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Abstract
A game that characterizes equivalence of structures with respect to all first-order sentences containing a
given number of quantifiers was introduced by Immerman in 1981.We define three other games and prove
that they are all equivalent to the Immerman game, and hence also give a characterization for the number
of quantifiers needed for separating structures. In the Immerman game, Duplicator has a canonical optimal
strategy, and hence Duplicator can be completely removed from the game by replacing her moves with
default moves given by this optimal strategy. On the other hand, in the last two of our games there is no
such optimal strategy for Duplicator. Thus, the Immerman game can be regarded as a one-player game,
but two of our games are genuine two-player games.

Keywords: Ehrenfeucht-Fraïssé games, formula-size games, semantic games, prenex normal form

1. Introduction
As is well known, the expressive power of first-order logic can be characterized in terms of
Ehrenfeucht–Fraïssé games (Ehrenfeucht 1961; Fraïssé 1957): a class of structures for a finite vo-
cabulary is definable by a sentence of first-order logic if and only if there is a natural number n
such that one of the two players, called Spoiler here, has a winning strategy in the Ehrenfeucht–
Fraïssé game of length n on any pair of structures one of which is in the class and the other not in
the class. Due to this characterization result, Ehrenfeucht–Fraïssé games have become a standard
tool for proving undefinability results for first-order logic; this is particularly the case for classes of
finite structures, where the usual tools from classical model theory, like the compactness theorem,
cannot be used.

Looking from another perspective, Ehrenfeucht–Fraïssé games can also be used for studying
the complexity of defining properties of structures. The length of the game corresponds exactly to
the quantifier rank of sentences needed for defining the property: Spoiler has a winning strategy
in the game of length n for an arbitrary structure in the class and another structure not in the class
if and only if the class is definable by a sentence of quantifier rank (at most) n. However, quantifier
rank is an extremely rough measure for the complexity of sentences. Consider, for example, the
structureVn = (Vn, ∈ ), whereVn is the set of hereditarily finite sets of rank less than n. It is easy to
show by induction on the rank of sets that every element ofVn is definable by a formula of quan-
tifier rank at most n, and hence there are 2|Vn| = twr(n+ 1) non-equivalent formulas with one
free variable of quantifier rank n on the structureVn. Here, twr is the exponential tower function
defined recursively by twr(0)= 0 and twr(n+ 1)= 2twr(n).1 Thus, knowing the quantifier rank of

© The Author(s), 2024. Published by Cambridge University Press.

https://doi.org/10.1017/S0960129523000415 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000415
https://orcid.org/0000-0002-9117-8124
https://orcid.org/0009-0007-3911-766X
mailto:lauri.hella@tuni.fi
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0960129523000415&domain=pdf
https://doi.org/10.1017/S0960129523000415


2 L. Hella and K. Luosto

a formula (over a vocabulary containing relations of arity at least two) only gives a nonelementary
upper bound for the length of the shortest equivalent formula.

Furthermore, as is well known, the structure Vn is isomorphic to Bn = (Bn, BIT−1)2, where
Bn is the set of natural numbers k< twr(n), and BIT−1 is the inverse of the BIT-relation (see,
e.g., Immerman 1999): (i, j) ∈ BIT−1 if and only if the ith bit of the binary representation of j
is 1. Thus, all elements of structures with twr(n) elements and a built-in BIT-relation are also
definable by sentences of quantifier rank n (this remains true also for structures with less than
twr(n) elements). In particular, this means that equivalence with respect to quantifier rank n sen-
tences captures isomorphism on structures of size at most twr(n) with a built-in BIT-relation.
Thus, to prove undefinability of properties of structures in the presence of a built-in BIT-relation
via Ehrenfeucht–Fraïssé games of length n, it is necessary to consider structures of size more than
twr(n). Note that the same holds for Ehrenfeucht–Fraïssé games for existential second-order logic,
as it is easy to specify with a first-order formula that a quantified binary relation is isomorphic with
the BIT-relation.

For these reasons, it is natural to study more fine-grained measures for the complexity of first-
order sentences and look for games that characterize equivalence of structures with respect to
these measures. There are two main lines of research in the literature that have started from such
considerations. The first of them uses the number of quantifiers, instead of the quantifier rank, as
a measure of complexity of first-order formulas. In the second approach, the size (or length) of
formulas is used as a measure of complexity.

A game that characterizes the total number of quantifiers was first introduced by Immerman
(1981); accordingly, we call it the Immerman game. Immerman (1981) does not give any con-
crete examples of the game but mentions a potential application in descriptive complexity theory:
if one could prove that some PTIME-complete problem is not definable in ordered finite struc-
tures of size n by a sentence with O( log n) quantifiers, then this would separate PTIME from
NLOGSPACE, as all NLOGSPACE properties can be defined by such sentences on ordered struc-
tures of size n. It is also pointed out in Immerman (1981) that ordinary Ehrenfeucht–Fraïssé games
cannot be used for this purpose, as equivalence with respect to quantifier rank log n captures
isomorphism on ordered structures of size n.

The Immerman game was apparently forgotten for some 40 years, but it was recently re-
discovered by Fagin et al. (2021). In this paper, the authors provided the first applications for the
game: they defined a function h : N→N by a recursion formula and proved that two linear orders
of different lengths can be separated by a sentence with n quantifiers if and only if at least one of
them is of length less than h(n). After the article Fagin et al. (2021), the study of the Immerman
game has been continued in Fagin et al. (2022) and Carmosino et al. (2023).

The other research line that uses the size of formulas as a parameter was started by Adler and
Immerman (2003), who defined a game (usually called the Adler–Immerman game) that char-
acterizes equivalence of temporal structures with respect to CTL formulas of a given size. They
used this game to prove an n! lower bound for the size of CTL formulas required for defining
certain property of temporal structures. On the other hand, this property is definable by a lin-
ear size CTL+ formula, and consequently CTL+ is n! times more succinct than CTL. After Adler
and Immerman (2003), the Adler–Immerman game has been adapted to several different types of
modal logics and applied successfully to many similar succinctness proofs (see, e.g., French et al.
2013; Hella and Vilander 2019; Lutz 2006; van der Hoek and Iliev 2014; van Ditmarsch et al. 2014).
It should be noted that already before Adler and Immerman (2003), Razborov (1990) introduced
a game of a slightly different type that characterizes equivalence with respect to boolean formulas
of a given size.

The idea behind the Adler–Immerman game was applied in the context of first-order logic by
Grohe and Schweikardt (2005). Using so-called extended syntax trees, they proved lower bounds
for the size of first-order formulas with 2 and 3 variables needed for separating linear orders of
different lengths. An extended syntax tree is essentially a complete description of Spoiler’s strategy
in the Adler–Immerman game.
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An explicit game characterizing equivalence with respect to first-order formulas of a given
size was formulated by Hella and Väänänen (2015). This game has a different flavor from the
Adler–Immerman game in one important respect: In the Adler–Immerman game,Duplicator (the
opponent of Spoiler) has a trivial strategy that is optimal, and thus the moves of Duplicator could
be replaced by the default moves given by this optimal strategy. On the other hand, in the game
of Hella and Väänänen (2015), the moves of Duplicator cannot be replaced by such default strat-
egy. In this respect, the game introduced in Hella and Väänänen (2015) is similar to the game of
Razborov (1990) mentioned above.

A common feature of the Immerman game IG�(A,B) and the games for the size of formu-
las is that they are played on two classes A and B of structures instead of just two structures
A and B, like the usual Ehrenfeucht–Fraïssé game. The rules of IG�(A,B) are similar to those
of the Ehrenfeucht–Fraïssé game in the sense that Spoiler and Duplicator play � rounds, and in
each round Spoiler chooses interpretations for a variable on the members of either A or B, and
Duplicator answers by choosing interpretations for the variable on members of the other class.
However, there is an important difference: Duplicator is allowed to make copies of each structure
in the class she is playing on and choose a different interpretation for the variable in each copy.
Duplicator wins the play of the game if after the � rounds there exist structures A ∈A andB ∈B

such that for at least one copy of each of them, the interpretations chosen for the variables form a
partial isomorphism from A toB.

In many applications, one can start the game IG� on singleton classes A= {A} and B= {B},
but since Duplicator can make copies of the structures and choose different interpretations for
variables, after the initial position in the game, the classes are no longer singletons. Moreover,
Carmosino et al. (2023) show that there are properties of structures that can be proved to be
undefinable by sentences with n quantifiers, but this cannot be proved by using the Immerman
game on singleton classes.

