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Onset of large-scale convection in wall-bounded
turbulent shear flows

Carlo Cossu†

Laboratoire d’Hydrodynamique, Energetique et Environnement Atmosphérique (LHEEA),
CNRS UMR 6598 – École Centrale Nantes – Nantes Université, F-44300 Nantes, France

(Received 28 March 2022; revised 26 May 2022; accepted 1 July 2022)

Large-scale coherent rolls are observed frequently in unstably stratified turbulent
wall-bounded flows where they influence strongly the turbulent transport and the mean
flow properties. Here we address the question of their genesis by means of a linear stability
analysis of the turbulent mean flow where a model of turbulent Reynolds stresses is
embedded in the linear stability operator. We use the unstably stratified turbulent channel
flow as a testbed for the analysis. We show that the onset of large-scale convection is
associated to the linear instability of the mean flow to large-scale streamwise-uniform
coherent rolls of aspect ratio A ≈ 3–3.3 when the friction Richardson number exceeds
|Riτ,c| = 0.86. This corresponds to critical Rayleigh numbers that increase with the
Reynolds number approximately as Rac ≈ 0.04 Re1.8

b . These results are consistent with
those obtained in recent direct numerical simulations performed in the same setting. It is
also found that if turbulent Reynolds stresses are not modelled in the linear operator used in
the stability analysis, then predictions are not consistent with direct numerical simulations
results.
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1. Introduction

The scope of this investigation is to verify if linear stability analysis can be used to explain
and predict the onset of large-scale convection rolls in unstably stratified turbulent shear
flows. The motivation of the study is twofold. First, there is a continuing and growing
interest in the dynamics of large-scale coherent structures in turbulent shear flows that
contain most of the turbulent kinetic energy at high Reynolds numbers and provide the
energy injection mechanism in most turbulent flows. Despite the general consensus that
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large-scale instabilities and/or non-modal energy amplification mechanisms explain the
existence of these coherent structures, and the many linear analyses of turbulent mean
flows, only a few studies provide quantitative comparisons of theory and observations, in
particular in what concerns the critical parameter values for the instability onset. There is,
therefore, a need to test linear stability analyses on a well-defined turbulent shear flow
where the onset of a large-scale instability is well defined and the comparison of the
predicted critical values with (numerical) experiments is possible.

The second motivation stems from the recent resurgence of dichotomies in the definition
of the linear operator used for the linear analysis of turbulent mean flows, where in
some studies the effect of turbulent Reynolds stresses is embedded in the linear operator,
while it is not in other studies. Furthermore, in some analyses, the perturbation to the
turbulent mean flow is considered in a statistical sense i.e. considering perturbations that
are averaged fields, while in other analyses, perturbations are non-averaged quantities.
These differences lead to ambiguities in the interpretation of theoretical predictions and
in their comparison to observations as well as in nonlinear theories that would be built on
top of the linear analyses, probably hindering further substantial progress in the field.

A brief discussion of these two sets of motivations is provided below.

1.1. Onset of coherent convection rolls
In many situations, ranging from atmospheric boundary layers to heat exchangers, a
wall-bounded mean flow, generally driven by a pressure gradient, is affected by buoyancy
effects, generally associated with heating and cooling from the boundaries. In the case
where the bottom fluid layers are denser than the top layers, buoyancy effects are
stabilizing. In the opposite situation, where e.g. the fluid is heated from below, buoyancy
effects are destabilizing, inducing transition to turbulence if the flow is laminar or
increasing turbulent fluctuations if it is already turbulent (see e.g. Turner 1979). In this
case, the flow structure depends strongly on the relative importance of buoyancy and
shear-induced kinetic energy production as well as momentum and thermal diffusion.
The two most studied situations are the two extreme cases of natural convection in the
absence of mean flow (see e.g. Chandrasekhar 1961; Bodenschatz, Pesch & Ahlers 2000;
Ahlers, Grossmann & Lohse 2009) and of forced convection, where mean advection is
dominant and temperature fluctuations behave as passive scalars (see e.g. Schlichting 1979;
Turner 1979). In between these two extreme cases is the mixed-convection regime, which
is often characterized by large-scale coherent structures that influence strongly the vertical
momentum and heat transport.

Probably the most impressive large-scale coherent structures observed in the
mixed-convection regime are the rolls observed frequently in unstably stratified
atmospheric boundary layers, which have been associated to cloud streets extending up to
several hundred kilometres and persisting up to several days (see the reviews of Kuettner
1959; Brown 1980; Etling & Brown 1993; Atkinson & Wu Zhang 1996). Numerous studies
have investigated the origin of these rolls, suggesting that both inflectional and convective
instabilities play a role in their amplification (see, among many others, LeMone 1973;
Brown 1980; Etling & Brown 1993). Despite the many studies, however, the comparison
of theoretical predictions and field measurement remains difficult because of the large gap
between the simplifying assumptions and idealized mean flows used in theoretical analyses
and the reality characterized by extremely large Reynolds numbers, heterogeneous and
unsteady mean flows, and complicated ground topography. An example of this unsettled
state of affairs is the recent conclusion of Jayaraman & Brasseur (2021), who, referring
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Onset of large-scale convection in turbulent flows

to the onset of large-scale elongated structures in their large-eddy simulations of the
atmospheric boundary layer, state: ‘The mechanisms that underlie the restructuring of the
ABL at the very low levels of surface heat flux in the critical state . . . are unknown’.

An additional difficulty, discussed e.g. by Brown (1980), is that large-scale rolls
observed in the field are often far from the onset of the instability and, being in the
finite-amplitude (nonlinearly saturated) regime, their comparison with linear stability
predictions is questionable.

It is therefore important that linear theory predictions are compared to experimental or
numerical data in settings that (a) can be driven close to the onset of the linear instability,
where critical parameters values can be determined, and (b) are well controlled and
substantially match the assumptions of the theoretical analyses. This is precisely the aim
of the present study.

