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Abstract
Let C : y2 = f (x) be a hyperelliptic curve of genus g ≥ 1, defined over a complete discretely valued field K, with ring
of integers OK . Under certain conditions on C, mild when residue characteristic is not 2, we explicitly construct
the minimal regular model with normal crossings C/OK of C. In the same setting we determine a basis of integral
differentials of C, that is an OK-basis for the global sections of the relative dualising sheaf ωC/OK .

1. Introduction

The purpose of this paper is to construct regular models of hyperelliptic curves and to describe a basis
of integral differentials attached to them. Moreover, we want these constructions explicit and easy to
compute.

1.1. Overview

To describe the arithmetic of curves over global fields, for example in the study of the Birch &
Swinnerton-Dyer conjecture, it is essential to understand regular models and integral differentials over
all primes, including those with very bad reduction. Constructing regular models of curves over discrete
valuation rings is not an easy problem, even in the hyperelliptic curve case. In fact, there is no practical
algorithm able to determine a model, unless the genus of the curve is 1 or we have some tameness or
nondegeneracy hypothesis.

One possible approach to tackle this problem is giving a full classification of possible regular models
in a fixed genus, as done by the Kodaira–Néron [7, 19] and Namikawa–Ueno [10, 18] classifications
for curves of genera 1 and 2, respectively. However, this strategy seems impractical in general, since the
number of models grows fast with the genus. Recently, new approaches based on clusters [14], Newton
polytopes [1], and MacLane valuations [21], have been developed (see Section 1.5 for more detail).

On one side, clusters define nice and clear invariants from which one can extract information on the
local arithmetic of hyperelliptic curves. Such invariants turn out to be particularly useful from a Galois
theoretical point of view. However, for describing regular models, restrictions on the reduction type of
the curve and on the residue characteristic of its base field [5, 14] need to be imposed. On the other side,
Newton polytopes and MacLane valuations have a potential to solve the problem in general, but the
respective constructions are more algorithmic and so do not give the result in closed form. Furthermore,
they often depend on the chosen equation rather than on the curve itself.

In this paper, we present a new approach that preserves both positive aspects from the above and
provides a link between the two sides. We describe a model from simple invariants defined from what
we call rational cluster picture (Definition 1.10). This object modifies the theory in [14] and appears to be
more suitable for our purpose (see Section 1.3). In fact, the rational cluster picture also carries intrinsic
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connections with the other presented approaches, as it is closely related to Newton polygons and to
degree 1 MacLane valuations (see [3]). When these valuations are enough to describe a regular model
we say that the curve has an almost rational cluster picture (Definition 1.1; see also Corollary 3.29,
Proposition 3.31). It turns out that the approach even works in residue characteristic 2, under an extra
assumption that the curve is y-regular (Definition 1.4). Our main result is:

Let K be a complete1 discretely valued field with char(K) �= 2, and let Knr be its maximal unramified
extension. Let C/K be a hyperelliptic curve, having an almost rational cluster picture over Knr. If the
residue characteristic of K is 2, assume that CKnr is y-regular. Then via the rational cluster picture we
determine:

(i) the minimal regular model with normal crossings Cmin,
(ii) a basis of integral differentials of C.

This result applies to a wide class of curves, covering wild cases and base fields with even residue char-
acteristic. For example, if g = 2, then 107 out of 120 Namikawa-Ueno types [18] arise from hyperelliptic
curves satisfying the conditions of our theorem. In addition, the author believes it has a potential to solve
the problem in general. Heuristically speaking, the rational clusters invariants are expected to extend to
general MacLane valuations. This approach could eventually lead to a full characterisation of minimal
models with normal crossings of hyperelliptic curves (over any discretely valued field).

1.2. Main results

We will now present (a simplified version of) the main results of this paper. We will then illustrate them
with an explicit example in Section 1.4.

Let K be a complete discretely valued field of residue characteristic p, with normalised discrete
valuation v and ring of integers OK . We require char(K) to be not 2, but we allow p = 2 and p = 0. In this
subsection we will assume for simplicity that K = Knr. Extend the valuation v to an algebraic closure
K̄ of K. Let C/K be a hyperelliptic curve, that is a geometrically connected smooth projective curve,
double cover of P1

K . Let g be the genus of C. Assume g ≥ 1. Fix a Weierstrass equation

C : y2 = f (x).

Let R be the set of roots of f in K̄. Thus

f (x) = cf

∏
r∈R

(x − r).

For any r, r′ ∈R, with r �= r′, denote by Dr,r′ the smallest v-adic disc containing r and r′.

Definition 1.1 (Definition 3.26). We say that C has an almost rational cluster picture if for any roots
r, r′ ∈R with r �= r′, either

(a) Dr,r′ ∩ K �=∅, or
(b) p> 0 and |Dr,r′ ∩R| ≤ |v(r − w)|p for some w ∈ K,

where | · |p denotes the canonical p-adic absolute value on Q.

Definition 1.2. A rational cluster is a non-empty subset s⊂R of the form D ∩R, where D is a v-adic
disc D = {x ∈ K̄ | v(x − w) ≥ ρ} for some w ∈ K and ρ ∈Q. We denote by�K the set of rational clusters.

In the following definition we introduce most of the notation and quantities, associated with rational
clusters, needed in order to state our main theorems.

1 The assumption on the completeness of K is not restrictive since regular models do not change under completion of the base
field.
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Definition 1.3. For any s ∈�K we say:

s proper, |s|> 1
s′ is a child of s, s′ ∈�K and s′ � s is a maximal subcluster
s minimal, s has no proper children
s übereven, s=⋃

s′ child of s s
′ and |s′| even for all children s′ of s

Moreover, we write s′ < s, or s= P(s′), for a child s′ ∈�K of s, and r ∧ s for the smallest rational cluster
containing the root r ∈R and s.

Let �K be the set of proper rational clusters. For any s ∈�K , define its radius

ρs = max
w∈K

min
r∈s

v(r − w)

and the following quantities:

bs denominator of ρs
εs v(cf ) +∑

r∈R ρr∧s
Ds 1 if bsεs odd, 2 if bsεs even
ms (3 − Ds)bs

ps 1 if |s| is odd, 2 if |s| is even
ss

1
2
(|s|ρs + psρs − εs)

γs 2 if |s| is even and εs−|s|ρs is odd, 1 otherwise
p0
s 1 if s is minimal and s∩ K �=∅, 2 otherwise

s0
s −εs/2 + ρs
γ 0
s 2 if p0

s = 2 and εs is odd, 1 otherwise

Definition 1.4 (Definition 4.10). We say that the hyperelliptic curve C is y-regular if either p �= 2 or
Ds = 1 for any s ∈�K .

Definition 1.5. Let s ∈�K and let c ∈ {0, . . . , bs − 1} such that cρs − 1
bs

∈Z. Define

s̃= {s′ ∈�K ∪ {∅} | s′ < s and |s′ |
bs

− cεs /∈ 2Z},
where ∅< s if s is minimal and p0

s = 2.
The genus g(s) of a rational cluster s ∈�K is defined as follows:

• If Ds = 1, then g(s) = 0.

• If Ds = 2, then 2g(s) + 1 or 2g(s) + 2 equals
|s| −∑

s′<s |s′|
bs

+ |s̃|.

Notation 1.6. Let α ∈Z+, a, b ∈Q, with a> b, and fix ni
di

∈Q so that

αa = n0

d0

>
n1

d1

> . . . >
nr

dr

>
nr+1

dr+1

= αb, with
∣∣∣∣ni ni+1

di di+1

∣∣∣∣= 1,

and r minimal. We write P1(α, a, b) for a chain of P1s (Notation 4.16) of length r and multiplicities
αdi, . . . , αdr. Denote by P1(α, a) the chain P1(α, a, �αa − 1/α).

The following theorem describes the special fibre of a regular model of C with strict normal cross-
ings.2 It follows from a more general result constructing a proper flat model of C unconditionally

2 In this paper a ‘normal crossings’ divisor is not a ‘strict normal crossings’ divisor in general (see e.g. [9, Remark 9.1.7]).
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(Theorem 4.18). For the special fibre Cmin
s of the minimal regular model with normal crossings, the

reader can refer to Theorem 4.23, where we also describe a defining equation for all components of
Cmin

s and discuss the Galois action (for general K). Finally, note that all these models are constructed in
Section 5 by giving an explicit open affine cover (see Sections 5.1–5.3).

Theorem 1.7 (Regular SNC model). Suppose C is y-regular and has almost rational cluster pic-
ture. Then we can explicitly construct a regular model with strict normal crossings C/OK of C
(Sections 5.1–5.3). Its special fibre Cs/k is given as follows.

(1) Every s ∈�K gives a 1-dimensional closed subscheme �s of multiplicity ms. If s is übereven
and εs is even, then �s is the disjoint union of �−

s � P1 and �+
s � P1, otherwise �s is a smooth

geometrically integral curve of genus g(s) (write �−
s = �+

s = �s in this case).
(2) Every s ∈�K with Ds = 1 gives (|s| −∑

s′∈�K , s′<s |s′| + p0
s − 2)/bs open-ended P1s of multi-

plicity bs from �s.
(3) Finally, for any s ∈�K draw the following chains of P1s:

Conditions Chain From To
s minimal P1(γ 0

s , −s0
s) �−

s open-ended
s minimal, p0

s/γ
0
s = 2 P1(γ 0

s , −s0
s) �+

s open-ended
s �=R P1(γs, ss, ss − ps · ρs−ρP(s)

2
) �−

s �−
P(s)

s �=R, ps/γs = 2 P1(γs, ss, ss − ps · ρs−ρP(s)

2
) �+

s �+
P(s)

s=R P1(γs, ss) �−
s open-ended

s=R, ps/γs = 2 P1(γs, ss) �+
s open-ended

Definition 1.8. For any s ∈�K , an element ws ∈ K is called rational centre of s if minr∈s v(r − ws) = ρs.

If s′ < s and ws′ is a rational centre of s′, then ws′ is also a rational centre of s. For any minimal
rational cluster s′ fix a rational centre ws′ . For any s ∈�K fix ws = ws′ for some minimal rational cluster
s′ ⊆ s.

The following result gives a basis of integral differentials when K = Knr. In Theorem 6.4 we extend
it to the case K �= Knr.

Theorem 1.9 (Theorem 6.3). Suppose C is y-regular and has almost rational cluster picture. For i =
0, . . . , g − 1, inductively

(i) define ei := max
t∈�K

{
εt

2
− ρt −

i−1∑
j=0

ρsj∧t

}
;

(ii) let �i =
{
t ∈�K | ei = εt

2
− ρt −

i−1∑
j=0

ρsj∧t

}
;

(iii) choose a maximal element si of �i freely.

Then a basis of integral differentials is given by

μi = π �ei
i−1∏
j=0

(x − wsj )
dx

2y
, i = 0, . . . , g − 1.

Note that given ei as in the previous theorem, the sum
∑g−1

i=0 �ei is the quantity, often denoted by
v(ω◦/ω), appearing in the period in the Birch and Swinnerton-Dyer conjecture (for more details see [4],
[25, §1.3]).
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1.3. Rational cluster picture

In this subsection we define the rational cluster picture and compare it with the classical cluster picture
defined in [14]. We will show, via a simple example, in which sense the new object we introduce appears
to be more suitable for the study of regular models.

Definition 1.10 (Definition 3.9). Let K and C as before. The rational cluster picture of C is the collection
of its rational clusters �K together with their radii.

Example 1.11. Let p be any prime number and set K =Qnr
p . Let Ep/Qnr

p given by y2 = x3 − p. Then Ep

is an elliptic curve with Kodaira-Néron reduction type II. Therefore, the minimal regular model (with
normal crossings) of Ep does not depend on p. This is in accordance with the fact that the rational
cluster picture of Ep is the same for all p. Indeed, the set of roots of the polynomial x3 − p is R=
{ 3
√

p, ζ3
3
√

p, ζ 2
3

3
√

p}, where ζ3 is a primitive 3rd of unity. Hence the rational cluster picture of Ep is

1
3

for any p,
R

where we denoted with bullet points the roots in R, with a surrounding oval the only rational cluster R,
and with the subscript the radius ρR of R.

A different behaviour is observed when we consider the cluster picture [14, Definition 1.26] of Ep,
collection of its clusters together with their depths. The cluster picture of Ep is

p = 2
cluster picture

not defined

p = 3 p > 3

5
6

R

1
3

R

where the subscripts represent the depth of the cluster R. It does depend on p and differs from the
rational cluster picture when p = 3. Thus, although the cluster picture is particularly useful for Galois
theoretical problems, the rational cluster picture appears to be a more suitable object for the study of
regular models of the curve.

Finally, note that Ep has an almost rational cluster picture. For any two distinct roots r, r′ ∈R, the
smallest v-adic disc Dr,r′ containing them also contains the whole R. The element 0 ∈Qnr

p belongs to
Dr,r′ when p �= 3, while |Dr,r′ ∩R| = 3 = |v(r)|p, if p = 3.

The advantages of the rational cluster picture discussed in this subsection can also be observed in the
following example where we study a more complex family of hyperelliptic curves having almost rational
cluster picture.

1.4. Example

In this subsection we are going to present an example of a family of hyperelliptic curves Cp satisfying
the hypothesis of Theorems 1.7 and 1.9. Via those results we will then describe the special fibre of the
minimal regular model and a basis of integral differentials of Cp. All the computations involved are
explained in detail in Examples 3.32, 4.25 and 6.5.

For any prime number p, let a ∈Zp, b ∈Z×
p such that the polynomial x2 + ax + b is not a square

modulo p. Let Cp/Qp be the hyperelliptic curve of genus 4 given by y2 = f (x), where f (x) = (x6 + ap4x3 +
bp8)((x − p)3 − p11). The curve Cp/Qnr

p has an almost rational cluster picture and is y-regular when p = 2.
Its rational cluster picture is

t3 t4 R
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where ρt3 = 4
3
, ρt4 = 11

3
, and ρR = 1. From Theorem 1.7 we can construct a regular model with strict

normal crossings of Cp with special fibre

ΓR

Γt4

Γt3

2

2

2
11

3

3

4

4

4

332
6

6

5

over F̄p. Computing the self-intersection of each irreducible component we easily see that this model
coincides with the minimal regular model Cmin. Theorem 4.23 also describes the action of the Galois
group Gal(F̄p/Fp) on the special fibre Cmin

s of Cmin. If the roots of x2 + ax + b mod p are in Fp then the
absolute Galois group acts trivially on each component, otherwise it swaps the 2 irreducible components
of multiplicity 3 intersecting �t3 .

From Theorem 1.9 it follows that, for any p, a basis of integral differentials of Cp/Qnr
p is given by

μ0 = p4 · dx

2y
, μ1 = p3(x − p) · dx

2y
, μ2 = p(x − p)x · dx

2y
, μ3 = (x − p)x2 · dx

2y
.

In fact, this is also a basis of integral differentials of Cp/Qp since they are all defined over Qp (see
Proposition B.2).

Below we will present related works of other authors concerning regular models and integral differ-
entials of hyperelliptic curves. Note that the example presented here is not covered by [14] and [1] since
the curve Cp is not semistable and not�v-regular. In fact, if p = 3 the curve Cp does not even have tamely
potential semistable reduction. The results in [5] assume p> 2 and Cp with tamely potential semistable
reduction, hence they cannot be used when p = 2, 3. Finally, there is no classification for genus 4 curves.

1.5. Related works of other authors

Let K be a discretely valued field with residue field k of characteristic p and let C/K be a hyperelliptic
curve of genus g.

In genus 1, when k is perfect, thanks to Tate’s algorithm, one can describe the minimal regular model
and the space of integral differentials of an elliptic curve C (see e.g., [24, IV.8.2], [9, Theorem 9.4.35]).

If K =C(t) and C has genus 2, then Namikawa and Ueno [18] and Liu [12] give a full classification
of the possible configurations of the special fibre of the minimal regular model of C.

If p �= 2, then Liu and Lorenzini show in [13] that regular models of C can be seen as double cover of
well-chosen regular models of P1

K . Since the latter can be found by using the MacLane valuations [15]
approach in [21], this argument gives a way to describe any regular model of a hyperelliptic curve. At
the moment there is no known closed form description of a regular model based on this approach and it
has not been generalised to the p = 2 case.

If p> 2, k finite, and C is semistable, then in [14] the authors explicitly construct a minimal regular
model in terms of the cluster picture of C. Under the same assumptions, Kunzweiler [8] gives a basis
of integral differentials rephrasing [6, Proposition 5.5] in terms of the cluster invariants introduced in
[14]. These results can be recovered from Theorem 4.23 (see Corollary 4.27) and Theorem 6.3.

If p> 2 and C is semistable over some tamely ramified extension L/K, then Faraggi and Nowell [5]
find the special fibre of the minimal regular model of C with strict normal crossings taking the quotient
of the stable model of CL and resolving the (tame) singularities. However, since they do not describe the
charts of the model, their result does not immediately yield all arithmetic invariants, such as a basis of
integral differentials.
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The last work we want to recall represents an important ingredient of the strategy we will use in
this paper (described more precisely in the next subsection). T. Dokchitser in [1] shows that the toric
resolution of C gives a regular model in case of �v-regularity [1, Definition 3.9]. This result, used also
in [5], holds for general curves and in any residue characteristic. In his paper, Dokchitser also describes a
basis of integral differentials since his model is given as open cover of affine schemes. In Corollary 3.25
and Theorem 6.1, we will rephrase his results for hyperelliptic curves by using rational cluster picture
invariants from Section 3.

1.6. Strategy and outline of the paper

In [1], Dokchitser not only describes a regular model of C in case of �v-regularity, but also constructs
a proper flat model C� without any assumptions on C. Assume C is y-regular and has an almost rational
cluster picture over Knr with rational centres w1, . . . , wm ∈ Knr. Our approach to construct the minimal
regular model with normal crossings of C is composed by the following steps:

• Consider the x-translated hyperelliptic curves Cwh/Knr:y2 = f (x + wh), for h = 1, . . . , m. For
each h, [1, Theorem 3.14] constructs a proper flat model Cwh

� , possibly singular.
• We glue regular open subschemes of these models along common opens, and show that the

result is a proper flat regular model C of CKnr with strict normal crossings.
• We give a complete description of what components of the special fibre of C have to be blown

down to obtain the minimal model with normal crossings Cmin of CKnr .
• Finally, we describe the action of the absolute Galois group Gk of k on the special fibre of Cmin.

We will explicitly describe both the models Cwh
� and C. This allows us to study the global sections of its

relative dualising sheaf ωC/OK (C).
In Section 2, we present some results on Newton polygons used in the following sections. In Section 3,

we recall the basic objects and notation of [14] and define the rational cluster picture. Moreover, we relate
it with the notions given in Section 2. This comparison allows us to rephrase the objects in [1] in terms
of rational clusters invariants in Section 4. In the same section we also state the theorems which describe
the special fibres of a proper flat model (Theorem 4.18) and of the minimal regular model with normal
crossings (Theorem 4.23) of C. The construction of these models, from which the two theorems above
follow, is presented in Section 5. Finally, in Section 6, Theorems 6.3 and 6.4 describe a basis of integral
differentials of C, in terms of rational clusters invariants defined in Section 3.

1.7. Notation

In the following, we present the main notation used for fields, hyperelliptic curves and Newton polytopes.

K, v complete field with normalised discrete valuation v
Ok, π , k, p ring of integers, uniformiser, residue field, char(k)
K̄, k̄ fixed algebraic closure of K, residue field of K̄
Ks, Knr separable closure, maximal unramified extension of K in K̄
OKnr , ks ring of integers of Knr, residue field of Knr

F extension of K in K̄, unramified in Section 4
GK , Gk absolute Galois groups Gal(Ks/K), Gal(ks/k)
f (x) =∑

aixi, polynomial in K[x], separable from Section 3
NP(f ) Newton polygon of f , lower convex hull of {(i, v(ai)) | i}
f |L, f |L restriction and reduction of f to an edge L of NP(f ) (Definition 2.5)
g(x, y) = y2 − f (x), polynomial in K[x, y] defining C
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C hyperelliptic curve defined over K by g(x, y) = 0
fw(x), fh(x) = f (x + w), f (x + wh), for a given rational centre wh

gw(x, y), gh(x, y) = y2 − fw(x), y2 − fh(x)
Cw � C, hyperelliptic curve given by gw(x, y) = 0
�w,�w

v Newton polytopes attached to Cw as in [1, §1.1] (Notation 4.1)
Fw

t , Lw
t , Vw

t , Vw
0 v-faces and v-edges of �w (Notation 4.4)

sλ1, sλ2, rλ sλ1, sλ2 ∈Q, rλ ∈Z≥0, attached to a v-edge of �w (Notation 4.2)

For a separable polynomial f ∈ k[x] or a hyperelliptic curve C/K:y2 = f (x) as above, the following is
the main notation for clusters.

cf , R leading coefficient and set of roots of f
�f ,�C cluster picture, the set of clusters of f ,C (Definition 3.2)
s ∈�C cluster, s=D ∩R, for a v-adic disc D (Definition 3.1)
Gs, Ks, ks Gs = StabGK (s); Ks = (Ks)

Gs ; ks residue field of Ks

ds = minr,r′∈s v(r − r′) is the depth of a cluster s (Definition 3.1)
s′ < s= P(s′) s′ is a child of s and s is the parent of s′ (Definition 3.3)
s∧ t smallest cluster containing s and t (Definition 3.3)
ρs = maxw∈F minr∈s v(r − w), radius of s ∈�CF (Definitions 3.8 and 4.6)
bs denominator of ρs (Definition 4.6)
ws rational centre of s (Definition 3.8)
εs = v(cf ) +∑

r∈R ρr∧s (Definitions 3.19 and 4.6)
�rat

f ,�rat
C rational cluster picture (Definition 3.9)

s ∈�rat
C rational cluster (Definition 3.9)

�F =�rat
CF

, for some extension F/K (Definition 4.6)
�z

f ,�
z
C cluster picture centred at z (Definition 3.34)

s ∈�z
C cluster centred at z (Definition 3.33)

ρz
s, ε

z
s ρz

s = minr∈s v(r − z), εz
s = v(cf ) +∑

r∈R ρ
z
r∧s (Definition 3.35)

�W , �nr �W =⋃
w∈W �

w
C , �nr ⊂�Knr non-removable clusters (Definition 4.20)

Ds, ms Ds = 1 if bsεs odd, 2 if bsεs even; ms = (3 − Ds)bs (Definition 4.6)
ps = 1 if |s| is odd, 2 if |s| is even (Definition 4.6)
γs = 2 if |s| is even and εs−|s|ρs is odd, 1 otherwise (Definition 4.6)
p0
s = 1 if s is minimal and s∩ Ks �=∅, 2 otherwise (Definition 4.6)
γ 0
s = 2 if p0

s = 2 and εs is odd, 1 otherwise (Definition 4.6)
ss, s0

s ss = 1
2
(|s|ρs + psρs − εs), s0

s = −εs/2 + ρs (Definition 4.6)
gs, g0

s, f W
s , fs, f̃s polynomials in one variable over ks (Definitions 4.14 and 4.22)

In Section 5 we explicitly construct proper flat models of hyperelliptic curves and study the conditions
for having (minimal) regular models with normal crossings. Here you can find the most used objects
and notation.