While the rules of the Immerman game are relatively simple, and the game is certainly natural
and intuitive, it turns out that it is by nomeans unique for characterizing the number of quantifiers
in the same way as the Ehrenfeucht–Fraïssé game is for characterizing quantifier rank. Indeed, we
will define in this paper three other games and prove that they are all equivalent to the Immerman
game in the sense that Spoiler has a winning strategy in any of them if and only if he has a win-
ning strategy in the Immerman game (naturally the same holds for Duplicator). Hence, each of
the three games characterizes separability of classes by a sentence containing a given number of
quantifiers.

The first of the games, NQG(�,A,B) (number of quantifiers game), is obtained by a natural
modification of the formula size game FSG(�,A,B) of Hella and Väänänen (2015). The idea is
simply to remove the number of connectives and atomic formulas from the size parameter � used
in FSG and leave just the number of quantifiers. The game NQG still has separate rules for dealing
with connectives, and thus it looks quite different from the Immerman game. However, this dif-
ference is not essential, as the connective moves can be easily eliminated from the game without
affecting the winner.

The second game that we define, MPG(�,A,B) (monotone prefix game), is first derived for
singleton classes {A} and {B} by analyzing the strategies of Spoiler in the Immerman game against
the default optimal strategy of Duplicator. Since Duplicator does not have any active role in the
game, the order of the moves of Spoiler does not matter, so we can let Spoiler play his choices
first on the structure A, and after that on the structure B. Furthermore, instead of playing the
game move by move, we can let Spoiler play by just announcing his strategies on A andB. These
strategies can be interpreted as strategies of ∃ (the existential player) and ∀ (the universal player)
in the semantic game for a sentence of the form �Q�x θ on A and B, respectively, where �Q�x is a
quantifier prefix of length � and θ is quantifier free. By changing the winning condition we can
further let Duplicator play a strategy of ∃ instead of Spoiler playing a strategy of ∀ in the semantic
game on B. In this way, we obtain the game MPG(�,A,B) that is equivalent to the Immerman
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game IG�({A}, {B}), but in which Duplicator makes nontrivial moves that cannot be eliminated by
a default strategy. Furthermore, we introduce a natural generalization MPG(�,A,B) of the game
to arbitrary classes A and B and prove that it is equivalent to IG�(A,B). We also point out that
the game MPG(�,A,B) is actually a special case of the standard Ehrenfeucht–Fraïssé game for
monotone generalized quantifiers (see Krawczyk and Krynicki 1976).

During a play of the Immerman game IG�(A,B), the players essentially produce a set TC of
assignments on each C ∈A∪B: TC consists of the assignments that arise from the interpretations
chosen for the variables in �x in the copies of C. The sets TC are formed in a parallel way in the
sense that Duplicator makes all the copies and chooses the corresponding interpretations for each
variable simultaneously. The idea of our third game, PNFG(�,A,B) (prenex normal form game), is
to let Spoiler and Duplicator play many repetitions of the semantic game for some fixed quantifier
prefix �Q�x on structures A ∈A chosen by D in succession, thus producing a set of assignments
in a sequential way. Surprisingly, it suffices then to let Spoiler and Duplicator play the semantic
game on a structure B ∈B only once, assuming that they have played enough repetitions of it
on structures of A. A nice feature of the game PNFG(�,A,B) is that the number of repetitions
needed is relatively small: it is bounded above by the number of complete atomic types of �-tuples
of elements.

As for the two previous games, we prove that PNFG(�,A,B) is equivalent to IG�(A,B) and
thus characterizes separability of A and B by a sentence containing at most � quantifiers. We also
illustrate the use of the prenex normal form game on linearly ordered sets: we show that a linearly
ordered setA of lengthm can be separated from a linearly ordered setB of length n by a sentence
of the form ∀x1 . . . ∀xk∃y1 . . . ∃y� θ if and only ifm> n and n< (k+ 1)�, assuming thatm, n≥ k.

The structure of this paper is as follows. In Section 2, we go quickly through the basic notions
and notations used in the paper. In Section 3, we define the Immerman game IG�(A,B) first in its
original form by Immerman (1981) and Fagin et al. (2021). After this, we define a slightly modi-
fied but equivalent game IG∗(�,A,B) that is easier to relate to the formula size game. In Section 4,
we first review the formula size game FSG(�,A,B) of Hella and Väänänen (2015). Then, we intro-
duce the number of quantifiers game NQG(�,A,B) and prove that it is equivalent to IG∗(�,A,B),
and that Spoiler has a winning strategy in either of these games if and only if the classes A and B

can be separated by a sentence with at most � quantifiers. Section 5 is dedicated to the monotone
prefix game MPG(�,A,B). We show how it can be derived from the modified Immerman game
IG∗(�,A,B) and then relate it to the Ehrenfeucht–Fraïssé game for monotone generalized quanti-
fiers. In Section 6, we introduce the prenex normal form game PNFG(�,A,B) and prove that it is
equivalent to IG∗(�,A,B). Finally, we close the paper in Section 7 by some concluding remarks.

2. Preliminaries
Let τ be a vocabulary. We denote τ -structures by A,B, C, . . ., and their universes by A, B, C, . . .,
respectively. We will restrict our attention to finite relational vocabularies. Thus, a τ -structure A
consists of the universe A, and a finite number of relations RA ⊆An for R ∈ τ , where n= ar(R) is
the arity of the relation symbol R. We are mainly interested in finite structures, but all the games
we define in the subsequent sections work as such also on (classes of) infinite structures.

An assignment on a τ -structure A is a function s : V →A for some set V of variables. We call
the pair A= (A, s) a (τ ,V)-interpretation, or briefly just an interpretation if τ and V are clear
from the context. Given an element a ∈A and a variable x, we denote by s[a/x] the modified
assignment V ∪ {x} →A that maps x to a, and y to s(y) for all variables y ∈V � {x} (note that the
case x ∈V is also allowed). If �x= (x1, . . . , x�) and �a= (a1, . . . , a�) ∈An, we may use the notation
�a/�x for the assignment s : {x1, . . . , x�} →A such that s(xi)= ai for 1≤ i≤ �.
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The formulas of first-order logic are defined in the usual way, and we writeA |= ϕ ifA= (A, s)
is a (τ ,V)-interpretation and ϕ is a τ -formula that is true in A when the free variables of ϕ are
interpreted by s. If ϕ is a sentence, we may write just A |= ϕ instead of (A, s) |= ϕ.

Partial isomorphisms from a τ -structure A to another τ -structure B are defined as usual: a
bijection p : C →D, where C ⊆A and D⊆ B, is a partial isomorphism A→B if the equiva-
lence (a1, . . . , an) ∈ RA ⇐⇒ (p(a1), . . . , p(an)) ∈ RB holds for all R ∈ τ and all a1, . . . , an ∈ C,
where n= ar(R). We will often use assignments for defining partial isomorphisms: if s : V →A
and t : V → B are assignments on A and B, respectively, then we say that s �→ t is a partial
isomorphism A→B if the relation p⊆A× B defined as p := {(s(x), t(x)) | x ∈V} is a partial
isomorphism. Similarly, we say that �a �→ �b is a partial isomorphism A→B for tuples �a=
(a1, . . . , a�) ∈A� and �b= (b1, . . . , b�) ∈ B� if the corresponding relation {(a1, b1), . . . , (a�, b�)}
is a partial isomorphism.

One of the key notions we need in the subsequent sections is that of separating two classes of
interpretations by a formula:

Definition 1. Let τ be a vocabulary, V a finite set of variables, and A and B classes of (τ ,V)-
interpretations. We say that formula ϕ with free variables in V separates the classes A and B, in
symbols Sep(A,B, ϕ), ifA |= ϕ for allA ∈A and B �|= ϕ for all B ∈B.

We formulate next a recursive characterization for a formula separating two classes of
interpretations. To deal with the quantifiers, we introduce the following handy notation:

• Let A be a class of (τ ,V)-interpretations. A choice function for A is a function F such that
dom(F)=A and F(A) ∈A for allA= (A, s) ∈A.

• If F is a choice function for A and x is a variable, then we denote the class {(A, s[F(A)/x]) |
A= (A, s) ∈A} by Fx(A).

