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1. Introduction

In 1940, Gelfond [14] (see also his book [15]) obtained the first nontrivial effective

lower bound for jb log a1 � log a2j, where b, a1 and a2 are algebraic numbers, with

a1 and a2 multiplicatively independent. More than twenty years later, Baker general-

ized this result to linear forms in an arbitrary number of logarithms of algebraic

numbers. His estimates have then been refined by many authors and, to date, the

best lower bounds are due to Laurent, Mignotte and Nesterenko [18] in the case

of two logarithms and to Baker and Wüstholz [3], Waldschmidt [30] and also

Matveev [21] in the general case. In parallel to the Archimedian theory, analogous

results have been obtained in a p-adic setting, first by Gelfond [14] and Schinzel

[26] in case of two logarithms, and then by Coates, Sprindžuk, van der Poorten

and finally Kunrui Yu [31] in the general case. To date, the best known result for

two logarithms is due to Bugeaud and Laurent [8], who have provided a sharp upper

bound for the p-adic valuation vpðLÞ of L ¼ ab11 � ab22 , where a1 and a2 are algebraic
numbers and b1 and b2 are positive integers. All these results have many applica-

tions, in particular to Diophantine equations, which justify all the efforts made in

order to reduce the size of the numerical constants occurring in the estimates. In

the case of two Archimedean or non-Archimedean logarithms, the main results of

[18] and [8] are very satisfactory and allow us to solve completely Diophantine equa-

tions, modulo of course some computer calculations.

At the present time, there is no result treating simultaneously several non-

Archimedean places. The main reason is the following: the p-adic case offers a
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hurdle, which is ignored in the Archimedean setting, namely the radius of conver-

gence of the p-adic exponential function is finite. The current methods (cf., for

instance, [8]) rest on analytic techniques and need the introduction of the function

z 7! az1, which has a priori no reason to be defined for every z in the ring of p-adic

integers, since the p-adic exponential function only converges in the open disk cen-

tered at 1 and of radius p�1=ð p�1Þ. Thus, we use a trick, which costs roughly a factor

p in the upper estimate for vpðLÞ and leads us to fear that treating simultaneously

several places would not be possible.

However, in the very particular case when vpða1 � 1Þ > 1=ð p� 1Þ, we stay within

the disk of convergence without using the trick, and the dependence on p in the

upper bound for vpðLÞ is then almost optimal. This observation suggests that it

should be possible to obtain a simultaneous estimate for several places q, which

all satisfy vqða1 � 1Þ > 1=ðq� 1Þ, and thus depend hardly on a1. In the first part of

the present work, we prove such an estimate, which is an extension of Theorem 2

of [6]. In the Archimedean setting, Shorey [28] was the first who noticed that one gets

the best possible estimates when the ai’s are all very close to one. This is crucial for

numerous applications, especially to Diophantine equations.

Our work is organized as follows. Section 2 is concerned with the statement of our

main results, including an explicit upper estimate for vpðLÞ in the case where a2 ¼
�1. The proofs are displayed in Section 3. Applications to explicit lower bounds

for the fractional part of powers of rational numbers are given in Section 4, while

Section 5 is devoted to the Diophantine equation ðxn � 1Þ=ðx� 1Þ ¼ yq.

2. Linear Forms in m-adic Logarithms

Let m > 1 be an integer and write m ¼ pu11 � � � puww , where p1 < � � � < pw are distinct

prime numbers and the ui’s are positive integers. Let x be a nonzero integer and

let p be a prime. We recall that the p-adic valuation of x, denoted by vpðxÞ, is the

greatest nonnegative integer v such that pv divides x. Analogously, we define the

m-adic valuation of x, which we denote by vmðxÞ, to be the greatest nonnegative inte-

ger v such that mv divides x. We observe that

vmðxÞ ¼ min
14 i4w

vpi ðxÞ

ui

� �
;

where ½�� denotes the integer part. Further, if a=b is a nonzero rational number with a

and b coprime, we set vmða=bÞ ¼ vmðaÞ � vmðbÞ.

