (RN) consists of the radially symmet-
ric functions in H!(R?¥), Berestycki-Lions [4] proved that a is achieved, and hence
concluded that there is a positive solution of equation (1z~). Gidas-Ni-Nirenberg [9]
proved that every positive solution u of equation (1g~) is radially symmetric with
respect to some point in RY satisfying

(1-1) { u(r)rN=D/2eV3m = oy 4 o(1) as T — 00

u’(r)r(N_l)/ze‘/x" = -2y + o(1) as T — 00

where 4> 0 a constant. Kwong [11] proved that the positive solution of (1g~) is
unique up to translations. Throughout this article denote by @ the unique solution of
equation (1pn~) which attains its maximum at 0, fp~ 77 =1, |Z||> = e, and satisfies
(1-1).

Esteban-Lions [8] used the infinitesimal % of the translation operators to derive
an important integral identity for the equation —Au = f(u) in an unbounded domain

with boundary I':
/ni(z:) |V'u.|2 ds=0 for 1<ig<N.
r

Let Q) = {(z',2n) € R¥"! xR | |2'| <1,0 < zn} be an upper half strip. Two of its
consequences are that there does not exist any nontrivial solution neither in H} (Rf )

of equation {1, ) norin H}(;) of equation (lg, ). Such a surprising result attracted
R.+ 0 q 1 P 123

mathematicians to study the equations on the half space RY and on Q. Ai-Zhu (1]
proved that there are positive solutions of the equation

—Au+du=[uff u in RY
u>0 in RY
u(z',0) = f(z') on 8RY,

where f > 0,f # 0 in H'/2(RN-1) N L=°(RV~?). In 1992, the author gave a talk
in the second nonlinear France-Taiwan PDE Conference held in Paris. We proved that
if v is large, Q2 = Q3 U B,(0) the upper half strip adding a big ball, then there is
a positive solution in H}(€2) of equation (1g,) (see Lien-Tzeng-Wang [12, Example
5.6, p.1296]). In my talk, Berestycki asked the following problem: is there any positive
solution of the equation on the upper half strip with a hole? We have only partial result
for the Berestycki problem. However in this article, we try to answer a related problem
affirmatively:
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THEOREM A. Thereis pp >0 and rp > 0 suchthat if 0 < p<pg andr 2 1g
then there is a positive solution of equation (1q,).

To prove Theorem A we use a higher energy process through a barycentre function.
Such a process was first used by Coron [7], then by Benci-Cerami {3}, Grossi [10] and
many others. In this article we adapt several tools from Benci-Cerami {3] and Grossi
[10].

2. EXISTENCE OF SOLUTIONS

For c€ R, a (PS),-sequence in Hy(f,) for F is a sequence {u,} such that

F(u,) — ¢,

F'(up) — 0 strongly in H~1(Q,.).

We state a classical and interesting known decomposition theorem for a (PS),-sequence.
For the convenience of the readers we sketch its proof.

THEOREM 1. Let {u,} be a (PS),-sequence in Hj(f2,) for Fo,. Then there
are a nonnegative integer k,k sequences {y:,} of points of the form (z!,,mn +1/2) for
integers myn, i =1,2,--- ,k, u® in H}(Q,) solving equation (1q,) and nontrivial func-
tions u!,--- ,u* in H'(R") solving equation (1g~). Moreover there is a subsequence
{un} satisfying

(1) un(z) = v’(z) + w'(z — L) + --- + uF(z — z&) + o(1) strongly, where
zi:y,’t+~--+y,‘;—>oo, 1=1,2,--- k.

(@) Junlls, = lw®llg, + [l + -+ lu*]* + (1),

(3) Fa,(un) = Fa, (u®) + F(u') +--- + F(u¥) + o(1).

If up, > 0 for n =1,2,---, then u!,--- ,u* can be chosen as positive solutions,
and u® > 0.