� = {s1, . . . , sm}, set of rationally minimal clusters (Section 5.1)
sh a rationally minimal cluster, element of � (Section 5.1)
W = {w1, . . . , wm}, where wh is a rational centre of sh (Section 5.1)
wh fixed rational centre of sh, element of W (Section 5.1)
whl = wh − wl for fixed rational centres wh, wl (Section 5.1)
uhl, ρhl uhl ∈ O×

K , ρhl ∈Z such that whl = uhlπ
ρhl ; uhh = 0 (Section 5.1)

M matrix associated to a proper rational cluster t ∈�W (Definition 5.1, Lemma 5.2)
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M= change of variable (x, y, π )
M= (X, Y , Z) • M−1 given by M (Section 5.2)

δM, σM, XM integer, cone, toric scheme attached to a matrix M (Definitio 5.1)
m∗∗, m̃∗∗ entries of the matrices M and M−1 (Section 5.2)
Xh
�

=⋃
t,M XM, toric scheme constructed from �wh

v (Definition 5.1)
Cw
�

proper model of Cw constructed from �w
v by [1, 3.14]

Cwh
� closure of C � Cwh in Xh

�
(Section 5.2)

R = OK[X±1, Y , Z]/(π − Xm̃13 Ym̃23 Zm̃33 ) (Section 5.2)
Thl

M ∈ R, satisfying x − whl
M= X∗Y∗Z∗Thl

M (Section 5.2)
Th

M =∏
l �=h Thl

M ∈ R (Section 5.2)
F h

M ∈ R, equals Y∗Z∗ · gh((X, Y , Z) • M−1) (Section 5.2)
Vh

M = Spec R[(Th
M)−1] ⊂ XM, (Section 5.2)

Uh
M = Spec R[(Th

M)−1]/(F h
M) ⊂ Vh

M, chart of C (Section 5.2)
X̊h
�

, C̊wh
� X̊h

�
=⋃

t,M Vh
M ⊆ Xh

�
, C̊wh

� =⋃
t,M Uh

M ⊂ Xh
�

(Section 5.2)
X , C X =⋃

h Xh
�
, C =⋃

h C̊wh
� (Section 5.3)

t̂W , t̃W , t̃ sets attached to a rational cluster t (Definition 5.15, before Proposition 5.18 and
Definition 4.13)

X̄Fw
t

1-dimensional closed subscheme of Cw
�,s given by Fw

t (Section 5.6)
X̊Fw

t
= X̄Fw

t
∩ C̊w

�
(Section 5.6)

�t ⊆ Cs, glueing of X̊Fw
t

for all w ∈ W such that t ∈�w
C (Section 5.6)

2. Newton polygon

Let K be a complete field with a normalised valuation v, ring of integers OK , uniformiser π , and residue
field k of characteristic p. We fix K̄, an algebraic closure of K, of residue field k̄, and we denote by Ks

the separable closure of K in K̄. Denote by Knr the maximal unramified extension of K in Ks, by OKnr

its ring of integers, and by ks its residue field. Note that ks is the separable closure of k in k̄. Extend the
valuation v to K̄. Finally, write GK , Gk for the Galois groups Gal(Ks/K), Gal(ks/k), respectively.

Notation 2.1. Let OK̄ = {a ∈ K̄ | v(a) ≥ 0}. Throughout this paper, given an element a ∈ OK̄ , we will
write a mod π for the reduction of a in k̄. Similarly, given a polynomial h ∈ OK̄[x1, . . . , xn], namely
h =∑

ai1,...,in · xi1
1 · · · xin

n , we will write h mod π for the polynomial
∑

(ai1,...,in mod π ) · xi1
1 · · · xin

n ∈
k̄[x1, . . . , xn].

Let f ∈ K[x] be a non-zero polynomial of degree d, say

f (x) =
d∑

i=0

aix
i.

The Newton polygon of f , denoted NP(f ), is

NP(f ) = lower convex hull {(i, v(ai)) | i = 0, . . . , d, ai �= 0} ⊂R2.

We recall the following well-known result (see e.g., [17, II.6.3,6.4]).

Theorem 2.2. Let i0 < . . . < is = d be the set of indices in {0, . . . , d} such that the points
(i0, v(ai0 )), . . . , (is, v(ais )) are the vertices of NP(f ). For any j = 1, . . . , s, denote by ρj the slope of the
edge of NP(f ) which links the points (ij−1, v(aij−1 )) and (ij, v(aij )). Then f has a unique factorisation over
K as a product

f = ad · g0 · g1 · · · gs,
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where g0 = xi0 and, for all j = 1, . . . , s,

• the polynomials gj ∈ K[x] are monic of degree dj = ij − ij−1,
• all the roots of gj have valuation −ρj in K̄.

In particular, NP(gj) is a segment of slope ρj.

Corollary 2.3. With the notation of Theorem 2.2, the polynomial f has exactly dj roots of valuation −ρj

for all j = 1, . . . , s.

Corollary 2.4. If f =∑
aixi is irreducible of degree d and a0 �= 0, then NP(f ) is a segment linking the

points (0, v(a0)) and (d, v(ad)).

Definition 2.5 (Restriction and reduction). Let f =∑d
i=0 aixi ∈ K[x] and consider an edge L of its Newton

polygon NP(f ). Let (i1, v(ai1 )), (i2, v(ai2 )), i1 < i2 be the two endpoints of L. Denote by ρ the slope of L
and by n the denominator of ρ. Define the restriction of f to L as

f |L :=
(i2−i1)/n∑

i=0

ani+i1 xi ∈ K[x].

Moreover, we define the reduction of f with respect to L to be the polynomial

f |L := π−cf |L(π−nρx) mod π ∈ k[x],

where c = v(ai1 ) = v(ai2 ) + (i1 − i2)ρ.

Remark 2.6. These definitions coincide with the ones given in [1, Definitions 3.4, 3.5] when the number
of variables is 1 (for suitable choices of basis of the lattices used in the definitions).

Until the end of the section let f ∈ K[x], consider a factorisation f = ad · g0 · g1 · · · gs as in
Theorem 2.2. Denote by Lj the edge of slope ρj of NP(f ), for any j = 1 . . . s.

Remark 2.7. By the lower convexity of NP(f ), for all j = 1, . . . , s, note that f |Lj = c̄j · gj|NP(gj) for some
c̄j ∈ k×. In particular they define the same k-scheme in Gm,k. More precisely, for any j = 1, . . . , s, let

uj = ad ·
s∏

i=j+1

gi(0).

Then c̄j = uj/π
v(uj) mod π .

Definition 2.8. We say that f is NP-regular if the k-scheme

XLj : {f |Lj = 0} ⊂Gm,k

is smooth for all j = 1, . . . , s.

Lemma 2.9. The polynomial f = ad · g0 · g1 · · · gs is NP-regular if and only if gj is NP-regular for every
j = 1, . . . , s.

Proof. The Lemma follows from Remark 2.7.

We conclude this section with two examples.
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Example 2.10. Let f = x11 + 9x7 − 3x6 + 9x5 + 81x − 27 ∈Q3[x]. Then the Newton polygon of f is

i

v(ai)

(11, 0)

(6, 1)

(0, 3)
ρ1 = − 1

3
L1

ρ2 = − 1
5

L2

Corollary 2.3 implies that f has 6 roots of valuation 1
3

and 5 roots of valuation 1
5
. Furthermore, the two

polynomials g1 and g2 in the factorisation f = g1 · g2 of Theorem 2.2 turn out to be

g1 = x6 + 9, g2 = x5 + 9x − 3.

Finally,

f |L1 = −3x2 − 27 = −3 · g1|NP(g1), f |L2 = x − 3 = g2|NP(g2);

and

f |L1 = −x2 − 1 = −(x2 + 1) = −g1|NP(g1), f |L2 = x − 1 = g2|NP(g2) in F3[x].

Thus f is NP-regular.

Example 2.11. We now show an example of a polynomial that is not NP-regular. Let f = x9 + 12x6 +
36x3 + 81 ∈Q3[x]. Then the Newton polygon of f is

i

v(ai)

(9, 0)

(3, 2)

(0, 4) ρ
1 = − 2

3L
1

ρ2 = − 1
3

L2

Corollary 2.3 implies that f has 3 roots of valuation 2
3

and 6 roots of valuation 1
3
. Furthermore, the two

polynomials g1 and g2 in the factorisation f = g1 · g2 of Theorem 2.2 are

g1 = x3 + 9, g2 = x6 + 3x3 + 9.

Finally,

f |L1 = 36x + 81 f |L2 = x2 + 12x + 36,

g1|NP(g1) = x + 9, g2|NP(g2) = x2 + 3x + 9;
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and

f |L1 = x + 1 = g1|NP(g1), f |L2 = (x + 2)2 = g2|NP(g2) in F3[x].

Then f is not NP-regular. In fact, in accordance with Lemma 2.9, g2 is not NP-regular.

3. Rational clusters

In this subsection we introduce simple combinatorial objects, that we call rational clusters, attached
to a separable polynomial f ∈ K[x]. Via this new terminology, we will give a characterisation for the
NP-regularity, from which the definition of almost rational cluster picture, key condition for the next
sections, will follow. In fact, rational clusters are the main objects we will use for the construction of
models and the description of integral differentials of hyperelliptic curves in Sections 5 and 6.

From now on, let f ∈ K[x] be a separable polynomial and denote by R the set of its roots in Ks and
by cf its leading coefficient. Then

f (x) = cf

∏
r∈R

(x − r).

Definition 3.1 ([14, Definition 1.1]). A cluster (for f ) is a non-empty subset s⊆R of the form D ∩R,
where D is a v-adic disc D = {x ∈ K̄ | v(x − z) ≥ d} for some z ∈ K̄ and d ∈Q. If |s|> 1 we say that s is
proper and define its depth ds to be

ds = min
r,r′∈s

v(r − r′).

Note that every proper cluster is cut out by a disc of the form

D = {x ∈ K̄ | v(x − r) ≥ ds}
for any r ∈ s.

Definition 3.2 ([14, Definition 1.26]). The cluster picture of f is the collection of its clusters, together
with their depths.

We denote by �f the set of all clusters of f and by �̊f the subset of �f of proper clusters.

Definition 3.3 ([14, Definition 1.3]). If s′ � s is maximal subcluster, then we say that s′ is a child of s
and s is the parent of s′, and we write s′ < s. For any s′, s ∈�f , we write s′ ≤ s if either s′ < s or s′ = s.
Since every cluster s �=R has one and only one parent we write P(s) to refer to the unique parent of s.

We say that a proper cluster s is minimal if it does not have any proper child.
For two clusters (or roots) s1, s2, we write s1 ∧ s2 for the smallest cluster that contains them.

Definition 3.4 ([14, Definition 1.4]). A cluster s is odd/even if its size is odd/even. If |s| = 2, then we
say s is a twin. A cluster s is übereven if it has only even children.

Definition 3.5 ([14, Definition 1.9]). A centre zs of a proper cluster s is any element zs ∈ Ks such that
s=D ∩R, where

D = {x ∈ K̄ | v(x − zs) ≥ ds}.
Equivalently, v(r − zs) ≥ ds for all r ∈ s. The centre of a non-proper cluster s= {r} is r.

Definition 3.6 ([14, Definition 1.6]). For a proper cluster s set

νs := v(cf ) +
∑
r∈R

dr∧s.
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Definition 3.7. We say that �f is nested if one of the following equivalent conditions is satisfied:

(i) there exists z ∈ Ks such that z is a centre for all proper clusters s ∈�f ;
(ii) there is only one minimal cluster in �f ;
(iii) every non-minimal proper cluster has exactly one proper child.

Definition 3.8. A rational centre of a cluster s is any element ws ∈ K such that

min
r∈s

v(r − ws) = max
w∈K

min
r∈s

v(r − w).

If s= {r}, with r ∈ K, then ws = r.
If ws is a rational centre of a proper cluster s, we define the radius of s to be

ρs = min
r∈s

v(r − ws).

Definition 3.9. A rational cluster is a cluster cut out by a v-adic disc of the formD = {x ∈ K̄ | v(x − w) ≥
d} with w ∈ K and d ∈Q.

The rational cluster picture is the collection of all rational clusters of f together with their radii.
We denote by �rat

f ⊆�f the set of rational clusters and by �̊rat
f the subset of �rat

f of proper rational
clusters.

Lemma 3.10. Let s be a proper cluster. Then ds ≥ ρs.
Proof. First we want to show that

min
r,r′∈s

v(r − r′) = max
z∈Ks

min
r∈s

v(r − z).

Clearly minr,r′∈s v(r − r′) ≤ maxz∈Ks minr∈s v(r − z). Let zs ∈ Ks such that

max
z∈Ks

min
r∈s

v(r − z) = min
r∈s

v(r − zs).

Then, for any r, r′ ∈ s, one has

v(r − r′) ≥ min{v(r − zs), v(r′ − zs)} ≥ min
r∈s

v(r − zs),

and so

min
r,r′∈s

v(r − r′) ≥ max
z∈Ks

min
r∈s

v(r − z),

as required. From

ds = min
r,r′∈s

v(r − r′) = max
z∈Ks

min
r∈s

v(r − z) ≥ max
w∈K

min
r∈s

v(r − w) = ρs,

the Lemma follows.

Thanks to the previous lemma, the next definition gives, for any cluster s, the smallest rational cluster
containing it.

Definition 3.11. Given a proper cluster s ∈�f , we define the rationalisation srat of s to be the smallest
rational cluster containing s. By definition

srat =R∩ {x ∈ K̄ | v(x − ws) ≥ ρs},
where ws is a rational centre of s and ρs is its radius.

The next Lemma will be used in Section 5 to prove the minimality of the regular model with normal
crossings we construct.
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Lemma 3.12. Let s ∈�rat
f be a proper cluster with rational centre ws. Let s′ ∈�rat

C be the child of s with
rational centre ws (let s′ =∅ if it does not exist). Then (|s| − |s′|)ρs ∈Z.

Proof. As s ∈�rat
f , one has s= srat. Let bs be the denominator of ρs. Then bs divides the degree of

the minimal polynomial of r, for any r ∈ s satisfying v(ws − r) = ρs. Then (|s| − |s′|)ρs ∈Z, where

s′ =R∩ {x ∈ K̄ | v(x − ws)>ρs},
as required.

By definition, a rational cluster is GK-invariant. Apart from that necessary condition, it is not easy to
see whether a proper cluster s is also a rational cluster in general. The following remark gives a sufficient
condition and shows we have a simple characterisation when K(s)/K is tamely ramified.

Remark 3.13. If a proper cluster s ∈�f satisfies ds = ρs, then a rational centre ws ∈ K of its is also
a centre. Hence s is a rational cluster and, in particular, is GK-invariant. On the other hand, if a
proper cluster s ∈�f is GK-invariant and K(s)/K is tamely ramified, then s has a centre zs ∈ K by
[14, Lemma B.1]. Thus ρs = ds and s ∈�rat

f .

Lemma 3.14. Let s be a proper cluster with rational centre ws and let t ∈�f satisfying t⊇ s. Then ws

is a rational centre of t and ρt ≤ ρs. Furthermore, if s is a rational cluster and t� s, then ρt <ρs.

Proof. It suffices to prove the Lemma for t= P(s). Hence we first want to show that minr∈P(s) v(r −
ws) = ρP(s) and ρP(s) ≤ ρs. Note that

min
r∈P(s)

v(r − ws) ≤ max
w∈K

min
r∈P(s)

v(r − w) = ρP(s).

Moreover,

ρP(s) = max
w∈K

min
r∈P(s)

v(r − w) ≤ max
w∈K

min
r∈s

v(r − w) = ρs.

If r ∈ s then v(ws − r) ≥ ρs, by definition of ρs. On the other hand, if r ∈ P(s) � s then fixing r′ ∈ s we
have

v(r − ws) = v(r − r′ + r′ − ws) ≥ min{v(r − r′), v(r′ − ws)} ≥ min{dP(s), ρs} ≥ ρP(s),

by the previous lemma. Thus minr∈P(s) v(r − ws) = ρP(s), as required.
Now suppose s ∈�rat

f with t� s. From Definition 3.8, it follows that

{x ∈ K̄ | v(x − ws) ≥ ρs} ∩R= s� t⊆ {x ∈ K̄ | v(x − ws) ≥ ρt} ∩R,

as ws is a rational centre of t. Thus ρt <ρs.

Definition 3.15. We say that a proper rational cluster s ∈�rat
f is (rationally) minimal if it does not have

any proper rational child.

From Lemma 3.14 it follows that if W ⊆ K such that every minimal rational cluster has a rational
centre in W, then all clusters have a rational centre in W. This fact will be key for the construction of the
model in Section 5. Another important result is Lemma 3.18, that describes the depth and the radius of
s∧ s′ for two rational clusters s, s′. To prove it, we need the following two lemmas.

Lemma 3.16. Every cluster s with ρs < ds has no rational subcluster s′ � s.

Proof. Suppose by contradiction there exists s′ ∈�rat
C , s′ � s, and fix a rational centre ws′ of s′. Then

ws′ is a rational centre of s by the previous lemma. If |s′| = 1, then ws′ is also a centre of s and this
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contradicts ρs < ds; so, assume s′ proper. Let r′ ∈ s′ such that v(r′ − ws′) = ρs′ and r ∈ s such that v(r −
ws′ ) = ρs. But then ds ≤ v(r − ws′ + ws′ − r′) = ρs again by Lemma 3.14.

In particular, the Lemma above shows that if s ∈�f and s′ ∈�rat
f is a maximal rational subcluster of

s, with s′ � s, then s′ is a child of s. Moreover, the parent of a rational cluster is rational.

Lemma 3.17. Let s, s′ ∈�rat
f such that s′ � s. If ws is a rational centre of s then

min
r∈s′ v(r − ws) = ρs∧s′ .

Proof. By Lemma 3.14 we have

min
r∈s∧s′ v(r − ws) = ρs∧s′ .

Therefore minr∈s′ v(ws − r) ≥ ρs∧s′ . Suppose by contradiction that

min
r∈s′ v(r − ws) =: ρ > ρs∧s′ .

It follows from Lemma 3.14 that

min
r∈s

v(r − ws) = ρs >ρs∧s′

as s′ � s. But then there exists r̃ ∈ (s∧ s′) � (s∪ s′) such that v(r̃ − ws) = ρs∧s′ . Consider the rational
cluster

t := R∩ {
x ∈ K̄ | v(x − ws) ≥ min{ρ, ρs}

} ∈�rat
f .

Then s, s′ ⊆ t, but since r̃ /∈ t we have s∧ s′ � t that contradicts the minimality of s∧ s′.

Lemma 3.18. Let t ∈�f with at least two children in�rat
f . Then dt = ρt ∈Z and t ∈�rat

f . More precisely,
if s, s′ ∈�rat

f such that s� s∧ s′ � s′, then

ρs∧s′ = v(ws − ws′ ) = ds∧s′ ,

where ws and ws′ are rational centres of s and s′ respectively.

Proof. If dt = ρt, then t ∈�rat
f by Remark 3.13. Hence it suffices to prove the second statement as

v(ws − ws′) ∈Z. For our assumptions s′ �⊆ s. Then by Lemma 3.17 there exists r ∈ s′ so that v(r − ws) =
ρs∧s′ . Thus,

v(ws − ws′ ) = min{v(ws − r), v(r − ws′)} = ρs∧s′ ,

as v(r − ws′) ≥ ρs′ >ρs∧s′ by Lemma 3.14. Finally, ds∧s′ = ρs∧s′ follows from Lemma 3.16.

Definition 3.19. For a proper cluster s set

εs := v(cf ) +
∑
r∈R

ρr∧s.

Example 3.20. Let f = x11 − 3x6 + 9x5 − 27 ∈Q3[x]. The set of roots of f is

R= { 3
√

3, ζ3
3
√

3, ζ 2
3

3
√

3, − 3
√

3, −ζ3
3
√

3, −ζ 2
3

3
√

3, 5
√

3, ζ5
5
√

3, ζ 2
5

5
√

3, ζ 3
5

5
√

3, ζ 4
5

5
√

3},
where ζq is a primitive qth root of unity for q = 3, 5. Then the proper clusters of f are

s1 = { 3
√

3, ζ3
3
√

3, ζ 2
3

3
√

3}, s2 = {− 3
√

3, −ζ3
3
√

3, −ζ 2
3

3
√

3}, s3 = s1 ∪ s2, R
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with ds1 = ds2 = 5
6
, ds3 = 1

3
and dR = 1

5
. The graphic representation of the cluster picture of f is then

5
6

5
6 1

3 1
5

where the subscripts of clusters (represented as circles) are their depths.
Furthermore, note that 0 is a rational centre for all proper clusters and we have ρs1 = ρs2 = ρs3 = 1

3

and ρR = 1
5
.

Finally, for every cluster s we can also compute νs and εs, that are

νs1 = νs2 = 9

2
, νs3 = εs1 = εs2 = εs3 = 3, νR = εR = 11

5
.

Example 3.21. Let f = x9 + 12x6 + 36x3 + 81 ∈Q3[x] and fix an isomorphism Q3 �C. Then the set of
roots of f is

R= { 3
√

32, ζ3
3
√

32, ζ 2
3

3
√

32, ζ9
3
√

3, ζ 2
9

3
√

3, ζ 4
9

3
√

3, ζ 5
9

3
√

3, ζ 7
9

3
√

3, ζ 8
9

3
√

3},
where ζq = e2π i/q is a primitive qth root of unity for q = 3, 9. Then the proper clusters of f are

s1 = { 3
√

32, ζ3
3
√

32, ζ 2
3

3
√

32}, s2 = {ζ9
3
√

3, ζ 4
9

3
√

3, ζ 7
9

3
√

3},
s3 = {ζ 2

9
3
√

3, ζ 5
9

3
√

3, ζ 8
9

3
√

3}, s4 = s2 ∪ s3, R

with ds1 = 7
6
, ds2 = ds3 = 5

6
, ds4 = 1

2
, and dR = 1

3
. The cluster picture of f is then

7
6

5
6

5
6 1

2 1
3

It is easy to see that 0 is a rational centre for all proper clusters and that ρs1 = 2
3
, ρs2 = ρs3 = ρs4 =

ρR = 1
3
. Finally,

νs1 = 11

2
, νs2 = νs3 = 5, νs4 = 4, νR = 3; εs1 = 4, εs2 = εs3 = εs4 = εR = 3.

The goal of this section is to describe the NP-regularity of f ∈ K[x] (and its translations) in terms of
conditions on its cluster picture.

Notation 3.22. If p> 0, we denote by | · |p the standard p-adic absolute value attached to Q, that is
|a|p = p−vp(a) for all a ∈Q. If p = 0, then we write | · |p for the function on Q identically equal to 1, that
is |a|p = 1 for all a ∈Q.

Lemma 3.23. Suppose that x � f and that NP(f ) is a segment L of slope −ρ. Let n be the denominator
of ρ. Then f is NP-regular if and only if all proper clusters s ∈�f with |s|> |ρ|p satisfy ds = ρ.

More precisely:

(i) If s ∈�f with |s|> |ρ|p but ds >ρ, then f |L has a non-zero multiple root ū = rn

πnρ mod π , for
some (any) r ∈ s.

(ii) The multiplicity of a root ū ∈ k̄× of f |L equals |s0|/n, where

s0 = {
r ∈R | ū = rn

πnρ mod π
}

.

(iii) All multiple roots of f |L come from clusters s as described in (i).
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Proof. Let q be the highest power of p dividing n (set q = 1 if p = 0). Let m = n/q so that p � m.
Let R= {ri | i = 1, . . . , D} be the (multi-)set of roots of f , where D := deg f . Fix some choice of n

√
π

and define ūi ∈ k̄× as ūi = ri/π
ρ mod π , for all i = 1, . . . , D. Firstly, note that there exists a proper

cluster s with |s|> |ρ|p and ds >ρ if and only if there exists a subset I ⊆ {1, . . . , D} of size |I|> q
such that ūi1 = ūi2 for all i1, i2 ∈ I. Indeed, given s, then I = {i ∈ {1, . . . , D} | ri ∈ s}, while given I, then
s= {ri | ūi = ūi0 , for any i0 ∈ I}. Secondly, recall that f is not NP-regular if and only if f |L has a multiple
root in k̄×. Therefore we will prove that f |L has a non-zero multiple root if and only if there exists a
subset I ⊆ {1, . . . , D} with size |I|> q and such that ūi1 = ūi2 for all i1, i2 ∈ I.

Note that for the lower convexity of NP(f ) = L, we have

f |L(xn) = π−(v(cf )+Dρ)f (πρx) mod π .

Hence {ūi | i = 1, . . . , D} is the multiset of roots of f |L(xn). Then there exists an n-to-1 map

φ̄:{ūi} −→ {w̄j},
ūi �→ ūm

i .,

where {w̄j | j = 1, . . . , D/n} is the multiset of roots of f |L. Note that w̄j �= 0 for all j = 1, . . . , D/n, so all
roots of f |L are non-zero.

Now, suppose that f is not NP-regular. We want to show that there exists a subset I ⊂ {1, . . . , D} with
|I|> q such that ūi1 = ūi2 for all i1, i2 ∈ I. Since f is not NP-regular, its reduction f |L has a (non-zero)
multiple root. Then there exist j1, j2 ∈ {1, . . . , D/n} so that w̄j1 = w̄j2 =: w̄. Hence, by the definition of
φ̄, for some (any) ū ∈ φ̄−1(w̄), there are at least 2q ūi’s with ūi = ū. Let I denote the set of their indices.
Then |I| ≥ 2q> q and ūi1 = ūi2 for all i1, i2 ∈ I, as required.