Let x1=y1 and x2=y2 be two nonzero rational numbers with x1=y1 6¼ �1. Our aim is

to provide an upper bound for the m-adic valuation of

L ¼

�
x1
y1

�b1

�

�
x2
y2

�b2

;

where b1 and b2 are positive integers. To this end, we should add some restrictions on

x1=y1 and x2=y2, namely we assume as in [8] that for all 14 i4w we have
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vpiðx1=y1Þ ¼ vpiðx2=y2Þ ¼ 0. No further condition is required when m is prime, and we

refer to [8] for that case. The purpose of the present work is to deal with composite

m, and our method can be applied only if there exists a positive integer g, coprime

with p1 � � � pw, such that

vpi

��
x1
y1

�g

� 1

�
5ui; vpi

��
x2
y2

�g

� 1

�
51 for all prime pi;14 i4w ðH1Þ

and

v2

��
x1
y1

�g

� 1

�
5 2; v2

��
x2
y2

�g

� 1

�
5 2 if 2 divides m; ðH2Þ

both conditions we shall assume in the sequel of the paper.

With the above notation and hypotheses, we obtain the following extension of

Théorème 1 of [8] and of Theorem 1 of [6] in the rational case.

THEOREM 1. Let K5 3, L5 2, R1, R2, S1, S2 be positive integers and set

R ¼ R1 þ R2 � 1; S ¼ S1 þ S2 � 1; N ¼ KL;

g1 ¼
Rþ g� 1

2R
�

gN

6RðSþ g� 1Þ
; g2 ¼

Sþ g� 1

2S
�

gN

6SðRþ g� 1Þ
:

For any 14 i4w, denote by phii the greatest power of pi which divides simultaneously

b1 and b2 and assume that pi does not divide b2=p
hi
i . Put h ¼ max14 i4w hi and

b ¼
ðR� 1Þb2 þ ðS� 1Þb1

2

YK�1

k¼1

k!

 !�2=ðK2�KÞ

:

Assume that there exist two residue classes c1 and c2 modulo g such that

Card

�
x1
y1

�r�
x2
y2

�s

;04r<R1;04s<S1;m1rþm2s� c1modulog

� �
5L;

Card rb2þ sb1; 04r<R2; 04s<S2;m1rþm2s � c2modulog
� �

> ðK�1ÞL :

Under the condition

KðL� 1Þ log m� ð1þ 2wÞ log N� ðK� 1Þ log b�

� g1LR maxfjx1j; jy1jg � g2LS maxfjx2j; jy2jg > 0; ð1Þ

we have

vmðLÞ < KLþ h� 1=2;

As we shall see in the two applications discussed in Sections 4 and 5, our hypothesis

(H2) is not very restrictive.
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We observe that inequality (1) is exactly the same as inequality (2) in [8] when m is

an odd prime. Further, it also contains inequality (5) of [6] in the rational case. The

only new parameter appearing when m is composite is the number of its distinct

prime factors, but this is at most of the order of logm= log logm, thus ð1þ

2wÞ logN remains a second-order term. Consequently, the upper bound for vmðLÞ
should be of nearly the same quality as in the case m prime. Indeed, this is true,

and we now display explicit numerical estimates. As in [8] and in [6], we let

A1 > 1;A2 > 1 be real numbers such that

logAi 5 maxflog jxij; log jyij; logmg; ði ¼ 1; 2Þ

and we put

b0 ¼
b1

logA2
þ

b2
logA1

:

In [8], we have provided explicit constants only assuming that x1=y1 and x2=y2 are

multiplicatively independent. However, in the first application we present here, this

additional condition has no reason to be satisfied. Thus, the next statements are

given without this extra hypothesis.

THEOREM 2. For all m 2 f4; 6; 8; 10; 15g define c1ðmÞ and c2ðmÞ by the following:

m 4 6 8 10 15

c1ðmÞ 66:8 46:1 36:9 32 26:1

c2ðmÞ 53:6 35:5 27:4 22:9 18

Under hypotheses ðH1Þ and ðH2Þ, and if m, b1 and b2 are relatively prime, we have the

upper estimate

vmðLÞ4
c1ðmÞ g

ðlogmÞ
4
ðmaxflog b0 þ log logmþ 0:64; m logmgÞ

2 logA1 logA2

for all m 2 f4; 6; 8; 10; 15g. If, moreover, x1=y1 and x2=y2 are multiplicatively indepen-

dent, then the above upper bound is true with c2ðmÞ in place of c1ðmÞ.

As is apparent in the statement of Theorem 2, we may have some problems when

m, b1 and b2 have common prime factors. Indeed, the term h occurring in the

conclusion of Theorem 1 is then positive, and we see no way for bounding it in

the general case where m is composite. We point out that in the two applications

of Theorem 2 which we present in the sequel of our work, the assumption on m,

b1 and b2 is clearly satisfied, since in each case b1 or b2 is equal to 1.