PROOF: Note that each function in Hj({2,), by extending it to be 0 outside
can be considered as a function in H!(R¥). Since

1 1
Fa, (un) = 5 lluallg, - ;Ilunllip(n,) =c+o(1),
Fj, (un) = |luallg, = lluallZoca,y = o (lualla,)

we see that {u,} is bounded in H}(f2,). Take a subsequence {un} and u® in H}(f,)
such that u, — u® weakly in H}(),), almost everywhere in )., and strongly in
L},.(9:). Let ¢l = u, —u®. By the Brezis-Lieb Lemma (see [5]) and the Vitali
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Lemma, we have
—-Au® + 2 = luolp—z v’ in Q,
a, = llually, = el +o(1)
“‘Pn“Lv(n,) ”u"”LP(nf) ”uo”u(n,) +o(1).
Fa, (#3) = Fa, (ua) - Fa, (&") +o(1)
Fp, (93) =o(l)  strongly.
CASE 1. If ¢! — 0 strongly, then

(2

un(z) = u’(z)+o(1)  strongly,

leallg, = 1], + (),
Fﬂr(un) = Fq, (uo) + 0(1). 0

In order to prove the second case, we need the following lemma in which the proof
follows from Bahri-Lions [2]:

Decompose R” into nonoverlapping countable cubes Q; with centres (z',m + 1/2)
for integers m and side length 1. Define the concentration function hy of |ux|? by

hk = sup / I'u,kl2
|i[=0,1,2,-- i

LEMMA 2. If {ux} is a bounded (PS), sequence in H'!(R"™) such that hy — 0
as k — oo, then u; — 0 strongly in H'(RN).

PROOF: For 2<g<r<2*=2N/(N-2),q=(1—-1%)-24tr,t>0,s=1tr/2 >
1. Now
fuk|q= / lukl(l-t).z I’U-kI"
-/Fi" Z Qi

< (fm) (L)

< (he)® ”Z(/ k| )t
< o(ha)* ™Y Z ( /Q Il + uk)/
<t [ (igmf )]

- (tr)/2
< e(he)' " ([l (av))

Schr)' P=0(1) as k— co.
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By the (PS), condition, we have
ey = [, el = e sl (aw) = o)

where e; = o(1). Since [pn lug|** = o(1), we have
”ukllnl(aN) = o(l), as k — oo,

This completes the proof. 0

CASE 2. If ¢l does not converge to 0 strongly, then by Lemma 2 there is a subsequence
{#L} and § > 0 such that

sup / P 2 6for n=1,2,---.
}#=0,1,2,--- JQ;
where {Q;} are as in Lemma 2. For each n, find a QL with centre y; of the form

(z4,,mn + 1/2) such that
2 6
lenllzaar) > 3-
Take u' in H'(R") and a subsequence {¢L(z + v.)} satisfying ¢}, (z +yi) — »'(z)
weakly in H'(R"), almost everywhere in R" and strongly in L}, (R"). Since

Loc

. 2 5

n—oo

where Q = {(z',zny) € RV x R | |2'| < 1/2,-1/2 < zn < 1/2}, we have u! £ 0.
Let p2(z) = pL(z+y.) — u'(z). Then @2 — 0 weakly in H'(R"), almost
everywhere in R™ and strongly in L} (RM). We obtain that u! solves (1zx~) and

Loc
satisfies

(2-1) ||u‘||2 > o?/(P-2)

and similar equalities as in Case 1 above. Continuing this process, by (2-1), we have to
stop after a finite number of steps. This completes the proof.

Let {un} C Mq, satisfy fo,(un) =c+o0(1). Set vp = /Py, forn=1,2,---.
Then we have

Fou(on) = (3 = 1) 079+ o),

Fq, (vn) =o(1)  strongly.
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COROLLARY 3. Let {un} C My, satisfy u, > 0, fa,(un) = ¢+ o(1) and
a < c < 2P~2/Pq. Then {u,} contains a strongly convergent subsequence.

PROOF: Set v, = c!/(P~2y,, for n=1,2,--- . Then

Fq, (va) = (% - ]1_3) c?/(P=2) 4 o(1)

Fi, (va) = o(1)  strongly.

(2-2)

By applying Theorem 1 we obtain solutions v° of equation (1g,) and positive

solutions, v!, -+ ,v* of equation (1g~) and {::;'l}oo , of the form (2] ,m, +1/2), m,

n=
integers, ¢ = 1,--- ,n such that

va(z) = v%(z) +vi (2 —z2) 4+ +v* (2 — k) + o(1) strongly
(2-3) loalla, = llo®llg, +[12* 1" + -+ " | + o(2)
Fa,(vn) = Fa, (v°) + F(v*) + -+ + F(v*) + o(1).