1.2. Definition of the linear operator for stability analyses
The stability analysis of turbulent wall-bounded flows has a long history going back at
least to the seminal works of Malkus (1956), Reynolds & Tiederman (1967) and Reynolds
& Hussain (1972). In these early studies, the linear stability of the turbulent mean flow
is analysed with the method of normal modes. However, while Malkus (1956) does not
include the effect of turbulent Reynolds stresses in the stability analysis embedded in
his theory, Reynolds & Tiederman (1967) and Reynolds & Hussain (1972) do include
their effect by modelling them by means of an eddy viscosity. Since then, these two
different approaches have persisted in the linear analysis of turbulent mean flows. In the
first approach the linear dynamics of instantaneous (deterministic, non-averaged) turbulent
fluctuations u′ to the temporally averaged turbulent mean flow U is considered, and the
Navier–Stokes operator is linearized near the turbulent mean flow, while nonlinear terms
and Reynolds stresses are either neglected or included/modelled in a forcing term that
provides input to the linear operator (see, among others, Malkus 1956; Butler & Farrell
1993; Farrell & Ioannou 1993; McKeon & Sharma 2010; McKeon 2017). This approach
will be referred to as ‘quasi-laminar’ because the linear operator is formally identical to
the one used to analyse the stability of laminar flows, except for the use of turbulent mean
profiles as basic flows.

In the second approach, a distinction is made between (generally unsteady and spatially
inhomogeneous) coherent perturbations ũ to the temporally-averaged turbulent mean flow
U and the residual (random, incoherent) perturbations u", where ũ is such that 〈u〉 =
U + ũ, and u′′ satisfies 〈u′′〉 = 0, with the averaging operator 〈 · 〉 representing e.g. the
ensemble average or the phase average or spatial filtering. We refer the reader to Reynolds
& Hussain (1972) for more details on this triple decomposition.

The linear dynamics of the coherent perturbations ũ is then analysed by including the
effect of Reynolds stresses in the linear operator (see, among others, Reynolds & Hussain
1972; Etling & Wippermann 1975; Bottaro, Souied & Galletti 2006; del Álamo & Jiménez
2006; Cossu, Pujals & Depardon 2009; Crouch et al. 2009; Pujals et al. 2009; Hwang &
Cossu 2010a,b; Willis, Hwang & Cossu 2010; Tammisola & Juniper 2016; Illingworth,
Monty & Marusic 2018; Morra et al. 2019; Pickering et al. 2021; Madhusudanan et al.
2022). This approach will be referred to as ‘statistical-linear’ because the linear dynamics
of averaged perturbations is considered and the linear operator differs from the laminar
one because of additional terms modelling the averaged effect of residual random motions
on the coherent ones.
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A resurgence in the dichotomy of linear operator definitions is linked to the recent
interest in situations where the turbulent mean profile is linearly stable and the (forced)
response is expressed conveniently by means of the resolvent operator. As forcing inputs,
which include nonlinear terms, are generally unknown, resolvent analyses have modelled
them mostly as (delta-correlated) white noise. However, it has been shown recently
that while this specific noise assumption leads to realistic predictions for second-order
velocity cross-spectral densities when the resolvent operator includes the modelling of
Reynolds stresses (statistical-linear approach), this is not the case when the quasi-linear
resolvent is used (Morra et al. 2019). Two different main roads have therefore been
taken to make further progress: the first pushes the statistical-linear formulation into the
nonlinear domain by making use of more advanced Reynolds stress models such as those
implemented in large-eddy simulations (see e.g. Hwang & Cossu 2010c, 2011; Rawat
et al. 2015; Cossu & Hwang 2017), while the second looks for models for the forcing
correlations (see e.g. Nogueira et al. 2021). In the case of linearly stable mean flows,
it is therefore unlikely that a consensus on the best linear operator to be used for the
analysis of turbulent mean flows will emerge soon because the ambiguity on the best way
to account for Reynolds stresses (in the linear operator or in the forcing terms?) is likely
to persist. However, this ambiguity can be removed by considering the onset of linear
modal instabilities where the linear response is dominated by the unstable normal mode
and not by the response to forcing. The second motivation of the present study is therefore
to examine the intrinsic properties of linear operators to be used in linear analyses of
turbulent mean flows without the complications related to the modelling of the forcing
terms. This will be achieved by determining the critical Rayleigh (or Richardson) number
where coherent large-scale rolls become unstable in a high-Reynolds-number turbulent
channel flow.

1.3. Outline
We will consider the pressure-driven turbulent Poiseuille flow between two parallel
isothermal smooth walls to which a destabilizing temperature difference is applied. In
this setting, most of the complications associated with the much-studied atmospheric
boundary layer case – such as the effects of ground roughness, mean flow unsteadiness,
capping inversions, system rotation, three-dimensional mean flow profiles and associated
inflection points – are removed. Furthermore, in this setting, theoretical predictions of the
critical Richardson and/or Rayleigh numbers, as well as their dependence on the Reynolds
number, can be tested against the recent direct numerical simulations (DNS) of Pirozzoli
et al. (2017).

We will therefore proceed by considering the effect of increasing Richardson numbers
(or equivalently Rayleigh numbers) on the turbulent channel flow operated at constant
Reynolds number and fixed Prandtl number (all results are obtained for Pr = 1). The
simulations of Pirozzoli et al. (2017) show that, as expected, in the forced convection
regime, before the onset of large-scale rolls, the temperature field behaves as a passive
scalar, leaving the mean velocity and temperature profiles essentially unchanged (when
properly normalized). These forced convection mean velocity and temperature profiles are
used as basic flows for the linear stability analysis.

This approach is different from the one followed by Madhusudanan et al. (2022), who,
in a study published during the revision of this paper, investigate the impulse response of
the linear system based on the statistical-linear approach but linearized about the turbulent
mean flows of Pirozzoli et al. (2017) computed by DNS also in the mixed-convection
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regime in the presence of finite-amplitude large-scale convective structures. Doing so,
Madhusudanan et al. (2022) are able to show that some features of the large-scale
convection are reproduced by the linear impulse response, but they do not compute the
critical Richardson/Rayleigh numbers or the critical modes corresponding to the onset of
large-scale convection.