Less trouble occurs when m is a power of a prime, as is shown in [8] and in [6], and

the trivial bound for h is enough to conclude. For sake of completeness, we give

explicit estimates in that case, without any further assumption on b1 and b2.

THEOREM 3. For all m 2 f4; 6; 8; 10; 15g define c3ðmÞ by the following
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m 4 6 8 10 15
c3ðmÞ 67 46:3 37 32 26:2

With the above notation and under hypotheses ðH1Þ and ðH2Þ, if, moreover, m ¼ pu11 is

a power of a prime, then, for all m 2 f4; 6; 8; 10; 15g, we have the upper estimate

vmðLÞ4
c3ðmÞ g

ðlogmÞ
4
ðmaxflog b0 þ log logmþ 0:64; m logmgÞ

2 logA1 logA2:

Remark. We observe that the numerical constants are smaller when x1=y1 and

x2=y2 are assumed to be multiplicatively independent. Indeed, as it is clear from the

proof of Theorems 2 and 3, our choice of parameters L, K, R and S yields an

asymptotic constant 15.46. . ., whence the asymptotic constant obtained in [8] is 64/9.

Remark. The numerical estimates obtained in [8] are less strong for the prime 2

than for the other small primes p, because of the factor p=ðlog pÞ4. However, using

Theorem 1, it is possible to slightly refine the bound in that case. Consider for

instance L ¼ xb11 � xb22 with x1 and x2 integers and assume that x2 � 1mod 4 and

x1 � 1 or 3 (mod 4). Then x21 � 1 mod 8 and we may apply the theorem with m ¼ 23

to L0
¼ ðx21Þ

b1 � x2b22 . This trick is used in Sections 4 and 5 below, and allows us to

decrease the numerical constant by a factor 3/2.

Further, Theorem 2 could be seen as a first step towards the proof of a conjecture

of Philippon [24] on estimates for linear forms in logarithms of rational numbers.

CONJECTURE. Let a1, a2, b1 and b2 be integers with a1; a2 > 0 and ab11 a
b2
2 6¼ �1. Let

S be a finite set of places on Q and set Nv ¼ p if v corresponds to the place p and

Nv ¼ 1 if v ¼ 1. Then there exists an effectively computable positive constant C such

that

�
X
v2S

log jab11 a
b2
2 � 1jv4C �

X
v2S

logNv � ðlog3a1Þðlog3a2Þmaxflog j3b1j; log j3b2jg:

3. Proofs of Theorems 1, 2 and 3

Proof of Theorem 1. We use the same ideas as in [8] and we consider the N� RS

matrix M, whose coefficients are the numbers

rb2 þ sb1
k

� ��
x1
y1

�‘r�
x2
y2

�‘s

;

where ðk; ‘Þ ð0 4 k < K; 0 4 ‘ < LÞ denotes the index of the lines and ðr; sÞ ð04
r < R; 04 s < SÞ the index of the columns. In [8], with the notation of that paper,

x1=y1 and x2=y2 should be raised to the power pt, in order to be in the disk of con-

vergence of the p-adic exponential function. In the rational case, we have t ¼ 0

except for p ¼ 2. However, as is observed in [6], we can take also t ¼ 0 in that case
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provided that v2
�
ðx1=y1Þ

g
� 1

�
and v2

�
ðx2=y2Þ

g
� 1

�
are 5 2. In view of our hypoth-

esis (H2), this is indeed the case here, hence, for any prime divisor pi of m, the cor-

responding pi-adic analytic function is well defined, and we can use the method of [8]

to estimate vpiðLÞ.
Thanks to a zero lemma due to Nesterenko (see Lemme 6 of [8]), we extract from

M a nonsingular square matrix M of size N�N. Denote by D the determinant of

M. We shall estimate jDj from below and from above.

� Arithmetic lower bound.

We use the following version of Liouville’s inequality. We recall that the logarith-

mic height of a rational a=b with a and b coprime is hða=bÞ ¼ logmaxfjaj; jbjg.

LEMMA 1. Let P 2 Z½X;Y� and x; y 2 Q such that Pðx; yÞ 6¼ 0. Let v1; . . . ; vw be

distinct places of Q. Then we have

Xw
i¼1

log jPðx; yÞjvi 5 � log jPj1 � ðdegX PÞhðxÞ � ðdegY PÞhðyÞ;

where jPj1 is the maximum of jPðx; zÞj for x and z on the unit circle.

