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ORTHOGONAL POLYNOMIALS WITH SYMMETRY 
OF ORDER THREE 

CHARLES F. DUNKL 

The measure (x\x^x^)Aadm(x) on the unit sphere in R is invariant under 
sign-changes and permutations of the coordinates; here dm denotes the 
rotation-invariant surface measure. The more general measure 

la lb 2c , , . 

x} Xi *3 dm(x) 

corresponds to the measure 

v j v2( i — v'i — vi)'dv\dvi 

on the triangle 
E: = { (v,, v7):v,, vi è 0:v, + v7 ^ 1} 

(where a = a — \, p = b — i, y = c — ̂ , vt: = xl, 1 ^ / = 3). Appell 
( [1] Chap. VI) constructed a basis of polynomials of degree n in vj, v2 

orthogonal to all polynomials of lower degree, and a biorthogonal set for 
the case y = 0. Later Fackerell and Littler [6] found a biorthogonal set for 
Appell's polynomials for y ¥= 0. Meanwhile Pronol [10] had constructed 
an orthogonal basis in terms of Jacobi polynomials. Indeed there are three 
different families of this type which transform to each other under 
permutations of coordinates (and parameters). For example, the involu­
tion vi <-> vi is diasonalized bv one such basis, but all other possible 
nontrivial permutations are represented by matrices with Racah-Wilson 
polynomial (balanced 4/3-series. see [14] ) entries, in this basis. 

The aim in this paper is to construct an orthogonal basis of polynomials 
on which the Abehan group of order three generated by cyclic 
permutations of the coordinates acts diagonally (where a = /3 = y = a — 
\). This basis will be realized as the eigenvector decomposition of a 
self-adjoint third-order differential operator. 

The first stage of orthogonal decomposition is easy: fix a > — 1, let B 
= y = a and define / /" (for n ^ 0) to be the space of (complex) 
polynomials in vj, v2 of degree = n which are orthogonal to all poly­
nomials of lower degree. (There is a second-order differential operator 
analogous to the spherical Laplacian which has each / /" as an eigenman-
ifold.) 
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686 CHARLES F. DUNKL 

To more neatly represent cyclic permutations we introduce the complex 
coordinate 

2 2 _ 1 i • / ! 

z: = X\ + cox2 + cox 3 where co = e~^' ~. 

The measure transforms to a multiple of 
(z3 + z3 - 3zz + \)adm2(z) 

on the triangle with vertices 1, to, to in C (where Jw? is Lebesgue measure 
on R~). An approach that was used by Koornwinder [7] on the region 
bounded by a three-cusped deltoid (Steiner's hypocycloid) to find an 
orthogonal basis, namely, polynomials of the form zn~mIm 4- pn i(z, z) 
which are orthogonal to all polynomials of lower degree, does not work in 
our situation. 

The construction of the third-order operator is based on infinitesimal 
rotations. An appropriately invariant operator which is self-adjoint for 
dm(x) on S" is constructed, and then modified (in its first- and 
second-order terms) to become self-adjoint for (x\x2x3y

adm{x). Restrict­
ed to / /" for given n (and a = a — \) the self-adjoint operator, called 
Da, is represented by a Hermitian tridiagonal matrix with respect to the 
normalized Jacobi-type basis. Its characteristic polynomial is the end-
product of a chain of three-term recurrences, whose intermediate results 
form a family of polynomials orthogonal with respect to a discrete 
measure supported by the eigenvalues, which are thus pairwise distinct. 
We will discuss the connections between these orthogonal polynomials 
and the eigenvectors of Da. From the limiting behavior as a —> 00, which 
will be explicitly described, the effect of a cyclic permutation on any given 
eigenvector (they are labelled in order of magnitude of the eigenvalues) 
can be found. 

Indeed for given ct, n let the eigenvalues of Da\Hn be A() < X\ < 
\i . . . < X„ with the eigenvectors q"- associated to À;, 0 = j = n, then 

T j a n — 2/ « 

Uqnj = u1 lqnr 

where u is the permutation 

Uf(xu x2, x3): = / (x 3 , xu x2). 

Here is an outline of the sections of this paper: 
Section 1. Background: general theory of polynomials on the sphere 

orthogonal with respect to a measure invariant under a reflection group, 
and an associated differential operator; families of two-variable Jacobi 
polynomials orthogonal for 

v?v2(l — V] — v2ydv\dv2 

on the triangle E\ transformations of these families in terms of 
4F3-series. 

Section 2. The symmetric case: specialize to the measure 
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(viv2(l — vi — v2) )advidv2 

on £, the complex coordinate system, a basis for //J) of polynomials in 
(r, z) constructed by means of a differential operator; the limiting 
behavior as a —> oo. 

Section 3. The self-adjoint third-order differential operator: the 
construction, tridiagonal matrix representation with respect to the 
Jacobi-type basis, the family of discrete orthogonal polynomials related to 
the characteristic polynomial (on each / /") , the eigenvector decomposi­
tion; behavior as a -^ oo. 

Section 4. Consequences and further problems: limiting behavior as a 
—•> — 1, degeneracies of the eigenvectors and eigenvalues; a four-term 
contiguity relation for a certain balanced 4/

r3-series implied by the 
permutation invariance of Da. 

1. Background. Here are the general results from [5] which give a 
foundation for this work. Suppose that h is a product of homogeneous 
linear functions on RA and G is a finite reflection group (fixing the origin, 
a subgroup of O(N) ), then say that h satisfies condition (*) for G if the 
reflections in the zero-sets of the factors of h generate G, and 

h(ox) = ±h(x\ (o e G, x e Rv). 

Define the linear differential operator Ln by 

L,J: = A(Jh) -fM, ( / e C°°(R'V) ), 

where A is the Laplacian 2 / = i ( — ) • 
V dxj / 

1.1. THEOREM. Iff is a polynomial, h satisfies (*)for G, and L/f = 0 then 
j is invariant under G. 

This says that solutions of Lhf = 0 are to be found in the algebra of 
G-invariant polynomials. Thus define P,[ to be the space of G-invariant 
polynomials, homogeneous of degree n, and let 

Hh
n\ = P^ n ker Lh. 

Further let S: = {x e RA:|x| = 1}, the unit sphere, be furnished 
with the normalized rotation-invariant surface measure dec. The analysis 
of IIn takes place in L~(S; h^doo). 

1.2. THEOREM. / / / G H]P g G H\r n ¥= m, then 

j s fgh2da = 0. 

1.3. THEOREM. P\\ = 2 / = o © \x\2j^n-2/ (direct sum in L2(S; 
h2du) ) . 
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This shows that each G-invariant polynomial has a unique expansion in 
terms of the form \x\~'npk(x) with pk e H'k. Further. //", consists exactly 
of those elements of Pi' which are orthogonal to all G-invariant 
polynomials of degree <n. Thus if a self-adjoint operator (densely 
defined) on L~(h~du) leaves each P,[ invariant, then it leaves each // / ; in­
variant. 

We will need the infinitesimal rotations. For y ¥= k define 

The surface Laplacian (the Laplace-Beltrami or Casimir operator for S) 
is 

A,: - 2 Rjk. 

It is closely related to A since 

A.v/(.v) = \x\2f(x) - (N 

-(ixtpfn*). 
There is an obvious extension of às to the L / rtheory; indeed let 

A.v7/: = às(Jh) - AvA-

If y is homogeneous of degree m then 

As /,/ = \x\2Lhf - m(m + N + 2 deg h - 2)hf 

1.4. PROPOSITION. / / / <= Pt'n, then f e li]n if and only if f is an 
eigenjunction oj the operator ( 1 //? )As /? with eigenvalue —m(m + N + 
2 deg h - 2). 

For the rest of the paper we will deal only with the situation N = 3, 
h(x) = x\x2Xy The theory discussed above applies fully to the values a, 
/?, c = 1, 2, 3. . . but other real values will occasionally be used in the 
development. 