The paper is organized as follows. The mathematical formulation of the problem, and
in particular of the linear stability analysis, is introduced in § 2. The critical Richardson
and Rayleigh numbers, as well as the critical wavenumbers and the critical mode, are
then computed in § 3 for a particular Reynolds number for which DNS data are available
and well converged. The dependence of the critical values on the Reynolds number is
addressed in § 4 by making use of basic flows based on a semi-empirical model described
in Appendix A, which extends the one proposed by Cess (1958) to the non-isothermal
case. A summary of the results and a discussion of their main implications are provided in
§ 5.

2. Mathematical model

We consider the pressure-driven flow of a viscous fluid of kinematic viscosity ν, thermal
diffusivity α, and thermal expansion coefficient β, in the channel between two infinite
parallel walls normal to the gravitational field −gez and located at z∗ = ±h, where z∗ is
the (dimensional) vertical coordinate and ez is the unit vector oriented along the z axis.
We denote by x, y and z the streamwise, spanwise and vertical coordinates, respectively,
made dimensionless with respect to the channel half-height h. The distance from the
walls, scaled in wall (inner) units, is z+ = (h − |z∗|)uτ /ν, where uτ = √

τ/ρ is the
characteristic velocity associated with the wall shear stress τ . A temperature difference
�Θ is maintained between the two walls, which are assumed to be isothermal, resulting
in a vertical heat flux Q. In the following, we will deal with the case where the flow is
turbulent and the bottom wall is hotter than the top wall, and for simplicity, define Q ≥ 0,
�Θ ≥ 0 in this situation.

We are interested in the onset of large-scale turbulent convection in already turbulent
wall-bounded shear flows as the temperature difference and the heat flux are increased
gradually, starting from zero. For this purpose, we use a ‘statistical-linear’ approach
built on the linear model proposed by Reynolds & Hussain (1972) and used by del
Álamo & Jiménez (2006), Pujals et al. (2009), Hwang & Cossu (2010a,b) and others to
describe the dynamics of small-amplitude coherent perturbations u = (u, v, w), p and θ

(velocity, pressure and temperature, where the usual ˜ is dropped for simplicity) to the
temporally averaged mean flow U = U(z) ex, P(z) and Θ(z), by including the effect of
heat transport under the Boussinesq approximation. To improve the convergence of the
temporal averaging, it is usual to compute U(z), P(z) and Θ(z) by averaging also in the
horizontal planes. When expressed in dimensionless units based on the channel half-height
h, the wall-temperatures difference �Θ and the friction velocity uτ , the linear model reads

∂tu = −∇u · U − ∇U · u − Riτ θez − ∇p + ∇ · [
νT

(∇u + ∇uT)]
, (2.1)

∂tθ = −∇θ · U − ∇Θ · u + ∇ · (αT ∇θ) , (2.2)

where, for simplicity, we assume Riτ > 0 in the unstably stratified case. The u(x, y, z, t),
p(x, y, z, t) and θ(x, y, z, t) fields represent coherent motions that are the difference
between the (ensemble-averaged or phase-averaged or locally-filtered, etc.) mean fields
and the temporally averaged fields U(z), P(z) and Θ(z). These coherent motions feel
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the effect of the residual (random, ‘incoherent’) turbulent fluctuations through Reynolds
stresses modelled via eddy viscosity νt and eddy diffusivity αt, which are included in
the total eddy viscosity νT = (1 + νt/ν)/Reτ and diffusivity αT = (1 + αt/α)/(Reτ Pr)
expressed in dimensionless form. The system depends on the Prandtl number Pr =
ν/α, the friction Reynolds number Reτ = huτ /ν and the friction Richardson number
Riτ = hβg �Θ/uτ

2. For the sake of comparison with previous investigations, however,
results will be presented mainly in terms of the Reynolds and Richardson numbers
Reb = 2hub/ν, Rib = 2hβg �Θ/u2

b – based on the bulk velocity ub – and the Rayleigh
and Nusselt numbers Ra = 8h3gβ �Θ/(αν), Nu = 2hQ/(α �Θ), where the relations
Ra = Rib Pr Re2

b = 8 Riτ Pr Re2
τ hold.

Equations (2.1) and (2.2) can be reduced by standard manipulations (see e.g. Pujals
et al. 2009; Hwang & Cossu 2010a; Jerome, Chomaz & Huerre 2012; Madhusudanan
et al. 2022) to the following extended Orr–Sommerfeld–Squire system for the wall-normal
velocity, wall-normal vorticity and temperature Fourier modes ŵ, ζ̂ , θ̂ of streamwise and
spanwise wavenumbers kx and ky:

∂tq = Aq, q =
⎧⎨⎩

ŵ
ζ̂

θ̂

⎫⎬⎭ , A =
⎡⎣ Δ−1LOS 0 −Riτ k2Δ−1

−ikyU′ LSQ 0
−Θ ′ 0 Lθ

⎤⎦ , (2.3a–c)

where q is the state vector, and A includes the Orr–Sommerfeld–Squire and thermal linear
operators generalized to include the effects of eddy viscosity and eddy thermal diffusivity:

LOS = −ikx(UΔ − U′′) + νTΔ2 + 2ν′
TΔD + ν′′

T(D2 + k2), (2.4)

LSQ = −ikxU + νTΔ + ν′
TD, Lθ = −ikxU + αTΔ + α′

TD, (2.5a,b)

with D and ′ denoting d/dz, k2 = k2
x + k2

y and Δ = D2 − k2. Homogeneous boundary
conditions, corresponding to no-slip and isothermal boundary conditions, are enforced on
both walls: ŵ(±1) = 0, Dŵ(±1) = 0, ζ̂ (±1) = 0, θ̂ (±1) = 0.

The linear operators in (2.3a–c), (2.4) and (2.5a,b) depend on the temporally averaged
mean profiles U(z), Θ(z), and eddy viscosity and diffusivity profiles νt(z)/ν, αt(z)/α. In
the following, these profiles will be based either on DNS data of Pirozzoli et al. (2017)
(where νt = −u′w′/(dU/dz) and αt = −θ ′w′/(dΘ/dz)) or on the extended Cess model
described in Appendix A.