On the other hand, suppose that there exists a subset I ⊂ {1, . . . , D} with |I|> q and such that ūi1 = ūi2

for all i1, i2 ∈ I. We want to show that f |L has a multiple root, that is there exist two indices j1, j2 ∈
{1, . . . , D/n} such that w̄j1 = w̄j2 . Suppose not and let j ∈ {1, . . . , D/n} such that w̄j = ūm

i = φ̄(ūi) for
some (all) i ∈ I. Then the polynomial xn − w̄j = (xm − w̄j)q ∈ k̄[x], factor of f |L(xn), should have a root of
order |I|> q. This would imply xm − w̄j is inseparable, a contradiction as p � m.

The parts (i), (ii) and (iii) of the Lemma follow from above:

(i) Given a proper cluster s ∈�f with |s|> |ρ|p and ds >ρ, we showed that f |L has a non-zero
multiple root w̄j = ūn

i = rn
i /π

nρ mod π , where ri is any root in s.
(ii) By the definition of φ̄, given w̄ ∈ k̄, the number of w̄j’s such that w̄j = w̄ equals |s0|/n, where

s0 = {ri | ūn
i = w̄}.

(iii) Given a (non-zero) multiple root w̄ of f |L we showed that there exists I ⊆ {1, . . . , D}, with
|I|> q and ūi1 = ūi2 for any i1, i2 ∈ I, such that ūn

i = w̄ for all i ∈ I. The set s= {ri | ūi =
ūi0 , for any i0 ∈ I} is a proper cluster as in (i).

Theorem 3.24. Let w ∈ K and fw(x) = f (x + w). For all clusters s ∈�f define λs = minr∈s v(r − w),
and let b be the denominator of λs. Then fw is NP-regular if and only if all proper clusters s ∈�f with
|s|> |λs|p have ds = λs.

More precisely:

(i) Let s ∈�f with |s|> |λs|p but ds >λs, and let r ∈ swith v(r − w) = λs. Then fw|L has a non-zero
multiple root ū = (r−w)b

πbλs mod π , where L is the edge of NP(fw) of slope −λs.
(ii) Let L be an edge of NP(fw) of slope −λ. Let l be the denominator of λ. The multiplicity of a root

ū ∈ k̄× of fw|L equals |s0|/l, where

s0 = {
r ∈R | v(r − w) = λ and ū = (r−w)l

π lλ mod π
}
.

(iii) For every edge L of NP(fw), the multiple roots of fw|L come from proper clusters s for f as
described in (i).
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Proof. Let Rw be the set of roots of fw. Note that we have a natural bijection R→Rw, r �→ r − w,
which induces a bijective function ψ :�f →�fw , sending

s=R∩ {x ∈ K̄ | v(x − z)> d} �→ ψ(s) =Rw ∩ {x ∈ K̄ | v(x + w − z)> d}.
In particular, if s ∈�f , |s| = |ψ(s)|, ds = dψ(s) and

λs = min
r∈s

v(r − w) = min
r∈ψ(s)

v(r).

Hence it suffices to show the theorem for w = 0.
Assume w = 0. Let f = cf · g0 · g1 . . . gt be a factorisation of Theorem 2.2. Note that if t = 0, then

either f ∈ K or f ∈ Kx. In both cases, f is clearly NP-regular and has no proper clusters. Then assume
t> 0 and let −ρi be the slope of NP(gi) for any i = 1, . . . , t. Denote by R the set of roots of f and by
Ri the set of roots of gi for i = 0, . . . , t. Note that the Ri’s are pairwise disjoint. From Remark 2.7, for
every edge L of NP(f ) there exists i such that f |L = c̄i · gi|NP(gi) for some c̄i ∈ k×. Hence, by Lemma 2.9 and
Lemma 3.23, we need to prove that there exists a proper cluster s ∈�f such that |s|> |λs|p and ds >λs
if and only if for some i = 1, . . . , t there exists a proper cluster si ∈�gi such that |si|> |λsi |p = |ρi|p and
dsi >λsi = ρi. We will show that one can choose s= si.

First, note that if s is a proper cluster, then s �⊆R0, as |R0| ≤ 1. Furthermore, if s ∈�f contains roots
of different valuations, that is s�Ri for all i, then

ds = min
r,r′∈s

v(r − r′) = min
r∈s

v(r) = λs = min{ρi |Ri ∩ s �=∅}.
Now suppose there exists a proper cluster s ∈�f such that |s|> |λs|p and ds >λs. For the observation

above, the inequality ds >λs implies that s⊆Ri for some i = 1, . . . , t. Let D be the v-adic disc such
that s=D ∩R. Since s⊆Ri, one has s=D ∩Ri which means that s ∈�gi , as required.

Finally suppose that for some i = 1, . . . , s, there exists a proper cluster si ∈�gi such that |si|> |ρi|p

and dsi >ρi. Let ri ∈ si. Then

si = {x ∈ K̄ | v(x − ri) ≥ dsi} ∩Ri.

Consider the cluster s := {x ∈ K̄ | v(x − ri) ≥ dsi} ∩R of f . Clearly si ⊆ s. Therefore

λsi = min
r∈si

v(r) ≥ min
r∈s

v(r) = λs,

which implies

ds = dsi >ρi = λsi ≥ λs,
where ds = dsi by construction. Again, from the observation above, the inequality ds >λs implies that s
is contained in Rj for some j. As s∩Ri ⊇ si ∩Ri = si, we must have s⊆Ri. Thus s= si, that concludes
the proof.

Corollary 3.25. Let f ∈ K[x] be a separable polynomial. Let w ∈ K and fw(x) = f (x + w). Then fw is NP-
regular if and only if all proper clusters s ∈�f have rational centre w and those with |s|> |ρs|p satisfy
ds = ρs.

Proof. If fw is NP-regular, then, from the previous theorem, all proper clusters s ∈�f with |s|> |λs|p

have ds = λs, where λs = minr∈s v(r − w). First let s ∈�f proper and assume |s|> |λs|p. Then

ds = λs = min
r∈s

v(r − w) ≤ max
z∈K

min
r∈s

v(r − z) = ρs ≤ ds,

so ds = λs = ρs, and w is a rational centre of s. Now assume |s| ≤ |λs|p. In particular, p> 0 and λs /∈Z,
and so

min
r∈s

v(r − w) = λs �= v(w − ws),
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where ws is a rational centre of s. Let r ∈ s such that v(r − w) = λs. Then

ρs ≤ v(r − w + w − ws) = min{λs, v(w − ws)} ≤ λs.

Clearly

ρs = max
z∈K

min
r∈s

v(r − z) ≥ min
r∈s

v(r − w) = λs,

that implies ρs = λs = minr∈s v(r − w). Hence w is a rational centre of s.
On the other hand, suppose that all proper clusters s ∈�f have rational centre w ∈ K and those with

|s|> |ρs|p satisfy ds = ρs. Then ρs = minr∈s v(r − w) for any s ∈�f . Thus fw is NP-regular again by
Theorem 3.24.

The next definition, which is the main (and only, if p �= 2) condition for our explicit construction of
the minimal regular model of a hyperelliptic curve given by y2 = f (x), follows from the statement of
Corollary 3.25.

Definition 3.26. We say that f has an almost rational cluster picture if all proper clusters s ∈�f with
|s|> |ρs|p have ds = ρs.

Corollary 3.25 shows that f has a translation which is NP-regular if and only if f has an almost rational
cluster picture and there exists w ∈ K that is a rational centre of all clusters.

In the following we give different characterisations of the previous definition.

Corollary 3.27. Suppose that K(R)/K is a tamely ramified extension. Then f has an almost rational
cluster picture if and only if every proper cluster s ∈�f is GK-invariant.

Proof. Since K(R)/K is tamely ramified, every cluster s ∈�f has |ρs|p ≤ 1. Therefore, the
Corollary follows from Remark 3.13.

Corollary 3.28. Suppose that K(R)/K is a tamely ramified extension. Then fw is NP-regular for some
w ∈ K if and only if �f is nested.

Proof. First note that every cluster s ∈�f has |ρs|p ≤ 1, as K(R)/K is tamely ramified. Therefore,
from Corollary 3.25, we need to prove that �f is nested if and only if all clusters s ∈�f have ds = ρs
and rational centre w, for some w ∈ K. But this follows from Remark 3.13.

Corollary 3.29. The polynomial f has an almost rational cluster picture if and only if for every r ∈
R \ K, there exists w ∈ K so that rb

w := (r−w)b

πb·v(r−w) mod π is a simple root of fw|L, where b is the denominator
of v(r − w), fw(x) = f (x + w) and L is the edge of NP(fw) of slope −v(r − w).

Proof. Fix r̃ ∈R \ K and let s be the smallest proper cluster containing r̃. Let ws be a rational centre
of s. Note that v(r̃ − ws) = ρs = minr∈s v(r − ws), for the choice of s, as r̃ /∈ K. Moreover, for any proper
cluster t containing r̃, we have s⊆ t. In particular, ws is a rational centre of all such clusters. Let L be
the edge of NP(fws) of slope −ρs. Theorem 3.24 shows that r̃bs

ws
is a multiple root of fws |L if and only if

there exists t ∈�f such that r̃ ∈ t, |t|> |ρt|p and dt >ρt. Therefore, if f has an almost rational cluster
picture, then r̃bs

ws
is a simple root.

Suppose there exists t ∈�f such that |t|> |ρt|p and dt >ρt. Then t∩ K =∅. By Theorem 3.24, it
remains to show that for any w ∈ K, we have |t|> |λt|p and dt >λt, where λt = minr∈t v(r − w). First
note dt >ρt ≥ λt. Moreover, in the proof of Corollary 3.25, we saw that if |t| ≤ |λt|p then ρt = λt and
so |t| ≤ |ρt|p; but |t|> |ρt|p, thus |t|> |λt|p.
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Lemma 3.30. Suppose f has an almost rational cluster picture. Let s ∈�f proper. If ds >ρs, then p> 0
and |s| is a p-power. In particular, if ws is a rational centre of s, for any r ∈ s, the elements r − ws are
all the roots of a monic polynomial with coefficients in Ks, and constant term c such that |v(c)|p ≥ 1.

Proof. Let s ∈�f proper, with ds >ρs. Since f has an almost rational cluster picture, we must have
|s| ≤ |ρs|p. Since s is proper, p> 0. Let bs be the denominator of ρs. Then vp(bs)> 1. Fix a rational centre
ws of s and a root r ∈ s such that v(r − ws) = ρs. Consider s′ = {x ∈R | v(x − r)>ρs}. Then s⊆ s′ ≤ srat

and |s′| ≤ |ρs|p (as ds′ >ρs = ρs′). Let L be the Galois closure of K(r). Let H be the wild inertia subgroup
of Gal(L/K) and LH the corresponding fixed field. Let σ1, . . . , σn ∈ H such that σ1(r − ws), . . . , σn(r −
ws) are the roots of the minimal polynomial of r − ws over LH . Hence σi(r) ∈R and σi(r) �= σj(r) for any
i, j = 1, . . . , n, i �= j. From

n∏
i=1

σi(r − ws) ∈ LH and v

( n∏
i=1

σi(r − ws)

)
= n · ρs,

it follows that |ρs|p | n, and so |ρs|p ≤ n, since LH/K is tamely ramified. By definition of H (see for
example [17, Definition 9.3]) we have

v
(
σi(r−ws)

r−ws
− 1

)
> 0, and so v

(
σi(r) − r

)= v
(
σi(r − ws) − (r − ws)

)
>ρs

for any i = 1, . . . , n. Therefore σi(r) ∈ s′ for all i and so n ≤ |s′|. Thus n = |s′| = |ρs|p and s⊆ s′ = {σi(r) |
i = 1, . . . , n}. Finally, as s′ contains only conjugates of r ∈ s, the cluster s′ is union of orbits of s. In
particular, |s| | |s′| = |ρs|p, and so |s| is a p-power. The rest of the Lemma follows.

Proposition 3.31. The polynomial f has an almost rational cluster picture if and only if for every proper
cluster s ∈�f one of the following is satisfied:

(a) the smallest disc containing s also contains a rational point;
(b) p> 0 and after a translation by an element of K, the elements in s are all the roots of a monic

polynomial with coefficients in Ks of p-power degree and constant term c such that |v(c)|p ≥ 1.

Proof. First of all, note that point (a) is equivalent to requiring ds = ρs. Therefore, by Lemma 3.30 it
only remains to show that if s ∈�f with ds >ρs and (b) is satisfied, then |s| ≤ |ρs|p. Let F ∈ Ks[x] be the
polynomial in (b) and let w ∈ K such that r − w, for r ∈ s, are all the roots of F. We have ρs ≥ minr∈s v(r −
w). Fix r ∈ s such that ρs ≥ v(r − w) =: ρ. Since ds >ρs ≥ v(r − w), we have v(r′ − w) = v(r − w) = ρ

for any r′ ∈ s. Then

|s| = deg F = |1/ deg F|p ≤ |v(c)/ deg F|p = |ρ|p.

We will prove that ρ = ρs, so that |s| ≤ |ρ|p = |ρs|p, as required. We already know that ρs ≥ ρ. Suppose
by contradiction that ρs >ρ. Let ws be a rational centre of s and let rs ∈ s such that v(rs − ws) = ρs.
Hence

v(w − ws) = v(w − rs + rs − ws) = min{ρ, ρs} = ρ.

But then ρ ∈Z, which contradicts |s| ≤ |ρ|p.

Example 3.32. Let p be a prime number and let a ∈Zp, b ∈Z×
p such that the polynomial x2 + ax + b is

not a square modulo p. Let f ∈Qp[x] given by f (x) = (x6 + ap4x3 + bp8)((x − p)3 − p11). For any prime
p the rational cluster picture of f is

t3 t4 R

where ρt3 = 4
3
, ρt4 = 11

3
, and ρR = 1.
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If p �= 3, then the proper clusters of �f coincide with the rational clusters above and ds = ρs for any
s= t3, t4, R. In particular, f has an almost rational cluster picture when p �= 3.

Suppose p = 3. Then the cluster picture of f is

t1 t2 t3
t4

R

where dt1 = dt2 = 11
6

, dt3 = ρt1 = ρt2 = 4
3
, dt4 = 25

6
and dR = 1. Thus f has an almost rational cluster

picture for all p.

We conclude this section by showing that the cluster picture centred at w ∈ K completely determines
the Newton polygon of the translation of f by w.

Definition 3.33. Let z ∈ K̄. A cluster centred at z is a cluster cut out by a v-adic disc of the form
D = {x ∈ K̄ | v(x − z) ≥ d} for some d ∈Q.

Definition 3.34. Let z ∈ K̄. Define �z
f to be the set of all clusters centred at z. Write �z

f for the set
�z

f � {{z}}. Note that �z
f is nested, that is every cluster s ∈�z

f has at most one child in �z
f .

Definition 3.35. Let z ∈ K̄, and let s ∈�f \ {{z}}. The radius of s with respect to the centre z is

ρz
s = min

r∈s
v(r − z).

The cluster picture centred at z of f is the collection of all clusters in �z
f together with their radii with

respect to z. Finally set

εz
s := v(cf ) +

∑
r∈R

ρz
r∧s.

Remark 3.36. From the definitions above, if s is a cluster centred at z ∈ Ks, then s=R∩ {x ∈ K̄ |
v(x − z) ≥ ρz

s}. But this does not mean z is a centre for s, that is false in general. For example, R is
clearly a cluster centred at any z ∈ Ks, but there are elements of Ks which are not centres of R, for
example any z ∈ Ks with valuation v(z)<minr∈R v(r).

Remark 3.37. Let s ∈�f be a proper cluster with centre z and rational centre w. Then s ∈�z
f , ds = ρz

s,
νs = εz

s, ρs = ρw
s , and εs = εw

s . Furthermore, s ∈�rat
f if and only if s ∈�w

f .

The following result gives a complete description of the Newton polygon of the translation of f by
w ∈ K, knowing the cluster picture centred at w of f .

Lemma 3.38. Let w ∈ K and let fw(x) = f (x + w). Then there is a 1-to-1 correspondence between the
clusters in �w

f and the edges of NP(fw). More explicitly, let s1 ⊂ · · · ⊂ sn =R be the clusters in �w
f and

let s0 = {w} if {w} ∈�w
f or s0 =∅ otherwise. Then NP(fw) has vertices Qi, i = 0, . . . , n, where

• Qn = (|R|, εw
R − |R|ρw

R) = ( deg f , v(cf )),
• Qi = (|si|, εw

si
− |si|ρw

si
) = (|si|, εw

si+1
− |si|ρw

si+1
), for i = 1, . . . , n − 1,

• Q0 = (|s0|, εw
s1

− |s0|ρw
s1

).

and edges Li, i = 1, . . . , n, of slope −ρw
si

linking Qi−1 and Qi.
Furthermore, for any i = 1, . . . , n we have

fw|Li (x
bi ) = u

πv(u)

∏
r∈si\si−1

(x + w−r
πρi

) mod π , u = cf

∏
r∈R\s (w − r),

where ρi = ρw
si

, and bi is the denominator of ρi.
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Proof. Without loss of generality we can assume w = 0 so that fw = f . First note that the coordinates of
Qn are trivial. Now consider a factorisation f = cf · g0 · g1 · · · gs of Theorem 2.2. Recall the polynomials
gj are monic and g0 | x. Let Rj be the set of roots of gj. It follows from the definition of cluster centred
at 0 that

n = s, and si =
i⋃

j=0

Rj for all i = 0, . . . , n.

Therefore s0 =R0 and Ri = si \ si−1 for any i = 1, . . . , n.
Let i = 1, . . . , n − 1. Then the x-coordinate of Qi follows as

|si| =
i∑

j=0

|Rj| =
i∑

j=0

deg gj = deg
i∏

j=0

gj.

The y-coordinate of Qi equals the sum of v(cf ) and the valuation of the constant term of
∏n

j=i+1 gj, so

Qi =
(

|si|, v(cf ) +
n∑

j=i+1

|Rj|v(rj)

)
,

where rj is any root in Rj. But since si =⋃i
j=0 Rj, we have v(rj) = ρ0

sj
. Therefore

v(cf ) +
n∑

j=i+1

|Rj|v(rj) = v(cf ) +
n∑

j=i+1

(|sj| − |sj−1|)ρ0
sj

= ε0
si

− |si|ρ0
si

.

Moreover,

ε0
si

− |si|ρ0
si

= ε0
si+1

− |si|ρ0
si+1

from the easy computation ε0
si

− ε0
si+1

= |si|
(
ρ0
si

− ρ0
si+1

)
. Finally the x-coordinate of Q0 is trivial, while

its y-coordinate equals

v(cf ) +
n∑

j=1

|Rj|v(rj) = v(cf ) +
n∑

j=1

(|sj| − |sj−1|)ρ0
sj

= ε0
s1

− |s0|ρ0
s1

,

that concludes the first part of the proof as |s0| = |R0| = deg g0.
The computation of f |Li follows from Remark 2.7. Indeed, let i = 1, . . . , n, and define c̄i = u/π v(u)

mod π , where u = cf

∏n
j=i+1 gj(0). Then f |Li (x

bi ) = c̄i · gi|NP(gi)(x
bi ), where bi is the denominator of ρ0

si
.

But

gi|NP(gi)(x
bi ) = gi

(
πρ

0
si x
)
/πρ

0
si

deg gi mod π .

Thus the Lemma follows as Ri = si \ si−1.

Notation 3.39. Let s ∈�w
f . Following the notation of Lemma 3.38, let i ∈ {1, . . . , n} be such that s= si.

We will write Lw
s for the edge Li.

4. Description of a regular model

From now on, assume char(K) �= 2 and let C/K be a hyperelliptic curve, that is a geometrically con-
nected, smooth, projective curve, equipped with a separable morphism C → P1

K of degree 2. Let y2 = f (x)
be a Weierstrass equation of C. Suppose deg f > 1. Let g be the genus of C. Accordingly with [14] we
define the cluster picture of C as the cluster picture of f . Analogously, all definitions and notations
attached to f given in Section 3 (e.g. �f , �rat

f , �z
f ) are given for C in the same way (e.g. �C, �rat

C , �z
C).

In particular, we will say that C has an almost rational cluster picture if f does (Definition 3.26).
For the following sections we will use the main definitions, notations and results of [1, §3]. In partic-

ular, we recall (without stating) the definitions of Newton polytopes� and�v attached to a polynomial
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g ∈ K[x, y], v-vertices/edges/faces of �, the denominator δλ of a v-face/edge λ, the slopes sλ1, sλ2 of a
v-edge λ.

Notation 4.1. We denote by�w
v and�w respectively the polytopes�v and� attached to the polynomial

gw(x, y) = y2 − f (x + w). The piecewise affine function v :�w →R determining the bijection�w →�w
v ,

P �→ (P, v(P)), will be denoted by v (with a little abuse of notation). For a v-face F of �w, denote by
vF :�w →R the linear function equal to v on F. Since the projection �w

v →�w is a bijection, given a
vertex/edge/face λ of �w

v we will denote by the same symbol λ the corresponding v-vertex/edge/face of
�w. Since they are mainly used for indexing, this will not cause confusion.

Notation 4.2. Given a v-edge λ of �w, we will denote by rλ the smallest non-negative integer such that
we can fix ni

di
∈Q, for i = 0, . . . , rλ + 1 so that

sλ1 = n0

d0

>
n1

d1

> . . . >
nrλ

drλ

>
nrλ+1

drλ+1

= sλ2, with
∣∣∣∣nini+1

didi+1

∣∣∣∣= 1.

Thanks to Lemma 3.38 we can explicitly relate the Newton polytope �w
v of gw(x, y) and the cluster

picture centred at w of C.

Lemma 4.3. Let w ∈ K. Then there is a 1-to-1 correspondence between the clusters in�w
C and the faces

of the Newton polytope�w
v . More explicitly, let s1 ⊂ · · · ⊂ sn =R be the clusters in �w

C and let s0 = {w}
if {w} ∈�w

C or s0 =∅ otherwise. Then �w
v has vertices T , Qi, i = 0, . . . , n, where

• T = (0, 2, 0),
• Qn = (|R|, 0, v(cf )),
• Qi = (|si|, 0, εw

si+1
− |si|ρw

si+1
) for i = 0, . . . , n − 1,

and edges Li (i = 1, . . . , n), linking Qi−1 and Qi, and Vj (j = 0, . . . , n), linking Qj and T . Furthermore,
(possible choices for) the slopes of the v-edges of �w are:

•

sVn
1 = δVn

−v(cf )+(|R|−2g)ρw
R

2
and sVn

2 = �sVn
1 − 1;

•

sVi
1 = δVi

(
− εw

si
2

+ (⌊ |si|
2

⌋+ 1
)
ρw
si

)
,

sVi
2 = δVi

(
− εw

si+1

2
+ (⌊ |si|

2

⌋+ 1
)
ρw
si+1

) for all i = 1, . . . , n − 1;

•

sV0
1 = δV0

(
εw
s1
2

− ρw
s1

)
and sV0

2 = �sV0
1 − 1;

•

sLi
1 = δLi

(
− εw

si
2

+ (⌊ |si|
2

⌋+ 1
)
ρw
si

)
and sLi

2 = �sLi
1 − 1,

for all i = 1, . . . , n. In particular, as δLi is the denominator of ρw
si

,

rLi =
{

1 if δLiε
w
si

is odd,
0 if δLiε

w
si

is even.

Finally, for suitable choices of basis of the lattices in [1, 3.4, 3.5], we have

gw|Li (x
bi ) = − u

πv(u)

∏
r∈si\si−1

(x + w−r
πρi

) mod π , u = cf

∏
r∈R\si

(w − r),
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for any i = 1, . . . , n, where ρi = ρw
si

, and bi is the denominator of ρi;

gw|Vj (y) = y|V̄j(Z)Z|−1 − u
πv(u) mod π , u = cf

∏
r∈R\sj

(w − r),

for any j = 0, . . . , n, where |V̄j(Z)Z| is the number of integer points P on the v-edge Vj with v(P) ∈Z,
endpoints included.