The corresponding reflection group G is (Z2)3 and the invariants are 
exactly the polynomials in x], x^ x^. Thus 

dim P-!n, = \ m ) and 
\ ' * * / 

dim H'2m = dim P?rn — dim P^m-2 = m + 1. 

We introduce the variables v,-: = x~ and the derivations 

2) Z x.— fix) 
i=\ dXj 
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a 
9,-: = —, 1 ^ / ^ 3. 

dv, 

For h = A>\"2À"3 we have 

4( 2 v/87 + (a + (l//7)L/,/'(v) = 41 2- v,a- + (c/ + )̂c) 

.V 4- (/; + 3)c)2 + (c + i)33 j/ '(v). 

A (7-invariant function is determined by its values on certain triangular 
sectors of S, such as the first octant (xt = 0); that is, the region 

/:: = { (v,, v2):v], v2 ^ 0: v, + v2 ^ 1} c R2. 

We convert Irdco to a measure on E. 

1.5. LHMMA. 

/ / 
, « /?„ , Y / , Ha + l)r(j3 + l)F(y + 1) 

T(a + fi + y + 3) 

Jor a, /}, y > — 1. 

1.6. LEMMA. Eor J continuous, 

Js / U b *2, x ^ M x ) = — J /f / ( v b v2, 1 - v, - v2) 

_1 
X (viv2(l

 — Vi — v2) )
 2dv]dvi-

We see that the measure hrdu corresponds to a scalar multiple of 

a-- h~- (--

Vj 2v2
 2(1 — V] — v2)

 2dv]dvi 

on E. A family of orthogonal polynomials for this weight is known (see [8], 
[10] ) in terms of Jacobi polynomials. We use a shifted, normalized Jacobi 
polynomial: 

n ( « A f , F ( -n,n + a + P + \ \ 

then 
"1 

/ . () R^%)R{^\s)sa(l - sfds = 0 for m * n. 

Also we continue to use v̂  with the understanding that vi + v̂  + v̂  
on E. Let 

du(v) = ka^yv
(\V2v'\dv\dv2, 
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where 

kah: = ( I > + l)r(i8 + \)T(y + \)/V(a + /3 + y + 3) ) ', 

so that a = a - \, fi = b - ^ y = c - \. 
We define one of the possible families of polynomials, for 0 = m = 

tu 

K„(v): = (« + l)„-,„(j8 + \)mRl,?-ny + 1"'+l) ( v i / 2 >',) 

X ( 2 v,-)" "'<v2 + v3)"^!,f'y)(v2/(v2 + v3) ). 

By Pfaffs transformation, 

cj>nm(v) = (a + l)„-#„(i8 + l)m(v2 + v.,)"""1 

- ' V a + 1 v2 + v3 / 

a useful form. Thus <£,„„ is homogeneous of degree /7 in vi, v2, v3 and of 
degree =n — m in vj. By the use of known integrals of Jacobi polynomials 
(see [12], p. 68) we obtain 

kaPy J J 1: *"'»(V)^T(V)V"V2V? dv\dv2 = 8nk8mlNnm(a, /?, y) 

where 

#,„„(«, /3, y): = 

(P + y + m + 1)08 + y + m + 2)/?(^ + 1),„ 

(P + y + 2m + l)(a + 0 + y + 3),, + ,,, 

x (y + \)m(a + l)#1-w(a + jS + y + K + m + 2)m\(n - m)\ 
(a + /3 + y + 2A? + 2) 

for 0 = m = «. By cyclically permuting (vi, a), (v2, /?), (v3, y) we obtain 
two other orthogonal bases: 

*,„„(v): = (/? + 1)„_„,(Y + l ) ( I 1 / î ^ - + 2 ' " + , ) ( v 2 / 2 v() 

X ( 2 v /)"- '"(v3 + v,)"'/?5r)(v3/(V3 + v,)); 

<SU(v): = (Y + !)„-,„(« + D , , , / ^ + 2'" + "Ul 2 v,) 

X ( 2 v,)"-'"(v, + v2)'"/?^/,)(v1/(v1 + v2)). 
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with orthogonalities 

Kfo J Jj ^nm(v)^kI^)^2^V]dv2 = 8nk8miNnm(ft y, a) 

and 

kafo J Ji 6nm(v)0k/(v)va
]v^v]dv]dv2 = 8nk8mlNnm(y, a, /?). 

The other three possible permutations lead to no new bases; from the 
relation 

Rfa\\ - s) = ( - 1 H (« + l)WI/(j3 + \)m)R\?As) 

we see that <j>nm transforms to (— \)m(j>nm under the transposition of (v2, ft) 
and (v3, y), as one example. 

It is striking that the orthogonal matrices expressing the transforma­
tions between the normalized versions of these bases are given in terms of 
the Racah-Wilson polynomials (balanced 4F3-series, orthogonal with 
respect to a finite discrete measure, see [13] ). 

1.7. THEOREM. For 0 ^ m, k ^ n\ 

_I " -1 
0 4>nkNnk(P,y,a) 2 = 2 ( - l)A'M,wlA(a, ft y)4>nmNnm(a, ft y) 2; 

1 n - I 
H) OnkNnk(y, a, j8) 2 = 2 ( - \)kMnmk(fr y, ot)^nmNnm(^ y, a) 2; 

w=() 

-1 " 1 
iii) *,,*W,lA-(a, j8, y) I = 2 (-l)A'MllwlA.(y, a, j8)fl/Iw^IIWI(y, a, j8) 2; 

w = 0 

Mnmk(a, ft y): 

v } \ ~ n, y+l ,A? + a + p + y + 2 ' / 

x /(<* + l)w-w(jS + 1)„-A.(Y + l)m(y + \)k(n + a + j8 + y + 2),„ 

V w!A:!(« - w)!(« - /c)!(m + 0 + y + 2)„(A: + a + y + 2)„ 

(/7 + a + /3 + y + 2)A(j3 + y + 2m + l)(a + y + 2 A: + 1) 

) ' • (a + 1)A.(J8 + l)m(fi + y + m + l)(a + y + /c + 1) 

For fixed n, a, ft y the matrix (Mnmk(a, fi, y) )m^=Q is orthogonal. 

Proof. This is a direct consequence of a similar fact about Hahn 
polynomials in two variables, which was proved in [3]. The idea is to set up 
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the weight 

((a + l) r |(£ + l),,(y + l)A:-ri-l.2)/(Vi!>'2!(A: - r, - v2)!) 

on the (integer) lattice points in the triangle v'i, yi = 0,V\ + Xi = K: for 
which there are three families of Hahn polynomials similar to <£. \p, 6: 
replace vj, v2 by Kv}, Kv2 respectively, and let K —> oo. The 4/3 function 
stated here is obtained from the one in Proposition 5.4 of [3] by a standard 
transformation ( [2], p. 56). 

1.8. COROLLARY. 

2 (-\)kMn/k(fr y, a)A//lA7(y, a, j8) = ( - î y + 'A/^a, & y), 

for 0 ^ ./, / ^ «. 

Proof. Transform from the ^-basis to the <̂ >-basis by using the 
composition of (ii) and (iii). and directly, by using the inverse (adjoint) 
of(i). 

This leads to an orthogonal matrix of period 3 when a = /? = y. It is 
this situation that will be studied in detail in the sequel. (We caution the 
reader that a permutation of (vj, a)(v2, yS)(v3, y) is a transformation of 
identities, not a well-defined linear transformation. For example the cycle 
( (v), a) —> (v2, ft) —> (v3, y) —») maps <pnm to \pn„r but the corresponding 
matrix 

is not in general of period three, indeed the m = k = 0 entry for n = 1 
is 

\_ 
- ( (a + l)(/3 4- \)/(a + y + 2)f/3 + y + 2) )2 ^ - 1/2 usually.) 

2. The third order symmetry. Henceforth a = fi = y and we will refer 
to 

Mfmik(a): = Mumk(a, a, a)\ 

Nnm(a): = Nmu(a, a, a); and 

£„: = T(3a + 3)/T(a + l)3. 