The system (2.3a–c) has been investigated previously in the absence of thermal effects
(Riτ = 0, no equation for θ ), where it was shown to be linearly stable but able to sustain
large energy amplifications and transient growths of coherent quasi-streamwise streaks
induced by coherent quasi-streamwise rolls (see Cossu & Hwang 2017 for a review).
Recently, Madhusudanan et al. (2022) have investigated the impulse response of system
(2.3a–c) in the unstably stratified case, but without examining its linear stability.

In this study, we examine the linear stability of A when Riτ is increased, starting from
zero, for given Reτ and Pr, by computing the leading eigenvalue s of A, having the largest
real part (growth rate) σ , and the corresponding normal mode for the wavenumbers kx,
ky of interest. We anticipate that eigenvalues with the largest growth rates are found in
correspondence to kx = 0, i.e. for streamwise-aligned rolls (uniform in the streamwise
direction). For each Reynolds number of interest, the neutral curve Raneut(λ) defines the Ra
values for which the leading growth rate σ of perturbations of given spanwise wavelength
λ = 2π/ky is zero. The critical Rayleigh number Rac = minλ Raneut(λ) is the smallest Ra
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value for which a linear instability sets in, and is attained in correspondence to the the
critical wavelength λc. Neutral curves and critical values can be defined similarly in terms
of Richardson numbers.

The numerical solution of the eigenvalue problem is based on numerical codes that
have been validated extensively in the absence of heating (e.g. Pujals et al. 2009;
Hwang & Cossu 2010a,b). These codes have been modified by adding the equation for
the temperature, and have then been validated by retrieving the correct critical values
of the Rayleigh number and spanwise wavenumber for the onset of Rayleigh–Bénard
instability in the absence of mean velocity. The linear operator A has been discretized
in the wall-normal direction by means of a Chebyshev collocation method. Wall-normal
derivatives have been discretized by using the differentiation matrices of Weideman &
Reddy (2000), which include the appropriate boundary conditions. The results presented in
§ 3 and § 4, respectively, have been obtained by using Nz = 128 and Nz = 256 collocation
points in the wall-normal direction. It has been verified that the results remain unchanged
when Nz is doubled.

In selected cases, the linear stability analysis is repeated by using the quasi-linear
approach where the effect of Reynolds stresses is not included in A. These additional
computations are performed by using exactly the same procedure explained above, except
for the fact that, as it is assumed that νt/ν = 0 and αt/α = 0, in (2.3a–c) we set νT =
1/Reτ and αT = 1/(Pr Reτ ).

3. Onset of turbulent large-scale convection at Reb = 104

Initially, we consider the case of a turbulent channel operated at constant Reb = 104

(corresponding to Reτ = 298) and Pr = 1 for which DNS data of Pirozzoli et al. (2017)
are available with well-converged statistics. These authors show that the turbulent flow
experiences a profound change when Rib is increased from 10−3 (i.e. Ra = 105) to
Rib = 10−2 (Ra = 106), where coherent large-scale rolls aligned with the mean velocity
are first observed. A significant meandering of these rolls appears when the Richardson
number is increased further to Rib = 10−1. The onset of meandering will not be addressed
in this study.

3.1. Stability analysis with base flows issued from DNS at the same Rib
Conjecturing that the flow change observed between Rib = 10−3 and Rib = 10−2 might
be associated with an instability of the mean flow with respect to coherent large-scale
rolls, we examine the linear stability of the linearized operator A defined in (2.3a–c) at the
considered Reb = 104 for Rib = 0, Rib = 10−3 and Rib = 10−2 by making use of the DNS
mean profiles computed by Pirozzoli et al. (2017) that are shown in figure 1.

We find that for all the considered cases, the leading eigenvalues correspond to kx = 0
streamwise-uniform modes and have zero imaginary part (not shown). The analysis of the
σ(ky) growth rate curves obtained for kx = 0 (reported in figure 2 with circular symbols)
reveals that while all the modes are linearly stable for Rib = 0 (as is well known already)
and Rib = 10−3, an unstable ky waveband exists for Rib = 10−2, i.e. for the same value
of Rib where the coherent streamwise rolls are first detected in the DNS, showing that
the appearance of these coherent streamwise rolls is associated with a linear instability of
U(z), Θ(z) to coherent perturbations.
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Figure 1. Vertical profiles of the temporally averaged mean streamwise velocity U (a) and mean temperature
Θ (b), and of the associated eddy viscosity νt/ν (c) and thermal eddy diffusivity αt/α (d). The profiles are
issued from DNS data of Pirozzoli et al. (2017) for Reb = 104 and Rib = 0 (solid black line), Rib = 10−3

(dashed purple), Rib = 10−2 (dashed-dotted green), and from the extended Cess model computed for the same
Reb and Rib = 0 (dotted black line).

–0.2

–0.1

0

0.1

0 0.5 1.0 1.5 2.0
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σ

Rib = 0

Rib = 10–3

Rib = 10–2
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Figure 2. Temporal growth rate σ or the leading normal mode at Reb = 104 versus the spanwise wavenumber
ky for kx = 0 for selected values of Rib, obtained by making use of DNS mean flow data at the same Rib (	
symbols), DNS mean flow data obtained at Rib = 0 (× symbols), and the Cess model mean flows (lines).

3.2. Computation of the critical values at Reb = 104

Additional analysis is necessary to determine the critical Richardson and Rayleigh
numbers for the onset of the coherent large-scale convection because the use of DNS
mean flow profiles for the stability analysis is limited to only few values of the parameters
and, furthermore, is not justified in the supercritical regime where the unstable modes,
which have reached finite amplitudes, modify the mean flow profiles. To overcome these
difficulties, we therefore introduce two additional approaches.

(i) In a first approach, the stability analysis is performed by changing the value of the
Richardson number in the linear operator A but using as basic flow profiles the
ones obtained by DNS frozen at Rib = 0. This is justified because mean profiles
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do not change appreciably in subcritical conditions (see figure 1) and are therefore
appropriate to detect the onset of the instability.