Proof. The structure of �w
v follows from Lemma 3.38. For the computation of the slopes, we only

need to individuate, for all the v-edges, the two points P0 and P1 of [1, Definition 3.12]. It is easy to see
that the followings are admissible choices.

• For Vi and Li (i = 1, . . . , n), choose P0 = (|si|, 0) and P1 = (⌊ |si|−1
2

⌋
, 1
)
.

• For V0, choose P0 = (0, 2) and P1 = (1, 1);

The second part of the Lemma then follows from the first one. The computations of the reductions also
follows from Lemma 3.38 by choosing the lattices Qi−1 + (bi, 0)Z for gw|Li and Qi + (−|si|/a, 2/a)Z for
gw|Vj , where a = |V̄j(Z)Z| − 1.

Notation 4.4. Let C be as above and let w ∈ K. For every cluster s ∈�w
C denote by Fw

s the v-face of the
Newton polytope �w of gw(x, y) = y2 − f (x + w) that corresponds to s.

Following the notation of Lemma 4.3, let i ∈ {1, . . . , n} be such that s= si. We will write Lw
s , Vw

s , Vw
0

for the v-edges Li, Vi, V0, respectively.

Example 4.5. Let C be the hyperelliptic curve over Q3 given by the equation y2 = f (x) where f (x) =
x11 − 3x6 + 9x5 − 27 is the polynomial of Example 3.20.

Its cluster picture centred at 0 is

1
3 1

5

where the subscripts represent the radii with respect to 0. As we can see, �0
C consists of two clusters: s1

of size 6, radius 1
3

and ε0
s1

= 3, and s2 =R of size 11, radius 1
5

and ε0
s2

= 11
5

. Therefore the picture of�0

broken into v-faces will be

Q0 Q1 Q2

T

L1 L2

V0 V1

V2

where T = (0, 2), Q0 = (0, 0), Q1 = (6, 0), and Q2 = (11, 0). Denoting the values of v on vertices, the
picture becomes

3 1 0

0

To state the theorems which describe the special fibre of the proper flat model C of C we will construct
in Section 5, we need some definitions.
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Definition 4.6. Let F/K be an unramified extension and let�F =�rat
CF

(i.e. set of clusters cut out by discs
with centre in F). For any proper s ∈�F let Gs = StabGK (s) and Ks = (Ks)

Gs . We define the following
quantities:

s ∈�F, proper
radius ρs maxw∈F minr∈s v(r − w)

bs denominator of ρs
εs v(cf ) +∑

r∈R ρr∧s
Ds 1 if bsεs odd, 2 if bsεs even

multiplicity ms (3 − Ds)bs

parity ps 1 if |s| is odd, 2 if |s| is even
slope ss

1
2
(|s|ρs + psρs − εs)

γs 2 if s is even and εs−|s|ρs is odd, 1 otherwise
p0
s 1 if s is minimal and s∩ Ks �=∅, 2 otherwise

s0
s −εs/2 + ρs
γ 0
s 2 if p0

s = 2 and εs is odd, 1 otherwise

Lemma 4.7. Keep the notation of the previous definition and let s ∈�K . Then s ∈�F but the quantities
in Definition 4.6 do not depend on F.

Proof. A cluster s ∈�F belongs to �K if and only if σ (s) = s for any σ ∈ GK . Then the result follows
from Lemma A.1.

Remark 4.8. Lemma 4.3 shed some light on the quantities we defined in Definition 4.6. Let s ∈�F. Fix
a rational centre ws ∈ F of s such that ws ∈ Ks if p0

s = 1. Denoting V = Vws
s , L = Lws

s , and V0 = Vws
0 , we

have:

• bs = δL and rL = 2 − Ds.
• γs = δV , ps/γs = V̄(Z)Z − 1 and sV

1 = γsss. If V is internal, that is s �=R, then sV
2 = γs(ss −

ps
ρs−ρP(s)

2
).

• If s is minimal and so V0 is an edge of Fws
s , then γ 0

s = δV0 , p0
s/γ

0
s = V̄0(Z)Z − 1 and sV0

1 = −γ 0
s s0

s.

Lemma 4.9. Let s ∈�rat
C with rational centre w ∈ K. Then Ds = 1 if and only if vFw

s
((a, 1)) /∈Z, for every

a ∈Z.

Proof. If Ds = 1 then rLw
s
= 1 by Lemma 4.3, and so vFw

s
((a, 1)) /∈Z, for every a ∈Z. Now let c, d ∈Z

such that ρs · c + d = 1/bs. If Ds = 2, then bsεs ∈ 2Z, so

vFw
s
(cbsεs/2, 1) = vFw

s
((cbsεs, 0))

2
= εs − (cbsεs)ρs

2
= dbsεs

2
∈Z,

as required.

Definition 4.10. We say that C is y-regular if p � Ds for every proper s ∈�rat
C , that is if either p �= 2 or

Ds = 1 for any proper s ∈�rat
C .

Remark 4.11. Let F/K be an unramified extension. Then from Lemma 4.7, if CF is y-regular then C is
y-regular.

Lemma 4.12. The hyperelliptic curve C is�v-regular if and only if C is y-regular and f is NP-regular.
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Proof. Let g(x, y) = y2 − f (x). If C is y-regular and f is NP-regular, then C is�v-regular by Lemma 4.3
and Lemma 4.9.

Conversely, if C is �v-regular, then f is NP-regular, and all clusters have rational centre 0 by
Corollary 3.25. It remains to show that if p = 2 then Ds = 1 for every proper s ∈�rat

C . Suppose there exists
s ∈�rat

C such that Ds = 2. Consider the variety X̄F0
s

([1, Definition 3.7]). By Lemma 4.9, the smoothness
of X̄F0

s
implies there exists s′ ∈�rat

C , such that |s| − |s′| = 1. Hence ρs ∈Z from Lemma 3.12. Therefore
F̄0

s(Z) = F̄0
s(Z)Z, by Lemma 4.9. But this gives a contradiction as it forces either g|V0

s′ or g|V0
s

to be a
square.

Definition 4.13. Let s ∈�F be a proper cluster and let c ∈ {0, . . . , bs − 1} such that cρs − 1
bs

∈Z.
Define

s̃= {s′ ∈�F ∪ {∅} | s′ < s and |s′ |
bs

− cεs /∈ 2Z},
where ∅< s if s is minimal and p0

s = 2.
The genus g(s) of a rational cluster s ∈�F is defined as follows:

• If Ds = 1, then g(s) = 0.
• If Ds = 2, then 2g(s) + 1 or 2g(s) + 2 equals

|s| −∑
s′∈�F ,s′<s |s′|
bs

+ |s̃|.

Definition 4.14. Let�min
C be the set of rationally minimal clusters of C and let� ⊆�min

C non-empty. For
each cluster s ∈�, fix a rational centre ws; if possible, choose ws ∈ s. Let W be the set of these rational
centres and define �W =⋃

w∈W �
w
C . For any proper cluster s ∈�W fix a rational centre ws ∈ W. Denote

rs = ws−r
πρs

for r ∈R. Define reductions f W
s (x) ∈ k[x], gs ∈ k[y], and for s ∈� also g0

s ∈ k[y] by

f W
s (xbs ) = u

πv(u)

∏
r∈s\⋃s′<s s′

(x + rs) mod π , u = cf

∏
r∈R\s rs,

gs(y) = yps/γs − u
πv(u) mod π , u = cf

∏
r∈R\s rs,

g0
s(y) = yp0

s/γ
0
s − u

πv(u) mod π , u = cf

∏
r∈R\{ws} rs.

where the union runs through all s′ ∈�W , s′ < s. Finally define the k-schemes

(1) XW
s : {f W

s = 0} ⊂Gm,k;
(2) Xs : {gs = 0} ⊂Gm,k;
(3) X0

s : {g0
s = 0} ⊂Gm,k if s ∈�.

Notation 4.15. Given a scheme X /OK we will denote by Xη its generic fibre X ×Spec OK Spec K, and by
Xs its special fibre X ×Spec OK Spec k.

Notation 4.16. If C = C1 ∪ · · · ∪ Cr is a chain of P1
ks of length r and multiplicities mi ∈Z (meeting

transversely), then ∞ ∈ Ci is identified with 0 ∈ Ci+1, and 0, ∞ ∈ C are respectively 0 ∈ C1 and ∞ ∈ Cr.
Finally, if r = 0, then C = Spec k and 0 = ∞.

Notation 4.17. Let α ∈Z+, a, b ∈Q, with a> b, and fix ni
di

∈Q so that

αa = n0

d0

>
n1

d1

> . . . >
nr

dr

>
nr+1

dr+1

= αb, with
∣∣∣∣nini+1

didi+1

∣∣∣∣= 1,

and r minimal. We write P1(α, a, b) for a chain of P1
ks of length r and multiplicities αd1, . . . , αdr.

Furthermore, we denote by P1(α, a) the chain P1(α, a, �αa − 1/α).
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Theorem 4.18 and Theorem 4.23 will follow from Section 5.

Theorem 4.18. Let C/K be a hyperelliptic curve given by a Weierstrass equation y2 = f (x). Suppose
deg f > 1 and let �, W and �W as in Definition 4.14. Then there exists a proper flat model C/OK (con-
structed in Section 5) of C such that its special fibre Cs/k consists of 1-dimensional schemes given below
in (1), (2), (3), (4), (5), glued along 0-dimensional transversal intersections:

(1) Every proper cluster s ∈�W gives a 1-dimensional closed subscheme �s of multiplicity ms. �s

is not integral if and only if Ds = 2, s̃∩ (�W ∪ {∅}) =∅ and f W
s is a square. When this happens,

if p = 2 then �s is not reduced and (�s)red is irreducible of multiplicity 2 in �s, if p �= 2 then �s

is reducible, namely �s = �+
s ∪ �−

s , with �±
s = P1

k .
(2) Every proper cluster s ∈�W with Ds = 1 gives the closed subscheme XW

s × P1
k , of multiplicity

bs, where XW
s × {0} ⊂ �s.

(3) Every proper cluster s ∈�W such that s �=R, gives the closed subscheme Xs × P1(γs, ss, ss −
ps · ρs−ρP(s)

2
) where Xs × {0} ⊂ �s and Xs × {∞} ⊂ �P(s).

(4) Every cluster s ∈� gives the closed subscheme X0
s × P1(γ 0

s , −s0
s) where X0

s × {0} ⊂ �s (the
chains are open-ended).

(5) Finally, the cluster R gives the closed subscheme XR × P1(γR, sR) where XR × {0} ⊂ �R (the
chains are open-ended).

If �s is reducible, the two points in Xs × {0} (and X0
s × {0} if s ∈�) belong to different irreducible com-

ponents of �s. Similarly, if s �=R and �P(s) is reducible, the two points of Xs × {∞} belong to different
irreducible components of �P(s).

Furthermore, if C has an almost rational cluster picture and is y-regular, then, by choosing� =�min
C ,

the model C is regular with strict normal crossings. In that case, if s is übereven and εs is even, then
�s � Xs × P1

k , otherwise �s is irreducible of genus g(s).

Remark 4.19. Consider the proper flat model C/OK of Theorem 4.18. Via the canonical immersion
Cs ↪→ C, the singular points of C are images of

• singular points of the subscheme given in (1) when Ds = 2 and either p = 2, or s= trat for some
t ∈�C with |t|> |ρt|p and dt >ρt, or s= s1 ∧ s2 for some s1 ∈� and s2 ∈�min

C ��;
• non-reduced points of the subscheme given in (2) when Ds = 1 and either s= trat for some
t ∈�C with |t|> |ρt|p and dt >ρt, or s= s1 ∧ s2 for some s1 ∈� and s2 ∈�min

C ��;
• non-reduced points of subschemes given in (3), (4), (5) (that may exist only if p = 2).

Note that C is not necessarily normal, hence it may have infinitely many singular points.

Definition 4.20. Let s ∈�Knr . We say that

• s is removable if either |s| = 1, or s has a child s′ ∈�Knr of size 2g + 1 (s=R in this case).
• s is contractible if

(1) |s| = 2 and ρs /∈Z, εs odd, ρP(s) ≤ ρs − 1
2
; or

(2) s=R of size 2g + 2, with a child s′ ∈�Knr of size 2g, and ρs /∈Z, v(cf ) odd, ρs′ ≥ ρs + 1
2
;

or
(3) s=R of size 2g + 2, union of its 2 odd proper children s1, s2 ∈�Knr , with v(cf ) odd, ρsi ≥

ρs + 1 for i = 1, 2.

Notation 4.21. Write �nr ⊆�Knr for the subset of non-removable clusters.

Definition 4.22. Choose rational centres ws ∈ Knr for every s ∈�nr, in such a way that ws ∈ s when
p0
s = 1, and σ (ws) = wσ (s) for all σ ∈ Gal(Knr/K). Denote rs = ws−r

πρs
for r ∈R and define gs, g0

s ∈ ks[y]
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as in Definition 4.14, and fs(x) ∈ ks[x], by

x2−p0
s fs(x

bs ) = u
πv(u)

∏
r∈s\⋃s′<s s′

(x + rs) mod π , u = cf

∏
r∈R\s rs,

where the union runs through all s′ ∈�nr, s′ < s. Let Gs = StabGK (s), Ks = (Ks)
Gs , and let ks be the

residue field of Ks. Then fs ∈ ks[x], gs ∈ ks[y], and for s minimal g0
s ∈ ks[y].

Let s0 ∈�nr be minimal and contained in s. Denote s= s̃ \ {{r}< s | r �= ws0}. Note that s does not
depend on the choice of s0. Define f̃s ∈ ks[x] by

f̃s(x) =
∏
s′∈s

(
x − us′ ,s

) · fs(x),

where us′ ,s = ws′ −ws

πρs
mod π if s′ �=∅ and us′ ,s = 0 otherwise.

In the next theorem we describe the special fibre of the minimal regular model of C with normal
crossings. We use Definitions/Notations 3.1, 3.3, 3.4, 3.2, 3.8, 3.9, 3.26, 4.6, 4.10, 4.13, 4.17, 4.20,
4.21, 4.22 in the statement. Note that a full description of the model is developed in Section 5.

Theorem 4.23 (Minimal regular NC model). Let C/K : y2 = f (x) be a hyperelliptic curve of genus ≥ 1.
Suppose CKnr has an almost rational cluster picture and is y-regular. Then the minimal regular model
with normal crossings Cmin/OKnr of C has special fibre Cmin

s /ks described as follows:

(1) Every s ∈�nr gives a 1-dimensional subscheme �s of multiplicity ms. If s is übereven and εs
is even, then �s is the disjoint union of �rs,−

s � P1 and �rs,+
s � P1, otherwise �s is irreducible

of genus g(s) (write �rs,−
s = �rs,+

s = �s in this case). The indices rs,− and rs,+ are the roots of gs

(where rs,− = rs,+ if deg gs = 1).
(2) Every s ∈�nr with Ds = 1 gives open-ended P1s of multiplicity bs from �s indexed by roots of

fs.
(3) Every non-maximal element s ∈�nr gives chains P1(γs, ss, ss − ps · ρs−ρP(s)

2
) from �s to �P(s)

indexed by roots of gs.
(4) Every minimal element s ∈�nr gives open-ended chains P1(γ 0

s , −s0
s) from �s indexed by roots

of g0
s.

(5) The maximal element s ∈�nr gives open-ended chains P1(γs, ss) from �s indexed by roots of
gs.

(6) Finally, blow down all �s where s is a contractible cluster.

In (3) and (5), a chain indexed by r goes from �r
s. In (3) the chain indexed by rs,− goes to �rP(s),−

P(s) and the
chain indexed by rs,+ goes to �rP(s),+

P(s) .
Before blowing down in (6), the components given in (1)–(5) describe the special fibre of a regular

model of CKnr with strict normal crossings.
The Galois group Gk acts naturally, that is for every σ ∈ Gk, σ (�r

s) = �
σ (r)
σ (s), and similarly, on the

chains.
If �s is irreducible, then its function field is isomorphic to ks(x)[y] with the relation yDs = f̃s(x).

Remark 4.24. Note that if �s or �P(s) is reducible then ps/γs = 2.

Example 4.25. Let p be a prime number and let a ∈Zp, b ∈Z×
p such that the polynomial x2 + ax + b

is not a square modulo p. Let C be the hyperelliptic curve over Qp of genus 4 given by the equation
y2 = f (x), where f (x) = (x6 + ap4x3 + bp8)((x − p)3 − p11). In Example 3.32, we described the rational
cluster picture of C and proved that C has an almost rational cluster picture. Recall that �rat

C consists
of 3 clusters t3, t4, R of size 6, 3, 9 respectively such that t3 <R and t4 <R. In particular, note that
�Qnr

p
=�rat

C , and no cluster of �Qnr
p

is removable, so �nr =�rat
C . The minimal elements of �nr are then t3

and t4.
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We want to describe the special fibre of the minimal regular model with normal crossings Cmin of C.
Compute the quantities in Definitions 4.6 and 4.13, and the polynomials fs, gs, g0

s of Definition 4.22, for
any cluster in �nr:

ρs bs εs Ds ms ps ss γs p0
s s0

s γ 0
s g(s) fs(x) gs(y) g0

s(y)

t3
4
3

3 11 1 6 2 − 1
6

2 2 − 25
6

2 0 x2 + āx + b̄ y + 1 y − 1

t4
11
3

3 17 1 6 1 − 7
6

1 2 − 29
6

2 0 x − 1 y − 1 y + 1

R 1 1 9 1 2 1 1
2

1 2 0 1 y − 1

where ā, b̄ are the reductions of a, b modulo p. Then C is also y-regular for any p. Following the steps
of Theorem 4.23 the special fibre of Cmin over F̄p can be described as follows:

(1) The clusters t3, t4, R give 3 irreducible components �t3 , �t4 , �R of genus 0 of multiplicities
6, 6, 2 respectively;

(2) The cluster t3 gives 2 open-ended P1s of multiplicity 3 from �t3 , while t4 gives 1 open-ended P1

of multiplicity 3 from �t4 .
(3) From γt3 st3 = − 1

3
>− 1

2
>−1 = γt3

(
st3 − pt3 · ρt3 −ρR

2

)
, the cluster t3 gives 1 P1 of multiplicity

4 from �t3 to �R. From

γt4 st4 = − 7
6
>− 6

5
>− 5

4
>− 4

3
>− 3

2
>−2>− 5

2
= γt3

(
st4 − pt4 · ρt4 −ρR

2

)
the cluster t4 gives 1 chain of P1s of multiplicities 5, 4, 3, 2, 1 from �t4 to �R.

(4) From −γ 0
t3

s0
t3

= 25
3
> 8> 7 the cluster t3 gives 1 open-ended P1 of multiplicity 2 from �t3 . From

−γ 0
t4

s0
t4

= 29
3
> 19

2
> 9> 8, the cluster t4 gives 1 open-ended chain of P1s of multiplicities 4, 2

from �t4 .
(5) From γRsR = 1

2
> 0>−1, the cluster R gives 1 open-ended P1 of multiplicity 1 from �R.

(6) There is no contractible cluster, so the components we considered in the steps above describe
the special fibre of Cmin over F̄p:

ΓR

Γt4

Γt3

6 2 3 3

4 1 1
2

2
3

4

4

3

5

2

6

Finally, from the Galois action on the roots of the polynomials fs, gs, g0
s, for s ∈�nr, we get that

Gk acts trivially if x2 + āx + b̄ is reducible in Fp, while it swaps the two components of multiplicity 3
intersecting �t3 (coming from (2)) otherwise.

As application of Theorem 4.23 we suppose k is finite of characteristic p> 2 and C is semistable of
genus g ≥ 2. In this setting [14, Theorem 8.5] describes the minimal regular model of C in terms of its
cluster picture �C. We compare that result with the one obtained from Theorem 4.23 (Corollary 4.27).

First note that CKnr is y-regular as p �= 2. From [14, Definition 1.7], if C is semistable then

(1) the extension K(R)/K has ramification degree at most 2;
(2) every proper cluster is Gal(Ks/Knr)-invariant;
(3) every principal cluster has ds ∈Z and νs ∈ 2Z.

It follows from Corollary 3.27 that CKnr has an almost rational cluster picture.
In fact, (1) and (2) imply ρs = ds and εs = νs for any proper cluster s (Remark 3.13). In particular,

�rat
CKnr =�C. We will then say that s ∈�C is non-removable if s is proper and non-removable as rational

cluster in �Knr .
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Lemma 4.26. Suppose k finite and p> 2. Assume C is semistable and let s ∈�C be a non-removable
cluster. Then ds ∈ 1

2
Z and νs ∈Z. Moreover, s is contractible if and only if ds /∈Z or νs /∈ 2Z.

Proof. Let s ∈�C be a non-removable cluster. Since K(R)/K has ramification degree at most 2, then
ds ∈ 1

2
Z.

By Theorem 4.23 the multiplicity of the 1-dimensional scheme �s is ms. Furthermore, �s is an
irreducible component of the special fibre of the minimal regular model of C if and only if s is not con-
tractible. Therefore if s is not contractible, then ms = 1, that is Ds = 2 and bs = 1. It follows that νs ∈ 2Z
and ds ∈Z. Suppose s contractible. Then either ds /∈Z (and νs ∈Z) or s=R of size 2g + 2, with 2 odd
rational children and v(cf ) odd. We want to show that in the latter case, νs is odd. By Lemma 3.18,
dR ∈Z. Then νR = v(cf ) + (2g + 2)dR is odd.

Let s ∈�C be a non-removable cluster. By Lemma 4.26, if s is not contractible, then 2g(s) + 1 or
2g(s) + 2 equals the number of odd children of s. In fact, this also holds when s is contractible since in
that case g(s) = 0 and s has at most 2 odd children.

Corollary 4.27 (Minimal regular model (semistable reduction)). Suppose that k is finite and p> 2. Let
C/K be a semistable hyperelliptic curve of genus g ≥ 2. The minimal regular model Cmin/OKnr of C has
special fibre Cmin

s /ks described as follows:

(1) Every non-removable cluster s ∈�C gives a 1-dimensional subscheme �s. If s is übereven, then
�s is the disjoint union of �rs,−

s � P1 and �rs,+
s � P1, otherwise �s is irreducible of genus g(s)

(write �rs,−
s = �rs,+

s = �s in this case). The indices rs,− and rs,+ are the roots of gs.
(2) Every odd proper cluster s ∈�C, with size |s| ≤ 2g, gives a chain of P1s of length

⌊ ds−dP(s)−1

2

⌋
from �s to �P(s) indexed by the root of gs.

(3) Every even proper cluster s ∈�C, with size |s| ≤ 2g, gives a chain of P1s of length⌊
ds − dP(s) − 1

2

⌋
from �rs,−

s to �rP(s),−
P(s) indexed by rs,− and a chain of P1s of same length from

�rs,+
s to �rP(s),+

P(s) indexed by rs,+.
(4) Finally, blow down all �s where s is a contractible cluster.

All components have multiplicity 1, and the absolute Galois group Gk acts naturally, as in
Theorem 4.23.

Proof. Let s ∈�C be a non-removable cluster. From Lemma 4.26, if s is not contractible, then Ds = 2,
γsss ∈Z and γ 0

s s0
s ∈Z. Suppose s contractible. If |s| = 2 with ds /∈Z (case (1) of Definition 4.20), then

γ 0
s s0

s ∈Z and γs = 1, ss ∈ 1
2
Z \Z and so ss − ds + dP(s) ∈Z, as P(s) can not be contractible. If s=R

(cases (2), (3) of Definition 4.20), then v(cf ) is odd, and so γs = 2 and γsss ∈Z. Therefore (2), (4) and
(5) of Theorem 4.23 do not give any components.

Finally, as γs = 1 and ps
ds−dP(s)

2
∈ 1

2
Z for any proper swith size |s| ≤ 2g (i.e. non-maximal), the length

of P1(γs, ss, ss − ps · ds−dP(s)

2
) is

⌊
γsss − γs

(
ss − ps · ds − dP(s)

2

)
− 1

2

⌋
=
⌊

ps · ds − dP(s)

2
− 1

2

⌋
.

The Corollary then follows from Theorem 4.23.