• Furthermore, we denote the class {(A, s[a/x]) | (A, s) ∈A, a ∈A} by Ux(A).

We omit the straightforward proof of the characterization result below.

Lemma 2. Let A and B be classes of (τ ,V)-interpretations.

(a) Sep(A,B,¬ϕ) if and only if Sep(B,A, ϕ).
(b) Sep(A,B, ϕ ∨ψ) if and only if there are subclasses C,D⊆A such that A=C∪D,

Sep(C,B, ϕ) and Sep(D,B,ψ).
(c) Sep(A,B, ϕ ∧ψ) if and only if there are subclasses C,D⊆B such that B=C∪D,

Sep(A,C, ϕ) and Sep(A,D,ψ).
(d) Sep(A,B, ∃x ϕ) if and only if there exists a choice function F for A such that

Sep(Fx(A),Ux(B), ϕ).
(e) Sep(A,B, ∀x ϕ) if and only if there exists a choice function G for B such that

Sep(Ux(A),Gx(B), ϕ).

3. Immerman Game
In this section, we will first define the Immerman game according to its original formulation
(Fagin et al. 2021; Immerman 1981). We will later define a slightly modified game, which is how-
ever clearly equivalent to the original version. The modified version is easier to compare with the
formula size game that we consider in the next section.

As explained in Introduction, the Immerman game IG� is played on a pair (A,B) of classes of
structures instead of single structures. The parameter � refers to the number of rounds. During the
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game, the players, Spoiler (S) and Duplicator (D), choose interpretations for variables x1, . . . , x�
in the structures. Thus, after the initial state, the classes will consist of interpretations of the form
(A, s), where s : {x1, . . . , xi} →A, and i≤ � is the number of rounds played.

In round i, S chooses one interpretation for a variable xi in each interpretation in A or in B.
However, D is allowed to make as many copies of the interpretations (in the other class) and give
different interpretations for xi in different copies.

Definition 3. The starting position of IG�(A,B) is (A0,B0)= (A,B). Suppose the position after
i< �moves is (Ai,Bi). There are two possibilities for the continuation of the game:

∃-move: S chooses an element cA ∈A from each interpretation A= (A, s) ∈Ai, and sets Ai+1 =
{(A, s[cA/xi+1]) |A= (A, s) ∈Ai}.
D answers by choosing a nonempty set DB ⊆ B for each B = (B, t) ∈Bi, and sets Bi+1 =
{(B, t[d/xi+1]) | B = (B, t) ∈Bi, d ∈DB}.
The next position in the game is (Ai+1,Bi+1).

∀-move: Similar to ∃-move, but with the roles of Ai and Bi switched.

The game ends after � rounds in position (A�,B�). The winning condition of the game is the
following:

PI D wins the game if there are interpretations (A, s) ∈A� and (B, t) ∈B� such that s �→ t is
a partial isomorphism A→B. Otherwise S wins.

The notions of strategy and winning strategy for a player in IG� (and other games that follow)
are defined as usual in terms of functions that determine the moves of the player in each position.
We omit the technical definition here. Informally, a winning strategy of S (D) in IG�(A,B) is a
systematic way of making his moves which guarantees that he wins the play irrespective of the
moves made by D (S, respectively).

Theorem 4. (Fagin et al. 2021; Immerman 1981). The following conditions are equivalent:

(1) There is a sentence ϕ with at most � quantifiers such that Sep(A,B, ϕ).
(2) S has a winning strategy in IG�(A,B).

Wewill later see that Theorem 4 follows from another characterization of separability of classes
with �-quantifier sentences (see Theorem 11).

Note that if the intersection of the classesA andB is nonempty, then it is obvious that there can
be no sentence ϕ that separates them. In this case, D has a simple winning strategy in IG�(A,B):
fix a structure A ∈A∩B, and copying the moves of S on A, make sure that for each i≤ �, there is
an assignment si : {x1, . . . , xi} →A such that (A, si) ∈Ai ∩Bi. Then (A, s�) ∈A� and (A, s�) ∈B�,
witnessing that the winning condition PI for D holds.

Note further that D has an obvious optimal strategy in IG�(A,B): simply always choose all
possible interpretations for variables (i.e., chooseDB = B for eachB = (B, t) ∈Bi in ∃-moves, and
DA =A for each A= (A, s) ∈Ai in ∀-moves). This is called the oblivious strategy in Fagin et al.
(2021). In this sense, the game IG� can be seen as a “solitaire” rather than a genuine two-player
game. In Sections 5 and 6, we will define alternative games that also characterize separability of
classes by �-quantifier sentences, but in which both players have an essential role (see Definitions
13 and 17).

As the length of the game IG� is finite, and there are no ties, it is determined for any classes A
and B, i.e., exactly one of the players S and D has a winning strategy in IG�(A,B).
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A reformulation of the Immerman game
To facilitate comparison with the formula size games that we introduce in the next section, we
give here a reformulation of the Immerman game. Observe first that the winning condition PI
can be equivalently stated as

QFSep S wins the game if there exists a quantifier-free formula ϕ such that Sep(A�,B�, ϕ) holds.
Otherwise D wins.

Indeed, if Sep(A�,B�, ϕ) holds for some quantifier-free formula ϕ, then it is obvious that s �→ t
cannot be a partial isomorphism for any (A, s) ∈A� and (B, t) ∈B�. Conversely, if there are no
(A, s) ∈A� and (B, t) ∈B� such that s �→ t is a partial isomorphism, then for each pair (A, B) ∈
A� ×B� there is a quantifier-free formula ψA,B such that A |=ψA,B and B �|=ψA,B , and it is
straightforward to check that Sep(A�,B�, ϕ) holds for ϕ := ∨

A∈A�
∧

B∈B� ψA,B .
Note further that the condition QFSep can be true already in some position (Ai,Bi) with i<

�. In such a case, S can be declared the winner immediately without the need to continue the
play.

Instead of fixing a sequence x1, . . . , x� of variables beforehand, we let S choose in each move a
(fresh) variable x. Furthermore, instead of fixing �, and considering the sequence of consecutive
positions (Ai,Bi), i≤ �, of the game IG�(A,B), we regard � as a dynamic parameter and define
the game recursively: after the players have completed the first round of the game IG�(C,D) and
determined the next pair (C′,D′) of classes, they continue by playing IG�−1(C′,D′).

We are now ready to define the rules of the reformulated Immerman game. In order to sep-
arate the new version of the game from the one given in Definition 3, we denote this game by
IG∗(�,A,B).

Definition 5. The rules of the game IG∗(�,A,B) are the following.

(1) If there is a quantifier-free formula ϕ such that Sep(A,B, ϕ), the game ends and S wins.
(2) If �= 0, and (1) does not hold, the game ends and D wins.
(3) If �≥ 1, but (1) does not hold, then S plays either of the following two moves:

∃-move: S chooses a variable x and a choice function F for A, and sets A′ = Fx(A), B′ =Ux(B) and
�′ = �− 1.

∀-move: Similar to ∃-move, but with the roles of A and B switched.

After the move is completed, S and D continue by playing IG∗(�′,A′,B′).

Note that D has no active role in the game IG∗(�,A,B)! Nevertheless, it should be clear that the
two games IG�(A,B) and IG∗(�,A,B) are equivalent in the sense that S has a winning strategy in
the former if and only if he has a winning strategy in the latter. In fact, S can use essentially the
same strategy in both games, and he wins the play against the oblivious strategy of D in IG�(A,B)
if and only if he wins the corresponding play in IG∗(�,A,B).

4. Formula Size Game
In this section, we first consider more general games that are aimed at characterizing expressive
power of sentences of size at most a given bound �. Here, the size of a formula counts the num-
ber of atomic formulas, connectives, and quantifiers. The precise definition of the size fs(ϕ) of a
formula ϕ of first-order logic is as follows:
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fs(ϕ) = 1 for atomic ϕ
fs(¬ϕ) = fs(ϕ)+ 1

fs(ϕ ∨ψ) = fs(ϕ)+ fs(ψ)+ 1
fs(ϕ ∧ψ) = fs(ϕ)+ fs(ψ)+ 1
fs(∃x ϕ) = fs(ϕ)+ 1
fs(∀x ϕ) = fs(ϕ)+ 1

Note that by this definition, fs(ϕ) is the number of occurrences of subformulas in ϕ, which
is less than the length |ϕ| of ϕ as a string of symbols. It would be straightforward to define |ϕ|
by a similar recursion by modifying the clause for atomic formulas (e.g., setting |R(x, y, z)| = 8
and |x= y| = 3) and adding +2 to the clauses of disjunction and conjunction (corresponding
to the parentheses). Counting the length of atomic formulas would lead to a finer analysis, and
potentially new applications, but we refrain from doing this here.