The measure on E is 

J^ : = ka(v\V2V^)adv\dv2, 

and 53, the symmetric group on 3 letters, acts as a group of isometries in 
//-(£", /xa) by permuting (vj, v2, v3). This group is generated by the 
operators U and 7 where 

Uf(v\* v2. v3): = / ( v 3 , vi, v2) 

ana 
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y/(vi, v2, v3): = / ( v ! , v3, v2). 

Thus U generates the group Z3. and it is this action that we wish 
to diagonalize. Note that U<j>nm = 6nm so that the matrix of U in the 

<t>nmN,my bas i s is 

If km = {-\)kMnkm(OL). 

We introduce the coordinate system z: = vj + tov2 + cov3, t: = v\ -f v2 

+ v3, where co: = e27Tl/3 (note w2 = cô and to -f cô + 1 = 0). Let £2 be the 
closed convex hull of 1, co, û in C then 

£ = { (vi, v2):vb v2 ^ 0, V] + v2 S 1, (v3 = 1 - vi - v2) } 

corresponds to { (z, t):z e £2, / = 1}. The inverse transformation is 

v, = (z + I + 0 / 3 , v2 = (ûz + coz + 0 / 3 . 

v3 = (coz + côz + r)/3. 

2.1. PROPOSITION. The space E and the measure /xa correspond to il c C 
vv/7/z //ze measure 

ca(z
3 + z3 - 3zz + iyVm2(z), 

where ca: = 2ka3 ^ 2 ' and m2 is the R2-Lehesgue measure on C. 

Let 

w(z, O: = z3 + z 3 - 3zz7 + t\ 

then £2 is exactly (z:w(z, 1) ^ 0}. Of course vv is nothing but 27 v'iv2v3 

expressed in z and r. Also 

(7/(z, t) = f(uz, t) and jr/(z, 0 = / (z , 0-

I 
The differential operator (\/h)Lh (where h(x) = (x 1X1X3) 2) becomes 
4Lrt. where 

La. = z3 2 + z3 2 + r3? + 23,(z3 + z3) 

+ 2/âa + 3(« + na„ 

*' = 3? a' = 8f ^ = 3? 
Further, if/? is homogeneous of degree n in z, z7, / (thus degree In in the 

Xj ) then L/2/7 = 0 if and only if p is an eigenvector of 

L«: = - ( z 3 + z3)2 - (3a + 2)(z3 + z3) + 2r33 

+ r(z3z + z3z) 
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with eigenvalue — n(n + 3a + 2), (that is, La = (l/4/z)As/ / in (z, /)-
coordinates; see Proposition 1.4). 

Recall H\ is the space of polynomials in xt homogeneous of degree 
n such that L}lp = 0. Define / /" to be the space of polynomials in vr or 
(z, z, f)< homogenous of degree A?, such that Lcxp = 0 (thus lfn corre­
sponds to Hin)- This gives the orthogonal decomposition 

CO 

/ /=o 

Also dim //" = /? + 1, and each //" is an eigenmanifold of L^. 
For n = 0, 1, 2, 3. . . and e = 0, 1,2 define Pll€ to be the space of 

polynomials p in (z, z, r) homogeneous of degree n satisfying the 
relation 

Up = co€p. 

A monomial zkzrltn~k~l(k, I ^ 0; k + / = n) is in Pne exactly when 

k — I = c mod 3. 

Since La commutes with U we can similarly split //", indeed, define 

We give an algorithm for a basis of //^£, based on a recurrence rela­
tion. 

2.2. LEMMA. 

La(z
lzmt"~l-m) = 1(1 - \)zl-2jm+\f-i-m 

+ m(m - l)z /+1z /"~2f"~ /~'" + 2W~1z"'~ ,f'z"" /~m~M 

+ (A7 - / - m)(/ + m + « + 3^ + 2)z^mtn~l~m~\ 

A convenient indexing for monomials of the same £/-orbit as zl~zm is 

z / - 2A + / j w + k- 2jtk +./ 

subject to k + y ' ^ 0, 2/c — j fk l,2j — k ^k m\ (for fixed /, m the possible 
values of s = k + j satisfy 2s — m ^ 3A: ^ / + s and 0 ^ s = / + 
m ). 

2.3. THEOREM. For fixed n and m with 0 = m tk n there is a unique 
polynomial f nm e Hne with e = n — 2m mod 3 whose only term of degree 
0 in t is zn~nrzm. Further let I = n - m, then 
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if and only if 

•' ( - 2 « - 3 / - 1)A+/ 

and {Akj} satisfies 

Akj = (\/(k 4 y ) ) { ( / " 2k 4 j 4 2)(/ - 2k 4 y 4 \)Ak-Ki 

4 (m 4 A - 2/" 4 2)(w 4 A - 2/ 4 1)/*A-./-I 

- 2(/ - 2Â: 4 .y 4 l)(m 4 A - 2y 4 1) 

X (2n - A' - y 4 3a 4 3)>IA._ K /_ !>; 

f/i/s recurrence is to be computed in order of k 4 y' = 1, 2, 3 . . . /?, with given 
values for Ak^k and Akj = 0 for (/c,y) values outside the permitted region. 
The polynomial f"m is characterized by A0{) = 1, Ak^k = 0 for k ^ 0. 

Proof. Apply the lemma to find the result of applying La to the given 
general polynomial (with ckj), and set the coefficient of 

7l 2k +j- m + k- - 2jtk +j 1 

equal to zero. This produces a recurrence for ck/, consequently for Ak/. The 
recurrence shows that each Akj is uniquely determined by the values of 
Ak^j for k' 4 f < k 4 y, hence the values Ak>^-k>. (Note there are n 4 1 
such values, and dim / /" = A? 4 1.) 

By using Theorem 2.11 in [5] we can give another expression for/",„, 
indeed 

// 
flm = 2 UK-2n - 3a - l)^" V(LjV~'"*'H), 

7=0 

(valid unless a = — 1 and /? = 1). 
For given « and c = 0, 1, 2 and let c = 2n 4 e mod 3 with c = 0, 1, 2 

then 

[fa„JJ + l.:0 ^ j ^ [(« - c)/3]} 

is a basis for //^£. Conjugation maps H*}] onto / /^ 2 and 

dim Ha
n j = dim / / " 2 = [ (w 4 2)/3] 

(the cardinality of { (y, /c):y + ^ = n , j ^ 0 , ^ 0,y - k = 1 mod 3} ); 
and thus 

dim / / % = n 4 1 - 2 [ (w 4 2)/3]. 

Here are some low degree examples: 
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— / a 7o.o = ! ; / , . „ = z j ,., = I;fla = r - (2/(3« + 5))It 

/ ? , =zz- ( l / (3a + 4 ) ) r , / ? , 2 = / ? . „ ; 

/ " o = r3 - (6/(3a + 7) )zJf + (4/(3a + 5)(3a + 7) )r\ 

7 " , = z2r - (2/(3a + 7) )z2f - (2/(3« + 7) )zr. 

fa fa fa fa 

J 3.2 — 7 3.1 ^ 7 3.3 — 7 3.0-
Unfortunately, it must be stated that {/,,,„} is not an orthogonal basis. 

Even though most of the functions in this short list are orthogonal 
to each other for degree and group invariance reasons (that is, 
7/"e _L HfH8 unless n = m and e = S),f^{) a n d / 3 3 are both in //" ( ) yet 

J h .n ./3,0/3.3 ^dm2 * 0. 

We will find a recurrence, but not a closed form, for the integral 

2.4. Definition. For A, / â 0, a > - 1, let 

/«(*, /) = c a / / n zAz')v(z, l)Vm2(z) 

(note the constant ca makes Ia(0, 0) = 1) ). 

2.5. PROPOSITION. Ia(k, /) = 0 MA?/ess A- = / mod 3, / /A , I) = Ia{L k) 
and 

(A + / + 3a + 2)1a(k, /) = lla(k - 1, / - 1) 

4- (A - l)/ft(A - 2, / + 1) 

= kla(k - 1, / - 1) + (/ - l)/tt(A + 1, / - 2). 