Proof. By the maximum principle, we have

log jPðx; yÞj4 ðdegX PÞ logmaxf1; jxjg þ ðdegY PÞ logmaxf1; jyjg þ log jPj1:

Further, for any non-Archimedean valuation v, we get

log jPðx; yÞjv 4 ðdegX PÞ logmaxf1; jxjvg þ ðdegY PÞ logmaxf1; jyjvg:

From the product formulaX
v place on Q

log jPðx; yÞjv ¼ 0;

we infer that

Xw
i¼1

log jPðx; yÞjw 5 � log jPj1 �
X

v place on Q

ððdegX PÞ logmaxf1; jxjvgþ

þ ðdegY PÞ logmaxf1; jyjvgÞ
5 � log jPj1 � ðdegX PÞhðxÞ � ðdegY PÞhðyÞ;

as claimed. &

We proceed exactly as in Lemme 11 of [8], except that we apply Lemma 1, and we

obtain

2
Xw
i¼1

log jDjpi 5 �NðlogNþ ðK� 1Þlog bþ g1LRmaxfjx1j; jy1jgþ

þ g2LSmaxfjx2j; jy2jgÞ: ð2Þ

� Analytic upper bound and completion of the proof.
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We already know that Lemme 8 of [8] extends as follows (see [6], Proof of Theo-

rem 1) since we have assumed that g does not divide any pi, 14 i4w.

LEMMA 2. Let 14 i4w and assume that vpi ðLÞ5 ui ðN� 1=2Þ þ hi. Then we get

vpi ðDÞ5
ui NKðL� 1Þ

2
�
N logN

log pi
:

We now complete the proof of Theorem 1. Assume that for all 14 i4w we have

vpiðLÞ5 ui ðN� 1=2Þ þ hi. Then from Lemma 2 we get

2
Xw
i¼1

log jDjpi 4 �
Xw
i¼1

ðui NKðL� 1Þlog pi � 2N logNÞ

4 2wN logN�NKðL� 1Þlogm:

ð3Þ

Combining (2) and (3) and dividing by N, we see that (1) cannot hold. Thus, there

exists 14 i4w with vpiðLÞ < ui ðN� 1=2Þ þ hi and, consequently, vmðLÞ < KLþ

h� 1=2. &

Proof of Theorems 2 and 3. For convenience, we keep the notation of [8], hence

we set

D0 ¼
1

logm
and ai ¼

logAi

logm
5 max

�
jxij

logm
;
jyij

logm
; 1

�
ði ¼ 1; 2Þ:

Further, let B5D0 log b be a positive real that we will fix later. We search para-

meters K, L, R and S satisfying

KðL� 1Þ > ð1þ 2wÞD0 logNþ ðK� 1ÞBþ g1LRa1 þ g2LSa2; ð4Þ

since then (1) will be automatically satisfied.

Let k and ‘ be two positive constants and set

L ¼ ½‘B� þ 2; K ¼ ½kgLa1a2� þ 1; R1 ¼ gL; S1 ¼ 1;

R2 ¼ ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðK� 1ÞLa2=a1

p
� þ 1; S2 ¼ ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðK� 1ÞLa1=a2

p
� þ 1:

We have the obvious lower bounds

R1S1 5 gL; R2S2 > gðK� 1ÞL:

We shall give an upper estimate for g1LRa1; g2LSa2 and ðK� 1ÞB, which occur in the

right-hand side of ð4Þ.

LEMMA 3. We have the upper bounds

g1Ra1 4
1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðK� 1ÞLa1a2

p
þ ðgLþ g� 1Þ

a1
2
þ
ga2
6
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and

g2Sa2 4
1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðK� 1ÞLa1a2

p
þ
ga2
2

þ ðgLþ g� 1Þ
a1
6
:

Proof. As in the proof of Lemme 12 of [8], we start from the formula

g1Ra1 ¼
ðRþ g� 1Þa1

2
�

gKLa1
6ðSþ g� 1Þ

4
ðR1 þ g� 1þ R2 � 1Þa1

2
�

gðK� 1ÞLa1
6ðS2 þ g� 1Þ

;

and we use the estimates

R1 þ g� 1þ R2 � 14 gLþ g� 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðK� 1ÞLa2=a1

p
1

S2 þ g� 1
5

1

gþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðK� 1ÞLa1=a2

p
5

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðK� 1ÞLa1=a2

p �
1

ðK� 1ÞLa1=a2
:

The same method yields our upper bound for g2Sa2 . &

We can now reformulate our condition ð4Þ in a numerical relation between the

parameters k; ‘;B; a1; a2. Set l ¼ ‘þ ð2=BÞ and notice that

‘B < L� 1 < L4 ‘Bþ 2 ¼ lB: ð5Þ

We observe that

KðL� 1Þ > kgLa1a2 � ‘B > k‘2gB2a1a2;

and that we have the upper bound

ðK� 1ÞB4 kgLa1a2 � B4 kgBa1a2ð‘Bþ 2Þ ¼ k‘gB2a1a2 þ 2kgBa1a2:

Further, Lemma 3 and (5) yield

g1LRa1 þ g2LSa2 4 gB2a1a2
2

3

ffiffiffi
k

p
l2 þ

4l
3B

þ
2l2

3

� �
;

and we have

N ¼ KL4 kgL2a1a2 þ L4 kl2gB2a1a2 þ lB:

Replacing the terms occurring in ð4Þ by the above estimates and dividing by gB2a1a2,

we obtain that the inequality

k‘2 � k‘�
2

3
l2ð

ffiffiffi
k

p
þ 1Þ5

2k

B
þ
4

3

l
B
þ
ð1þ 2wÞD0 logðkl2gB2a1a2 þ lBÞ

gB2a1a2
; ð6Þ

where the right-hand side tends to 0 when B tends to infinity, implies ð4Þ.
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It now remains to compare B5D0 log b with b0, as in Lemme 13 of [8]. Recall that

we have set

b0 ¼
b1

logA2
þ

b2
logA1

¼
1

logm

b1
a2

þ
b2
a1

� �

and

b ¼
ðR� 1Þb2 þ ðS� 1Þb1

2

YK�1

k¼1

k!

 !�2=ðK2�KÞ

:

LEMMA 4. We have the upper bound

log b4 log b0 þ log logmþ 3
2 � log 2þ log

ffiffiffi
k

p
þ 1

k

 !
þ log 1þ

1

K� 1

� �
:

Proof. It has been proved in Lemme 8 of [18] that

YK�1

k¼1

k!

 !�2=ðK2�KÞ

4 exp

�
� logðK� 1Þ þ 3

2 �
logð2pðK� 1Þ=

ffiffiffi
e

p
Þ

K� 1
þ

logK

6KðK� 1Þ

�
:

Neglecting the negative term

�
logð2pðK� 1Þ=

ffiffiffi
e

p
Þ

K� 1
þ

logK

6KðK� 1Þ
;

we get

b4
ðR� 1Þb2 þ ðS� 1Þb1

2ðK� 1Þ
e3=2

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðK� 1ÞLa1a2

p
2ðK� 1Þ

b1
a2

þ
b2
a1

� �
e3=2 þ

gðL� 1Þb2 þ b1
2ðK� 1Þ

e3=2

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðK� 1ÞLa1a2

p
þ ðgL� 1Þa1 þ a2

2ðK� 1Þ

b1
a2

þ
b2
a1

� �
e3=2

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kKðK� 1Þ

p
þ K

2ðK� 1Þk

b1
a2

þ
b2
a1

� �
e3=2:

Then it follows that

log b4 log b0 þ log logm� log 2þ 3
2 þ log

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðK� 1Þ

p
þ

ffiffiffiffi
K

p
Þ
ffiffiffiffi
K

p

kðK� 1Þ
;

as claimed. &
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Since x1=y1 6¼ �1, our choice S1 ¼ 1 implies that the condition

Card

��
x1
y1

�r�
x2
y2

�s

; 04 r < R1; 04 s < S1;m1rþm2s � cmodulo g

�
¼ Cardfðr; sÞ; 04 r < R1; 04 s < S1;m1rþm2s � cmodulo gg

is trivially fulfilled. Further, if there exists a residue class c modulo g such that

Cardfb2rþ b1s; 04 r < R2; 04 s < S2;m1rþm2s � cmodulo gg

< Cardfðr; sÞ; 04 r < R2; 04 s < S2;m1rþm2s � cmodulo gg;

we have established in [8] the upper bound

vpi ðLÞ4 gD0 log 2þ 2
ffiffiffi
k

p
lgBa1a2 þ hi

for any prime divisor pi of m, whence we obviously get

vmðLÞ4 gD0 log 2þ 2
ffiffiffi
k

p
lgBa1a2 þ h:

Assume now that for any residue class c modulo g we have

Cardfb2rþ b1s; 04 r < R2; 04 s < S2;m1rþm2s � cmodulo gg

¼ Cardfðr; sÞ; 04 r < R2; 04 s < S2;m1rþm2s � cmodulo gg:

By Theorem 1, if (6) is satisfied, then we have vmðLÞ4KLþ h� 1=2. If we are inter-

ested only in the value of the asymptotical constant, we have only to consider the

terms of leading degree in B, hence the left-hand side of (6). Arguing as in Subsec-

tion 6.2 of [8], we search values of k and ‘ such that k‘2 � k‘� 2
3 l

2
ð

ffiffiffi
k

p
þ 1Þ > 0

and the product k‘2 is minimal. Hence, our choice of parameters cannot yield

an asymptotic constant smaller than 15,46. . ., which is obtained with k ¼

ð26þ 4
ffiffiffiffiffi
22

p
Þ=9 and ‘ ¼ 3k= ð3k� 2

ffiffiffi
k

p
� 2Þ.

Summing up all we have proved yet, it follows that if (6) is satisfied, then

vmðLÞ4 maxfKL; gD0 log 2þ 2
ffiffiffi
k

p
lgBa1a2g þ h:

Now, we make explicit this upper bound. Let m be a positive integer and set

B ¼
1

logm
maxflog b0 þ log logmþ 0:64; m logmg; ~l ¼ ‘þ

2

m
;

in such a way that B5m and ~l5 ‘þ 2=B. Observe that we may assume that m5 3.

Indeed, if we are interested in the 2-adic valuation of L, our hypothesis ðH2Þ implies

that we may bound v4ðLÞ. Thus, we get ð1þ 2wÞD0 4 2:8 and we have to find k and ‘

such that

k‘2 � k‘� 2
3ð

ffiffiffi
k

p
þ 1Þð~l2Þ5

2k

m
þ
4

3

~l
m
þ
2:8 logðk~l2m2 þ ~lmÞ

m2
; ð7Þ

provided that

logðk‘2m2 þ 4k‘mþ ‘mþ 4kþ 2Þ5 2;
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in which case the last term of the left-hand side of ð7Þ is a decreasing function of the

variable m. We observe that these conditions are satisfied by the triples ðk; ‘; mÞ for
m 2 f4; 6; 8; 10; 15g given in the following table:

m 4 6 8 10 15
kðmÞ 5:7 5:3 5:2 5:5 5:7
‘ðmÞ 2:9 2:6 2:4 2:2 2

Since K5 ½k½‘mþ 2� þ 1�, we easily check that

3
2 � log 2þ log

ffiffiffi
k

p
þ 1

k

 !
þ log 1þ

1

K� 1

� �
4 0:64

for all our choices of kðmÞ and ‘ðmÞ. Lemma 4 then shows that the condition

B5D0 log b is satisfied. Consequently, we have the following upper bound for vmðLÞ:

vmðLÞ4 maxfKL; gD0 log 2þ 2
ffiffiffi
k

p
~lgBa1a2g þ h

4 max

�
k~l2 þ

~l
m

�
gB2a1a2;

log 2

log 3
gBþ 2

ffiffiffi
k

p
~lgBa1a2

( )
þ h

4 cðmÞgB2a1a2 þ h;

with

cðmÞ ¼ max k~l2 þ
~l
m
;
log 2

m log 3
þ
2
ffiffiffi
k

p
~l

m

( )
:

When m, b1 and b2 are coprime, we have h ¼ 0. Substituting then the numerical

values of k and ‘ given above for any m 2 f4; 6; 8; 10; 15g, we get

m 4 6 8 10 15

cðmÞ 66:8 46:1 36:9 32 26:1

as asserted in Theorem 2.

To prove the second statement of Theorem 2, we observe that we have to deal with

k‘2 � k‘�
2

3
ð
ffiffiffi
k

p
þ 1Þð~l2Þ5

2k

m
þ
4

3

~l3=2ffiffiffi
m

p þ
4

3

~l
m
þ
2:8 logðk~l2m2 þ ~lmÞ

m2

instead of (7), and to argue as above.