We are now ready to define the formula size game. The moves of the game reflect directly the
corresponding items in Lemma 2.

Definition 6. The rules of the formula size game FSG(�,A,B) are the following.

(1) If �= 0, the game ends and D wins.
(2) If �≥ 1 and there is an atomic formula ϕ such that Sep(A,B, ϕ), the game ends and S wins.
(3) If �≥ 1, but (2) does not hold, then S chooses one of the following five types of moves:

¬ -move: S sets �′ = �− 1, A′ =B and B′ =A.
∨-move: S chooses numbers m, n ∈N such that m+ n+ 1= � and classes C and D such that A=

C∪D.
D answers by choosing (�′,A′,B′) to be either (m,C,B) or (n,D,B).

∧-move: Similar to ∨-move, but switching the roles of A and B.
∃-move: S chooses a variable x and a choice function F forA, and setsA′ = Fx(A),B′ =Ux(B) and

�′ = �− 1.
∀-move: Similar to ∃-move, but switching the roles of A and B.

After the move is completed, S and D continue by playing FSG(�′,A′,B′).

The game FSG(�,A,B) is a variation of the similar formula size game EF�(A,B) defined by
Hella and Väänänen (2015). In EF�(A,B), formulas are assumed to be in negation normal form,
whence there are no ¬ -moves. Furthermore, disjunctions and conjunctions are not counted in
the size of formulas in EF�(A,B); thus, instead ofm+ n+ 1= � the condition in∨- and∧-moves
ism+ n= �.

Theorem 7. (cf. Hella and Väänänen 2015). Let A and B be classes of (τ ,V)-interpretations, and
let � be a positive integer. Then the following conditions are equivalent:

(a) S has a winning strategy in the game FSG(�,A,B).
(b) There is a formula ϕ with fs(ϕ)≤ � such that Sep(A,B, ϕ).

The equivalence of the conditions (a) and (b) in Theorem 7 is proved by induction on �. In
the case �= 0, the claim holds since S loses the game FSG(0,A,B) immediately, and there are no
formulas of size 0.
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The induction step is based on the correspondence between the items in Lemma 2 and the
types of moves in Definition 6. For example, if S has a winning strategy σ in FSG(�,A,B) and
the first move given by σ is a ¬ -move, then S has a winning strategy in FSG(�− 1,B,A), and
hence by induction hypothesis, there is a formula ψ such that fs(ψ)≤ �− 1 and Sep(B,A,ψ).
Then by Lemma 2(a), ϕ := ¬ψ is a formula such that fs(ϕ)≤ � and Sep(A,B, ϕ). Conversely, if
fs(ϕ)≤ �, Sep(A,B, ϕ) holds, and ϕ is of the form ¬ψ , then by Lemma 2(a), Sep(B,A,ψ) holds.
Hence by induction hypothesis, S has a winning strategy σ in FSG(�− 1,B,A). Thus, playing first
a ¬ -move, and then using σ provides S with a winning strategy in FSG(�,A,B).

The cases related to disjunction, conjunction, existential quantifier, universal quantifier, and
the corresponding moves are handled in the same way (see Hella and Väänänen 2015 for details).

From formula size to number of quantifiers
Starting from the formula size game FSG, we derive here a game that characterizes equiva-
lence with respect to the number of quantifiers. This is achieved simply by using the number
of quantifiers as a resource parameter instead of the size of formulas.

Remark 8. A similar idea of deriving the Immerman game as a special case of a more general
game is pointed out by Carmosino et al. (2023). Their syntactic game characterizes separability
of classes of structures by sentences having a fixed size with respect to a given syntactic measure.
As fs(ϕ) is an example of a syntactic measure, an alternative version FSG′ of the formula size
game FSG can be obtained as a special case of the syntactic game. However, the syntactic game is
similar to the Immerman game in the sense that Duplicator has a default optimal strategy. Thus,
for any syntactic measure, Duplicator can be completely eliminated from the game; in particular,
this concerns the game FSG′. On the other hand, Duplicator cannot be eliminated from FSG or
the game NQG for the number of quantifiers that we define below.

Let nq(ϕ) be the total number of quantifiers in a formula ϕ. Clearly nq(ϕ) can be defined
recursively as follows:

nq(ϕ) = 0 for atomic ϕ
nq(¬ϕ) = nq(ϕ)

nq(ϕ ∨ψ) = nq(ϕ)+ nq(ψ)
nq(ϕ ∧ψ) = nq(ϕ)+ nq(ψ)
nq(∃x ϕ) = nq(ϕ)+ 1
nq(∀x ϕ) = nq(ϕ)+ 1

Definition 9. The rules of the number of quantifiers game NQG(�,A,B) are the following.

(1) If there is a quantifier-free formula ϕ such that Sep(A,B, ϕ), the game ends and S wins.
(2) If �= 0, and (1) does not hold, the game ends and D wins.
(3) If �≥ 1, but (1) does not hold, then S chooses one of the following five types of moves:

¬ -move: S sets �′ = �, A′ =B and B′ =A.
∨-move: S chooses numbers m, n ∈N such that and m+ n= � and classes C and D such that A=

C∪D.
D answers by choosing (�′,A′,B′) to be either (m,C,B) or (n,D,B).

∧-move: Similar to ∨-move, but switching the roles of A and B.
∃-move: S chooses a variable x and a choice function F forA, and setsA′ = Fx(A), B′ =Ux(B) and

�′ = �− 1.
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∀-move: Similar to ∃-move, but switching the roles of A and B.

After the move is completed, S and D continue by playing NQG(�′,A′,B′).

Note that the rules of the game NQG(�,A,B) are quite different from those of the Immerman
game IG∗(�,A,B). Intuitively, the former appears to give Smore power, as he can use the connec-
tive moves in addition to the quantifier moves. However, this additional power does not help S,
since using a nontrivial connective move would just be wasting the quantifier resource �. We will
prove that S has a winning strategy in one of the games NQG(�,A,B) and IG∗(�,A,B) if and only
if he has a winning strategy in both of them.

Before proving the result, we show that any sentence is equivalent to a sentence in prenex
normal form with the same number of quantifiers. This also explains why there is no point for
S to use connective moves in the game NQG(�,A,B). Here, a formula is in prenex normal form
if it is of the form Q1x1 . . .Qnxn ψ , where Qi ∈ {∀, ∃} for each i ∈ [n], and ψ is a quantifier free
formula. The sequence �Q�x=Q1x1 . . .Qnxn is called a quantifier prefix.

Lemma 10. For any first-order formula ϕ with nq(ϕ)= �, there exists a logically equivalent formula
of the form �Q�x θ , where �Q�x is a quantifier prefix of length � and θ is a quantifier free formula.

Proof. It is easy to see that the standard procedure of transforming a formula into prenex normal
form preserves the number of quantifiers (see, e.g., Ebbinghaus et al. 1984). Thus, we can simply
let �Q�x θ to be the result of applying the procedure to ϕ.

Theorem 11. Let A and B be classes of (τ ,V)-interpretations, and let � be a natural number. Then
the following conditions are equivalent:

(1) S has a winning strategy in the game IG∗(�,A,B).
(2) S has a winning strategy in the game NQG(�,A,B).
(3) There is a formula ϕ with nq(ϕ)≤ � such that Sep(A,B, ϕ).
(4) There is a quantifier prefix �Q�x of length at most � and a quantifier-free formula θ such that

Sep(A,B, �Q�x θ).

Proof. (1)⇒ (2): If S has a winning strategy σ in the game IG∗(�,A,B), he can use it as such in
NQG(�,A,B), as any move given by σ is also a legal move in NQG(�,A,B). Since the winning
condition for S is the same in both games, σ is a winning strategy in NQG(�,A,B), too.

The implication (2)⇒ (3) is proved by induction on � in the same way as the implication (a)
⇒ (b) in Theorem 7.