Note that if v* > 0, v* #0, 1 =1,2,--- ,k, then we can take v* > 0, v* is unique
up to a translation and F(v') = (1/2 —1/p) a?/(P=2) for 1 =1,2,--- ,k. Therefore, by
(2-2) and (2-3),

1 1 1 1
22 p/p-2) 0 Z_ 2 ) 4P/ (p-2) .
(2 p) Fn,(v)+lc(2 p)a +0o(1)

If v° # 0, then v* > 0 and Fu(v®) > (1/2 - %)a”/(”'l) by Proposition 5 below. If
a<c< 2P 2Py, then k =0,v° > 0 and

va(z) = v%(z) + o(1)
or

un(z) = u’(z) + o(1)

where u® = ¢~1/(P~2)4° | Therefore {u,} contains a strongly convergent subsequence.
Take £ € C°(R*,R), n € C°(R,R) such that

e(t)={° iSise
1 t22

0 t<0
n(t) = { 1 £>1
0<é<], 0<y<1
£(2) = &(1= - arlm (2n) Az ~ 1)

T 1

el2) = ||fyﬁi(:,~) = ehl2) where o =
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Then ¢, € H}(Q,) and fﬂ.- |¢r|” = 1. Furthermore we have 0
LEMMA 4. Let y=(y',yn), then
(1) Ny = F ~ 9)lgo(amy = o(1) a5 [y — ar| - o0 and gy — 00, or p =0
and yy — oo
(2) lIfy —s(-—y)ll =o(1) as |y —ar] > oo and yy — oo or p — 0 and
Yn - 0

Proor: (1)
1£s(2) — (= ~ )}, )

= / €(lz — arl)r(zn) — 1P [a(z — )P de
R.N

<2F / [@(e — y)|P dz
Bap(ar)u{zn<1}

=o(l) as |[y—ar| 200 and yy — o0, or p— 0 and yny — co.
(2)
I£y(=) —w(z - y)II”
= |I(¢(|= — z+Dn(en) - 1Ya(= - y)||*

V(e - y)I* +[a(= — v)I*)

¢
3 / (
P B:p(nr)U{tnsl}
=o(l) as |y—a. — o0 and yy w00, or p—0 and ynv — oo. 0
PROPOSITION 5. Equation (1lq, ) does not have any ground state solution.
PROOF: Note that an, > a since each function in H}(f2) can be extended by 0
outside {},. Take a sequence {y*} in ), such that
ly* —an| 20 and yj — o0 as n - oo.
Then, by Lemma 4,
Mfim =5 = 5" gogany = 1) a8 - o0
Ifyn =2 (- ~9") =0(1) as n— oo.

Thus {pyn} C H}(R) is such that

/n lpynff =1 for n=1,2,---

2
lpynll” — e,
or an, € a. We then conclude that ag, = a. By the maximum principle, there does

not exist any ground state solution of equation (1q, ). In other words, if u is a solution
of equation (lg, ) satisfying fn'_ [u’ =1, then "“"?b > a. 0
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REMARK 6. By Lemma 4(1), there is 7, > 0 such that

w

(2-4)

<Millzoan <

N~

where r 27, and |y —a,| 27/2 and yy 2 7/2.

Set
1 fogtgl
x(t)={1
t

fl<t<

and define 8 : H'(R"N) —» RV by
pw) = [ w*(@)x(lel)eds.
rRN
For r 2 7, let

/n, w —1, flu) = }

Ve = {u € Hy ()

: 2
er = inf [ul,

Then we have:
LEMMA 7. ¢, > a.

PRroOOF: It is easy to see that ¢, > a. Suppose ¢, = a. Take a sequence {v,} C
H}(,) such that

va"LP(ﬂr) =1, Bvm)=ar for m=12, -,
2
lvmllg, = «+ o(1).
Let um = a!/(P~2)y,, for m =1,2,---. Then

1
Fa,(um) = (% - ;) a?/(P=2) 4 (1)

Fg (um) = o(1) strongly.

By the maximum principle, {u,,} does not contain any convergent subsequence. By
Theorem 1, there is a sequence {z,} of the form (z,,m + 1) for integers m such that

|Zm| — o0

um(z) = (z — zm) + o(1) strongly.
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Since u is radially symmetric, we may take m to be positive. We may assume that
|zm| 2 4 from m =1,2,.-.. Now

B =2m))2m) = [ (@~ 2m)x(lel)(e,2m)de
= [, @@= 2m)x(lz(z,2m)ds
R

+

+ /(RI_V) (2 — zm) x(|2]){(z, zm )dz |
; -/Bl(:r:m)E (2 - zm)X(lZl)(z,zm)dz
¥ /rug (2 — 2 )x(J2]) (2, 2m)de.

Note that there are ¢; > 0, cz > 0 such that for 2 € By(z,), we have

@’ (z — zm) 2 c1,

2
(z,2m) 2 c2|z||z2m| for m=1,2,---.