Proof. The set £2 and the measure are invariant under U(z H-> coz), but 

U(z"j') = = «*-• l 7 k - l 

z z 

hence /a(A, /) = coA 
"'/«(*. /); this pre 

(conjugation) show^ ) 

Uk, /) = /«(A A). 

Note 

W{Z, 1) = (z2 -- zz -i- ^' ~ z -

We use integration by part s to obtain 

I). 
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caj l u(z, z)(3 - 3)( (z1 - zz + z1 - z - z + l ) " + l 

X (z + z + l)")Jm2(z) 

= ~ w l [ ( 8 ~~ d)u(z,I)](z2 - zz 
+ F2 - z - J + l)vv'Vm2(z), 

and the left side also equals 

3(a + \)caj JQ u(z, Y)(z - z)wadm2(z); 

the calculation being valid for a > — 1. Now set w = zK l~zl (with /c = / 
mod 3 and A ^ 1) and use the relation 

Ia(k\ /') = 0 if k' ^ /' mod 3 

to simplify both sides. This leads to 

3(a + 1 )/«(*, /) = -(k - \)(Ia(k, I) - Ia(k - Z / + 1) ) 

+ /(/a(/c - 1, / - 1) - Ia(kJ)h 

and so 

(/c + / + 3a + 2)4(/c, I) = (k - \)Ia{k - 2, / + 1) 

-r //a(A - 1, / - 1). 

The last identity in the theorem follows from the (/c, /)-symmetry. 

Put k = 1, / = 3/ to get 

(3/ + 3a + 4)4(1, 3/ + 1) = (3/' + 1)4(0, 3/), (y ^ 0), 

and /: = 3/ -h 3, / = 0 to get 

(3/ + 3a + 5)/a(3/ + 3, 0) = (3/ + 2)4(3/' + 1, 1). 

From these, we can show 

Ia(3j. 0) = /„(0, 3/) = , ( f ^ f / 3
+

) ;
s / ^ and 

(a + 4/3)y(a + 5/3)y 

(1/3)/+,(2/3); 
4 (3 / + 1, 1) - ^ ^ 2  

(a + 4/3) ;+,(a + 5/3), 

Finally 

f « / j [ flo7hwadm2 = cajjQ n.{)z\«dm2(z) 

(because/fo is perpendicular to terms of lower degree) 
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= / a (6 , 0) - (6/(3a + 7 ) ) / a (4 , 1) 

+ (4/(3a + 5)(3a -h 7) ) / a (3 , 0) 

= - 7 2 ( a 4- l ) / ( ( 3 a + 4)(3a + 5)2(3a + 7)2(3a + 8) ). 

The limiting situation for a —* oo is nontrivial but some specific results 
are possible. 

2.6. PROPOSITION. For each n ^ 0, 

i) lim oTn$nm(y) = (v2 + v3 - 2v,) / ,- , , I(v3 - v2)'"; 
a—*oo 

ii) lim a~"Nnm(a) = (2/3)n3~mm\(n - m)! ; 

iii) \m^M„mA(a) = ( - l ) " + A + ' " 2 - " ( 3 ' " + A(;i)(^))2 

X 2 F , ( ^ : ; ; ; 4 / 3 ) : 

iv) lim / " „ , = z ' '-»1'». 
a—>oo 

Proof. Indeed 

«~>/m,(v) = ( ( « + 1 )„-„,(« + l)m«"") 

v F (m - /7, m + A? + 3a + 2. Vl V , , „ _, ,n - m 
x 2 ^ i l „ i i , — — M v i + v2 + v3) 

V a -i- i Vj + v2 + v3 / 
v r | ~ ^ m + 2a + 1 v2 \ , , v„ 

^ l «+ 1 '^T^J ( V 2 + ^ 
-> iF0(m ~ «; 3v1/(v1 + v2 + v3) )(VÏ + v2 + v3)'z~'" 

X , F 0 ( - m ; 2v2/(v2 + v3) )(v2 + v 3 f , 

and these are binomial series. 

The Krawtchouk polynomial of degree m, parameters n, p (orthogonal 

for [n
x \px{\ - pf~x) is defined by 

thus in (iii) above, we have Kk(m\ 3/4, n). 
Define 

C ( v ) : = (v2 + "3 - 2v,)"-" '(v3 - v2)". 
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There is an inner product (/?, q) on polynomials homogeneous of degree n 

in v'i, v2, v3 such that 

OO , OOx 

(0/wr 0/iA> 

namely 

</;.</>: = 3 - 2 " 2 , , . P(m) %>})•> 

where (m) is a multi-index (m^ m2, w3) with 2/W/ = n, and 

, x "V Wi /Hi /Ĥ  

P(V) = 2a P(m)V\ V2"V3-

(and similarly #). 
There is a simple expression for zn~mIm in terms of <$>nk. Let 

£: = (v2 + v3 - 2vL), 7]: = v3 - v2, 

then 

z = - ( l /2 ) (£ + V^i-q). 

2.7. PROPOSITION. 

/? — ni—m = (-1/2)" 2 (j)(V3i)jKw(j:ln)4^(v). 
/=() ^ 

<-"~'"z"'. j " - * ! * ) = ô,„A.3~"/w!(« - ni)!, 

so that {z"~'"r '": 0 = m i n ) « a« orthogonal basis Jor 11 „ 

Proof. Indeed 

z"-",Im = ( - l / 2 ) " ( | + V3"7)"~"'(l - V3'iJ)"' 

= ( - 1/2)" 2 ( " 7 "')?'-'"-'( V3/T,)>(j)|'"-*(- V3/T,)* 

i / 2 ) " i ( V 3 o / f - v 2 ( " D A ( ^ ) ( ' ; : ^ ) 

(where / = j + k). The A-sum is known to be 
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and thus we have the stated expansion. The inner product 

(:"""'z"\ z"~kzk) = ( -1 /2 ) 2 " 2 ( " j 3 ' 

Kni(j; I n)Kk(j\ I n){2/3)"3-'j\(n - ./)! 

6 - " n ! 2 (")Km(j:in)Kk(j-\,,i) 

" « ! ^ 2 » / ( » ) , = 6 

by the orthogonality of Krawtchouk polynomials. 

The matrix of the isometry U in the normalized 4>„„,-basis is 

Ujk = (-l)jMlljk(oo) 

•{*+ij){ï)h«-' = (-\)n+k2-n\^3J + kr.jrnj2Kj(k; 3/4,17), (0 ^ y , k ^ n). 

Since £7 acts diagonally on the functions zn~m~zn\ we can obtain an 
orthogonal diagonalization of U by using Proposition 2.7, indeed 

4--n 2 ( 'M3 '%(m; 3/4, A7 ) ( - i/V3)"Kk(m; I n) 

= (-a)/2)"œk(i/^/3yKj(k; \. n\ for 0 ^ ,/, k ^ /?. 

3. The self-adjoint third-order differential operator. We want to find 
a reasonably natural orthogonal basis for 7/" that diagonalizes the 
Z3-action generated by U. As was pointed out, the basis 
{./!*.w} is n ° t orthogonal. The approach will be to construct a self-adjoint 
differential operator that commutes with the various symmetries (namely, 
sign-changes of xr cyclic permutation). As a starting point we work with 
the usual surface measure on S (that is, a = —{), so that the algebra 
generated by the infinitesimal rotations provides some obvious self-
adjoint operators. Each iR]k is self-adjoint, and so — Rjk is a positive 
operator which is invariant under sign-changes, indeed 

- * 7 * = -4v /v,(3 / - a,)2 - 2(v,- - vk)('dk - 3,-). 

There is a similar operator on Lr{E, jia), for each a > — 1. 
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3.1. THEOREM. For a > — 1. the operator 

Tjk: = V/VA(3/ - 9A)2 + (« + D(v/ " vA.)(9A. - 3,-) 

is self-adjoint on L~(E. jia). The eigenvectors for 7^3 are the polynomials 
<t>nm, and 

7^3*///» = -m(m + 2a + 1)<J>„,„, (0 ^ m ^ A?). 