5. Construction of the model

We are going to construct a proper flat model C/OK of C by glueing models defined in [1, §4]. For this
reason we will assume the reader has familiarity with the definitions and the results presented in that
paper. Let us start this section by describing the strategy we will follow.
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Let�min
C be the set of rationally minimal clusters of C and let� ⊆�min

C non-empty. For any cluster s ∈
� fix a rational centre ws in such a way that �̊ws

C consists of the proper clusters in�ws
C . This requirement

can be satisfied by choosing ws ∈ s whenever possible.3 Let W be the set of all such rational centres and
define �W := ⋃

w∈W �
w
C . For every proper cluster t ∈�W fix a rational centre wt ∈ W (Lemma 3.14).

For every w ∈ W, consider the curve Cw : y2 = f (x + w), isomorphic to C, and construct the (proper flat)
model Cw

�
/OK by [1, §4, Theorem 3.14]. We will define an open subscheme C̊w

�
of Cw

�
and we will show

that glueing the schemes C̊w
�
, to varying of w ∈ W, along common opens, gives a proper flat model C/OK

of C. Furthermore, if � =�min
C , and C is y-regular and has an almost rational cluster picture, then C̊w

�
is

an open regular subscheme of Cw
�

and therefore C is also regular.

5.1. Charts

Let� = {s1 . . . , sm} ⊆�min
C be a non-empty set of rationally minimal clusters and let W = {w1, . . . , wm}

be a set of corresponding rational centres, such that �̊wh
C consists of the proper clusters of �wh

C , for
any h = 1, . . . , m. Define �W := ⋃m

h=1 �
wh
C . For any h, l = 1, . . . , m, h �= l, define whl := wh − wl, and

write whl = uhlπ
ρhl , where uhl ∈ O×

K and ρhl ∈Z. Note that ρhl = ρsh∧sl = ρlh, by Lemma 3.18. Set uhh := 0.
Finally, for any h, l = 1, . . . , m, denote by uhl ∈ k the reduction of uhl modulo π .

Definition 5.1. Let h = 1, . . . , m and let t ∈�wh
C be a proper cluster. Recall the matrices and cones

defined in [1, §4]. We say that a matrix M is associated to t if either

(i) M = ML,i, with L = Lwh
t and i = 0, . . . , rL or

(ii) M = MV ,j, with V = Vwh
t and i = 0, . . . , rV or

(iii) M = MV0,j, with V0 = Vwh
0 and j = 0, . . . , rV0 , if t= sh.

For a matrix M associated to t we denote by δM and σM respectively

(i) the denominator δL
wh
t

and the cone σL
wh
t ,i,i+1 if M = ML

wh
t ,i,

(ii) the denominator δV
wh
t

and the cone σV
wh
t ,j,j+1 if M = MV

wh
t ,j,

(iii) the denominator δV
wh
0

and the cone σV
wh
0 ,j,j+1 if M = MV

wh
0 ,j.

Finally, define XM = Spec OK[σ ∨
M ∩Z3] and write

Xh
�

=
⋃

XM,

for the toric scheme defined in [1, §4.2] from the Newton polytope �wh
v associated to the curve Cwh .

Therefore, by Lemma 4.3, the union runs through every proper cluster t ∈�wh
C and all matrices M

associated to t.

The following Lemma describes all possible matrices associated to t.

Lemma 5.2. Let t ∈�wh
C be a proper cluster. Consider the v-face Fwh

t . Let P0, P1 ∈Z2 and ni, di, ki ∈Z
be as in [1, §4] and define

δ := δM, γi := n0di − nid0

δd0

and Ti :=
⎛
⎝ 1

δ
−ki ki+1

0 δ 0
0 0 δ

⎞
⎠ ,

for each matrix M associated to t.

3 This is the assumption used in Theorem 4.18.
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• Let c be the unique element of {0, . . . , bt − 1} such that 1
bt

− ρt · c = d ∈Z. For L = Lwh
t and

for all i = 0, . . . , rL, choose ki = cni + dδdi(�t/2 + 1); then ML,i and M−1
L,i are respectively⎛

⎜⎝
δ −cδdi

(
εt

2
+ γi

)
cδdi+1

(
εt

2
+ γi+1

)
0 di −di+1

−δρt −dδdi

(
εt

2
+ γi

)
dδdi+1

(
εt

2
+ γi+1

)
⎞
⎟⎠ , Ti ·

⎛
⎜⎝

1
⌊ |t|

2

⌋+ 1 0

di+1ρt
di+1εt

2
+ γi+1 di+1

diρt
diεt

2
+ γi di

⎞
⎟⎠ ,

where P0 = (|t|, 0), P1 = (�|t| − 1/2, 1) and δ = δL = bt.
• If t is odd, then for V = Vwh

t and for all j = 0, . . . , rV , the matrices MV ,j and M−1
V ,j are respectively⎛

⎜⎝
−|t| − |t|+1

2
dj

|t|+1
2

dj+1

2 dj −dj+1

−εt + |t|ρt nj −nj+1

⎞
⎟⎠ , Tj ·

⎛
⎜⎝

1 |t|+1
2

0

dj+1ρt − 2 · γj+1
dj+1εt

2
− |t| · γj+1 dj+1

djρt − 2 · γj
djεt

2
− |t| · γj dj

⎞
⎟⎠ ,

where P0 = (|t|, 0), P1 = (�|t| − 1/2, 1), δ = δV = 1 and kj = kj+1 = 0.
• If t is even, then for V = Vwh

t and for all j = 0, . . . , rV , the matrices MV ,j and M−1
V ,j are

respectively ⎛
⎜⎝

−δ |t|
2

− ( |t|
2

+ 1
)

dj − kj
|t|
2

( |t|
2

+ 1
)

dj+1 + kj+1
|t|
2

δ dj + kj −dj+1 − kj+1

−δ εt−|t|ρt
2

nj

δ
− kj

εt−|t|ρt
2

− nj+1

δ
+ kj+1

εt−|t|ρt
2

⎞
⎟⎠ ,

Tj ·
⎛
⎜⎝

1 |t|
2

+ 1 0

dj+1ρt − γj+1
dj+1εt

2
− |t|

2
γj+1 dj+1

djρt − γj
djεt

2
− |t|

2
γj dj

⎞
⎟⎠ ,

where P0 = (|t|, 0), P1 = (�|t| − 1/2, 1) and δ = δV .
• If f (wh) = 0, then for V0 = Vwh

0 and for all j = 0, . . . , rV0 , the matrices MV0,j and M−1
V0,j are

respectively⎛
⎜⎝

1 dj −dj+1

−2 −dj dj+1

εsh − ρsh nj −nj+1

⎞
⎟⎠ , Tj ·

⎛
⎜⎜⎝

−1 −1 0

dj+1ρsh + 2 · γj+1
dj+1εsh

2
+ γj+1 dj+1

djρsh + 2 · γj
djεsh

2
+ γj dj

⎞
⎟⎟⎠ ,

where P0 = (0, 2), P1 = (1, 1), δ= δV0 = 1 and kj = kj+1 = 0.
• If f (wh) �= 0, then for V0 = Vwh

0 and for all j = 0, . . . , rV0 , the matrices MV0,j and M−1
V0,j are

respectively⎛
⎜⎝

0 dj −dj+1

−δ −dj − kj dj+1 + kj+1

δ
εsh

2

nj

δ
+ kj

εsh
2

− nj+1

δ
− kj+1

εsh
2

⎞
⎟⎠ , Tj ·

⎛
⎜⎜⎝

−1 −1 0

dj+1ρsh + γj+1
dj+1εsh

2
dj+1

djρsh + γj
djεsh

2
dj

⎞
⎟⎟⎠ ,

where P0 = (0, 2), P1 = (1, 1) and δ = δV0 .

Proof. We follow the notation of [1, §4]. Choose P0, P1 ∈Z2 as in the proof of Lemma 4.3.
First consider the edge Lwh

t of Fwh
t . From Lemma 4.3 we have

ν = (1, 0, −ρt) and (wx, wy) = (− �|t|/2 − 1, 1) .

Then ML
wh
t ,i and M−1

L
wh
t ,i

follow from [1, §4.3] as ki ≡ ni(δρt)−1 mod δ and

n0

δd0

= 1

δ
s

L
wh
t

1 = vF
wh
t

(P1) − vF
wh
t

(P0) = −εt
2

+ (�|t|/2 + 1) ρt
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Now assume t even and consider the edge Vwh
t of Fwh

t . Since t is even,

Vwh
t (Z) =

{
(|t|, 0),

( |t|
2

, 1

)
, (0, 2)

}
, ν =

(
−|t|

2
, 1, −εt

2
+ |t|

2
ρt

)

and (wx, wy) = (−|t|
2

− 1, 1
)

as above. Then MV
wh
t ,j and M−1

V
wh
t ,j

follow again from [1, (4.3)] as

n0

δd0

= 1

δ
s

V
wh
t

1 = vF
wh
t

(P1) − vF
wh
t

(P0) = −εt
2

+
( |t|

2
+ 1

)
ρt.

Similar arguments and computations yield the remaining matrices.

Remark 5.3. From the Lemma above one can explicitly construct the charts of the model Cwh
� . The

description of its special fibre Cwh
�,s which follows from [1, Theorem 3.14], matches the one given in

Theorem 4.18 in the case W = {wh}.

5.2. Open subschemes

Let h = 1, . . . , m and let t ∈�wh
C be a proper cluster. Let M be a matrix associated to t. Write

M =
⎛
⎜⎝

m11 m12 m13

m21 m22 m23

m31 m32 m33

⎞
⎟⎠ and M−1 =

⎛
⎜⎝

m̃11 m̃12 m̃13

m̃21 m̃22 m̃23

m̃31 m̃32 m̃33

⎞
⎟⎠

Recall that XM = Spec R, where

R = OK[X±1, Y , Z]

(π − Xm̃13 Ym̃23 Zm̃33)
↪→ OK[X±1, Y±1, Z±1]

(π − Xm̃13 Ym̃23 Zm̃33)

M� K
[
x±1, y±1

]
,

via the change of variable⎛
⎝X

Y
Z

⎞
⎠=

⎛
⎝xm11 ym21πm31

xm12 ym22πm32

xm13 ym23πm33

⎞
⎠=

⎛
⎝x

y
z

⎞
⎠ • M,

⎛
⎝x

y
π

⎞
⎠=

⎛
⎝Xm̃11 Ym̃21 Zm̃31

Xm̃12 Ym̃22 Zm̃32

Xm̃13 Ym̃23 Zm̃33

⎞
⎠=

⎛
⎝X

Y
Z

⎞
⎠ • M−1.

Let l �= h. Set

Thl
M(X, Y , Z) :=

{
1 + uhlXρhlm̃13−m̃11 Yρhlm̃23−m̃21 Zρhlm̃33−m̃31 if t⊇ sh ∧ sl,

u−1
hl Xm̃11−ρhlm̃13 Ym̃21−ρhlm̃23 Zm̃31−ρhlm̃33 + 1 if t �⊇ sh ∧ sl,

element of R[Y−1, Z−1]. Note that

if t⊇ sh ∧ sl then Thl
M(X, Y , Z)

M�−→ x + whl

x
,

if t �⊇ sh ∧ sl then Thl
M(X, Y , Z)

M�−→ x + whl

whl

.

The following two lemmas prove that Thl
M(X, Y , Z) ∈ R. Therefore, up to units, Thl

M(X, Y , Z) can be seen
as the polynomial in OK[X±1, Y , Z] satisfying

x − whl
M= XnX YnY ZnZ Thl

M(X, Y , Z),

with nX , nY , nZ ∈Z, such that ordY(Thl
M) = ordZ(Thl

M) = 0.

Lemma 5.4. Let h, l = 1, . . . , m, with h �= l, let t ∈�wh
C be such that t⊇ sh ∧ sl and let M be a matrix

associated to t. Then

ρhlm̃23 − m̃21 ≥ ρtm̃23 − m̃21 ≥ 0 and ρhlm̃33 − m̃31 ≥ ρtm̃33 − m̃31 ≥ 0.
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Furthermore if M = ML
wh
t ,i then

• ρhlm̃23 − m̃21 = 0 if and only if i = rL
wh
t

or t= sh ∧ sl,
• ρhlm̃33 − m̃31 = 0 if and only if t= sh ∧ sl;

if M = MV
wh
t ,j then

• ρhlm̃23 − m̃21 > 0,
• ρhlm̃33 − m̃31 = 0 if and only if t= sh ∧ sl and j = 0.

Proof. This result follows from Lemma 5.2, which gives a complete description of M and M−1. We
show it when t is even and M = MV

wh
t ,j, and leave the other cases for the reader. First of all recall that

ρhl = ρsh∧sl by Lemma 3.18. Then

ρhlm̃23 − m̃21 = δ
(
dj+1 (ρhl − ρt)+ γj+1

)
> δdj+1

(
ρsh∧sl − ρt

)≥ 0,

where γj = n0dj−njd0

δd0
and δ= δM. Similarly,

ρhlm̃33 − m̃31 = δ
(
dj (ρhl − ρt)+ γj

)≥ δdj

(
ρsh∧sl − ρt

)≥ 0.

In particular ρhlm̃33 − m̃31 = 0 if and only if t= sh ∧ sl and j = 0.

Lemma 5.5. Let t ∈�wh
C be a proper cluster such that t �⊇ sh ∧ sl, and let M be a matrix associated to

t. Then

m̃21 − ρhlm̃23 ≥ 0 and m̃31 − ρhlm̃33 > 0.

Furthermore, m̃21 − ρhlm̃23 = 0 if and only if

• M = ML
wh
t ,i and i = rL

wh
t

, or
• t< sh ∧ sl, M = MV

wh
t ,j, and j = rV

wh
t

.

Proof. This result follows again from Lemma 5.2. As in the previous lemma, we show it when t is
even and M = MV

wh
t ,j, and leave the other cases for the reader.

Let r = rV
wh
t

. Note that t �=R. Set δ = δM and γj = n0dj−njd0

δd0
. Then

m̃31 − ρhlm̃33 = δ
(
dj (ρt − ρhl)− γj

)
> δdj

(
ρP(t) − ρsh∧sl

)≥ 0.

since dj > 0 and γj/dj < γr+1/dr+1 = ρt − ρP(t). Similarly,

m̃21 − ρhlm̃23 = δ
(
dj+1 (ρt − ρhl)− γj+1

)≥ δdj+1

(
ρP(t) − ρsh∧sl

)≥ 0,

In particular m̃21 − ρhlm̃23 = 0 if and only if t< sh ∧ sl and j = r.

Let

Th
M(X, Y , Z) :=

∏
l �=h

Thl
M(X, Y , Z),

and define

Vh
M := Spec R[Th

M(X, Y , Z)−1] ⊂ XM, and Xh
�

:=
⋃
t,M

Vh
M ⊆ Xh

�
,

where t runs through all proper clusters in �wh
C and M runs through all matrices associated to t. We can

then define the subscheme

C̊wh
� := Cwh

� ∩ Xh
�

⊂ Xh
�

,

where Cwh
� /OK is the model of the hyperelliptic curve Cwh :y2 = f (x + wh) described in [1, Theorem 3.14]

(see [1, §4] for the construction). Explicitly, let gh(x, y) := y2 − f (x + wh) and defineF h
M ∈ OK[X±1, Y , Z]
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such that ordY(F h
M) = ordZ(F h

M) = 0, with all non-zero coefficients in O×
K , satisfying

y2 − f (x + wh)
M= YnY ,h ZnZ,hF h

M(X, Y , Z),

for unique nY ,h, nZ,h ∈Z. Consider the subscheme

Uh
M := Spec

R
[
Th

M(X, Y , Z)−1
]

(F h
M(X, Y , Z)

) ⊂ Vh
M.

Then

C̊wh
� =

⋃
t,M

Uh
M ⊂ Xh

�
,

where t runs through all proper clusters in�wh
C and M runs through all matrices associated to t, as before.

5.3. Glueing

Let h, l = 1, . . . , m, with h �= l. Consider the isomorphism

φ:K

[
x±1, y±1,

∏
o�=l

(x + wlo)
−1

]
�−→ K

[
x±1, y±1,

∏
o�=h

(x + who)−1

]
(1)

sending x �→ x + whl, y �→ y. If t⊇ sh ∧ sl and M is a matrix associated to t, then φ gives a map

R[Y−1, Z−1, Tl
M(X, Y , Z)−1]

M−1◦φ◦M−−−−→ R[Y−1, Z−1, Th
M(X, Y , Z)−1],

which sends

F(X, Y , Z) �→ F(X · Thl
M(X, Y , Z)m11 , Y · Thl

M(X, Y , Z)m12 , Z · Thl
M(X, Y , Z)m13 ).

Hence it induces the isomorphisms

R[Tl
M(X, Y , Z)−1]

�−→ R[Th
M(X, Y , Z)−1], Vh

M

�−→ Vl
M. (2)

Via these maps we see that gh(x, y) = YnY ,h ZnZ,hF h
M(X, Y , Z) also equals

YnY ,l · ZnZ,l · (Thl
M)nY ,lm12+nZ,lm13F l

M

(
X · (Thl

M)m11 , Y · (Thl
M)m12 , Z · (Thl

M)m13
)

,

where Thl
M = Thl

M(X, Y , Z). Since neither Y nor Z divide Thl
M(X, Y , Z), we have nY ,h = nY ,l, nZ,h = nZ,l and

F h
M(X, Y , Z) = (Thl

M)nY ,lm12+nZ,lm13F l
M

(
X (Thl

M)m11 , Y (Thl
M)m12 , Z (Thl

M)m13
)

.

Hence (2) induces the isomorphisms

R
[
Tl

M(X, Y , Z)−1
]

(F l
M(X, Y , Z)

) �−→ R
[
Th

M(X, Y , Z)−1
]

(F h
M(X, Y , Z)

) , Uh
M

�−→ Ul
M. (3)

Define the subschemes

Vhl :=
⋃
tl ,Ml

Vh
Ml

⊆ Xh
�

, Uhl := Vhl ∩ Cwh
� ⊆ C̊wh

� ,

where tl runs through all proper clusters in �wh
C ∩�wl

C (i.e. tl ∈�W , sh ∧ sl ⊆ tl) and Ml runs through all
matrices associated to tl. From (1), (2) and (3) we have isomorphisms of schemes

Vhl �−→ Vlh, Uhl �−→ Ulh. (4)

Now, Uhl ⊂ Vhl are open subschemes respectively of C̊wh
� ⊂ Xh

�
for any l �= h. Glueing the schemes C̊wh

� ⊂
Xh
�
, to varying of h = 1, . . . , m, respectively along the opens Uhl ⊂ Vhl via (4) gives the schemes C ⊂X .

We will show that C/OK is a proper flat4 model of C.
4 Note that the flatness of C is trivial since it is a local property.
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5.4. Generic fibre

We start studying the generic fibre Cη of C. Since it is the glueing of all C̊wh
�,η through the glueing maps

Uhl
η

−→ Ulh
η

induced by (4), we start focusing on C̊wh
�,η for h = 1, . . . , m. In particular, as C̊wh

� is an open subscheme of
Cwh
� , we study Cwh

�,η � C̊wh
�,η = Cwh � C̊wh

�,η.

Lemma 5.6. For any h = 1, . . . , m,

Cwh � C̊wh
�,η = Spec

K[x, y](
gh(x, y),

∏
o�=h (x + who)

) .

Proof. For every choice of a proper cluster t ∈�wh
C , and M associated to t, let

PM :=
(
Cwh
�,η � C̊wh

�,η

)
∩ XM = Spec

R ⊗OK K(F h
M(X, Y , Z), Th

M(X, Y , Z)
) .

To study PM we are going to use Lemma 5.2 and the definition of Th
M(X, Y , Z).

Suppose first t �=R and M = MV
wh
t ,j. Then m̃23, m̃33 > 0, so

PM = Spec
R[Y−1, Z−1](F h

M(X, Y , Z), Th
M(X, Y , Z)

) M� Spec
K[x±1, y±1](

gh(x, y),
∏

o (x + who)
) , (5)

where the product runs over all o �= h. Now let t=R and M = MV
wh
t ,j. If j �= rV

wh
R

, then PM is as in the
previous case (since m̃23, m̃33 > 0). If j = rV

wh
R

, then m̃33 > 0, m̃23 = 0, but ρhlm̃23 − m̃21 > 0 by Lemma 5.4.
So from the definition of Thl

M(X, Y , Z) we have once more the equality (5). Similarly, if t= sh and M =
MV

wh
0 ,j, then m̃33 > 0, and m̃21 − ρhlm̃23 > 0 by Lemma 5.5. Hence we have (5) again.
It remains to study PM when M = ML

wh
t ,i. If i �= rL

wh
t

, then m̃23, m̃33 > 0 and so PM is as in (5). Let
i = rL

wh
t

. Then m̃33 > 0 but both m̃23 and ρhlm̃23 − m̃21 equal 0. Hence m̃23 = m̃21 = 0, which also implies
m21 = m23 = 0. Therefore M defines an isomorphism R[Z−1] � K[x±1, y], which induces

PM = Spec
R[Z−1](F h

M(X, Y , Z), Th
M(X, Y , Z)

) M� Spec
K[x±1, y](

gh(x, y),
∏

o�=h (x + who)
) .

This concludes the proof.

Regarding Cwh
� as a model of C via the natural isomorphism C

∼−→ Cwh , we get

C � C̊wh
�,η = Spec

K[x, y](
y2 − f (x),

∏
o�=h (x − wo)

) .

Thus the generic fibre of C is isomorphic to C.

5.5. Special fibre

We now study the structure of the special fibre Cs of C. As for the generic fibre, we consider

Cwh
�,s � C̊wh

�,s,

for any h = 1, . . . , m. For every choice of a proper cluster t ∈�wh
C , and M associated to t, let

SM :=
(
Cwh
�,s � C̊wh

�,s

)
∩ XM = Spec

OK[X±1, Y , Z](F h
M(X, Y , Z), Th

M(X, Y , Z), Ym̃23 Zm̃33 , π
) .

Lemma 5.7. Let M = ML,i for L = Lwh
t . Let l �= h. If t= sl ∧ sh, then Thl

M(X, Y , Z) = X−1(X + uhl),
otherwise
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(i) Thl
M(X, Y , 0) = 1 for i = 0, . . . , rL;

(ii) Thl
M(X, 0, Z) = 1 for i = 0, . . . , rL − 1.

Proof. Fix l �= h. If t �⊇ sl ∧ sh, then by Lemma 5.5, we have m̃21 − ρhlm̃23 ≥ 0 and m̃31 − ρhlm̃33 > 0.
Moreover, if m̃21 − ρhlm̃23 = 0, then i = rL. Therefore the equalities in (i) and (ii) follow directly from
the definition of Thl

M .
On the other hand, if t� sl ∧ sh, then by Lemma 5.4, we have ρhlm̃23 − m̃21 ≥ 0 and ρhlm̃33 − m̃31 > 0.

Moreover, if ρhlm̃23 − m̃21 = 0, then i = rL. Therefore we have (i) and (ii) again.
Finally, assume t= sl ∧ sh. Since ρt = ρhl ∈Z, then ρhlm̃13 − m̃11 = −1. Hence

Thl
M(X, Y , Z) = 1 + uhlX

−1 = X−1 (X + uhl) ,

by Lemma 5.4.

Lemma 5.8. Suppose M = ML
wh
t ,i. Then

SM = Spec
OK[X±1, Y , Z]

(F h
M(X, Y , Z),

∏
l (X + uhl) , Ym̃23 Zm̃33 , π )

⊂ Cwh
� ,

where the product runs over all l �= h such that t= sl ∧ sh.

Proof. Lemma 5.2 shows that m̃33 is always different from 0, while m̃23 = 0 if and only if i = rL
wh
t

.
Thus the result follows from Lemma 5.7.

Lemma 5.9. Let fh(x) = f (x + wh) and l �= h. Let Lhl = Lwh
sh∧sl

and let tl ∈�wl
C , tl < sh ∧ sl. Then ulh is a

multiple root of fh|Lhl of order |tl|.
Conversely, if � = {s1, . . . , sm} =�min

C , C has an almost rational cluster picture and ᾱ ∈ k̄ is a
multiple root of fh|L for some edge L of NP(fh), then ᾱ= ulh and L = Lwh

sh∧sl
for some l �= h.