The implication (3)⇒ (4) follows directly from Lemma 10.
(4)⇒ (1): Assume that �Q�x=Qnxn . . .Q1x1, where n≤ � and θ is a quantifier-free formula

such that Sep(A,B, �Q�x θ). For each i≤ n, let (�Q�x)i denote the end segment Qixi . . .Q1x1 of the
prefix �Q�x; note that (�Q�x)n = �Q�x and (�Q�x)0 is the empty prefix. We prove by induction on i≤ n
that if C and D are classes of (τ ,V ∪ {xi+1, . . . , xn})-interpretations such that Sep(C,D, (�Q�x)i θ),
then S has a winning strategy in IG∗(i,C,D).

In the case i= 0, (�Q�x)i θ = θ is quantifier free, whence S wins the game IG∗(0,C,D) immedi-
ately. Assume then that i> 0, and the claim holds for i− 1. We describe a move for S in the first
round of IG∗(i,C,D) and show that it can be extended to a winning strategy in the rest of the
game. The move depends on whether Qi is ∃ or ∀ as follows.
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• If Qi = ∃, we let S play a ∃-move and choose the variable xi. Since Sep(C,D, (�Q�x)i θ)
and (�Q�x)i = ∃xi(�Q�x)i−1, by Lemma 2(d) there is a choice function F for C such that
Sep(Fxi(C),Uxi(D), (�Q�x)i−1 θ). We let S use this choice function F in the move. By the in-
duction hypothesis, S has a winning strategy in the continuation IG∗(i− 1, Fxi(C),Uxi(D)) of
the game.

• If Qi = ∀, S plays a ∀-move with the variable xi and uses Lemma 2(e) for choosing a choice
function G for D such that Sep(Uxi(C),Gxi(D), (�Q�x)i−1 θ) holds. A winning strategy for S
in the continuation IG∗(i− 1,Uxi(C),Gxi(D)) of the game is again given by the induction
hypothesis.

Thus, we see that S has a winning strategy in the game IG∗(n,A,B). Since n≤ �, it is clear that this
strategy is also winning in IG∗(�,A,B).

Note that since the IG∗(�,A,B) is equivalent to the game IG�(A,B), the characterization result,
Theorem 4, by Immerman (1981) and Fagin et al. (2021) is a corollary of Theorem 11.

5. Connection to Monotone Quantifier Game
In this section, we consider the modified Immerman game from another perspective: since D
does not make any moves in IG∗(�,A,B), the order of moves by S can be freely changed without
affecting the winner. Moreover, the choices of S on the class A (B, respectively) can be replaced
by a single move in which he reveals the strategy (i.e., the sequence of choice functions) he uses in
these moves. Using these observations as a starting point, we derive a new game that is equivalent
to IG∗(�,A,B).

Assuming thatA and B consist of single structures, our new game turns out to be a special case
of the Ehrenfeucht–Fraïssé game for monotone generalized quantifiers by Krawczyk and Krynicki
(1976). Thus, we consider first the case where A and B are singletons; this also simplifies the
presentation considerably. We define a version of the new game for arbitrary classes A and B in
the end of the section and give there a self-contained proof for the corresponding characterization
result.

From Immerman game tomonotone prefix game on singleton classes
Let A and B be τ -structures for a finite relational vocabulary τ . In each play of IG∗(�, {A}, {B}),
the moves of S determine a quantifier prefix �Q�x=Q1x1 . . .Q�x�, where Qi = ∃ (Qi = ∀) if the
ith move of S is an ∃-move (∀-move, respectively), and xi is the variable chosen by S in ith
move. We denote by E(�Q)⊆ {1, . . . , �} the set of those indices for which Qi = ∃, and by U(�Q)
the complement {j ∈ [�] |Qj = ∀} of E(�Q). Furthermore, we denote the set {x1, . . . , xi} by Xi for
each i≤ �.

Let Fi, i ∈ E(�Q), be the choice functions that S uses in his ∃-moves, and let Gj, j ∈U(�Q), be the
choice functions he uses in his ∀-moves. Since A and B are the only structures in the classes we
consider, we assume that each Fi is defined on assignments s : Xi−1 →A instead of pairs (A, s),
and similarly, each Gj is defined on assignments t : Xj−1 → B. Given any sequence Hi, i ∈ I ⊆ [�]
of choice functions that map assignments u : Xi−1 → C toC, whereC ∈ {A, B}, we use the notation

• T�( �H) := {u : X� → C | u(xi)=Hi(u � Xi−1) for all i ∈ I}

for the set of assignments arising from �H = (Hi)i∈I .
The outcome of the play, where S plays the sequences �F = (Fi)i∈E(�Q) and �G= (Gj)j∈U(�Q), is

determined by the two sets T�(�F) and T�(�G): by Definition 5, S wins the play if and only if there
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is a quantifier-free formula θ such that (A, s) |= θ for all s ∈ T�(�F) and (B, t) �|= θ for all t ∈ T�(�G).
Equivalently, D wins the play if and only if there are s ∈ T�(�F) and t ∈ T�(�G) such that s �→ t is a
partial isomorphism A→B.

Observe now that since D does not make any moves in the game IG∗(�,A,B), the order of
moves by S does not make any difference to the outcome. Thus, we may as well assume that the
game is played in the following four steps:

(i) S reveals the quantifier prefix �Q�x=Q1x1 . . .Q�x�.
(ii) S gives the sequence Fi, i ∈ E(�Q), of choice functions on A.

(iii) S gives the sequence Gj, j ∈U(�Q), of choice functions onB.

(iv) D chooses s ∈ T�(�F) and t ∈ T�(�G).
D wins the game if s �→ t is a partial isomorphism A→B; otherwise S wins.

Step (ii) can be interpreted as S giving a strategy for ∃ in the semantic game of a prenex normal
form sentence with prefix �Q�x on the structure A. Similarly, step (iii) can be seen as S giving a
strategy for the other player, ∀, in the semantic game of the same sentence on the structureB.

Definition 12. Let A be a structure, �Q�x=Q1x1 . . .Q�x� a quantifier prefix, and ϕ = �Q�x θ a sen-
tence, where θ is quantifier free. The semantic game SemG(A, ϕ) is played by two players ∃ and ∀.
The game has � rounds, and in each round i one of the players chooses an interpretation ai ∈A for
the variable xi: if i ∈ E(�Q), then ∃ chooses ai, and if i ∈U(�Q), then ∀ chooses ai. ∃ wins the game if
(A, �a/�x) |= θ ; otherwise ∀ wins.

It is well known that the semantic game SemG can be used as an alternative to the Tarski truth
definition: A |= �Q�x θ if and only if ∃ has a winning strategy in the game SemG(A, �Q�x θ).

As we mentioned above, in steps (ii) and (iii) S essentially gives strategies for ∃ and ∀ in
the semantic games SemG(A, �Q�x�) and SemG(B, �Q�x�), where � is a placeholder for some
quantifier-free formula.3 The intuition of steps (i)–(iv) can now be explained as follows: In step
(i), S starts by giving the prefix �Q�x, and claims that there is a sentence starting with this prefix that
separates the classes A and B. To show this, he gives in step (ii) a strategy �F for ∃ in the semantic
game SemG(A, �Q�x�), and in step (iii) a strategy �G for ∀ in the semantic game SemG(B, �Q�x�),
and claims that there is a quantifier-free formula θ such that these strategies are winning with θ
in place of �. Finally, in step (iv), D challenges the claim of S by picking assignments s ∈ T�(�F)
and t ∈ T�(�G) and makes the counterclaim that no quantifier-free formula θ separates (A, s) and
(B, t).

However, we can also look at step (iii) from another perspective: instead of S choosing a strategy
for ∀ in the game SemG(B, �Q�x�), we can as well let D choose a strategy �H = (Hi)i∈E(�Q) for ∃
in SemG(B, �Q�x�) and claim that it is winning for any quantifier-free formula θ for which the
strategy given by S in step (ii) is winning in SemG(A, �Q�x�). Then S challenges this by choosing
an assignment t ∈ T�( �H) and claiming that (B, t) �|= θ for the quantifier-free formula θ he meant.
Finally, D answers by choosing an assignment s ∈ T�(�F) and claims that no quantifier-free formula
θ separates (A, s) and (B, t). Clearly, D is correct in her last claim if and only if s �→ t is a partial
isomorphism A→B. Thus, steps (iii) and (iv) can be replaced by the following three steps:

(iii’) D gives the sequence Hi, i ∈ E(�Q), of choice functions onB.