(ii) In the second approach, the linear stability analysis is based on mean profiles
provided by the model proposed by Cess (1958), which we have extended to the
case of non-uniform temperature, as detailed in Appendix A.

The results obtained with these two approaches are compared in figure 2, from which
it can be seen that (a) the two approaches lead to almost indistinguishable growth rates
for all Rib, and (b) in subcritical conditions, i.e. as long as the growth rates are negative,
these growth rates coincide further with those computed in § 3.1 making use of mean flow
profiles issued from DNS at the same Rib. In supercritical conditions, the growth rates
computed using the mean flow of the DNS at the same Rib, where the rolls already affect
the mean flow, are slightly smaller than the ones computed on the proper basic flows.

We therefore repeat the stability analysis for a whole set of Rib values by making use of
the extended Cess model (second approach) looking for the critical values for the onset of
the instability. We find that the critical Richardson number is Rib,c = 6.47 × 10−3, which
at the considered Reb = 104 corresponds to the critical Rayleigh number Rac = 647 170,
with the critical spanwise wavenumber ky,c = 1.08 (see figure 2).

If the first approach is used, where the base flow profiles are the DNS ones ‘frozen’
at Rib = 0 for the same Reb = 104, then the critical values Rib,c = 6.36 × 10−3, Rac =
636 889, ky,c = 1.062 are found, which are within 2 % of the values computed previously,
therefore confirming the accuracy of the linear stability analysis based on the extended
Cess model.

The spanwise wavenumber ky,c = 1.08 of the critical mode corresponds to the spanwise
wavelength λ = 5.8, and the aspect ratio is A = 2.91 (where A = λ/2 is the ratio of the
spanwise wavelength to the channel height). The shape of the critical mode corresponds
to the expected coherent convective rolls that induce positive (negative) temperature
fluctuations and bottom-wall low-speed (high-speed) streaks in correspondence to the hot
updrafts (cold downdrafts), as shown in figure 3.

3.3. Relevance of Reynolds stress modelling
To assess the relevance of the inclusion of modelled Reynolds stresses in the linear
operator, we have repeated the stability analysis with the quasi-laminar formulation, where
it is assumed that νt/ν = 0 and αt/α = 0. The critical Richardson number predicted with
the quasi-laminar formulation is found to be Rib,c = 3.82 × 10−5, corresponding to the
critical Rayleigh number Rac = 3816. These critical values are two orders of magnitude
smaller than the ones computed in § 3.2 by including the modelled Reynolds stresses in
the formulation, and are not consistent with the DNS of Pirozzoli et al. (2017), where
rolls are not observed for such small values of Rib and Ra. Furthermore, the critical
wavenumber ky,c = 1.56 predicted with the quasi-laminar approach corresponds to the
spanwise wavelength λ = 4 and the aspect ratio A = 2, which values are half of those
observed in the DNS.

Including the effects of turbulent diffusion, which are unaccounted for in the
quasi-laminar formulation, is therefore essential in predicting the most basic features of the
onset of large-scale convection rolls. We therefore abstain from obtaining further results
with the quasi-laminar formulation in the remainder of this investigation.
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Figure 3. Cross-stream view of the (a) coherent perturbation temperature and (b) streamwise perturbation
velocity fields corresponding to the critical mode, with wavenumbers kx = 0, ky = ky,c computed at Reb = 104

and Rib,c. The associated cross-stream velocity field is reported with arrows. All fields are normalized with
respect to their maximum amplitude.

4. Influence of the Reynolds number on the onset of turbulent convection

After having considered the onset of large-scale convection rolls at the specific Reynolds
number Reb = 104 in § 3, we now examine the Reynolds number dependence of the critical
Richardson and Rayleigh numbers, the critical spanwise wavenumber and the critical mode
shape. To this end, we repeat the linear stability analysis for Pr = 1 and Reynolds numbers
ranging from Reb = 104 (Reτ = 298) to Reb ≈ 106 (Reτ = 20 000), which is the largest
Reynolds number considered by del Álamo & Jiménez (2006), Pujals et al. (2009) and
Hwang & Cossu (2010b) in similar linear analyses of turbulent channels with neutral
stratification.

4.1. Use of the extended Cess model
For the additional linear stability analyses, performed at higher Reynolds numbers, we
make use of base flows based on the extended Cess model. In Appendix A, where this
model is described, it is shown that it predicts friction and heat transfer laws Cf (Reb),
Nu(Reb) that are in agreement with the DNS results and the semi-empirical fits reported
by Pirozzoli et al. (2017). Remarkably, the agreement with the semi-empirical fits holds at
least up to the highest Reynolds number that we consider (Reb ≈ 106, Reτ = 20 000), well
beyond the highest Reynolds numbers of the DNS with which they were calibrated (see
figure 7 in Appendix A). Furthermore, we have already shown in § 3.2 that linear stability
analyses based on the extended Cess model are in agreement with those based on mean
profiles issued directly by DNS data at Reb = 104. These properties provide confidence in
the use of the extended Cess model for the stability analyses.
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Figure 4. Critical parameters dependence on Reynolds number Reb: (a) critical Richardson number Rib,c;
(b) critical Rayleigh number Rac; and (c) critical wavelength λ = 2π/ky,c. In (a,b), the critical curves (blue
solid lines) and the neutral parameters of disturbances with λ = 8 (purple solid lines) are compared to the
DNS findings of Pirozzoli et al. (2017), where coherent large-scale rolls have disappeared (filled red square
symbols), and those where they are first detected (filled green circle symbols). The best fit to the Rac(Reb)

curve is also reported in (b) (black dashed-dotted line). In (c), the results are also reported in terms of the
aspect ratio A = λ/2 (the ratio of the critical mode spanwise wavelength to the channel height).