Proof. For any proper cluster s ∈�f , let λs = minr∈s v(r − wh). Let s ∈�wl
C , with sl ⊆ s� sh ∧ sl. Then

wh is not rational centre of s, and for every root r ∈ s, one has

v(r − wh) = v(r − wl + wl − wh) = min{v(r − wl), ρhl} = ρhl,

as v(r − wl) ≥ ρs >ρhl. Therefore λs = ρhl ∈Z. In particular, |λs|p ≤ 1. Furthermore,

ds ≥ ρs >λs = ρhl and
r − wh

πρhl
≡ wlh

πρhl
mod π ,

and so Theorem 3.24(i) implies that ulh = wlh
πρhl

mod π is a multiple root of fh|Lhl , where Lhl = Lwh
sh∧sl

.
Let tl ∈�wl

C , tl < sh ∧ sl. Since sl ⊆ tl < sh ∧ sl we have

tl =
{
r ∈R | ulh = r−wh

πρhl
mod π

}
,

as v(r − wl)>ρhl if and only if ulh = r−wh
πρhl

mod π . Thus the multiplicity of ulh is |tl| by Theorem 3.24(ii).
Now let ᾱ be a multiple root of fh|L for some edge L of NP(fh) and let s ∈�f associated to ᾱ by

Theorem 3.24(iii). We want to prove that if C has an almost rational cluster picture and � =�min
C , then

there exists l �= h so that ᾱ= ulh. Note first wh is not a rational centre of s. Indeed, if wh is a rational
centre of s, then

|s|> |λs|p = |ρs|p, ds >λs = ρs,

which contradicts the fact that C has an almost rational cluster picture. As {s1, . . . , sm} =�min
C , we must

have that wl is a rational centre of s, for some l �= h. Then sl ⊆ s� sh ∧ sl. Since ᾱ= r−wh
πλs

mod π for any
r ∈ s, from above we have ᾱ = ulh. Finally, L is the edge of NP(fh) of slope −λs = −ρhl. Thus L = Lwh

sh∧sl
.

It remains to compute SM when M = MV ,j, where V = Vwh
t or V = Vwh

0 .
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Lemma 5.10. Let M = MV ,j for V = Vwh
t , or V = Vwh

0 if t= sh. For any l �= h we have

(i) Thl
M(X, Y , 0) = 1 except when t= sl ∧ sh and j = 0;

(ii) Thl
M(X, 0, Z) = 1 except when t< sl ∧ sh and j = rV .

Proof. The Lemma immediately follows from Lemmas 5.4 and 5.5.

Lemma 5.11. Let M = MV ,j with V = Vwh
t , or V = Vwh

0 if t= sh. Then SM =∅.

Proof. For any l �= h, we want to prove that

Shl
M := {Thl

M(X, Y , Z) = Ym̃23 Zm̃33 = 0} =∅. (6)

Lemma 5.2 shows that m̃33 is always different from 0 and that m̃23 = 0 if and only if j = rV , and V =
Vwh

R or V = Vwh
0 . Assume that if t= sl ∧ sh then j �= 0 and that if t< sl ∧ sh then j �= rV . Lemma 5.10

implies (6).
If t= sl ∧ sh and j = 0, then ρhlm̃33 − m̃31 = 0 but ρhlm̃23 − m̃21 > 0. So

Shl
M = {Thl

M(X, Y , Z) = Zm̃33 = 0} ⊂ Spec R[Y−1].

Similarly, if t< sl ∧ sh and j = rV , then m̃21 − ρhlm̃23 = 0, however m̃31 − ρhlm̃33 > 0. Then

Shl
M = {Thl

M(X, Y , Z) = Ym̃23 = 0} ⊂ Spec R[Z−1].

In both cases, Shl
M ⊆ XF as sets, where F = Fwh

sl∧sh
([1, Definition 3.7]). Let L = Lwh

sl∧sh
, and let fh(x) =

f (x + wh) and gh(x, y) = y2 − fh(x). By Lemmas 5.8 and 5.9, one has

Shl
M ⊆ XF ∩ SML,0 =∅,

as F h
ML,0

(X, Y , 0) mod π equals Yb − Xafh|L(X), for some a ∈Z, b = 1, 2 (see Lemma 5.17 for more
details, whose proof is independent of this result). Thus if V = Vwh

t and M = MV ,j, then SM =∅.

5.6. Components

Now that we have compared the special fibre of C with those of the models Cwh
� , let us describe

closed subschemes that form it. We will first study closed subschemes forming C̊wh
�,s and then how they

glue in Cs.
Let fh(x) = f (x + wh) and gh(x, y) = y2 − fh(x). According to [1, Theorem 3.14] the special fibre of Cwh

�

is formed by:

• Chains of P1
ks coming from v-edges of �wh .

• 1-dimensional subschemes coming from v-faces of �wh .

More precisely, each v-edge E gives a scheme XE × PE, where PE is a chain of P1
ks and XE ⊂Gm,k is given

by gh|E = 0. The multiplicities and the length of PE can be completely described by the slopes of E. On
the other hand, each v-face F gives a proper scheme X̄F containing an open subscheme XF ⊆G2

m,k given
by gh|F = 0. How the previous schemes intersect to form Cwh

�,s is described by [1, Theorem 3.14]. The
reader is pointed to [1] for more details.

Definition 5.12. Let t ∈�W be a proper cluster. For any rational centre w of t, let rt,w = w−r
πρt

,
ut,w = cf

∏
r∈R\t rt,w and u0

sh ,wh
= cf

∏
r∈R\{wh} rsh ,wh . Define f W

t,w, gt,w ∈ k[X], and g0
sh ,wh

∈ k[X] for any h =
1, . . . , m, as follows:
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(i) Let u = ut,w. Define f W
t,w by

f W
t,w(Xbt ) = u

πv(u)

∏
r∈t\⋃s<t s

(X + rt,w) mod π ,

where the union runs through all children s of t in �W . If � =�min
C denote f W

t,w by ft,w.
(ii) Let u = ut,w. Define gt,w(X) := Xpt/γt − u

πv(u) mod π .
(iii) Let u = u0

sh ,wh
. Define g0

sh ,wh
(X) := Xp0

sh
/γ 0

sh − u
πv(u) mod π .

Note that the polynomials defined in Definition 5.12 agree with the ones in Definition 4.14 when
w = wt.

Lemma 5.13. Let s, t ∈�rat
C , with s� t. Let w′, w be rational centres of s and t respectively, and define

uw
′
w = w

′−w
πρt

mod π . Then uw
′
w does not depend on the choice of a rational centre w′ of s.

Proof. Suppose that w1, w2 are two rational centres of s. Then v(w1 − w2) ≥ ρs >ρt, and so the
Lemma follows.

Remark 5.14. Let t ∈�wh
C . Let l = 1, . . . , m, l �= h. Then t= sh ∧ sl if and only if it has a child s ∈

�
wl
C \�wh

C . In particular, if this happens, Lemma 5.13 shows that ulh = w−wh
πρt

mod π for any rational
centre w of s.

Definition 5.15. Let t ∈�wh
C be a proper cluster. Define t̂W := {s ∈�W ∪ {∅} | s< t}, where ∅< t only

if t has no child in �W . If ∅< t then we will say that wh is the rational centre of ∅.
Define Gt,wh := Gm,k \⋃l{ulh}, where the union runs through all l �= h such that sl ∧ sh = t. Note that

Remark 5.14 shows that Gt,wh =A1
k \⋃s∈t̂W {uwswh}, where uwswh = ws−wh

πρt
mod π , and ws is any rational

centre of s.

Let t ∈�wh
C be a proper cluster. Let V = Vwh

t and M = MV ,j. In Section 5.5 we showed the special fibre
of Uh

M equals XM ∩ Cwh
�,s. Therefore the components of C̊wh

�,s coming from V are the same of those of Cwh
�,s

given by the same v-edge. Therefore V gives a closed subscheme XV × PV of C̊wh
�,s, where PV is a chain

of P1
ks and XV : {gh|V = 0} over Gm,k. Lemma 4.3 implies that gh|V = gt,wh .

Let V0 = Vwh
0 and M = MV0,j. Similarly to above, XM ∩ C̊wh

�,s = XM ∩ Cwh
�,s and so V0 gives rise to a closed

subscheme XV0 × PV0 of C̊wh
�,s, where PV0 is a chain of P1

ks and XV0 : {gh|V0 = 0} over Gm,k. Note that gh|V0 =
g0
sh ,wh

.
Let t ∈�wh

C be a proper cluster. Let L = Lwh
t and M = ML,i. By Lemma 5.8, the v-edge L gives a

subscheme XW
L × PL of C̊wh

�,s, where PL is a chain of P1
ks of length rL and XW

L : {gh|L = 0} in Gt,wh . Note
that rL = 0 or 1 by Lemma 4.3 and rL = 1 if and only if Dt = 1. Let th ∈�wh

C be the unique child of t with
rational centre wh or set th =∅ if t has no such child. We will show that

gh|L(X) = −
∏

s∈t̂W , s �=th

(X + uwswh )|s| · f W
t,wh

(X). (7)

where uwswh = ws−wh
πρt

mod π , and ws is any rational centre of s.
Suppose t �= sh ∧ sl for any l �= h. Equivalently, all children of t in �W (at most one) belong to �wh

C .
Then Lemma 4.3 shows that gh|L = −f W

t,wh
. Suppose now that t= sh ∧ sl for some l �= h. In this case

bt = 1. We have

gh|L(X)∏
s∈t̂W ,s �=th

(X + uwswh )|s| =
( − u

πv(u)

∏
r∈t\th

(X + rt,wh )∏
s∈t̂W ,s �=th

∏
r∈s (X + rt,wh )

mod π

)
= −f W

t,wh
(X),
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where rt,wh and u = ut,wh are as in Definition 5.12. Indeed, uwswh = rt,wh mod π for every r ∈ s as v(ws −
r) ≥ ρs >ρt, and since bt = 1, Lemma 4.3 implies that

gh|L(x) = − u
πv(u)

∏
r∈t\th

(x + rt,wh ) mod π .

In particular, Remark 5.13 and Lemma 5.9 shows that (X + uhl) � f W
t,wh

(X), for any l �= h such that sl ∧
sh = t. Moreover, X � f W

t,wh
(X) by definition. Therefore the scheme XW

L is equal to the closed subscheme
XW

t,wh
⊂A1

k given by f W
t,wh

= 0.
Let t ∈�W be a proper cluster. For any h = 1, . . . , m such that sh ⊆ t, let X̄F

wh
t

be the 1-dimensional
closed subscheme of Cwh

�,s given by Fwh
t . Define

X̊F
wh
t

:= X̄F
wh
t

∩ C̊wh
� .

Denote by �t the 1-dimensional closed subscheme of Cs, result of the glueing of the subschemes X̊F
wh
t

of C̊wh
�,s to varying of h such that t ∈�wh

C .

Lemma 5.16. Let t ∈�wh
C be a proper cluster. The multiplicity of �t in Cs is mt.

Proof. Let L = Lwh
t , M = ML,0, and let F = Fwh

t . The multiplicity of X̄F
wh
t

, and so of XF
wh
t

and �t, is
δF. Hence we only need to show that mt = δF. Let d0 ∈Z as in Lemma 5.2. Then δF = δLd0. The result
follows as δL = bt and d0, denominator of sL

1 , equals 3 − Dt by Lemma 4.3.

Lemma 5.17. Let L = Lwh
t , F = Fwh

t and M = ML,0. Let c ∈ {0, . . . , bt − 1} such that 1/bt − ρt · c ∈Z.
Then F h

M(X, Y , 0) mod π equals the polynomial

gh|F(X, Y) = YDt −
∏
s∈t̂W

(X − uwswh )
|s|
bt

−cεt f W
t,wh

(X),

where uwswh = ws−wh
πρt

mod π , and ws is any rational centre of s.
In particular, �h

t ⊂Gt,wh ×A1
k given by g|F = 0 is the open subscheme Uh

M ∩ {Z = 0} of X̊F, and the
points in SM belong to all irreducible components of X̄F.

Proof. From [1, §3.5] and the equation of Cwh , the polynomial F h
M(X, Y , 0) reduces modulo π to

Xa1 Yb + Xa2 gh|L(X), for some b = 1, 2 and a ∈Z. Lemma 4.9 shows that b = Dt. By Lemma 4.3, a1 =
2m̃12, a2 = |th|m̃11 + (εt − |th|ρt)m̃13, where th ∈�wh

C ∪ {∅}, th < t. Then a1 = 0 and a2 = |th|
bt

− cεt by
Lemma 5.2.

If t has one or no child, or Dt = 1, then gh|L = −f W
t,wh

by (7). On the other hand, if Dt = 2 and t has
two or more children in �rat

C , then bt = 1, and so c = 0. Therefore the equality (7) concludes the proof
of the first part of the statement also in this case. Finally, the last part of the Lemma follows from
Lemma 5.8.

Let c as in the previous Lemma and define t̃W := {s ∈ t̂W | |s|
bt

− cεt /∈ 2Z}.

Proposition 5.18. Let L = Lwh
t and M = ML,0. The dense open subscheme �t ∩ Uh

M of �t is isomorphic
to the closed subscheme of Gt,wh ×A1

k given by

YDt =
∏
s∈t̃W

(X − uwswh ) · f W
t,wh

(X),

where uwswh = ws−wh
πρt

mod π , and ws is any rational centre of s.

Proof. The proposition follows from Lemma 5.17 and the definition of Gt,wh .
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We conclude this subsection describing how the glueing morphism (4) restricts to the special fibre.
Suppose t⊇ sl ∧ sh for l �= h and let M be a matrix associated to t. Consider the glueing map Uh

M → Ul
M

explicitly defined in Section 5.3.
Suppose first M = MV ,j with V = Vwl

t . By Lemma 5.10 the glueing morphism restricts to the identity
on XV × PV .

Suppose M = ML,i with L = Lwl
t . Note that m̃12 = 0 from Lemma 5.2. Recall the open subscheme �h

t

of XF
wh
t

defined in Lemma 5.17. Then, Lemma 5.7 implies that the glueing map restricts to an iso-
morphism �h

t �→ �l
t induced by the ring homomorphism sending X �→ X + uwhwl , where uwhwl = wh−wl

πρt

mod π . Similarly, it restricts to an isomorphism XW
L

wh
t

× PL
wh
t

→ XW
L

wl
t

× PL
wl
t

, where PL
wh
t

→ PL
wl
t

is the
identity and XW

L
wh
t

→ XW
L

wl
t

is induced by the ring homomorphism sending X �→ X + uwhwl .

5.7. Regularity

Let wh ∈ W. We want to show that if � =�min
C , and C has an almost rational cluster picture and is

y-regular, then C̊wh
� is a regular scheme.

Lemma 5.19. Consider the model Cwh
� /OK and let fh(x) = f (x + wh). Suppose � = {s1, . . . , sm} =�min

C ,
and C has an almost rational cluster picture and is y-regular. If P is a singular point of Cwh

� then

P ∈ Spec
OK[X±1, Y , Z]

(F h
M(X, Y , Z), X + uhl, Ym̃23 Zm̃33 , π )

⊂ Cwh
� ∩ XM,

for some l �= h, where M = ML
wh
sh∧sl

,i for i = 0, . . . , rL
wh
sh∧sl

.

Proof. Denote by mα(X) ∈ OK[X] a lift of the minimal polynomial in k[X] of ᾱ ∈ k̄. By Lemma 5.9,
we only need to show that if P ∈ Cwh

� is a singular point then

P ∈ Spec
OK[X±1, Y , Z]

(F h
ML,i

(X, Y , Z), mα(X), Ym̃23 Zm̃33 , π )
, (8)

for some v-edge L = Lwh
t of �wh , and some multiple root ᾱ of fh|L. We study the polynomial F h

M to
varying of the matrix M, using [1, §4.5]. Let gh(x, y) = y2 − fh(x). Let L = Lwh

t and M = ML,i. Note that
gh|L = −fh|L. We have F h

M(X, 0, Z) = gh|L(X) for any i. On the other hand, F h
M(X, Y , 0) = gh|L(X) if i> 0

and F h
M(X, Y , 0) = gh|F(X, Y) if i = 0. From the description given in Lemma 5.17, we conclude that for

these matrices M the points in (8) are the only possibly singular points of Cwh
� ∩ XM. In particular, this

proves that for any v-face F of �wh , the points in XF are non-singular in Cwh
� .

Let V = Vwh
t or V = Vwh

0 and M = MV ,j. Since C is y-regular, p � deg (gh|V) by Lemma 4.9. By [1, §4.5]
and the fact that the points in XF are non-singular for all v-faces F, we conclude that Cwh

� has no singular
point on XM for these matrices M, as required.

Proposition 5.20. Suppose � =�min
C , and C has an almost rational cluster picture and is y-regular,

then C is a regular scheme.

Proof. Lemmas 5.19 and 5.8 show that C̊wh
� is regular for every h. Thus their glueing C is regular as

well.

5.8. Separatedness

It remains to prove that C is a proper scheme. We first show it is separated. Clearly it suffices to prove that
X /OK is separated. Since the schemes Xh

�
are separated, then the open subschemes X̊h

�
are separated as

well by [9, Proposition 3.3.9]. Consider the open cover {Vh
M}h,M of X . Let h, l = 1, . . . , m and let Mh and
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Ml be matrices associated to proper clusters th ∈�wh
C and tl ∈�wl

C respectively. By [9, Proposition 3.3.6]
we want to show

(i) Vh
Mh

∩ Vl
Ml

is affine,
(ii) The canonical homomorphism

OX (Vh
Mh

) ⊗Z OX (Vl
Ml

) −→ OX (Vh
Mh

∩ Vl
Ml

)

is surjective.

The definition of the glueing map (4) implies (i). If h = l, or sl ⊆ th, or sh ⊆ tl, then (ii) follows from the
separatedness of X̊h

�
and X̊l

�
. So assume l �= h, and th, tl � sh ∧ sl. Consider the Moebius transformation

ψl: x �→ x

xw−1
hl + 1

, y �→ y

(xw−1
hl + 1)g+1

.

It sends the curve Cwl to the isomorphic hyperelliptic curve

Ch
l : y2 = (xw−1

hl + 1)2g+2f
(
x(xw−1

hl + 1)−1 + wl

)
.

As

f h
l (x) := (xw−1

hl + 1)2g+2f
(
x(xw−1

hl + 1)−1 + wl

)
= cf w

|R|
hl (xw−1

hl + 1)2g+2−|R| ∏
r∈R�{wh}

r − wh

wlh

(
xw−1

hl + r − wl

r − wh

)
,

every cluster s ∈�wl
C such that s� sh ∧ sl, corresponds to a unique cluster sh ∈�0

Ch
l

of same size, same
radius and rational centre 0. Moreover,

εsh = v(cf h
l
) +

∑
r′∈sh

ρsh +
∑
r′ /∈sh

v(r′) = εs.

Call th
l the cluster in �0

Ch
l

corresponding to tl. Let �lh and �lh
v be the Newton polytopes attached to

y2 − f h
l (x) and let Xlh

�
be the associated toric scheme (defined in [1, §4.2]). Since tl � sh ∧ sl, the v-

faces Ftl of �wl and Fth
l

of �lh are identical by Lemma 4.3. Furthermore, note that if tl < sh ∧ sl, then
ρP(th

l ) ≤ ρhl = ρP(tl) and so sV0

2 ≤ sV
2 , where V0 = V0

th
l

and V = Vwl
tl

. Therefore the matrix M := Ml is also
associated to th

l .
For every o = 1, . . . , m, with o �= l, define

whlo =
⎧⎨
⎩

whlwlo

who

if o �= h,

whl if o = h,

and write whlo = uhloπ
ρhlo , where uhlo ∈ O×

K and ρhlo ∈Z, i.e.

uhlo =
⎧⎨
⎩

uhlulo

uho

if o �= h,

uhl if o = h,
and ρhlo =

{
ρhl + ρlo − ρho if o �= h,

ρhl if o = h.

Define

T̃hlo
M (X, Y , Z) :=

{
1 + uhloXρhlom̃13−m̃11 Yρhlom̃23−m̃21 Zρhlom̃33−m̃31 if tl ⊇ so,

u−1
hloXm̃11−ρhlom̃13 Ym̃21−ρhlom̃23 Zm̃31−ρhlom̃33 + 1 if tl �⊇ so.

We want to show T̃hlo
M (X, Y , Z) ∈ R. If o = h then

T̃hlo
M (X, Y , Z) = Thl

M(X, Y , Z) ∈ R.
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So assume o �= h. If so ⊆ tl, then it follows from Lemma 5.4 as sl ∧ so � sl ∧ sh and so ρhlo = ρlo. On the
other hand, if so �⊆ tl, then it follows from Lemma 5.5 as m̃23, m̃33 > 0 and ρhlo ≤ max{ρhl, ρlo}. Let

T̃hl
M(X, Y , Z) :=

∏
o�=l

T̃hlo
M (X, Y , Z).

The Moebius transformation

K[x±1, y±1,
∏

o�=l (x + wlo)−1]
ψl−→ K[x±1, y±1,

∏
o�=l (x + whlo)

−1 ]

considered above induces an isomorphism

R[Tl
M(X, Y , Z)−1]

M−1◦ψl◦M−−−−−→ R[T̃hl
M(X, Y , Z)−1],

sending

X �→ X · Thl
M(X, Y , Z)−m11−(g+1)m21 ,

Y �→ Y · Thl
M(X, Y , Z)−m12−(g+1)m22 ,

Z �→ Z · Thl
M(X, Y , Z)−m13−(g+1)m23 .

Then

Ṽ lh
M := Spec R[T̃hl

M(X, Y , Z)−1]

is an open subscheme of Xlh
�

, isomorphic to Vl
M. We can clearly carry out similar constructions for th,

Mh.
By comparing the Newton polytopes �lh

v and �hl
v , we see that the Moebius transformation x �→

whl/(w
−1
lh x), y �→ y/(w−1

lh x)g+1 gives an isomorphism

ψ : K[x±1, y±1,
∏
o�=l

(x + whlo)
−1] −→ K[x±1, y±1,

∏
o�=h

(x + wlho)−1]

which induces a birational map Xhl
�
��� Xlh

�
, defined on the open set Ṽhl

Mh
of Xhl

�
. In particular, there exists

an open set Ṽ lh
Mh

of Xlh
�

, isomorphic to Vh
Mh

via the map induced by ψ−1
h ◦ψ .

Recall the definition of φ in (1), which induces the glueing map between Vl
Ml

and Vh
Mh

. Since the
following diagram

K[x±1, y±1,
∏

o�=l(x + wlo)−1] K[x±1, y±1,
∏

o�=h(x + who)−1]

K[x±1, y±1,
∏

o�=l(x + whlo)−1] K[x±1, y±1,
∏

o�=h(x + wlho)−1]

φ

ψl ψh

ψ

is commutative, then the surjectivity of

OX (Vh
Mh

) ⊗Z OX (Vl
Ml

) −→ OX (Vh
Mh

∩ Vl
Ml

)

follows from the separatedness of Xlh
�

.

5.9. Properness

By [2, IV.15.7.10], it remains to show that Cs is proper. From [9, Exercise 3.3.11], we only need to
prove that the 1-dimensional subscheme �t is proper for every t= sh ∧ sl. Indeed every other component
is entirely contained in a model Cwh

� , which is proper (see Section 5.5). Let t= sh ∧ sl for some h, l =
1, . . . , m, with h �= l. For any o = 1, . . . , m such that so ⊂ t, let to be the unique child of twith so ⊆ to < t.
Then �t is equal to the glueing of the schemes

Spec
R[To

M(X, Y , Z)−1]

(F o
M(X, Y , Z), Z, π)

, M = MLwo
t ,0, MVwo

t ,0,

https://doi.org/10.1017/S001708952400003X Published online by Cambridge University Press

https://doi.org/10.1017/S001708952400003X


Glasgow Mathematical Journal 425

and

Spec
R[To

M(X, Y , Z)−1]

(F o
M(X, Y , Z), Y , π)

, M = MVwo
to

,rVwo
to

,

for all o such that so ⊂ t, through the isomorphism (4) and the glueing maps in the definition of Cwo
� . In

particular, for any o as above there exists a natural birational map so : �t ��� X̄Fwo
t

which is defined as the
identity morphism on the dense open XFwo

t
= �t ∩ C̊wo

� .
Let D/k be a normal curve, let P ∈ D and let D � {P} g−→ �t be a non-constant morphism of curves.