(iv’) S chooses t ∈ T�( �H).
(v) D chooses s ∈ T�(�F).

The winning condition remains the same.
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Before a formal definition of the game that arises from steps (i), (ii), (iii’), (iv’), and (v), we
encode the information contained in the sequences �F and �H into relations R�F ⊆A� and R �H ⊆ B�,
defined as follows:

• R�F := {(a1, . . . , a�) ∈A� | {(x1, a1), . . . , (x�, a�)} ∈ T�(�F)},
• R �H := {(b1, . . . , b�) ∈ B� | {(x1, b1), . . . , (x�, b�)} ∈ T�( �H)}.

Observe now that, by their definition, relations of the form R�F have the property that (A, R�F) |=�Q�x R(�x) (and similarly (B, R �H) |= �Q�x R(�x)). Conversely, if RA ⊆A� is a relation such that
(A, RA) |= �Q�x R(�x), then there is a strategy �F for ∃ in the semantic game SemG(A, �Q�x�) such
that R�F ⊆ RA. Thus, we can assume that in step (ii), S chooses a relation RA ⊆A� such that
(A, RA) |= �Q�x R(�x) instead of the sequence �F of choice functions, and similarly D chooses in (iii’)
a relation RB ⊆ B� such that (B, RB) |= �Q�x R(�x).

Thus, we have arrived to the following alternative game for the number of quantifiers in the
case of singleton classes A= {A} and B= {B}.

Definition 13. The monotone prefix game MPG(�,A,B) is played by S and D, and it has the
following rules.

(1) S chooses a quantifier prefix �Q�x=Q1x1 . . .Q�x�.
(2) S chooses a relation RA ⊆A� such that (A, RA) |= �Q�x R(�x).
(3) D chooses a relation RB ⊆ B� such that (B, RB) |= �Q�x R(�x).
(4) S chooses a tuple �b= (b1, . . . , b�) ∈ RB.
(5) D chooses a tuple �a= (a1, . . . , a�) ∈ RA.

Dwins the game if the mapping �a �→ �b is a partial isomorphismA→B. Otherwise Swins the game.

The reason for calling this game monotone prefix game is that the moves (2)–(5) form one
round of the well-known Ehrenfeucht–Fraïssé game for monotone generalized quantifiers, due to
Krawczyk and Krynicki (1976). Indeed, any quantifier prefix �Q�x=Q1x1 . . .Q�x� can be seen as
a generalized quantifier QK , where the defining class K consists of all structures (C, R) such that
R⊆ C� and (C, R) |= �Q�x R(�x). The quantifier QK is monotone, i.e., for any (C, R) ∈K, if R⊆ P ⊆
C�, then (C, P) ∈K. From the characterization theorem (see Krawczyk and Krynicki 1976) for
monotone quantifiers, it follows directly that if D has a winning strategy in MPG(�,A,B) after S
has chosen a prefix �Q�x, then any sentence of the form �Q�x θ that is true inA is also true inB. Note
that if this holds for all prefixes �Q�x of length �, then A and B satisfy exactly the same sentences
of form �Q�x θ , as the negation of �Q�x θ is equivalent to �Qd�x¬θ , where �Qd�x is the dual prefix of �Q�x
(i.e., �Qd is obtained from �Q by replacing each ∃ by ∀, and vice versa).

Thus, we see that MPG(�,A,B) characterizes the equivalence of A and B with respect to all
sentences containing (at most) � quantifiers. Formulating this again from the point of view of S,
we obtain the following result.

Theorem 14. Let A and B be τ -structures, and let � be a natural number. Then the following
conditions are equivalent:

(1) S has a winning strategy in the game MPG(�,A,B).
(2) There is a formula ϕ with nq(ϕ)≤ � such that Sep({A}, {B}, ϕ).

https://doi.org/10.1017/S0960129523000415 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129523000415


14 L. Hella and K. Luosto

Monotone prefix game on arbitrary classes
We end this section by generalizing the game MPG from single structures to arbitrary classes A
andB of structures. Clearly step (2) in Definition 13 has to be replaced by S choosing a relation RA
for every A ∈A. However, in step (3) it suffices that D chooses a relation RB for a single structure
B ∈B. This is because in steps (1) and (2) S basically commits to a fixed sentence �Q�x θ that he
claims to separate the classes A and B, and hence D only needs to demonstrate that B |= �Q�x θ
holds for one of the structuresB ∈B. Similarly, in step (5) D only needs to choose a tuple �a from
one of the structures A ∈A.

Definition 15. Let A and B be classes of τ -structures. Themonotone prefix game MPG(�,A,B) is
played by S and D, and it has the following rules.

(1) S chooses a quantifier prefix �Q�x=Q1x1 . . .Q�x�.
(2) For each A ∈A, S chooses a relation RA ⊆A� such that (A, RA) |= �Q�x R(�x).
(3) D choosesB ∈B and a relation RB ⊆ B� such that (B, RB) |= �Q�x R(�x).
(4) S chooses a tuple �b= (b1, . . . , b�) ∈ RB.
(5) D chooses A ∈A and a tuple �a= (a1, . . . , a�) ∈ RA.

Dwins the game if the mapping �a �→ �b is a partial isomorphismA→B. Otherwise Swins the game.

Note that the rules of the game MPG(�,A,B) are quite asymmetric with respect to the classes
A and B. In spite of this, the game characterizes the separability of A and B by a sentence with n
quantifiers, which is a symmetric condition with respect to A and B.

Theorem 16. Let A and B be classes of τ -structures, and let � be a natural number. Then the
following conditions are equivalent:

(1) S has a winning strategy in the game MPG(�,A,B).
(2) There is a formula ϕ with nq(ϕ)≤ � such that Sep(A,B, ϕ).

Proof. Assume first that (1) holds. Let �Q�x be the prefix and let RA,A ∈A, be the relations given by
the winning strategy of S. For each structure A ∈A and tuple �a ∈ RA, let θA,�a(�x) be the complete
atomic type of �a (i.e., θA,�a(�x) is the conjunction of all atomic and negated atomic formulas η(�x)
such that (A, �a/�x) |= η(�x)), and let θ := ∨

A∈A,�a∈RA θA,�a(�x).4
We show now that Sep(A,B, ϕ) holds for ϕ := �Q�x θ . LetA ∈A and consider the semantic game

SemG(A, ϕ). Since (A, RA) |= �Q�x R(�x), ∃ has a strategy guaranteeing that �a ∈ RA for the tuple �a
produced by the moves of ∃ and ∀. Using this strategy, she wins the game SemG(A, ϕ), since
clearly (A, �a/�x) |= θ for every �a ∈ RA. Thus, A |= ϕ for every A ∈A.

We still need to show thatB �|= ϕ for allB ∈B. Assume toward contradiction thatB ∈B and
B |= ϕ. Then choosingB ∈B and the relation RB := {�b ∈ B� | (B, �b/�x) |= θ} is a legal move for D
in step (3) of the gameMPG(�,A,B). Let �b ∈ RB be the response of S given by his winning strategy.
By the definition of θ , there is a structure A ∈A and a tuple �a ∈ RA such that (B, �b/�x) |= θA,�a(�x).
LetA and �a be the response of D in step (5) of the gameMPG(�,A,B). Since S has used his winning
strategy, the mapping �a �→ �b is not a partial isomorphism A→B. But this is impossible since
(B, �b/�x) |= θA,�a(�x) implies that �b satisfies exactly the same atomic and negated atomic formulas
as �a.

Assume then that (2) holds. We describe a winning strategy for S in the game MPG(�,A,B).
Note first that by Theorem 11, there is a quantifier prefix �Q�x of length � and a quantifier-free
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formula θ such that Sep(A,B, �Q�x θ). Thus, for each A ∈A we have (A, RA) |= �Q�x R(�x), where RA
is the relation {�a ∈A� | (A, �a/�x) |= θ}. We let S use the prefix �Q�x in step (1), and the relations
RA, A ∈A, in step (2) of his strategy. Assume now that D responds by B ∈B and RB in step (3)
of the game. Since (B, RB) |= �Q�x R(�x), but B �|= �Q�x θ , there must exist a tuple �b ∈ RB such that
(B, �b/�x) �|= θ . We let S use this tuple �b as his response in step (4) of the game. Since (A, �a/�x) |= θ

for all A ∈A and �a ∈ RA, the mapping �a �→ �b cannot be a partial isomorphism irrespective of the
tuple �a chosen by D in step (5) of the game. Thus, the strategy we have described is indeed winning
for S.