4.2. Dependence of the critical values on the Reynolds number
The additional computations performed for increasing values of the Reynolds number
reveal that the critical Richardson number Rib,c decreases for increasing Reynolds
numbers, from slightly above 0.06 for Reb = 104, to slightly above 0.02 for Reb = 106,
as shown in figure 4(a). The corresponding critical Rayleigh number Rac = Rib,c Pr Re2

b
increases with the Reynolds number approximately as Rac = 0.04 Re1.8

b , reaching values
higher than 109 for the highest considered Reynolds numbers (see figure 4b).

The spanwise wavelength λ, expressed in units of domain half-height h, and the aspect
ratio A = λ/2 of the critical modes increase slightly with the Reynolds number from
λ = 5.82 (A = 2.9) for Reb = 104, to λ = 6.55 (A = 3.27) for Reb = 106. This spanwise
wavelength is, however, smaller than the λ = 8 spanwise wavelength (A = 4) of the
large-scale rolls that first emerge in the DNS of Pirozzoli et al. (2017). We ascribe this
difference to the fact that the spanwise size of the numerical domain used in the DNS
is Ly = 8h, and therefore only structures with λ = 8 (A = 4) or λ = 4 (A = 2) can be
resolved at the largest scales in the DNS, where periodic boundary conditions are enforced
in the spanwise direction. To validate further our results with respect to those of the DNS,
we have therefore computed additionally the neutral Richardson and Rayleigh numbers
corresponding to perturbations with λ = 8 observed in the DNS. As shown in figure 4, the
computed neutral Richardson and Rayleigh numbers at which coherent modes with λ = 8
become unstable are extremely similar to the critical ones.

Even more importantly, both the computed critical curves and those corresponding to
λ = 8 are consistent with the DNS results of Pirozzoli et al. (2017), lying between the
Rib (and Ra) values where coherent large-scale rolls are first observed (filled green circle
symbols in the figure) and those where they first disappear (filled red square symbols) in
the DNS, as shown in figure 4.

4.3. Use of the friction Richardson number
The very large values attained by the critical Rayleigh numbers for increasing Reynolds
numbers can be attributed to the decreasing values of the viscosity ν and thermal
diffusivity α, both appearing in the denominator of Ra. An effective Rayleigh number
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Figure 5. Critical parameters dependence on Reynolds number Reb: (a) critical effective Rayleigh number
Raeff ,c; (b) critical friction Richardson number Riτ,c. In (c) are reported the neutral curves Riτ,neut(A) for the
selected Reynolds numbers Reb = 104, 1.35 × 105 and 1.08 × 106.

Raeff = 8hβ �Θ/(νTαT) can be defined based on the wall-normal-averaged total
viscosity νT = (1/2)

∫ 1
−1 νT(z) dz and the similarly defined αT . In figure 5(a), it is shown

that the critical value of this effective Rayleigh number remains in the range Raeff ,c ≈
1200–1300 for almost all the considered Reb.

As νt and αt are, in a first approximation, both proportional to Reτ (see e.g. (A1) and
(A2)), the effective Rayleigh number behaves approximately like Ra/Re2

τ . Recalling that
Ra = 8 Riτ Pr Re2

τ , it appears that using Raeff is almost equivalent to using the friction
Richardson number Riτ . Indeed, as shown in figure 5(b), the critical value of the friction
Richardson number remains near Riτ,c = 0.86 within ±3 % accuracy for all the considered
Reynolds numbers. The instability threshold is therefore best defined in terms of Riτ .
Furthermore, neutral curves expressed in terms of Riτ are less sensitive to the Reynolds
number for the highest Reynolds numbers, as shown in figure 5(c).

4.4. Critical modes shapes
The vertical profiles associated with the critical modes computed for selected Reynolds
numbers are reported in figure 6. Critical modes, being eigenfunctions of a linear operator,
are defined up to an arbitrary constant. In order to compare the different profiles pertaining
to the different considered Reynolds numbers, the arbitrary constant is chosen such that
the maximum vertical velocity is equal to 1 for all cases. From figure 6(a), it can be
seen that the profile of the vertical velocity component ŵ(z) of the coherent critical
mode is nearly sinusoidal, and its shape is insensitive to the Reynolds number. On the
contrary, the temperature θ̂ (z) and streamwise velocity û(z) profiles are characterized by
strong gradients near the walls, as shown in figures 6(b,c). Their maximum amplitudes
do slightly increase with the Reynolds number, probably reflecting a slightly increasing
non-normality of the linear operator A (see e.g. Cossu et al. 2009; Pujals et al. 2009;
Hwang & Cossu 2010b).

We also find that the streamwise velocity profiles of the critical mode are proportional
to the mean velocity profile from the wall to at least the end of the logarithmic layer
(z+/Reτ ≈ 0.1), as shown in figure 6(d). These coherent perturbation profiles, therefore,
also embed a viscous sublayer, a buffer layer and a logarithmic layer similarly to what
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Figure 6. Vertical profiles of the critical modes (coherent perturbations) computed for the selected Reynolds
numbers Reb = 104, 1.35 × 105 and 1.08 × 106: (a) coherent vertical velocity ŵ(z), (b) temperature θ̂ (z), and
(c) streamwise velocity û(z). In (d), the streamwise velocity critical mode profiles û(z+) are replotted against
the wall units coordinate z+, properly rescaled, to show their proportionality to the mean flow profile U(z+) in
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Figure 7. Comparison of the extended Cess model relative eddy thermal diffusivity αt/α to DNS data and to
the DNS rescaled eddy viscosity g(z) νt/ν for Reb = 104 (a). The extended Cess model (purple solid lines)
friction coefficient Cf = 2u2

τ /u2
b (b) and Nusselt number Nu (c) dependence on Reb are compared to DNS data

(symbols) and to the associated semi-empirical laws (black dotted lines) reported by Pirozzoli et al. (2017).

was found for optimally forced coherent streaks in the absence of heating (Cossu et al.
2009; Pujals et al. 2009). Furthermore, the streamwise velocity component of the critical
mode reaches at least 50 % of its maximum amplitude in the buffer layer, confirming the
large influence that non-universal large-scale coherent structures have on the near-wall
dynamics.