We want to show that g extends to D. For every o as above, X̄Fwo
t

is proper, so the birational map

go := so ◦ g : D � {P} ��� X̄Fwo
t

extends to a morphism ḡo : D −→ X̄Fwo
t

. If

Po := ḡo(P) ∈
(

X̄Fwo
t

∩ C̊wo
�

)
= so

(
�t ∩ C̊wo

�

)
for some o such that so ⊂ t (we will later show this is always the case), then there exists an open neigh-
bourhood U of Po such that U ⊆

(
X̄Fwo

t
∩ C̊wo

�

)
and so so|U

s−1
o (U)

is an isomorphism. Since P ∈ ḡ−1
o (U), the

map

ḡ−1
o (U)

ḡo|U
ḡ−1

o (U)−−−−→ U

(
so|U

s−1
o (U)

)−1

−−−−−−→ s−1
o (U) ↪→ �t,

induces an extension D −→ �t of g.
Suppose that Po /∈ X̄Fwo

t
∩ C̊wo

� for any o such that so ⊂ t. From Section 5.5 we have

Po ∈ SM = Spec
R

(F o
M(X, Y , Z),

∏
l (X + uol) , Z, π )

, (9)

where M = MLwo
t ,0, and the product runs over all l �= o such that t= so ∧ sl. In particular Po is a point of

each irreducible component of X̄Fwo
t

by Lemma 5.17. Let h �= o such that X + uoh vanishes at Po. Let ξ
be the generic point of D and let ξo = go(ξ ), ξh = gh(ξ ) be generic points of X̄Fwo

t
and X̄F

wh
t

respectively.
Then the birational maps so and sh give

X̄F wo
t

D � {P} Γt

X̄F
wh
t

g

so

sh

=⇒

k ξo

)

k(D)

k ξh

)

φgo

�
φgh

where we denote by φgo and φgh the homomorphisms between function fields induced by go and gh. The
vertical isomorphism is induced by the map

R[To
M(X, Y , Z)−1]

(F o
M(X, Y , Z), Z)

−→ R[Th
M(X, Y , Z)−1](F h

M(X, Y , Z), Z
)

which sends (see Section 5.3 and Lemma 5.7)

X + uoh �→ X · Tho
M (X, Y , Z)m11 + uoh = X

(
1 + uhoX−1

)+ uoh = X.

But the rational function X + uoh vanishes at Po, while X does not vanish at Ph by (9). This gives a
contradiction, as ḡo(P) = Po and ḡh(P) = Ph.
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5.10. Genus

Suppose � = {s1, . . . , sm} =�min
C , and C has an almost rational cluster picture and is y-regular. In the

previous subsections we proved that C/OK is a proper regular model of C. Let t ∈�wh
C be a proper cluster.

Proposition 5.21. Let t ∈�wh
C . Then �t is isomorphic to the smooth projective 1-dimensional scheme

given by

YDt =
∏
s∈t̃W

(X − uwswh )ft,wh (X)

where uwswh = ws−wh
πρt

mod π , and ws is any rational centre of s.
In particular,

(1) if Dt = 1, then �t � P1
k;

(2) if Dt = 2 and t is übereven, then�t is the disjoint union of twoP1s over some quadratic extension
of k;

(3) in all other cases, �t is a hyperelliptic curve of genus g(t).

Proof. The first part of the proposition follows from Proposition 5.18.
For the second part of the statement note that if Dt = 1 then the result follows. Suppose Dt = 2. Then

p �= 2 as C is y-regular. Note that since � =�min
C , the proper clusters in �W correspond to the proper

clusters in �rat
C . Recall the definition of t̃ given in Definition 4.13. Let h(X) =∏

s∈t̃W (X − uwswh )ft,wh (X).
Suppose t is übereven. Then all its children are (proper) rational cluster by Lemma 3.30 since they

are even and p �= 2. In particular bt = 1 by Lemma 3.18 and so εt ∈ 2Z and t̃= t̃W =∅ since it equals
the set of odd rational children. Moreover, t=⋃

s<t, s proper s, and so ft,wh ∈ k. Thus h(X) ∈ k.
Now suppose h(X) ∈ k. Then t̃W =∅ and t=⋃

s<t s, where s runs through all children s ∈�W of t.
The non-proper clusters in �W are of the form {wl} for some l = 1, . . . , m. If {wl}< t, then t= sl, but
in that case t would not equal the union of its children in �W . Hence t has no non-proper children. It
follows that t̃= t̃W and t equals the union of its proper rational children. In particular, t has two or more
children in �rat

C , so bt = 1, by Lemma 3.18. But then t̃ is the set of odd children of t as εt ∈ 2Z, and so
all rational children of t are even.

It only remains to prove that if h(x) /∈ k, then the genus of �t is g(t). Since h(X) is a separable
polynomial, we need to show that

deg h = |t| −∑
s∈�rat

C , s<t |s|
bt

+ ∣∣t̃∣∣ .

It suffices to prove that if s ∈�rat
C is a non-proper rational child of t different from {wh}, then bt = 1 and

s ∈ t̃. Suppose s= {r} is such a rational cluster. Since r ∈ t, we have v(r − wh) ≥ ρt. Suppose v(r − wh)>
ρt. Then s ∈�wh

C , as s< t and r �= wh. But this contradicts our choice of W. Then ρt = v(r − wh) ∈Z and
so bt = 1. It follows that t̃ is the set of odd children of t. Thus s ∈ t̃.

5.11. Minimal regular NC model

Suppose the base extended curve CKnr is y-regular and has an almost rational cluster picture. Consider
the model C/OKnr constructed before with � =�min

CKnr . We want to see what components of Cs should be
blown down to obtain the minimal regular model with normal crossings. Recall [1, §5]. Let�Knr =�rat

CKnr

and fix a proper cluster t ∈�wh
CKnr .

Suppose first t �= sh ∧ sl for all l = 1, . . . , m with l �= h. Equivalently, t has at most one proper child
in �Knr . Then �t � X̄F

wh
t

and can be seen entirely in C̊wh
� . In particular, if �t can be blown down then Fwh

t

is a removable or contractible v-face (see [1, Theorem 5.7]). By Lemma 4.3, we find
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• Fwh
t is removable if and only if t=R with a child in �Knr of size 2g + 1.

• Fwh
t is contractible if and only if either |t| = 2 and εt

2
− ρt ∈Z or t has a proper rational child

s ∈�Knr , of size 2g, and εt

2
− gρt ∈Z.

Recall Definition 4.20. Note that Fwh
t is removable if and only if t is removable. In this case, Fwh

t can be
ignored for the construction of Cwh

� (for any h since t=R), and so t can be ignored for the construction
of C.

Assume now Fwh
t contractible. We want to understand when �t can be blown down. First consider

the case |t| = 2 and εt

2
− ρt ∈Z. Then �t intersects other components of Cs in 2 points (as Vwh

t gives
two chains of P1s and the v-edges Vwh

0 and Lwh
t give no component in Cwh

�,s). To have self-intersection
−1, �t has to have multiplicity > 1. It follows from Lemma 5.16 that ρt /∈Z, as εt

2
− ρt ∈Z. Moreover,

by Lemma 3.12, one has ρt ∈ 1
2
Z. Therefore εt is odd and the multiplicity of �t is 2. Let r := rV

wh
t

and
consider

γtst = n0

d0

>
n1

d1

> . . . >
nr

dr

>
nr+1

dr+1

= γt
(
st − ρt + ρP(t)

)
given by Vwh

t . If �t can be blown down then d1 = 1. Since γtst = − εt

2
+ 2ρt, we have d0 = 2. In par-

ticular d1 = 1 if and only if ρt − ρP(t) = n0
d0

− nr+1

dr+1
≥ 1

2
(see also [1, Remark 3.15]). Thus if |t| = 2,

then �t can be blown down if and only if ρt /∈Z, εt odd, ρP(t) ≤ ρt − 1
2
. Note that this is case (1) of

Definition 4.20.
Second consider the case |t| = 2g + 2 with a proper rational child s of size 2g and εt

2
− gρt ∈Z. The

argument is very similar to the previous one. If �t can be blown down then it must have multiplicity
> 1 and this implies ρt /∈Z again by Lemma 5.16. From Lemma 3.12 it follows that (|t| − |s|)ρt ∈Z, so
ρt ∈ 1

2
Z. Then mt = 2 and

v(cf )

2
= εt

2
− (g + 1)ρt ∈ 1

2
Z \Z,

so v(cf ) odd. Let r := rV
wh
s

and consider

γsss = n0

d0

>
n1

d1

> . . . >
nr

dr

>
nr+1

dr+1

= γs(ss − ρs + ρt)

given by Vwh
s . If �t can be blown down then dr = 1. Recall that εs − |s|ρs = εt − |s|ρt. Then γs(ss −

ρs + ρt) = − εt

2
+ (g + 1)ρt, so dr+1 = 2. In particular dr = 1 if and only if ρs − ρt = n0

d0
− nr+1

dr+1
≥ 1

2
. Thus

if t has size 2g + 2 and has a unique proper rational child s ∈�Knr , then �t can be blown down if and
only if |s| = 2g, ρt /∈Z, v(cf ) odd, ρs ≥ ρt + 1

2
. This is case (2) of Definition 4.20.

Finally, if |t| = 2g + 1, t has a proper child s ∈�Knr of size 2g and εt

2
− gρt ∈Z, then ρt ∈Z, as

(|t| − |s|)ρt ∈Z. It follows that εt ∈Z and so mt = 1. This implies the self-intersection of �t is not −1,
since it intersects the rest of Ct in at least two points as before. Hence in this case �t can never be blown
down.

Now assume there exists l �= h such that t= sh ∧ sl. Then t is not minimal. Let th, tl ∈�Knr be such
that sh ⊆ th < t and sl ⊆ tl < t. Suppose �t irreducible. If |t| ≤ 2g (or, equivalently, t is not the largest
non-removable cluster), then �t intersects at least other 3 components of Cs (given by th, tl, and P(t)). So
it cannot be contracted to obtain a model with normal crossings. A similar argument holds if there exists
o �= l such that so ∧ sh = t: at least 3 components (given by th, tl and to) intersect �t, so blowing down �t

would make the model lose normal crossings. Assume then |t|> 2g and so ∧ sh �= t for all o �= l. Then �t

intersects at least other 2 components of Cs given by Vwh
th

and Vwl
tl

. Firstly, if �t can be blown down, then
mt > 1. But ρt = ρhl ∈Z. Then mt is at most 2. If mt = 2 then Dt = 1, that implies εt odd and �t � P1 by
Proposition 5.21. It also follows st ∈ 1

2
Z \Z. If t is odd then this implies that Vwh

t gives a P1 intersecting
�t. Since that would be a third component intersecting �t, the cluster t has to be even. Hence t=R and
|t| = 2g + 2. Then εt is odd if and only if v(cf ) is odd, as ρt ∈Z. Now, Lwh

t gives some P1s intersecting
X̄F

wh
t

⊂ Cwh
�,s. All these P1s are not in C̊wh

�,s (and so in Cs) if and only if th ∪ tl = t. In particular, th and tl

are either both even or both odd. If th is even, then γth = 2, and so the component given by Vwh
th

has
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multiplicity at least 2. The self-intersection of �t could not be −1 in this case. Assume th is odd. Let
r := rV

wh
th

and consider

γth sth = n0

d0

>
n1

d1

> . . . >
nr

dr

>
nr+1

dr+1

= γth

(
sth − ρth − ρt

2

)

given by Vwh
th

. We want dr = 1. Since

γth

(
sth − ρth − ρt

2

)
= −εt

2
+ |th| − 1

2
ρt ∈ 1

2
Z�Z,

we have dr+1 = 2. As before dr = 1 if and only if ρth −ρt
2

= n0
d0

− nr+1

dr+1
≥ 1

2
and similarly for tl. Thus if t has

two or more rational children and �t is irreducible then it can be blown down if and only if v(cf ) is odd
and t=R is union of its 2 odd rational children th and tl, satisfying ρth ≥ ρt + 1, ρtl ≥ ρt + 1. This is
case (3) of Definition 4.20.

Suppose now �t reducible. By Proposition 5.21 the cluster t is übereven, εt is even and �t is the
disjoint union of �−

t � P1 and �+
t � P1. As before, both �−

t and �+
t intersect at least other two com-

ponents (given by the proper children of t). But then neither �−
t nor �+

t has self-intersection −1, as
mt = 1.

We have showed that, for a rational cluster t ∈�Knr , an irreducible component of �t can be blown
down if and only if t is contractible. Moreover, in this case, �t is irreducible. It remains to show that after
blowing down all components �t where t is a contractible cluster, no other component can be blown
down. First note that if t is a contractible cluster, then mt = 2 and �t intersects one or two other compo-
nents of multiplicity 1 at two points in total. If it intersects only one component, then after the blowing
down, the latter will have a node and will not be isomorphic to P1. If �t intersects two components and
those intersect something else in Cs, then they will not have self-intersection −1 also when �t is blown
down. Therefore suppose that one of those two does not intersect any other component of Cs. If we are
in case (1) or case (2), it is easy to see that this never happens. Indeed, in those cases, �t intersects non-
open-ended chains of P1s. Then without loss of generality assume to be in case (3) and that �th is the
component that can be blown down once �t has been contracted. This implies sh = th and ρsh = ρt + 1.
Then bsh = 1 and εsh = εt + |sh|. Since both εt and sh are odd, we have εsh ∈ 2Z. So Dsh = 2 and s̃h is
the set of rational children of sh. Hence g(sh) = ⌊ |sh|−1

2

⌋≥ 1 since |sh| ≥ 3. But then �sh cannot be blown
down.

5.12. Galois action

Consider the base extended hyperelliptic curve CKnr/Knr. The rational clusters of CKnr and their corre-
sponding rational centres are then over Knr. Denote �Knr =�rat

CKnr . For any proper cluster s ∈�Knr , let
Gs = StabGK (s), Ks = (Ks)

Gs and ks be the residue field of Ks. Let �min
CKnr = {s1, . . . , sm} be the set of

rationally minimal clusters of CKnr . Fix a set W = {w1, . . . , wm} ⊂ Knr of corresponding rational cen-
tres. By Lemma A.1, we can assume this choice to be GK-equivariant, that is for any σ ∈ GK , one has
σ (wl) = wh if and only if σ (sl) = sh. We can also require that wh ∈ sh if sh ∩ Ksh �=∅. Similarly, for any
proper cluster t ∈�Knr \�min

CKnr , fix a rational centre wt in such a way that wσ (t) = σ (wt) for any σ ∈ GK .
Set wso := wo for any o = 1, . . . , m.

Lemma 5.22. With the choices above, for any h = 1, . . . , m, the set of proper clusters in�wh
CKnr coincides

with �̊wh
CKnr .

Proof. Suppose by contradiction that there exists a non-proper cluster {r} = s ∈�wh
CKnr , with r �= wh.

Note that r ∈ sh and so s< sh. Recall that since s is a cluster centred at wh, it is cut out by the disc
D = {x ∈ K̄ | v(x − wh) ≥ ρwh

s }, with ρwh
s = v(r − wh)>ρsh . This implies that wh /∈R, otherwise wh ∈ s
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and |s| ≥ 2. In particular, wh /∈ sh. For our choice of wh, it follows that sh ∩ Ksh =∅. Therefore r /∈ Ksh

and so there exists σ ∈ Gsh such that σ (r) �= r. Since wh ∈ Ksh we have

v(σ (r) − wh) = v(σ (r − wh)) = v(r − wh) = ρwh
s .

But then σ (r) ∈ s, and so |s| ≥ 2, a contradiction.

Assume that CKnr is y-regular and has an almost rational cluster picture. By the previous lemma, from
the set of rational centres W we can construct the proper regular model C/OKnr of CKnr as previously
presented in this section. In this subsection we show how the Galois group Gal(Knr/K) acts on the OKnr -
scheme C. Moreover, we describe the induced action of Gk on the special fibre Cs/ks, and give defining
equations for the principal components of Cs compatibly with the action.

For any l = 1, . . . , m, recall the notation fl(x) = f (x + wl) ∈ Knr[x] and Cwl/Knr : y2 = fl(x). Fix σ ∈ GK .
Let l, h = 1, . . . , m such that σ (sl) = sh. Then σ (fl) = fh. Now, let t ∈�wl

CKnr be a proper cluster. Then
σ (t) ∈�wh

CKnr and ρt = ρσ (t). It follows that most of the quantities attached to t, such as those of Definition
4.6, are the same for σ (t), for example εt = εσ (t). In particular, if M is a matrix associated to t then M is
associated to σ (t) as well. So σ (F l

M) =F h
M. Finally, as σ (

∏
o�=l (x + wlo)−1) =∏

o�=h (x + who)−1 we also
have σ (Tl

M) = Th
M.

Hence the natural Knr-isomorphism Cwh
σ−→ Cwl induces OKnr -isomorphisms of schemes

Cwh
�

σ−→ Cwl
� , C̊wh

�

σ−→ C̊wl
� , Uh

M

σ−→ Ul
M. (10)

Via the glueing morphisms (4), these maps describe the action of GK on C.
We want to study the action of Gk on the special fibre of C more in detail. Let σ ∈ Gal(Knr/K)

and let σ̄ ∈ Gk corresponding to σ via the canonical isomorphism Gal(Knr/K) � Gk. Let l, h and t as
above. In Section 5.6 we described closed 1-dimensional subschemes composing C̊wl

�,s and the mor-
phisms induced by the glueing maps. Recall the polynomials introduced in Definition 5.12. From (10)
we get

σ̄ (g0
sl ,wl

) = g0
sh ,wh

, σ̄ (gt,wl ) = gσ (t),wh , σ̄ (gl|L
wl
t

) = gh|L
wh
σ (t)

.

From the equality (7) we obtain σ̄ (ft,wl ) = fσ (t),wh . Note that the previous relations can also be recovered
directly from the definitions.

Lemma 5.23. Let wt be the rational centre of t fixed above. Then

(i) gt,wt , ft,wt ∈ kt[X];
(ii) gt,wt = gt,wl and ft,wt (X) = ft,wl (X + uwtwl ) where uwtwl = wt−wl

πρt
mod π ;

Proof. For any rational centre w of t, let ut,w = cf

∏
r∈R\t (w − r) as in Definition 5.12. Note that

ut,w/π
v(ut,w) is independent of w since

v((wt − r) − (w − r)) = v(wt − w) ≥ ρt > v(wt − r)

for any r ∈R \ t. Then gt,wt = gt,wl . If σ̄ ∈ Gal(ks/kt), i.e. σ ∈ Gal(Knr/Kt), then

σ̄ (gt,wt ) = σ̄ (gt,wl ) = gt,wh = gt,wt .

In particular gt,wt ∈ kt[X].
Since ut,w/π

v(ut,w) is independent of w we also have

ft,wt(Xbt ) = ft,wl ((X + uwtwl )
bt).

Suppose ρt ∈Z. Then bt = 1 and so the equality above implies ft,wt (X) = ft,wl (X + uwtwl ). Suppose ρ /∈Z.
Then v(w − wt)>ρt for any rational centre w of t as v(w − wt) ∈Z and v(w − wt) ≥ ρt. Hence uwtwl = 0.
Thus ft,wt (Xbt) = ft,wl (X

bt), which implies ft,wt(X) = ft,wl (X) = ft,wl (X + uwtwl ). If σ̄ ∈ Gal(ks/kt), i.e. σ ∈
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Gal(Knr/Kt), then

σ̄ (ft,wt)(X) = σ̄ (ft,wl )(X + σ̄ (uwtwl )) = ft,wh (X + uwtwh ) = ft,wt (X),

and so ft,wt ∈ kt[X].

Remark 5.24. Note that the polynomials ft,wt , gt,wt and g0
sh ,wh

equal the polynomials ft, gt and g0
sh

given
in Definition 4.22.

Let V = Vwl
t and consider the subscheme XV × PV of Cs given by V , where PV is a chain of P1s and

XV : {gt,wl = 0} over Gm,ks . If sh ⊂ t, then the glueing map Uh
M → Ul

M induces the identity φhl
V : XV

wh
t

=−→
XV

wl
t

. Define Xt ⊆Gm,ks given by gt,wt = 0. By Lemma 5.23, φo
V : Xt

�−→ XVwo
t

, for o = h, l, and this iso-
morphism is compatible with the Galois action and the glueing maps, that is σ ◦ φh

V = φl
V ◦ σ and

φhl
V ◦ φh

V = φl
V as morphisms on Xt.

When V0 = Vwl
0 we can consider the subscheme XV0 × PV0 given by V0, where PV0 is a chain of P1s

and XV0 : {gsl ,wl = 0} over Gm,ks . Since XV0 × PV0 is never glued to any other component there is no need
to choose a different model for it.

Let L = Lwl
t and consider the subscheme XW

L × PL given by L, where PL is a chain of P1s and
XW

L : {ft,wl = 0} over A1
ks . If sh ⊂ t, then the isomorphism φhl

L : XW
L

wh
t

�−→ XW
L

wl
t

given by the glueing map
Uh

M → Ul
M is induced by the ring isomorphism ks[X] → ks[X], sending X �→ X + uwhwl , where uwhwl =

wh−wl
πρt

mod π . Define XW
t ⊆A1

ks given by ft,wt = 0. By Lemma 5.23, the map X �→ X + uwtwl induces an
isomorphism φo

L : XW
t

�−→ XW
Lwo
t

, for o = h, l, compatible with the Galois action and the glueing morphisms,
that is σ ◦ φh

L = φl
L ◦ σ and φhl

L ◦ φh
L = φl

L as morphisms on XW
t .

Recall the definitions of t̂W and Gt,wl ⊆A1
ks given in Definition 5.15 and the definition of t given in

Definition 4.22. Note that by Lemma 5.22,

t̂W = {s ∈�Knr ∪ {∅} | s< t} \ {{r} ∈�Knr | r /∈ W}.
Fix c = 0, . . . , bt − 1 such that 1/bt − cρt ∈Z. For any rational centre w ∈ Knr of t define f̂t,w ∈ ks[X, Y]
by

f̂t,w(X) =
∏
s∈t̂W

(X − uwsw)
|s|
bt

−cεt ft,w(X),

where uwsw = ws−w
πρt

mod π (ws = wl if s=∅). Let L = Lwl
t , F = Fwl

t and M = ML,0. It follows from
Lemma 5.17 that the scheme �wl

t = XF ∩ Ul
M is given by YDt = f̂t,wl (X) as a subscheme of Gt,wl ×A1

ks .
We then obtain σ̄ (f̂t,wl ) = f̂σ (t),wh from the action (10) of σ on Ul

M.

Lemma 5.25. With the notation above,

(i) f̂t,wt ∈ kt[X];
(ii) f̂t,wt (X) = f̂t,wl (X + uwtwl ) where uwtwl = wt−wl

πρt
mod π ;

Proof. If s ∈ t, then σ (s) ∈ (σ (t)) and σ̄ (uwsw) = uwσ (s)σ (w) for any rational centre w of t. Hence f̂t,wt ∈
kt[X] and σ̄ (f̂t,wl ) = f̂σ (t),wh by Lemma 5.23(i),(iii). Since uwswt = uwswl − uwtwl , Lemma 5.23(ii) implies
f̂t,wt (X) = f̂t,wl (X + uwtwl ).

Define �wt
t ⊂Gt,wt ×A1

ks given by YDt = f̂t,wt . Suppose sh ⊂ t, and let φhl
t : �wh

t � �
wl
t be the isomor-

phism coming from the glueing map Uh
M → Ul

M induced by the ring homomorphism X �→ X + uwhwl .
By Lemma 5.25, the map X �→ X + uwtwl induces an isomorphism φo

t :�wt
t � �

wo
t , for o = h, l, which is

compatible with the Galois action and the glueing maps, that is σ ◦ φh
t = φl

t ◦ σ and φhl
t ◦ φh

t = φl
t as
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morphisms on �wt
t . Therefore �t is isomorphic to the smooth completion of �wt

t , and so it is given by
YDt = f̃t(X), where f̃t(X) =∏

s∈t (X − uwswt)ft,wt (X) is the polynomial given in Definition 4.22.

6. Integral differentials

Let C be a hyperelliptic curve of genus g ≥ 1 defined over K by a Weierstrass equation y2 = f (x). It is well-
known that the K-vector space of global sections of the sheaf of differentials of C, namely H0(C,�1

C/K),
is spanned by the basis

ω=
{

dx

2y
, x

dx

2y
, . . . , xg−1 dx

2y

}
.