Proof. We consider only 7^3. On £ we use the variable v3 = 1 — vj — 
v2 so that 

f - h - a, 
dv2 

Integration by parts in the iterated integral 

J()</v, J ( ) ' F(v„ v2. v3)</v2 

yields 

J X v2v3[(32 - 33)
2/]g(v1v2V3)arfv1rfv2 

= / X [ ( 8 2 " 9 3 > / ] [ ( 9 2 - 33)g]v2V3(v1V2V3)arfv1rfv2 

)/Xl^3 " ^ + l)J A [ ( V 3 ~ V2)(82 ~ 93)/]g(VlV2V3)Vv,t/v2 

(where y and g are twice differentiate, the appropriate function is zero on 
the boundary v2 = 0 or v2 = 1 — v} provided a -f 1 > 0). Move the latter 
integral to the left side, which then becomes 

J jF(T^f)g(vxv2v^dv{dv^ 

whereas the right side becomes symmetric in / . g. 
The operator 7^3 acting on <j>nm reduces to the standard second-order 

differential equation for Jacobi polynomials (see [12], p. 62, eq. 
(4.21.1)). 

For notational convenience, let R\: = R2i. R2: = ^?i* Ry> = ^12- We 
use U and J in ^-coordinates (that is, Uf(x\, x2, JC3) = /(X3, x\, x2) and 
Jf(x\, x2, X3) = f(x\, JC3, x2) ) . They act on differential operators by inner 
automorphism. 

3.2. LEMMA. 1) U]R{U = R2, U]R2U = fl3, U~]R3U = Rh 

\\)JRiJ = -R}.JR2J = -R?.JRiJ = -R2(noteJ~x = J). 

It is not hard to see that the only second degree polynomials in {R^ 
which are invariant under U\ J and sign-changes in {xk} are scalar 
multiples of R2\ + R2 + /?3, the spherical Laplacian. Since it has each 
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Hn
 2 as an eigenmanifold, we move onward to consider third degree 

polynomials in {Rj}. Indeed R\R2R3 is invariant under sign-changes, but 
its factors are permuted by the U and J actions. By use of the 
commutation relationships 

[RrRk](: = RjRk - RkRj) = -Rh 

where (jkl) is a cyclic permutation of (123), we see that R\R2R3 is 
/7-invariant modulo quadratic terms. 

3.3. THEOREM. Let 8: = R}R2R3 + 1(^1 ~ R\ + RJl then 8 is invar­
iant under sign-changes, and Ul8U = 8, J8J = ~8 (relative invariance for 
S3). Further, i8 is selj-adjoint. 

Proof. Let p: = R\R2R3. The idea is to sum (sgn o) p° (where p°: = 
o lpo) over o e S3. We list the values p° for o e S3 = {Id, J, UJ, JU, U, 

i) o = J, pG = ~RiR3R2 = -R\RiRi - R] 

(since R3R2 = R2R3 + R\); 

ii) a = I/2, p° = R3RXR2 = R\R3R2 ~ R \ 

= R}R2R3 + R] ~ R\ (by (1)); 

iii) a = UJ, p° = -R3R2R] = -R3R]R2 - R2
3 

= -R^R2R3 - R] + R\ - RJ (by (ii) ); 

v) a = JU, p° = -R2RXR3 = -R}R2R3 - Ry, 

v) a = £/, p° = R2R3R\ = R2R}R3 - R\ 

= R\R2R3 ~ R2
2 + R] (by (iv) ). 

Then 

(1/6) 2 p° = ~(\/6)(R] + R\ + R2
3), 

a 

but 

( 1 / 6 ) 2 ( sgna)p a = S. 
a 

Since /?* = -Rh 

(R}R2R3)* = -R3R2R\', 

further ô is a sum of terms like R\R2R3 + R3R2R\ (and permutations), 
thusÔ* = - 8 . 
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To express 8 in v-coordinates we introduce differential operators of 
degrees one, two and three. 

3.4. Definition. 

8\\ = (v2 — v3)3j + (v3 — V|)32 + (vi — v2)33; 

82: = v\(vi ~~ V3)(8Y + 28283) + v2(v3 — vj)(32 + 28381) 

+ v3(vi - v2)(33 + 28^2); 

S3: = V]V2v3(3i — 82)(82 — 83X83 — 3i). 

3.5. PROPOSITION. 8 = 883 + 282 + 8}. Also U~x8jU = 8; and J8}J = 
Sjforj = 1 , 2 , 3 . 

For the general L~(£, /xa), a > — 1, we look for a linear combination of 
8], S2, Ô3 which is self-adjoint. The calculations are more manageable in 
the (z, ^-coordinates. 

3.6. PROPOSITION. 

8, = - / \ / 3 ( z 3 - z3); 

82 = - / V 3 ( (z2 - z/)82 - (I2 - ZO82); 

83 = - ( / / (3V3)X^ 3 + ^ + '3 " 3zzO(83 - 83). 

The construction of the self-adjoint operator for L~(£\ fia) will be 
described as a list of simple integration-by-parts statements from which 
we can deduce the coefficients. We use the definitions: 

i) differential operators: 

rj(z): = zdf(z\ 

T 2 / ( Z ) : = (z2 - z7)82/(z), 

r 3 / ( z ) : = w(z, l)83/(z), 

and their conjugates f\f(z): = z~df(z), etc.; 
ii) integral kernels: 

</**>: =caJJQfg^dm2, 

Kxilg): = caj'fQ{df)(dg)-{z2 - zt)w«~ldm2, 

K2(j: g): = cajfQ fgz(z2 - It)wa-]dm2, 

K3(f, g): = cafja fg(z2 - zt)3*P-2dm2, 

where/and g are smooth, and a > 1 (we will use analytic continuation on 
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a). Each of the following equations is the result of one integration by parts 
applied to the first-named integral (note that 9w(r. 1) = 3(z~ — rM ): 

(I,) < r 3 / g> = - 3 ( a + l ) f a / g > 

(I :) < / r 3 g> = - 3 ( a + l X / r T g ) - c„j JaW)(Pg)~ w«ntlm2. 

(h) c„J j v (<)2f)(h)~^'"dm2 + c„J (, (S/'KiP.?)" V 1 %>2 

= 3(a + D A ^ / g ) . 

(I4) fa/g> = - 2 < T , / g > - K , ( / g ) 

- 3ac„ j h WW1 - z o V '</m2, 

(Is) <./fag> = - 2 < / 7 , g > - K , ( / g ) 

" 3at-„j JQ / ( 9 > ) - ( r 2 - z7 )Vfa / / „ 2 . 

(Ift) Q / X 0/)«(- 2 - F 0 2 w " _ l ^ i 2 + c „ / / 2 / ( 3 g ) ( r 2 - lt)\" 'dm2 

= - 4 A ' 2 ( / g ) - 3(« - 1)A',(/: t'i. 

a-,) (T|/:g> + </T|g> - - < / # > - 3«A ' 2 ( / ; g>. 

It is clear that the combined equations (I|) + (I2) — (IV), and (I4) + (Is) 
— 3«(I6) involve only inner products ((.)) and the kernels K,. Add — 3(« 
+ l)/2 times the second equation to the first to eliminate K\. After 
grouping, obtain 

( f a / g) + < / T3g» + 9/2(« + 1 ) « T 2 / g> + </; 72g» 

+ 3<« + D « T , / g > + </;? ,g» 

= 18a(« + 1)K2(/ g) + (27/2)a(a + 1) 

X (a - l ) X 3 ( / g ) . 