5. Conclusions

The main goal of this study was to understand if a suitable linear stability analysis could
explain the onset of large-scale convection rolls observed in wall-bounded turbulent shear
flows exposed to destabilizing temperature gradients, and predict the threshold where
instability sets in and the aspect ratio of the rolls at the instability onset. A second goal
was to assess the relative merits of including or not modelled Reynolds stresses in the
linear stability operator motivated by the current ambiguities in the formulation of linear
analyses of turbulent flows.

To these ends, we have examined the linear stability of mean flow profiles in a
pressure-driven turbulent channel flow for Reynolds numbers ranging from Reb = 104
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to Reb ≈ 106 (Reτ ranging from 298 to 20 000), and Rayleigh numbers ranging from
Ra = 0 to more than Ra = 109. The stability of the mean flows with respect to coherent
perturbations has been assessed by including the effect of Reynolds stresses in the linear
operator, extending the approach of Reynolds & Hussain (1972) to the thermally stratified
case. The main results can be summarized as follows.

(i) The onset of large-scale rolls can be associated with the linear instability of the
turbulent mean flow to coherent perturbations.

(ii) The linear instability sets in at critical friction Richardson numbers Riτ,c = 0.86 ±
0.026 for the considered range of Reynolds numbers (where Riτ is assumed positive
in the unstably stratified case). This corresponds to critical Rayleigh numbers
increasing with the Reynolds number as Rac ≈ 0.04Re1.8

b . These critical values are
consistent with what was observed in DNS by Pirozzoli et al. (2017).

(iii) The aspect ratio of the critical rolls is in the range A ≈ 2.9–3.3 (spanwise
wavelengths λ ≈ 5.8–6.6 when expressed in channel half-height units) for the
considered Reynolds numbers.

(iv) The vertical velocity profiles of the critical mode are not sensitive to the Reynolds
number and are nearly sinusoidal, while those of the temperature and the streamwise
velocity display large gradients near the walls, which increase slightly with the
Reynolds number.

(v) The streamwise velocity profiles of the critical modes are proportional to the
turbulent mean flow profile from the wall to the logarithmic layer, and reach 50 % of
their maximum amplitude in the buffer layer.

(vi) It is necessary to include modelled Reynolds stresses in the linear operator to obtain
realistic values of the critical parameters.

These results, by providing predictions consistent with DNS in a well-defined setting,
show that a suitable linear stability analysis is able to predict the onset of large-scale
convection in turbulent wall-bounded flows and that coherent large-scale rolls are unstable
linear modes sustained by the unstably stratified turbulent mean flow. The existence of such
a linear instability with well-defined thresholds is consistent with the DNS of turbulent
channels by Pirozzoli et al. (2017) and the large-eddy simulations of atmospheric boundary
layers by Jayaraman & Brasseur (2021), which show that a well-defined finite heating
threshold exists for the onset of large-scale rolls. Previous ‘local’ interpretations of the
interaction of unstable stratification with shear-induced turbulent coherent streaks, such as
that of Khanna & Brasseur (1998), explain why low-speed streaks on the ground act as
the seeds of thermal updrafts but could not explain and predict straightforwardly that a
well-defined threshold exists for the onset of the large-scale coherent rolls, or predict the
associated critical Rayleigh or Richardson numbers or the rolls aspect ratio. The strength of
the linear stability analysis that we have used therefore resides in the fact that it addresses
directly the interaction of the coherent large-scale rolls with the turbulent mean flow, while
also including, via the eddy diffusivities, the effects of nonlinear energy transfers with
other shear-induced and buoyancy-induced structures (which lead finally to dissipation).
This ‘global’ point of view is therefore able to reproduce the physics explained by the local
interpretations (e.g. that hot updrafts corresponds to ground low-speed streaks, as seen in
figure 3), while being at the same time able to quantify exactly global properties, such as
the growth rate of large-scale rolls and the most amplified aspect ratios, as functions of the
Reynolds and Richardson (or Rayleigh) numbers.
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The onset of large-scale convection rolls at finite values of the Rayleigh (or Richardson)
number and the fact that it is associated with a linear instability are clearly reminiscent
of the Rayleigh–Bénard instability in a laminar background. Despite their apparent
similarities, however, we find that the laminar and turbulent flow cases are very different.
In the laminar case, indeed, the Rayleigh–Bénard instability developing on top of the
laminar Poiseuille flow onsets at a fixed critical Rayleigh number (Rac = 1708 for no-slip
conditions on both walls) that does not depend on the Reynolds number of the underlying
Poiseuille flow (see e.g. Gage & Reid 1968; Jerome et al. 2012). In the turbulent case, on
the contrary, the critical Rayleigh numbers increase significantly with Reynolds numbers
because higher buoyancy power is necessary to overcome the increasingly high turbulent
diffusion when the Reynolds number is increased. In the turbulent case, indeed, the
relevant critical parameter is the friction Richardson number Riτ that compares these two
effects and that we find to be almost independent of the Reynolds number, at least for
the considered Reb ranging from 104 to 106. Also, while in the laminar case the aspect
ratio of the critical Rayleigh–Bénard rolls does not change with the Reynolds number,
in the turbulent case it does slightly increase with the Reynolds number because of the
increasing turbulent eddy diffusivities.

The presented results, of course, have some limitations. The most important one
probably is that only very few numerical or experimental results exist to which it is possible
to compare the predictions of the linear stability analysis. The most recent and useful
results that we are aware of are the DNS of Pirozzoli et al. (2017) for which data for the
onset of large-scale rolls are available up to Reb = 3.16 × 104, and with simulated Ra and
Rib values all spaced by a decade and only for numerical domains of spanwise aspect ratio
A = 4. Therefore, despite the fact that our predictions are consistent with the existing DNS
results of of Pirozzoli et al. (2017), additional numerical and/or experimental studies with
a more dense spacing of Ra and Rib values, extending to higher Reynolds numbers and
with additional aspect ratios of the numerical domain, would certainly allow for a more
precise quantitative assessment of the critical Rayleigh (or Richardson) numbers and the
critical rolls aspect ratios predictions presented here.