Let C be a regular model of C over OK and consider its canonical (or dualising) sheaf ωC/OK . The free
OK-module of its global sections H0(C,ωC/OK ) can be viewed as an OK-lattice in H0(C,�1

C/K) (see [9,
Corollary 9.2.25(a)]). The aim of this section is to present a basis of H0(C,ωC/OK ) as an OK-linear combi-
nation of the elements inω under the assumptions of Theorem 4.23. Note that by [9, Corollary 9.2.25(b)]
the problem is independent of the choice of model C but it does depend on the choice of the equation
y2 = f (x) since the basis ω does. Throughout this section let C and C/OK be as above.

If C is �v-regular, [1, Theorem 8.12] gives an OK-basis of H0(C,ωC/OK ), as required. We rephrase it
in terms of rational cluster invariants, by using results of Section 3 and Lemma 4.12.

Theorem 6.1. Suppose C has an almost rational cluster picture and is y-regular, and all proper clusters
s ∈�C have same rational centre w ∈ K. Let s1 ⊂ · · · ⊂ sn =R be the proper clusters in �rat

C . For every
j = 0, . . . , g − 1, define

ij := min{i ∈ {1, . . . , n} | 2(j + 1)< |si|}
and

ej := 1
2
εsij

− (j + 1)ρsij
.

Then the differentials

μj = π �ej(x − w)j dx

2y
j = 0, . . . , g − 1,

form an OK-basis of H0(C,ωC/OK ).

Proof. Let Cw:y2 = f (x + w) be the hyperelliptic curve isomorphic to C through the change of variable
y �→ y, x �→ x + w. By Corollary 3.25 and Lemma 4.12, the curve Cw is �v-regular. Since �rat

C consists
of the proper clusters in �w

C , Lemma 4.3 and [1, Theorem 8.12] implies that

μj = π �ejxj dx

2y
j = 0, . . . , g − 1,

form an OK-basis of H0(C,ωC/OK ) as a lattice in H0(Cw,�1
Cw/K) (that is if C is regarded as a model of Cw).

Changing variables concludes the proof.

Suppose now C has an almost rational cluster picture and is y-regular. Let�min
C be the set of rationally

minimal clusters and let W = {ws | s ∈�min
C } be a corresponding set of rational centres, such that all

clusters in �ws
C are proper. For every proper cluster t ∈�rat

C , choose a minimal cluster s⊆ t and set
wt := ws. Consider the regular model C/OK of C of Theorem 4.18, constructed in Section 5 by glueing
the open subschemes C̊w

�
of Cw

�
for w ∈ W. We want to describe the canonical morphism C → C. Write

W = {w1, . . . , wm} as in Section 5. For any h = 1, . . . , m, let t ∈�wh
C be a proper cluster and let M be a

matrix associated to t. Let Cwh :y2 = f (x + wh) and

y2 − f (x + wh)
M= YnY ZnZF h

M(X, Y , Z).
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Then, on the affine chart XM the projection C → Cwh
� is induced by

R(F h
M(X, Y , Z)

) M−→ K[(x′)±1, (y′)±1]

((y′)2 − f (x′ + wh))
�−→ K[x±1, y±1]

(y2 − f (x))
,

where (X, Y , Z) = (x′, y′, π ) • M and (x′, y′) = (x − wh, y). In particular it follows that (X, Y , Z) = (x −
wh, y, z) • M and so ⎛

⎝x − wh

y
π

⎞
⎠=

⎛
⎝Xm̃11 Ym̃21 Zm̃31

Xm̃12 Ym̃22 Zm̃32

Xm̃13 Ym̃23 Zm̃33

⎞
⎠=

⎛
⎝X

Y
Z

⎞
⎠ • M−1.

For a proper cluster t ∈�rat
C recall the definitions of �t and mt.

Proposition 6.2. Let t ∈�rat
C be a proper cluster. Then5

ord�t (x − ws) = mtρt,

ord�t dx
2y

= −mt

(
1
2
εt − ρt − 1

)− 1.

for every proper cluster s ∈�rat
C , s⊆ t.

Proof. Let g(x, y) = y2 − f (x). Let W = {w1, . . . , wm} as above. Let h ∈ {1, . . . , m} such that wh = ws.
Let F = Fwh

t , V = Vwh
t , M = MV ,0 and let X, Y , Z be the transformed variables (X, Y , Z) = (x − ws, y, π ) •

M. Define H(X, Y , Z) = π − Xm̃13 Ym̃23 Zm̃33 , and G(X, Y , Z) = g((X, Y , Z) • M−1). We have

F h
M(X, Y , Z) = Y−nY Z−nZG(X, Y , Z),

where nZ = mtεt, since ordZ(y2) = mtεt for Lemma 5.2. Write F =F h
M.

Note that d(x − ws) = dx and (gws )′
x(x − ws) = g′

x(x), where gws (x, y) = g(x + ws, y). Then, by [1, 8.7],

{
(x − ws)g′

x = m11XG ′
X + m12YG ′

Y + m13ZG ′
Z

yg′
y = m21XG ′

X + m22YG ′
Y + m23ZG ′

Z

from which it follows that

m11yg′
y − m21(x − ws)g

′
x = (m11m22 − m21m12)YG ′

Y − (m21m13 − m11m23)ZG ′
Z

= m̃33YG ′
Y − m̃23ZG ′

Z .

We will show later that this quantity is non-zero. Moreover,

m̃33YG ′
Y − m̃23ZG ′

Z = YnY ZnZ
(
m̃33YF ′

Y − m̃23ZF ′
Z + (nY + nZ)F) .

Recall that X = (x − ws)m11 ym21πm31 . Then dX
X

= m11
dx

x−ws
+ m21

dy
y
. Furthermore, as 0 = dg = g′

xdx + g′
ydy

in �C/K , we have

dX

X
=
(

m11

x − ws

− m21

y

g′
x

g′
y

)
dx = dx

(x − ws)yg′
y

(
m11yg′

y − m21(x − ws)g
′
x

)
.

Therefore
dx

2(x − ws)y2
= dX

XYnY ZnZ (m̃33YF ′
Y − m̃23ZF ′

Z + (nY + nZ)F) . (11)

Let S = Spec OK . Considering X−1 as an independent variable, the scheme

U = Spec
OK[Y , Z, X−1, X]

(F , H, X · X−1 − 1)

5 If �t is reducible, say �t = �−
t ∪ �+

t , with ord�t ( · ) we mean min{ord�−
t

( · ), ord�+
t

( · )}
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defines a complete intersection in A4
S. Furthermore, U is an open subscheme of Cwh

� ∩ XM that restricted
to A4

S \ {Th
M(X, Y , Z) = 0} equals Uh

M. In particular, U is integral. From Section 5.5 it follows that Ut =
U ∩ {Z = 0} is a dense open subset of XF. Recall that XF is an open subscheme of �t. Hence it suffices
to prove the proposition for Ut instead of �t ([9, Lemma 9.2.17(a)]). Since X and Y are units and Z
vanishes to order 1 on Ut, Lemma 5.2 implies that

ordUt(x − ws) = m̃31 = mtρt, ordUty = m̃32 = mt
εt

2
, ordUtπ = m̃33 = mt. (12)

Recall that U is integral and that Uη is isomorphic to an open subscheme of C. Then Uη is smooth.
Hence, by [9, Corollary 6.4.14(b)], the sheaf ωC/OK is generated on U by E−1dX where

E :=
∣∣∣∣∣∣
F ′

Y F ′
Z F ′

X−1

H′
Y H′

Z F ′
X−1

0 0 X

∣∣∣∣∣∣= −πXY−1Z−1
(
m̃33YF ′

Y − m̃23ZF ′
Z

)
, (13)

if E is non-zero. Suppose it is; we are going to prove it later. Thus, as F = 0 on U, we have

ordUt

dx

2(x − ws)y2
= ordUt

dX
XYnY ZnZ (m̃33YF ′

Y −m̃23ZF ′
Z)

from (11)

= ordUt

(
πY−nY −1Z−nZ−1E−1dX

)
from (13)

= mt − nZ − 1 = mt (−εt + 1)− 1 from (12).

Then it follows from (12) that

ordUt

dx

2y
= mt

(
ρt + 1

2
εt
)+ ordUt

dx

2(x − ws)y2
= mt

(− 1
2
εt + ρt + 1

)− 1.

It remains to show that E does not equal 0 on U. Suppose it does. Then from the computations above,
it follows that m11yg′

y − m21(x − ws)g′
x = 0 in K(C). Since m21 equals either 1 or 2 by Lemma 5.2, it

follows that there exists a non-zero c ∈ K, such that

m11yg′
y − m21(x − ws)g

′
x + cg = 0

(c ∈ K from degree analysis). Then cf (x) = m21(x − ws)f ′(x). Note that m21 is non-zero as char(K) �= 2.
But then a contradiction follows since f is a separable polynomial of degree ≥ 3.

In the following two theorems we describe a basis of integral differentials of C. We use
Definitions/Notations 3.1, 3.3, 3.2, 3.8, 3.9, 3.26, 4.6, 4.10 in the statements.

Theorem 6.3. Let C/K be a hyperelliptic curve of genus g ≥ 1 defined by the Weierstrass equation
y2 = f (x) and let C/OK be a regular model of C. Suppose C has an almost rational cluster picture and
is y-regular. For i = 0, . . . , g − 1 inductively

(i) define ei := max
t∈�rat

C

{
εt

2
− ρt −

i−1∑
j=0

ρsj∧t

}
;

(ii) choose a maximal element si of
{
t ∈�rat

C | ei = εt

2
− ρt −

i−1∑
j=0

ρsj∧t

}
freely.

Then the differentials

μi = π �ei
i−1∏
j=0

(x − wsj )
dx

2y
, i = 0, . . . , g − 1,

form an OK-basis of H0(C,ωC/OK ).

Proof. Since H0(C,ωC/OK ) is independent of the choice of regular model, we consider C to be the
model described in Theorem 4.18 and constructed in Section 5.
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We first show that the differentials μi are global sections of ωC/OK . It suffices to prove they are regular
along all components �t, where t ∈�rat

C proper. Indeed for the construction of C and the definition of the
ei’s, the differentialsμi are regular along all other components of Cs by Theorem 6.1. Fix i = 1, . . . , g − 1
and let j = 0, . . . , i − 1. Let t ∈�rat

C be a proper cluster. If sj ⊆ t then

ord�t (x − wsj ) = mtρt = mtρsj∧t,

by Proposition 6.2. If t� sj then wt is a rational centre of sj. Hence

v(wt − wsj ) ≥ min
r∈t

min{v(r − wt), v(r − wsj )} ≥ min{ρt, ρsj} = ρsj = ρsj∧t.

Therefore Proposition 6.2 implies

ord�t (x − wsj ) ≥ min{ord�t (x − wt), ord�t (wt − wsj )}
≥ min{mtρt, mtρsj∧t} = mtρsj∧t.

If sj � t and t� sj then from Lemma 3.18 it follows that

ord�t (x − wsj ) = min{mtρt, mtρsj∧t} = mtρsj∧t.

as ρt >ρsj∧t. Thus we have proved that

ord�t (x − wsj ) ≥ mtρsj∧t, where the equality holds if t �⊂ sj. (14)

Hence it follows from Proposition 6.2 that

ord�tμi ≥ mt

(
�ei +

i−1∑
j=0

ρsj∧t − εt

2
+ ρt + 1

)
− 1.

But

�ei ≥
⌊
εt

2
− ρt −

i−1∑
j=0

ρsj∧t

⌋
>
εt

2
− ρt −

i−1∑
j=0

ρsj∧t − 1,

then ord�tμi >−1, that implies ord�tμi ≥ 0, as required.
Now we need to show that the differentials μi span H0(C,ωC/OK ), that is the lattice they span is sat-

urated in the global sections of ωC/OK . Suppose not. Then there exist I ⊆ {0, . . . , g − 1} and ui ∈ O×
K for

i ∈ I such that the differential 1
π

∑
i∈I uiμi is regular along �t, for every proper cluster t ∈�rat

C . First we
want to show that for any i1, i2 = 0, . . . , g − 1 with i1 < i2, one has si2 �⊂ si1 . Suppose by contradiction
that si2 � si1 . Then

ei2 ≥ εsi1

2
− ρsi1

−
i2−1∑
j=0

ρsj∧si1
= ei1 − ρsi1

−
i2−1∑

j=i1+1

ρsj∧si1
≥ ei1 − ρsi1

−
i2−1∑

j=i1+1

ρsj∧si2

≥ εsi2

2
− ρsi2

−
i1−1∑
j=0

ρsj∧si2
− ρsi1

−
i2−1∑

j=i1+1

ρsj∧si2
= εsi2

2
−

i2∑
j=0

ρsj∧si2
= ei2 .

Therefore

max
t∈�rat

C

{
εt

2
− ρt −

i2−1∑
j=0

ρsj∧t

}
= ei2 = εsi1

2
− ρsi1

−
i2−1∑
j=0

ρsj∧si1
,

and this means that si1 is a possible choice for the i2th cluster si2 . But si2 � si1 , so the i2th cluster should
have been si1 , a contradiction.
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Let I0 ⊆ I be the set of indices i such that γi := ei − �ei is maximal. Let i0 = min I0 and let �0 = �si0
.

Since si0 �⊂ sj, for all j = 0, . . . , i0 − 1, from (14) it follows that

m := ord�0

1

π
μi0 = −msi0

γi0 + msi0

(
ei0 − εsi0

2
+ ρsi0

+
i0−1∑
j=0

ρsj∧si0

)
− 1

= −msi0
γi0 − 1< 0.

Furthermore,

ord�0

1

π
μi ≥ −msi0

γi + msi0

(
ei −

εsi0

2
+ ρsi0

+
i−1∑
j=0

ρsj∧si0

)
− 1

≥ −msi0
γi − 1 ≥ −msi0

γi0 − 1 = m,

for all i ∈ I. Let J := {i ∈ I | ord�0
1
π
μi = m}. Then J �=∅ since i0 ∈ J. The order of the differential

1
π

∑
i∈J uiμi along �0 must be >m. Let i ∈ I. From the computations above i ∈ J if and only if

(i) ord�0 (x − wsj ) = msi0
ρsi0 ∧sj for all j = 0, . . . , i − 1. Equivalently, if sj � si0 for some j< i, then

v(wsi0
− wsj ) = ρsi0 ∧sj .

(ii) ei = εsi0
2

− ρsi0
−∑i−1

j=0 ρsj∧si0
. In particular, if si ⊆ si0 , then si = si0 .

(iii) γi = γi0 . Equivalently, i ∈ I0.

Therefore J ⊆ I0, i0 = min J and

�ei − �ei0 = ei − γi − ei0 + γi0 = ei − ei0 = −
i−1∑
j=i0

ρsj∧si0
,

for all i ∈ J. Hence

1

π

∑
i∈J

uiμi = 1

π
μi0

(∑
i∈J

ui

π
∑i−1

j=i0
ρsj∧si0

i−1∏
j=i0

(x − wsj )

)
,

and since ord�0
1
π
μi0 = m< 0 we must have

ord�0

(∑
i∈J

ui

π
∑i−1

j=i0
ρsj∧si0

i−1∏
j=i0

(x − wsj )

)
> 0. (15)

For any j< i ∈ J, with i0 ≤ j we have sj �⊂ si0 . Therefore either sj = si0 or sj ∧ si0 � si0 . In the latter case,

ord�0 (x − wsi0
) = msi0

ρsi0
>msi0

ρsj∧si0
= ord�0 (x − wsj ).

It follows from (15) that

ord�0

(∑
i∈J

vi

(x − wsi0
)βi

π
βiρsi0

)
> 0,

where Ji = {j ∈ I | i0 ≤ j< i and sj �= si0}, vi = ui

∏
j∈Ji

wsi0
−wsj

π
ρsj∧si0

∈ O×
K , and βi = |{i0, . . . , i − 1} \ Ji|.

To find a contradiction, we will use the explicit description of a dense open affine subset of �0. Let
W = {w1, . . . , wm} be the set of rational centres of the rationally minimal clusters for C fixed at the
beginning of the section. Let wh ∈ W such that wh = wsi0

, and let L = Lwh
si0

, M = ML,0, and consider

Uh
M ∩ {Z = 0} = Spec

R[Th
M(X, Y , Z)−1](F h

M(X, Y , Z), Z
) ⊂ �t,
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dense open subscheme of �t. From Lemma 5.2,∑
i∈J

vi

(x − wh)βi

π
βiρsi0

=
∑
i∈J

viX
βi/bsi0 ,

which is a unit since the polynomial F h
M(X, Y , Z) in {Z = 0} is of the form Y2 − G(X) or Y − G(X) for

some non-constant G(X) ∈ K[X] (for more details see Lemma 5.17). This gives a contradiction and
concludes the proof.

Assume now CKnr has an almost rational cluster picture and is y-regular as in Theorem 4.23. Since
|�C| is finite, there exists a finite unramified extension F/K such that CF has an almost rational cluster
picture and is y-regular. Denote by OF the ring of integers of F. Let �F =�rat

CF
. Fix a rational centre

ws ∈ F for every rationally minimal cluster s ∈�F. For all non-minimal clusters t ∈�F choose a rational
centre wt = ws for some rationally minimal cluster s⊆ t. In this setting the next theorem gives a basis
of integral differentials of C.

Theorem 6.4. Let C/K be a hyperelliptic curve of genus g ≥ 1 defined by the Weierstrass equation
y2 = f (x) and let C/OK be a regular model of C. Suppose there exists a finite unramified extension F/K
such that CF has an almost rational cluster picture and is y-regular. For i = 0, . . . , g − 1 inductively

(i) define ei := max
t∈�F

{
εt

2
− ρt −

i−1∑
j=0

ρsj∧t

}
;

(ii) choose a maximal element si of
{
t ∈�F | ei = εt

2
− ρt −

i−1∑
j=0

ρsj∧t

}
freely.

Then the differentials

μi = π �ei · TrF/K

(
β

i−1∏
j=0

(x − wsj )

)
dx

2y
, i = 0, . . . , g − 1,

form an OK-basis of H0(C,ωC/OK ).

Proof. First note that without loss of generality we can suppose F/K Galois. Moreover, since F/K is
unramified, Gal(F/K) � Gal(f/k), where f is the residue field of F, and so the existence ofβ is guaranteed
by the surjectivity of Trf/k. Let C be the minimal regular model of C over OK . By [9, Proposition 10.1.17],
the base extended scheme COF is the minimal regular model of CF over OF. Let μF

0 , . . . ,μF
g−1 be the basis

of integral differentials of CF given by Theorem 6.3.
Suppose μ′

0, . . . ,μ′
g−1 is a basis of integral differentials of CF that, for any σ ∈ Gal(F/K) and any

j = 0, . . . , g − 1, satisfies

σ (μ′
j) =μ′

j +
∑
0≤i<j

λijμ
′
i, (16)

for some λij ∈ OF (depending on σ ). Note that μF
0 , . . . ,μF

g−1 is in fact such a basis. We want to prove
that, for any j = 0, . . . , g − 1, the differentials

μ′
0, . . . ,μ

′
j−1, TrF/K(βμ′

j),μ
′
j+1, . . . ,μ′

g−1 (17)

still form a basis of H0(CF,ωCF/OF ) satisfying condition (16). From equation (16) it follows that

TrF/K(βμ′
j) =

∑
σ∈Gal(F/K)

σ (β)σ (μ′
j) = TrF/K(β)μ′

j +
∑

i<j

λ′
ijμ

′
i,

for some λ′
ij ∈ OF. Since TrF/K(β) ∈ O×

K , the differentials in (17) form a basis of H0(CF,ωCF/OF ) satisfying
condition (16).
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Since μF
0 , . . . ,μF

g−1 satisfies (16), by induction it follows that

TrF/K(βμF
0 ), . . . , TrF/K(βμF

g−1)

is a basis of H0(CF,ωCF/OF ). Proposition B.2 concludes the proof.

We conclude this section with an application of Theorem 6.3.

Example 6.5. Let p be a prime number and let a ∈Zp, b ∈Z×
p such that the polynomial x2 + ax + b is

not a square modulo p. Let C be the hyperelliptic curve over Qp of genus 4 described by the equation
y2 = f (x), where f (x) = (x6 + ap4x3 + bp8)((x − p)3 − p11). We have already shown in Examples 3.32 and
4.25 that C satisfies the hypothesis of Theorem 6.3 and has rational cluster picture

t3 t4 R

We choose rational centres for the minimal clusters t3 and t4: wt3 = 0 and wt4 = p. Since R= t3 ∧
t4, we can set either wR = wt3 or wR = wt4 . Let us fix wR = wt3 = 0. Then to choose s0, s1, s2, s3 as in
Theorem 6.3 we draw the following table:

ρt εt
εt

2
− ρt

εt

2
− ρt − ρs0∧t

εt

2
− ρt −

1∑
j=0

ρsj∧t
εt

2
− ρt −

2∑
j=0

ρsj∧t

t3

4

3
11

25

6

19

6

11

6

1

2

t4

11

3
17

29

6

7

6

1

6
−5

6

R 1 9
7

2

5

2

3

2

1

2

The numbers in red indicate that s0 = t4, s1 = s2 = t3 and s3 =R. Thus the differentials

μ0 = p4 · dx

2y
, μ1 = p3 · (x − p)

dx

2y
, μ2 = p · (x − p)x

dx

2y
, μ3 = (x − p)x2 dx

2y

form a Zp-basis of H0(C,ωC/Zp ), for any regular model C/Zp of C.
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Appendix A: Rational centres over tame extensions

Let C/K be a hyperelliptic curve given by y2 = f (x).

Lemma A.1. Let L/K be a field extension. Consider the base extended curve CL/L and its associated
cluster picture �CL . Let s ∈�CL be a proper cluster Gs = StabGK (s), and Ks = (Ks)

Gs . If L/L ∩ Ks is
tamely ramified, then s has a rational centre ws ∈ L ∩ Ks.

Proof. Let Fs = L ∩ Ks. Let ws ∈ L be a rational centre of s and let ρs = maxw∈L minr∈s v(r − w) be
its radius. Let D = {x ∈ Ks | v(x − ws) ≥ ρs} and define G = StabGK (D). Since s⊆D we have Gs ⊆ G.
Furthermore, Gal(Ks/L) ⊆ G. Then Gal(Ks/Fs) ⊆ G. Since ws ∈D, for σ ∈ Gal(Ks/Fs) ⊆ G we have
σ (ws) ∈D. In particular, v(r − σ (ws)) ≥ ρs for any r ∈ s. Define

w = TrL/Fs (ws)

[L:Fs]
∈ Fs.

If m = [Fs[ws]:Fs], then w =∑m
j=1 σj(ws)/m, where σ1(ws), . . . , σm(ws) are the roots of the minimal

polynomial of ws over Fs (with σj ∈ Gal(Ks/Fs)). Since L/Fs is tamely ramified, p � [L:Fs] and so p � m.
In particular, v(m) = 0 and so for any r ∈ s we have

v(r − w) = v

(
m · r −

m∑
j=1

σj(ws)

)
≥ min

j∈{1,...,m}
v(r − σj(ws)) ≥ ρs.

Then w ∈ Fs is a rational centre of s.

Appendix B: Dualising sheaf under base extensions

Let F/K be a finite Galois extension and let OF be the ring of integers of F.
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Lemma B.1. Let M be a flat OK-module and MF := M ⊗OK OF. Then

M � MGal(F/K)
F = {m ∈ MF | σ (m) = m for every σ ∈ Gal(F/K)}.

Proof. As M is flat, the functor M ⊗OK − is (left) exact. From the isomorphism OK � OGal(F/K)
F it

follows that

M ⊗OK OK � M ⊗OK OGal(F/K)
F ,

that is M � MGal(F/K)
F , as required.

Proposition B.2. Let C be a smooth projective curve of genus g ≥ 1 and let C be a regular model of C
over OK . Denote by CF and COF the base extended schemes. Then H0(CF,ωCF/OF ) � H0(C,ωC/OK ) ⊗OK OF

and

H0(C,ωC/OK ) � H0(CF,ωCF/OF )Gal(F/K).

Proof. The Lemma follows from the following results: [9, Proposition 10.1.17], [9,
Theorem 6.4.9(b)], [9, Exercise 6.4.6], [9, Corollary 5.2.27] and the previous lemma.
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