Transform this identity by replacing each T, by r, and subtract the result 
from the above. To express this, let 

a: = T3 — T3 + (9/2)(a + 1 )(T2 — T2) -I- 3(a -r \)(T\ — T\), 

then 

(*) < a / g > - < / ag> = 18a(o + D(A'2( /g) - K2(gJ) ) 

+ (27/2)a(a + !)(« - l)(K3(J, g) - A 3 ( g J ) ). 
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But 

K3(j;g) - K3(g,f)-

= c«ffa mP ~ ' V - 1 ^ = K2(f, g) - K2(gjy\ 
so the right side of (*) becomes 

(9/2)a(a + l)(3a + \)(K2(f g) - K2(gJY). 

We can get rid of this term by using (I7) and its conjugate, that is, the 
identity 

<(Tl - T,)/, g) - (f (T, - T{)g) = -MK2U\ g) - K2(gJY). 

Thus, adding (9/2)a(a + l)(3a + 1) times this identity to (*), we obtain 
that 

o + (9/2)a(a + l)(3a + 1)(T, - T,) 

= (T3 - T3) + 9/2(a + 1)(T2 - T2) + 9/2(a + l)2(r1 - ?,) 

is self-adjoint. 

3.7. Definition. F o r a > — 1, 

Da: = l/9(z3 + z3 - 3zz7 -f /3)(33 - P) 

+ l/2(a + l)((z2 - zt)d2 - (z2 - zt)P) 

+ l/2(a + l)2(z8 - zd). 

Equivalently, 

A,: = (i/V3)T„ 

where 

Ta: = S3 + l/2(a + 1)82 + l/2(a + l ) 2 ^ . 

3.8. THEOREM. Da is a self-adjoint operator on L"(/xa), a/iJ eac/z H"(n = 
0) /s invariant under Da and Ta, for a > — 1. 

Proof. The self-adjointness was proved above for a > 1, and can be 
analytically continued for a > — 1. Further, Z)a preserves the degree of 
homogeneity of a polynomial, so by the remark following Theorem 1.3 
DaH" c Hfj. 

The next step is to prove that Da\H% has no repeated eigenvalues 
because this forces each eigenvector to be relatively invariant under U 
(that is, if/ e //", Z^/ = A/for some X then £// = coe/for some c). This will 
be shown by establishing a tridiagonal representation of Da with respect to 
the 0/m,-basis in which there are no zeros on the superdiagonal. 
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3.9. THEOREM. For a > — 1, 0 ^ m = n, 

m (m + aY(2a -f n + m + 1) 

2(2a H- 2m + 1) 

(/2 — m)(2a + m + l)(a + /7 — m)(3a + n + m + 2) 

2(2a + 2m + 1) <*>"'"M '' 

(The apparent zero division jor m = 0, a = —1/2 cancels by the obvious 
limiting argument, indeed Ta(j>n{) = (\/2)n(n + a)(n + 3a -f 2)<j)n\.) 

Proof. Observe that the degree of Vj in <j>nm is = n — m, and Ta increases 
the vj-degree by no more than 1. Thus Ta<j)nm is a linear combination of <t>nj 
withy ^ m — 1; but T* = —Ta so that 

(Ta(j>nm, <t>nm > = 0 a n d 

* afynm hn ~ 1 ,m*rn,m — 1 ' v» + \jn*rn,m + 1 

with 

It suffices to find tm-\jn, then use the known values of ||̂ >/?/„|h = Nnm(a) 
(see Section 1). The term of highest vpdegree in <j)nm is 

(a + \)m(-n - 2a - m - 1 )„_„ / / '"/*™,a)(v2/(v2 + v3) ) 

x (v2 + v 3r 
^ ( —m),( —m — a), 

= (« + V)m(-« - 2a - m - 1)„_„2 2 . , , . , .. -

X ( ~ V2)7V3 V] 

The terms of highest V]-degree in Ta are 

viv2v3( — 3233)(32 — 33) 

+ ( (a + l)/2)(2vi(v2 — v3)3293 — vjv232 + viv333) 

+ ((a + l)2/2)v!(33 - 32), 

and applying this operator to the typical term v2v3' J yields 

-j(j + a)(m -j + (a + l)/2)i4~ ' v^1"7" 

+ (m - y ) ( m - y + a)(y + (a + l)/2)vy
2~V3^ ' ~/. 

Transform every term in the sum 

* ! T V ( v 2 + V3) )(V2 + V3)
m 

by this formula, collect the coefficients of vy
2v3

z J in the result, and 
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obtain 

m(m + a)2R\™\(v2/(v2 + v3) )(v2 + v3)"
}-]. 

To obtain tm^]m divide the coefficient of v" '" found here by the 
coefficient of v" ' in §tum-\', indeed 

m(m + ay (a + \)m( — n — 2a — m — \)n-m 

(a + l)/;2_,(-A7 - 2a - m)n-m + \ 

— m(m + ay (2a + n + m + 1) 
~ 2(2a + 2m +1) ' 

It remains to calculate 

(for m = 1, using the values from Section 1). 

Some machinery is available for eigenvalue and eigenvector computa­
tions for tridiagonal symmetric matrices. To exploit this we use the 
orthonormal basis for H" given by {gnm:0 = m ^ n } where 

Knm- = im<t>nmNnm(a) 2 . 

It is straightforward to show that 

Dagnm = ^ , m ( « ) g / » , m - 1 + bnjn + l (« )g» ,m + L 

where 

( 1 m(/7 — m + l)(m + a)~(m + 2a)(a + /7 — m + 1) 

Ï2 (2a + 2m - \)(2a + 2m + 1) 

X (2a + A? + m + l)(3a + n + m + 1) K 

1 ^ m S /7. 

The problem of finding the characteristic polynomial of Da\H*} is re­
lated to a family of discrete orthogonal polynomials given by a three-term 
recurrence. 

3.10. Definition. For n = 1, define a family of polynomials pm(k\ n, a) 
by/?-i = 0,/?o = 1, 

pm+\(\\ «, a) = Vm(A; «, a) - b;impm^x{\\ «, a), 0 ^ m ^ AJ. 

Thus each /?m is monic and of the same parity in X as m. 
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3.11. THEOREM. For a > — 1, n = 1, Da\H^ has n + 1 distinct eigen­
values X() < À] < À? . . . < A„ w/z/c/z #r<? r/z<? zeros of p„ + i(A; /7, a), ^/zJ À/z ; 

= — A;. Further Pj(\; n, a) is (— \)J times the determinant oj the upper left 
j X / suhmatrix oj (Da — XI) \Hn (that is, the projection on span 

{gnih • • • 'g//,./-l} )• 

Proof. The distinctness of the eigenvalues follows from bn m(a) > 0 for 
1 ^ m ^ n (see [9], p. 124). The other claim is also a standard fact ( [9], 
p. 126. (7-8-3)). 

3.12. Definition. For a > — 1, 0 ^ m = n, let 

// 

(hum = 2 UjnOU OL)gnj 
7 = 0 

be the normalized (^ÀjUfm = 1) eigenvector Z)a with eigenvalue A/;? and 
such that 

(-iy%m(n,a) > 0 

(this is possible by [9], p. 129, (7-9-5) ). 
Since A; = —\n-j and JDJ = —Da we see that Jqwn = q)]n-m. 
The family {/?m(A; w, a)::0 = m ^ A7 + 1} is closely connected to the 

eigenvectors of Da and the products 

Knm(a): = I l bnJ(a) 

[m\(-n)m(-n - a)m(2a + 2),„(2a + /z + 2)„, 

/ = 1 

(« + 1)/, 
4"'(a + 3/2),„ 

X (3a + « + 2),„(2a + 2m + 1) • 3~"7(2a + m + D p . 

(for 0 = m ^ AZ, with Kn()(a): = 1). 