Concerning the modelling of Reynolds stresses, the presented analysis is based on
an extension of the closure of Reynolds & Hussain (1972), which represent Reynolds
stresses by means of an isotropic eddy viscosity corresponding to the temporally averaged
mean flow, to the case of non-neutral stratifications by means of the definition of a
thermal eddy diffusivity corresponding to the mean temperature profile. This is probably
the simplest possible model that allows us to take into account inter-scale energy
transfers. The simplicity of the model is an advantage for the interpretation of the results
because it requires only the knowledge of the temporally averaged mean velocity and
temperature vertical profiles. However, it represents also a potential limitation if more
precise quantitative predictions are sought. For the goals of this study, nevertheless, this
simple model has proven effective probably because the most amplified modes have large
spatial scales (they are streamwise-uniform and have large spanwise wavelengths) and are
quasi-steady (temporal eigenvalues have zero imaginary part). More sophisticated models
might be necessary in less favourable situations, such as e.g. to predict the onset of the
rolls meandering that has not been addressed in the present investigation.

As already mentioned, a second goal of this investigation was to compare the
performance of the statistical-linear approach (discussed above) to that of the
quasi-laminar approach in a setting where no modelling of an external forcing is needed.
We find that the quasi-laminar stability analysis, where modelled Reynolds stresses are
not included in the linear operator, leads to a strong underestimation (by two orders of
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magnitude) of the critical Rayleigh and Richardson numbers, as well as predicting critical
rolls aspect ratios typical of the laminar case. The results of the present investigation
therefore represent additional evidence of the appropriateness of the statistical-linear
approach introduced by Reynolds & Hussain (1972) to describe the dynamics of averaged
(coherent) perturbations of the temporally averaged mean flow. This type of approach,
indeed, is able to predict the amplification of large-scale coherent structures in turbulent
channel flows in both the unstably stratified case, via the modal stability analysis
performed in this study, and the neutrally stratified case, by means of non-modal analyses
(see e.g. del Álamo & Jiménez 2006; Pujals et al. 2009; Hwang & Cossu 2010b; Morra
et al. 2019).

The approach taken in this study can probably be extended straightforwardly to the case
of the unstably stratified atmospheric boundary layer by including the effect of Coriolis
acceleration, ground roughness and capping inversions. In this context, the predictions
of this type of linear stability analysis could be tested against the currently unexplained
findings of Jayaraman & Brasseur (2021), who report the onset of roll-like structures
for values of ground heating much lower than those commonly associated with even
moderately convective regimes. Another extension of the present approach will consist
in the inclusion of nonlinear terms in the formulation in order to access finite-amplitude
solutions of the rolls that exist above the critical Rayleigh/Richardson thresholds and to
be able to compare directly the finite-amplitude solutions to direct numerical simulation
results and predict their secondary instability leading to their meandering motions. These
extensions are under current intensive investigation.

Funding. This research received no specific grant from any funding agency, commercial or not-for-profit
sectors.

Declaration of interests. The author reports no conflict of interest.

Data availability statement. The data that support the findings of this study are available from the author.

Author ORCIDs.
Carlo Cossu https://orcid.org/0000-0003-0876-6302.

Appendix A. The extended Cess model for the mean flow

In this appendix, we describe the model that is used in a substantial part of this
study to approximate the eddy diffusivities and the associated mean flow profiles. The
semi-empirical expression proposed by Cess (1958), as reported by Reynolds & Tiederman
(1967), is assumed for the eddy (kinematic) viscosity νt:

νt

ν
= 1

2

{
1 +

[
κ Reτ (1 − z2)

1 + 2z2

3

(
1 − e−z+/A

)]2}1/2

− 1
2
, (A1)

where z+ = Reτ (1 − |z|), and the values of the von Kármán constant κ = 0.426 and A =
25.4 are based on best fits to the DNS at Reτ = 2000 of Hoyas & Jiménez (2006). The
mean velocity profile is obtained by integrating dU/dz = −Reτ z/(1 + νt/ν), a relation
derived from the mean momentum budget equation (Reynolds & Tiederman 1967; Pope
2000). As shown in figure 1, the Cess model provides reasonable approximations for U
and νt, and has already been used widely for stability analyses of turbulent mean flows
(see, among others, Reynolds & Tiederman 1967; Waleffe, Kim & Hamilton 1993; Farrell
& Ioannou 1996; del Álamo & Jiménez 2006; Pujals et al. 2009; Hwang & Cossu 2010b;
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Morra et al. 2019). We have verified further that the friction law Cf (Reb) associated Cess
model is in good agreement with Prandtl’s law used by Pirozzoli et al. (2017), even at
Reynolds numbers much higher than those accessed in their DNS, as shown in figure 7(b).

We have extended the Cess model to include the effect of turbulent heat transport
(temperature diffusion) in the forced convection regime preceding the onset of large-scale
convection (we restrain to the Pr = 1 value considered in this study). In this regime, where
the temperature behaves as a passive scalar, empirical trial and error tests show that in
the bulk of the flow, DNS data verify αt ≈ g(z) νt, where g(z) = (1 − χz2)/(1 − χ) with
χ ≈ 0.25. We have therefore modelled the thermal eddy diffusivity by including g(z) in
Cess’s law:

αt

α
= 1

2

{
1 +

[
κ Reτ (1 − z2)

1 + 2z2

3
1 − χz2

1 − χ

(
1 − e−z+/A

)]2}1/2

− 1
2
, (A2)

using the same constants κ , A used in (A1), and χ = 0.25. The temperature field can
be retrieved from dΘ/dz = −Reτ Q/[Pr (1 + αt/α)], a relation derived from the mean
energy budget. The model’s temperature field and eddy diffusivity fit the DNS data
reasonably well, as shown in figures 1(a,b) and figure 7(a). We show further in figure
7(c) that the Nu(Reb) curve associated with the extended Cess model equation (A2)
is in good agreement with the DNS of Pirozzoli et al. (2017) and their empirical fit
Nu = 0.0073 Re0.802

b , even at Reynolds numbers much higher than those accessed in their
DNS.
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