Thus

/ B e s Xeemn)de > s [ xeb)iellznlds
81 Tm

1{zm

>3 Imm|N+1 , c3 > 0 a constant.
Next, for 0.< s < oo, by (1-1),

E(s)s(N_l)/ze‘/x' <eqg for ¢4 >0.

Now
. o [ _xellsllenl
/p.l_v @ (z — zm)x(I2]){z, 2m)dz < <5 /R’_" |z — 2|V 7 €2V Nlz—2m|
< _‘/_%, ¢s >0 a constant.
eVAlzm
Therefore
_ N+1 Cs
(B(a(z — zm)),om) > eslem | — 5,
or
_ Zm N s
- —) > T T AL
(ﬂ(u(z Zm)), |zml) Z €3 |zml lzml e\/ﬂzml ’
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We conclude that

/P2 |a,| > (B(um), ,—“’l,)
Tm

= (B (@(z — om)) s ) + o(1)

' [Zm]

Zc3 IzmIN + 0(1)’
a contradiction. Thus ¢, > o.
REMARK 8. By Lemma 4 (2), there is r; > r; such that

Cr +

(2-5) o < gyl < =

where 7 > 7y and |y —a.| 2 7/2 and yy > r/2.

LEMMA 9. Thereis r3 > 3 such that if r > r3, then

(Blpy)y) >0 for y € d(Bryz(ar))-
PROOF: By (2-4), 2/3< ¢y < 2. Forr > 1y, let
3 5
Acs/oyrs/e)m) = {z €RY l g’ Slp-els ET} ’

RY(y) = {z e RY | (2,y) > 0},
RY¥(y) = {z € RV | (z,y) < 0}.

(B(py)y) = ¢y

+

+ / £(1z ~ ;)72 (zn)7(z — v)x(l2])(z, y)d
RN (y)

2 .
>3 [ / 7( ~ y)x(le)(z,9)
A((3/8)r(5/8)r)

+ /m_v(y) 7 (z — y)x(lz|){(z,y)dz .
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Now

w2 (z — y)x(|z|)(z, y)dz > Cs/ x(lz]) |z| ly|dz for ce >0
A((3/8)r(5/8)r)

N N
5 3

el ()"~ (3)']
N+l for ¢ > 0.

@ (z — y)x(|z :c,yszcs/ lv] dz for cg >0
/;‘I_V(y) ( ) (l |)( ) RN (y) ]z - yl(N-l)e'L’\/Xlz—y'

[4((3/B)r,(5/8)r)

1

<ec .
ST Var

for ¢ > 0.

Therefore, there is r3 > r3, such that if r 2 r3, |y — a.| =7/2

1
y) 2 eVt g s
(B(ey)yy) 2 ny,w

This completes the proof. 0

By Lemma 4 and Lemma 9, fix pg > 0, 7o 2 r3 such that if 0 < p < po, 7 2 10,
then ||tpy||?,r < 2-2)/Pg for y € B,3( ar). From now on, fix po,r0, for 7 > ro. Let

T
B={¢y||y-arl<§},

r= {h €C(Vo, Vo) | h(w)=u if [ulf, < f%’-}

LEMMA 10. A(B)NV,# 0 foreach heT.

PRrOOF: Let h €T and H(z) = fohoyp,: RN = RV, Consider the homotopy,
for 0<t <1,
F(t,z) = (1 - t)H(z) +tI(z) for zeRN.

Ifze B(B,/z(a,.)), then, by Remark 8 and Lemma 9,

(B(p2),z) >0,

crta
5

a< ”502”2 <
Then

(F(t,z),z) = (1 - t)H(z),z) + (tz, )
= (1 = t)(B(p2), 2} + t(=, )
> 0.
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Thus F(t,z) #0 for z € a(B,/z(a,.)). By the homotopic invariance of the degree
d(H(z), B;/2(ar),ar) = d(I, B,/3(ar),a,) = 1.
There is = € B,; (ar) such that
ar = H(z) = B(ho pz).

Thus h(B) NV, # 0 for each h € T.

Now we are in the position to prove Theorem A: Consider the class of mappings
F = {he C(B/2(a)), B (Bn) : hlop, js(ar) = ¥4}

and set

c=inf sup [A(v)l3,
heF B, alar)

It follows from Lemmas 4-10, with the appropriate choice of » that

a <= inf [ulfh, <ec<2Fra
g

and
max ||h(y)||Z. < max @3, .
o2 I, < max 1A,
Theorem A then follows by applying the version of the mountain pass theorem from
Brezis-Nirenberg [6). 1
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