3.13. THEOREM. 

i) u0m(n, a)2 = Klw(a)2/(pn(\m; n, a)p'n+l{Xm; n, a) ); 

ii) W/W(H, a) - /?/(Xw; «, a)ui)m(n, a)/Kni(a\ for 0 ^ y, m ^ «; 

iii) r/zé' s<?/ {/?/??(A; A?. a):0 = m ^ n) is a family of orthogonal polynomials, 
with respect to a discrete measure on {X,-:0 = j = /?}; indeed 

n 

2 w()/(/z, arpm{X/; /7, *)pk{\j; n, a) 
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Prooj. Fix a > — 1, n = 1. Let rf(X) be the determinant of the lower 
right j X j submatrix of (XI — Da) \H* (the projection on span 
{g/M,-/+i gnn} )• % Paige's theorem (see [9], p. 129, (7-9-3a) ) 

(*) Pn+\(hj)UmjUkj = Pm(hj)(Knk/Knm)r„-k(hj)-

for 0 ^ m = k: ^ n and 0 ^ j ^ n. Set m = A: = 0 to get 

A V H ( \ > O / = Knmrn(Xj), m = k = n 

to get 
2 

A,,+ i(A/)w;?/ = /?/z(A/), m = 0, A = w 

to get 
pf

n+](XJ)U()lUll/ = Knn 

(thus w()y ^ 0 T̂  w/?/-). Square the last identity and set it equal to the 
product of the first two to get 

Knn = Knnrn(\j)pn(Xi)\ 

thus 

rn(Xj) = KfW/pn(Xj) and 

statement (i). (These are formulas of Gaussian quadrature theory.) For 
any m, let k: = n in (*), so 

Pn+\(Xj)U,„jUnj = pm{Xj)Knn/Knm; 

now multiply by w0/- and get 

Knnumi = PnA^j)u()iKnnf Knm 

(statement (ii) ). Finally 

2 ^)jPm(Xj)Pn(Xj) = Zi KnmKnkUmJUkj = §mk^nnr 
/' = () 

(Note that/?,,(Ay-) ^ 0 by the interlacing of zeros theorem, and/?,',+ i(A;) ^ 
0 because the zeros Ay are simple.) 

The coefficient u$m in qx
nm has an important interpretation, indeed 

1 
qa

nm(\. 0, 0) = (-\)"u{)m(2a + 2)nNn{)(a) 3 

(a + l);i(2a + 2)„(3a + 3)2„(2a + In + 1)«! 

12"(a + 3/2)/7(2a + « + l)/?„(Am; //, a )/?,',+ ! (A m\ /?, a ) 

(the point v = (1, 0, 0) corresponds to z = 1, t = 1). This follows from 
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g,;>/(l, 0, 0) - 0 for y > 0 and 

g,,()(l, 0, 0) = Nll{)(<*)~H* + l ) ; i /? r 2 t t + 1 ) ( l ) 

= (- iyW / / 0(a)"2(2a + 2)„. 

It is possible to find the limiting values of um/ as a —> oo explicitly. 

3.14. THHOREM. 

lim «,„,<//, a) = (-1) '» + " ^,(.y; i n ) ^ " " ( ' ' ) ( '?) )? 

(thus lim wo7-(«, a) = ( - 1)'?( 2 " " ( " I M j and for fixed X, 

lim a"lmpm(cr\\ w, a) = „ "%;(X + fl/2; - , /?). 

/Vw;/ Let 

/?m(À; a): = a ~mpm(\a~\ n, a) 

(monic) and note that pm satisfies p0 = \,p\ = A, 

pm+\(\; a) = Xpm(k; a) - (bnm(a)2/a4)pm-.\(X; a). 

But 

lim (bnm(a)2/a4) = m(n - m + l)/4, 

so that the limiting polynomials 

pm(\)\ = lim p,„(A; a) 

satisfy the three-term recurrence for the monic shifted Krawtchouk 
polynomials 

<-»),„ .(-H-)-yn »M 

Further 

£„ + i(A) = (X - n/2)(\ - nil + 1) . . . (A + H / 2 ) 

= ( X - A 2 / 2 ) / / + 1 . 

(This is the reason for our choice of normalization for Da.) By continuous 
dependence of zeros of polynomials on the coefficients we see that 

— i 
o lim a ~~\j = j ~~ n/2 
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(where A; is they'th zero of /?„+i(X; n, a) ). The stated results are obtained 
by using known facts on the identities of Theorem 3.13, for example 

2 2 2 

, x2 bnXbnl . . . bnn 

u0j(n, a) pn(\j\ n, a)p'n+\ (\j\ H, a) 

(a~4bli) . . . (a~4b;w) 
pu(kj/or\ n, OL)P'U+\ (Ay/cr; /?, a) ' 

and 

/?' / 1 \ 
lim pn(\j/or\ AÏ, a) - ( - 1 ) " ^ ^ , ( 7 ; - , n) 

= {-\f+'n\ 2~'\ 

and so on. 

The asymptotic analysis of the \} as well as the ^/-action on a given 
eigenfunction qfun can be easily derived from the matrix representation of 
Da in the /"m-basis. This is not an orthogonal basis, but the matrix is 
tridiagonal and splits into three pieces (on Hfue, e = 0, 1, 2). 

Recall that ffim is that element of / /" whose single term of highest 
(z, z)-degree is zn~mJm. By the Da-invariance of //", Daffun is a linear 
combination of f"j (0 ^ / ^ H). To establish the coefficients of the 
expansion it suffices to consider the terms of highest (z, z)-degree. 

3.15. Proposition. 

DaJ nm = ~T\ 3 M / « . m + 3 ~^~ J n,m J ~ ^ 1 3 J(j ium~3> + J njn) 

+ ^ - 2m)(a + l)(a + *) /"„ , . 

Proof. The highest (z, z)-degree terms in Da are 

(l/9)(z3 + z3)(33 - 33) + ((a + l)/2)(z232 - I232) ) 

+ ((a + l)2/2)(z3 - z3)). 

Apply this to zn~mlm to get the stated coefficients. 

A basis for H^e is given by 

{ y ; , , + 3 / : 0 ë . / s [ ( „ - c)/3]> 

where c = 2A? + € mod 3 (with c, c = 0, 1, 2). Each 7/^€ is invariant un­
der Z>a and Da\H"€ is tridiagonal with all the super- and subdiagonal 
entries being nonzero. Restating Proposition 3.15, we see 
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DJl^j = "2/3(c + 3-/')/;,, + 3 ( /- , + Q(("~r 3 y ' ) 

- ft")) 
+ l/2(« - 2c - 6/)(a + 1)(« + n) ) / „ , + 3 / 

+ 2/s(w ~c
3~

 3-/')y;I,t.+3(/+1). 

Thus a2Da\H®€ is represented by a fixed diagonal matrix with a 
tridiagonal perturbation of 0(al). In the limit we have 

lim - - * - ( § - < - 3.) 

for each eigenvalue À of Da, for some7. The union over e = 0, 1, 2 of the 
eigenvalues of Da\H*ue is the set (Ày: 0 = 7 = n) and since the ordering is 
preserved (by pairwise distinctness of the X}) we deduce that 

lim a~~Xm = m — n/2 

and Xm is an eigenvalue of Da\H"U€ for e = n — 2m mod 3. The latter 
argument is based on the continuous dependence of Xm on a > — 1. 

3.16. THEOREM. For a > — 1, 0 = w = «, //ze eigenvector qnm (for 
Xm) is in H^1€ with e = n ~ 2m mod 3. 

Koornwinder [8] has studied polynomials on a region in C bounded by 
Steiner's hypocycloid (this has an ^-symmetry) and found a self-adjoint 
third-order differential operator for that situation. However, the analogue 
of our/"m-basis is actually orthogonal. 

The author studied cubic harmonics [4], these being spherical harmonics 
on R3 which are invariant under the octahedral group (generated by 
sign-changes and U, J). Let a = — \ then 

{qinum- m = °} 

U { ( l / \ / 2 ) ( 4 2 m + 3/,m + ^2m + 3y,m + 3/)- W ^ 0 , 7 ^ 1 } 

is an orthogonal basis for the cubic harmonics. 