6. Prenex Normal Form Game
In the games of the previous section, the players produce assignments in a “parallel way” by giving
strategies in the semantic game. An alternative game is obtained by using a sequential approach:
we let S and D play the semantic game repeatedly until a large enough set of assignments has been
formed.

Definition 17. LetA andB be classes of τ -structures. The prenex normal form game PNFG(�,A,B)
is played between two players, S and D, and it is played as follows:

(1) S chooses a quantifier prefix �Q�x=Q1x1 . . .Q�x�.
(2) S and D play the semantic game for the prefix �Q�x repeatedly on structures inA; S plays in the

role of ∃ and D in the role of ∀. In each repetition i, D first chooses Ai ∈A, and then S and D
play SemG(Ai, �Q�x�). Let si : X� →Ai be the assignment formed by the choices of S and D.
If sj �→ si is not a partial isomorphism Aj →Ai for any j< i, then S and D continue to play
the next repetition i+ 1 of the semantic game. Otherwise, they move to (3).

(3) D chooses B ∈B and S and D play the semantic game SemG(B, �Q�x�) once;
this time S plays in the role of ∀ and D in the role of ∃. Let t : X� → B be the assignment
formed by the choices of S and D.

The result of the game is the sequence (A1, s1), . . . , (Ar , sr), (B, t), where r is the number of repeti-
tions of the semantic game in step (2). D wins the game if si �→ t is a partial isomorphism Ai →B
for some 1≤ i≤ r. Otherwise S wins.

Note that since the vocabulary τ of the classes A and B is finite and relational, the number of
repetitions of SemG(A, �Q�x�) in step (2) is always finite. Indeed, it is bounded by Nat(τ , �)+ 1,
where Nat(τ , �) is the number of complete atomic types of (τ , X�)-interpretations. Clearly,
Nat(τ , �) is at most 2m(τ ,�), where m(τ , �) is the number of atomic τ -formulas with variables in
{x1, . . . , x�}.

The authors of the present paper defined the prenex normal form game for a pair (A,B) of
structures and a fixed quantifier prefix �Q�x (i.e., without the first move (1) of S) some 20 years ago
and proved in an unpublished manuscript that it characterizes the preservation of the truth of all
sentences of the form �Q�x θ . We denote this version of the game by PNFG(�Q�x,A,B), and we write
A��Q B if A |= �Q�x θ impliesB |= �Q�x θ for every quantifier-free formula θ .

Theorem 18. (Hella and Luosto 1999, unpublished). A��Q B if and only if D has a winning
strategy in the game PNFG(�Q�x,A,B).
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We adapt here our proof of Theorem 18 to classes A and B of structures. Thus, we denote the
prenex normal form game with a fixed quantifier prefix �Q�x on A and B by PNFG(�Q�x,A,B), and
we write A��Q B if the implication

• if A |= �Q�x θ for all A ∈A, thenB |= �Q�x θ for someB ∈B

holds for every quantifier-free formula θ . In other words, A��Q B if and only if Sep(A,B, �Q�x θ)
does not hold for any quantifier-free formula θ . Theorem 18 is now a special case of the following
result.

Lemma 19. A��Q B if and only if D has a winning strategy in the game PNFG(�Q�x,A,B).

Proof. Assume first that A��Q B. Then D has the following winning strategy in the game
PNFG(�Q�x,A,B).
(i) D chooses an arbitrary structure A1 ∈A and uses an arbitrary strategy in the semantic game

SemG(A1, �Q�x�).
(ii) Assume that S and D have played i repetitions of the semantic game for �Q�x, A1, . . . ,Ai ∈A

are the structures chosen by D, and s1 : X� →A1, . . . , si : X� →Ai are the corresponding as-
signments. Assume further that sj �→ si is not a partial isomorphismAj →Ai for any 1≤ j< i.
Thus, according to the rules of the game, S and D play a further repetition of the seman-
tic game for �Q�x. The strategy of D in this repetition depends on the truth of the sentence
ϕi := �Q�x ∨

1≤j≤i θj(�x) in the structures A ∈A, where θj(�x) is the complete atomic type of sj.
(a) If A �|= ϕi for some A ∈A, then ∀ has a winning strategy in the game SemG(A, ϕi), and we

let D choose Ai+1 =A and use this winning strategy in the game SemG(Ai+1, �Q�x�).
(b) If A |= ϕi for all A ∈A, then we let D choose an arbitrary structure Ai+1 ∈A and use an

arbitrary strategy in the game SemG(Ai+1, �Q�x�).
(iii) Assume then that r repetitions of the semantic game for �Q�x have been played, and si �→ sr

is a partial isomorphism Ai →Ar for some 1≤ i< r. Thus, S and D continue by playing the
game SemG(B, �Q�x�) for someB ∈B once.
Observe now that A |= ϕr−1 for all A ∈A, since otherwise according to case (ii)(a), D would
have used the winning strategy of ∀ in SemG(Ar , ϕr−1), and thus guaranteed that (Ar , sr) �|=∨

1≤j<r θj(�x) which clearly implies that si �→ sr cannot be a partial isomorphism Ai →Ar for
any 1≤ i< r.
Since A��Q B and A |= ϕr−1 for all A ∈A, there is B ∈B such that B |= ϕr−1, and conse-
quently ∃ has a winning strategy σ in the game SemG(B, ϕr−1). We let D choose this B in
step (3) of the game PNFG(�Q�x,A,B) and use the strategy σ in the game SemG(B, �Q�x�). Let
t : X� → B be the assignment arising from the moves of S and D.

To conclude the proof of the first implication, observe that since D plays the game
SemG(B, �Q�x�) by using a winning strategy of ∃ in SemG(B, ϕr−1), it holds that (B, t) |=∨

1≤j<r θj(�x), and hence (B, t) |= θj(�x) for some 1≤ j< r. Clearly, this means that sj �→ t is a
partial isomorphism Aj →B. Thus, the strategy of D we described is indeed a winning strategy.

Assume then thatA ���Q B. We show that S has a winning strategy in the game PNFG(�Q�x,A,B),
whence D cannot have one. By the assumption there is a sentence ϕ of the form �Q�x θ with θ quan-
tifier free such that A |= ϕ for all A ∈A and B �|= ϕ for all B ∈B. Thus, ∃ has a winning strategy
in the semantic game SemG(A, ϕ) for all A ∈A, while ∀ has a winning strategy in SemG(B, ϕ)
for allB ∈B. We let S use the first winning strategy in all the repetitions of the semantic game for
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�Q�x on structures A ∈A, and the second winning strategy in the final semantic game
SemG(B, �Q�x�) on the structureB ∈B chosen by D.

Let (A1, s1), . . . , (Ar , sr), (B, t) be the result of the game. The strategy of S described above
guarantees that (Ai, si) |= θ for all 1≤ i≤ r, and (B, t) �|= θ . Thus, none of the mappings si �→ t,
1≤ i≤ r, is a partial isomorphism Ai →B, and hence S wins the game PNFG(�Q�x,A,B).

Corollary 20. Let A and B be classes of τ -structures, and let � be a natural number. Then the
following conditions are equivalent:

(1) S has a winning strategy in the game PNFG(�,A,B).
(2) There is a sentence ϕ with nq(ϕ)≤ � such that Sep(A,B, ϕ).

Proof. If S has a winning strategy in PNFG(�,A,B), then he has one in PNFG(�Q�x,A,B), where �Q�x
is the quantifier prefix he uses in step (1) of PNFG(�,A,B). Then D cannot have a winning strategy
in PNFG(�Q�x,A,B), whence by Lemma 19, A ���Q B. Thus, there is a sentence ϕ of the form �Q�x θ
with θ quantifier free such that Sep(A,B, ϕ), and clearly nq(ϕ)= �.

Assume then that Sep(A,B, ϕ) holds for some sentence ϕ with nq(ϕ)≤ �. By Theorem 11, we
can assume that ϕ is of the form �Q�x θ for some quantifier-free formula θ . Then A ���Q B, and
hence, by Lemma 19, S has a winning strategy in PNFG(�Q�x,A,B). Thus, S is guaranteed to win
the game PNFG(�,A,B), if he starts in step (1) by giving the prefix �Q�x (by adding dummy variables
we can assume that the length of �Q�x is �), and then continues in steps (2) and (3) by his winning
strategy in PNFG(�Q�x,A,B).