4. Consequences and further problems. The opposite of a —> oo is a —» 
— 1. What can be said about the limiting behavior of the eigenvalues of 
DJt The calculations in Theorem 2.3 are still valid when a = — 1 so we 

— l 
will use the basis/, , m to represent Da as a matrix. It is true that D- \ is no 
longer self-adjoint since the positive-definite inner product degenerates. 
Indeed the central 3 or 4 eigenvalues of Da\H* collapse to zero. For n ^ 
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3 there are three linearly independent eigenvectors for X = 0, so when n is 
odd, there is a degenerate eigenvalue. 

4.1. LEMMA. For a ^ — 1, any n, the geometric multiplicity of any 
eigenvalue of DaH^e is one. 

Proof Since (Da — XI) | / /"c has all nonzero elements on the superdia­
gonal the solution (uf) of 

(Da - \ / ) 2 Ujfuc + 3j = 0 

./ 

is determined by UQ. 
4.2. LEMMA. For fixed n ^ 0, c = 0, 1, 2, 

^ - l o C + 3yK^- = 0. 

Proof. The coefficient oi /,,^ + T,^ in 

0 

\c + 3/c + 3/V 3 / \ 3 / \c + 3/c/ 

V 3 / \ c + 3k) \ 3 )\c + 3k + 3/ 

because the first two and the last two terms cancel out by the identity 

w("j'M,+3)m 
4.3. LEMMA. For n ^ 3 the determinant of (XI — D-\)\H* is 

X sn-2(X) where Sj is monic and of the same parity as j , and has j distinct 

zeros. 

Proof. By continuity we can use the matrix of Da in the g/?m-basis and let 
-> - 1 . Recall 

hnX(a) = 
1 n(a + \)\n + a)(n + 2a + 2)(n + 3a + 2) 

12 (2a + 3) 

—» 0 as a —* — 1, 

and for m = 2, 
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m(n — m + \)(m — \Y(m — 2)(n — m)(n + m — l)(/7 -h m ~ 2) 

12(2/72 - 3)(2w - 1) 

which is zero for m = 2 or m = n but nonzero otherwise. Thus the central 
(2 ^ m = n — 1) block of XI — D \ is hermitian tridiagonal with zeros 
on the diagonal and nonzero elements on the superdiagonal. Hence its 
determinant, denoted by sn-i(X), has n — 2 distinct zeros, and further 

P„+\(X\ 77, - 1 ) = \ - \ _ 2 (X) . 

Clearly 

v, i(X) = (-l)\ 2(A). 

Observe that Z)_| annihilates all polynomials of degree = 2 so there are 
no degeneracies for n = 2. 

4.4. THEOREM. For n = 3, Z) \ has exactly one eigenvector for X = 0 //? 
tw/z / /^ e , e = 0, 1,2. r/ze algebraic multiplicity of the eigenvalue X = 0 
<9/ / ) i | / / / ? /51 3 H;/z^/7 ft 75 £Ve/7, 4 R'/7e/7 77 /S <9£TV. 

Proof Lemmas 4.1 and 4.2 show that D \ has exactly one eigenvector 
for À = 0 in each II n I Further 

/V+1(A; n, - 1 ) = X3sn 2(X) 

and sn i n a s a simple zero at 0 if 77 is odd, and no zero at 0 if A? is even; 
thus we obtain the stated multiplicities. 

Let q"m be the multiple of q"m which has 1 as the coefficient of f(*Kl. 
(where c = n — 2m mod 3) (possible by the argument in Lemma 4.1). 
Then the coefficients of/"(. + 3/ in 7j%n are polynomials in À and a. 

4.5. COROLLARY. For fixed n, Xf(a) —» Ay( — 1) as a —> — 1; 
i) when n = 2k + 1 (A: = 1) then X0 < . . < Xk._ 1 = Xk = Xk + 1 = À A + 2 

= 0 < . . < X2k + \(for a = — 1), further the limits of qnm are all distinct 
except 

l i m ^ , A - l = l i m ?",A- + 2 G H2k + \Sh 
a—* — 1 a—̂— 1 

ii) when n = 2/c (/< ^ 2) r/ẑ /7 X0 < . . < Xk x = Xk = Xk + ] = 0 < . . < 
A.2A-' and the limits of the eigenvectors qnm are all distinct. 

Proof For the simple eigenvalues of D-\\Hnx perturbation theory as­
serts that the respective eigenvectors converge to qnm (note that the chos­
en normalization for q"m makes the coefficients continuous functions of 
a). The only degeneracy occurs for n = 2k + 1, € = 0 for X = 0. 
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Although we do not give an explicit diagonalization for the matrix of U 
in the 0,mrbasis (a > — 1), the commutation DaU = UDa does lead to an 
interesting contiguity relation for certain balanced 4F rseries. For 
convenience, let 

cv, , r / — k, k + 2a + 1, — m, m + 2a + 1 , \ 
v ' ' / V a + 1 , — /7, « + 3a + 2 / 

(a > — 1; A-, w ^ /7). 

4.6. THEOREM. For a > — 1, 0 = /c, m = n the function 

(k, m) h-> — —- [ (n - m)(2a + m + 1) 
2a + zm + 1 

X (3a + w + m + 2)(a + m + 1) 

X F(k, m + 1; n, a) — m(w + a)(2a + A? + m + 1) 

X (a + n — m + \)F(k, m — 1; ft, a) ] 

/.v symmetric in (/c, m). 

Proof. We use Ta instead of Z)a (see Theorem 3.9). Suppose 

j 

then for fixed k, m we have 

(TaU)km = (UTa)km 

(matrices for the <£/mrbasis). This identity becomes 

tk,k-\uk-\,m + tkM+\uk+\jn = ukjn~ \tm~ \jn + uk,m+\lm+\jn 

(for the values of tl} see Theorem 3.9). Further U<$>nm = 0nm so by the 
adjoint of the transformation in Theorem 1.7 (iii) 

1 
"km = ( - \)kMmnk{a){Nnm(a)/Nnk{a) f 

(a + l)A(2a + k + 2),?(2a + A: + 1) 

X F(k, m\ n, a). 

Substitute this in the commutation relation, and cancel out common 
factors to obtain the invariance of the stated expression under the 
interchange of k and m. 
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Wilson has some contiguity relations for balanced 4F3-series ( [13], p. 
48) which bear a family resemblance to Theorem 4.6, but it appears that 
his multipliers are of lower degree (this does not rule out the possibility 
that 4.6 can be deduced from his formulas). In 4.6 divide by cr and let a —> 
oo to obtain that the function 

(A:, m) i-> 3{n - m)Km+l(k\ 3/4, n) - mKm-X(k\ 3/4, n) 

is symmetric in (/c, m). 

There is another geometric interpretation for / / " when a = - — 1, k 

= 1, 2, 3, . . . , namely that for x G R3A, p(v) e //J), the polynomial 

/ k 2k 3k 

X H-> p[ 2-X/, 2 Xj, 2 Xj 
V 1 A + l 2A + 1 

is harmonic of degree 2n; such functions are essentially intertwining 
functions for 

0(3k - \)\0(3k)/(0(k)xO(k)xO(k)), 

(see [11]). 

Further problems. It may be that the determinant-related polynomials 
pm(X\ n, a) have a closed form (hypergeometric series). One would like to 
have approximations for the eigenvalues Ay of Da (not just asymptotic 
results for a —> oo). From numerical experimentation it appears that the 
eigenfunctions of Da\H*U€ have all positive coefficients (of/",„), but this 
is not as yet proven. It may be true that the eigenfunctions qnm achieve 
their maximum on the boundary of E (or £2). This does hold for each <f>nm 

when a > — 1. It is not generally true that 

kLoo I = ?Lo) for z G ^: 

indeed consider 

fuiz) = z2 - (2/{3a + 5))zt 

(see Section 2) which is an eigenfunction of D; 

fl0(l) = 3(a + l)/(3a + 5) 

but 

/ l o ( ( l + w)/2) = co(3(a + 3)/(4(3a + 5 ) ) ) 

which is of larger absolute value than/^oO) for — 1 ^ a < — 1/3. 
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