We end this section by giving an example that illustrates the use of the prenex normal form
game PNFG(�Q�x,A,B) for prefixes �Q�x with one quantifier alternation on linearly ordered sets A
andB.

Example 21. Let k and � be positive integers. We consider the game PNFG(�Q�z,A,B) between
finite linearly ordered sets A= (A,≤A ) and B= (B,≤B ) where �Q�z is the prefix ∀k�x ∃��y :=
∀x1 . . . ∀xk∃y1 . . . ∃y�. We assume all the way that both A and B are of size at least k. Let us
call either of the structures considered large if it has at least (k+ 1)� elements, and small, other-
wise. The rationale behind this bound is that if we choose k elements from a large structure, then
removing these elements divides the structure in at most k+ 1 (possibly empty) intervals, and at
least one of them has at least �((k+ 1)�− k)/(k+ 1)� = � elements. On the other hand, from a
small structure one can choose k points such that all the resulting k+ 1 intervals have less than �
elements.

We consider the following three cases according to the sizes of A andB.

(1) Assume first that |A| ≤ |B|. We describe a winning strategy for D in the game
PNFG(∀k�x ∃��y,A,B). In the first phase of the game, D plays in a canonical way: As the
players play the semantic game SemG(A, ∀k�x ∃��y�) where D assumes the role of ∀, she is
to choose a k-tuple �aj = (aj,1, . . . , aj,k) during each round, after which S chooses an �-tuple
�cj = (cj,1, . . . , cj,l). In order to do this, she fixes an order on Ak, e.g., the lexicographic order,
before the rounds. When round j is played, D plays the least unused tuple �aj for which S
cannot make his choice �cj ∈A� in such a way that �ai�ci �→ �aj�cj is a partial isomorphism for
some i< j. If there is no such choice for D, then she repeats the previous choice and allows
the play to proceed to the second phase.
In the second phase of the game, the roles have switched and the semantic game
SemG(B, ∀k�x ∃��y�) is to be played once, with S as ∀ and D as ∃. So S chooses
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�b= (b1, . . . , bk) ∈ Bk, and D has to find a right answer �d ∈ B� against this choice. The el-
ements of �b divide the set B� {b1, . . . , bk} into at most k+ 1 (possibly empty) intervals
	0, . . . , 	r . Since k≤ |A| ≤ |B|, there is a tuple �a ∗ ∈Ak such that for some embedding
q : A→B, q maps �a ∗ to �b. D has not necessarily played �a ∗ during any round, but in
any case, there has to be some round j of the first phase such that there is a partial iso-
morphism p from A to A with the following property: p maps �aj to �a ∗ and �cj ∈ dom(p)�.
Now D chooses �d = q(p(�cj)), and q ◦ p is obviously a partial isomorphism that shows that D
has won.

(2) Assume then that A and B are both large. A similar strategy as in previous case wins for
D again. In the first phase, D plays canonically, exactly as before. In the only round of the
second phase, suppose S has chosen �b= (b1, . . . , bk) ∈ Bk. Again, �b determines a division
of the set B� {b1, . . . , bk} into at most k+ 1 possibly empty intervals 	0, . . . , 	r . For sim-
plicity, we may assume that now |A|> |B|. By the pigeonhole argument explained in the
first paragraph of the example, there is some i∗ ∈ {0, . . . , r} with |	i∗ | ≥ �. This ensures
that D can find �a ∗ ∈Ak such that �a ∗ can be mapped to �b by some partial isomorphism
q0 and that the following holds: Considering the division 
0, . . . ,
r in A induced by
�a ∗ in A� {a∗

1, . . . , a
∗
k}, we have |
i| = |	i| or simultaneously |
i| ≥ � and |	i| ≥ �, for

every i ∈ {0, . . . , r}. (We may put all the extra elements in 
i∗ .) As in the previous case,
we can find a round j and a partial isomorphism p with �aj �→ �a ∗ and �cj ∈ dom(p)�, where
�cj = (cj,1, . . . , cj,�) ∈A� is the tuple chosen by S in round j. Note that for every i ∈ {0, . . . r},
we have that the set {p(cj,1), . . . , p(cj,�)} ∩
i has at most � elements, so that there certainly
exists a partial isomorphism q extending q0 with {p(cj,1), . . . , p(cj,�)} ⊆ dom(q). Clearly, D
wins the game by playing �d = q(p(�cj)).

(3) The remaining case is that B is small and that |A|> |B|. Then S has a winning strat-
egy. The smallness of B means that |B| ≤ (k+ 1)(�− 1)+ k, which implies that there is
a strictly ascending sequence �b= (b1, . . . , bk) ∈ Bk dividing the set B� {b1, . . . , bk} into
(possibly empty) intervals 	0, . . . , 	k, all of which have size less than �. S plans to play this
sequence in the second phase. Suppose that D plays the sequence �aj = (aj,1, . . . , aj,k) ∈Ak

during a round j of the first phase. We may assume that the tuple �aj is strictly increasing,
otherwise S replies arbitrarily. Let 
0, . . . ,
k be the intervals of the induced division of
A� {aj,1, . . . , aj,k}. As |A|> |B|, there is i ∈ {0, . . . , k} with |
i|> |	i|. Also m= |	i|< �,
so S chooses the tuple �cj = (cj,1, . . . , cj,k) so that the firstm+ 1≤ � elements cj,1, . . . , cj,m+1

are different elements of
i. Supposing now Smoves �b ∈ Bk in the second phase of the play,
it is clear that D has no reply �d ∈ B� such that �aj�cj �→ �b�d is a partial isomorphism for any
round j of the first phase.

Summarizing, assuming that A and B are finite linearly ordered sets with |A|, |B| ≥ k, D has a
winning strategy in the game PNFG(∀k�x ∃��y,A,B) if and only if |A| ≤ |B| or |B| ≥ (k+ 1)�. By
Theorem 18, this means that the structure A can be separated from B by a sentence of the form
∀k�x ∃��y θ if and only if |A|> |B| and |B|< (k+ 1)�.

7. Conclusion
In this paper, we introduced three different games, the number of quantifiers game NQG, the
monotone prefix game MPG, and the prenex normal form game PNFG, and proved that they are
all equivalent to the Immerman game IG, and hence they characterize equivalence of structures
with respect to sentences containing a given number of quantifiers. The main results in the paper
can be summarized as follows.
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Theorem. Let A and B be classes of structures, and let � be a natural number. Then the following
conditions are equivalent:

(1) S has a winning strategy in the game IG�(A,B).
(2) S has a winning strategy in the game NQG(�,A,B).
(3) S has a winning strategy in the game MPG(�,A,B).
(4) S has a winning strategy in the game PNFG(�,A,B).
(5) There is a formula ϕ with nq(ϕ)≤ � such that Sep(A,B, ϕ).
(6) There is a quantifier prefix �Q�x of length at most � and a quantifier-free formula θ such that

Sep(A,B, �Q�x θ).
The monotone prefix game MPG and the prenex normal form game PNFG differ from the

Immerman game IG in an interesting aspect. In the Immerman game, D has a canonical opti-
mal strategy (the oblivious strategy), which means that she can be completely removed from the
game by replacing her moves with the default moves defined by the optimal strategy. No such
canonical optimal strategy for D exists in the games MPG and PNFG. Thus, IG can be regarded as
a one-player game, but MPG and PNFG are genuine two-player games.

Competing interests. The authors declare none.

Notes
1 Recall that V0 = ∅ and Vn+1 is the powerset of Vn, and hence |V0| = 0 and |Vn+1| = 2|Vn| for each n ∈N.
2 Ackermann (1937) proved that there is an isomorphism f fromVω = (Vω , ∈ ) toBω = (N, BIT−1), where Vω = ⋃

n∈N Vn.
It is easy to see that the restriction of f to Vn is an isomorphismVn →Bn.
3 In case S has a winning strategy in IG∗(�,A,B), he naturally thinks of θ such that �Q�x θ separates the classes A and B.
4 Note that since the vocabulary τ is finite and relational, up to equivalence there are only finitely many quantifier-free
formulas with free variables in �x. Thus, the disjunction in θ is finite even if the class A or some structure A ∈A is infinite.
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