Finally, to prove Theorem 3, we use the trivial upper bound h4B2a1a2=m given

in [8]. &

4. Application to Fractional Parts of Powers of Rationals

We denote by k � k the distance to the nearest integer. Let a; b 2 Z with b > 0,

a=b > 1 and a=b 62 Z. Obviously, for every integer k5 1, we have
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�
a

b

�k



5 1

bk
; ð8Þ

and there is no reason for this lower bound to be the best possible in terms of k.

Indeed, Mahler [20] proved that for any e > 0, there exists a k0 depending only on

a, b and e such that for any k > k0 we have kða=bÞ
k
k > e�ek. However, the arguments

used by Mahler rest on the theorem of Roth–Ridout and the proof does not yield a

computable value for k0. The first effective improvement of (8) was obtained by

Baker and Coates [2] and can be stated as follows.

THEOREM BC. For any relatively prime integers a; b with a > b5 2, there exist

effectively computable numbers K and 0 < Z < 1, depending on a and b, such that






�
a

b

�k



5 1

bZk

for all integers k5K.

Their proof depends on the theory of linear forms in p-adic logarithms and yields a

value for Z very close to 1.

Another approach allows us to strengthen (8) in an effective way when a=b is

assumed to be close to 1. This has been worked out by Beukers [5] who, for

instance, showed that kð3=2Þkk5 2�0:9k for all k > 5000 (notice that this estimate

has been refined by Dubitskas [13] and, very recently, by Habsieger [16]). The

method is based on the use of Padé approximants to the functions z 7! ð1þ zÞ1=k

and the results obtained are considerably better than those of Baker and Coates,

but they can be applied only to a restricted class of rationals. For instance, accord-

ing to a remark of Bennett [4], it seems that this approach does not yield any

improvement of (8) for a=b ¼ 4=3.

Recently, new effective improvements of (8) have been obtained by Corvaja [12],

assuming again that a=b is close to 1. His main result is the following.

THEOREM C. Let 0 < d < 1 be real. There exist effectively computable constants

K ¼ KðdÞ and N ¼ NðdÞ such that for any integers k > K and n > N we have






�
Nþ 1

N

�k



 > N�dk:

Suitable values for K and N are

N ¼ exp
�
17d�2

þ 2250d
�

and K ¼ 12288d�2N6:

Corvaja’s proof rests on the Thue principle, and his result yields very strong esti-

mates when N and k are both large.
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One of the disadvantages of the method based on p-adic linear forms of logarithms

is that the result depends on the prime factors of b. Roughly speaking, if p divides b,

we obtain




�
a

b

�k



5 1

bkp�ek ;

for some explicit e > 0 very small. Thus the estimate closely depends on the prime

divisors of b and, hence, should be uniform.

The purpose of the present work is to show that, under some hypothesis, we may

apply the theory of linear forms in m-adic logarithms in order to get uniform esti-

mates.

Since we do not want to give too technical statements, we merely present two new

results, which illustrate the type of estimates our method yields. For convenience, we

write log�x for maxflog x; 1g.

THEOREM 4. Let a5 b5 1 and ‘5 2 be integers. For any integer k5 1, we have




�
a‘þ 1

b‘

�k



5 1

bk‘kð1�1=tðaÞÞ ;

with tðaÞ ¼ 25000ðlog�aÞðlog�log�aÞ2.

Theorem 4 is uniform in the following sense. We fix a and b, which do not need to

satisfy a=b close to 1, and we observe that the quality of the improvement of (8) does

not depend on ‘. This is absolutely not the case in the work of Baker and Coates.

THEOREM 5. Let u5 v5 1 and ‘5 2 be integers. For any integer k5 1, we have




�
‘u þ 1

‘v

�k



5 1

‘vkð1� 1=tðu=vÞÞ
;

with

tðu=vÞ ¼ 25000
�
log�u

v

��
log�log� u

v

�2
:

Further, in order to point out how the improvements obtained since the paper of

Baker and Coates are significant, we compute by the same method effective lower

bounds for kð3=2Þkk and kð4=3Þkk.

THEOREM 6. For any integer k5 5; we have






�
3

2

�k



5 1

20:9995k
;

and; for any integer k5 2; we have
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�
4

3

�k



5 1

30:9996k
:

Theorem 6 is far from solving the Waring problem, of course, and it does not yield

the up to now best known uniform lower bound for kð3=2Þkk, which is (see [16])




�
3

2

�k



5 1

20:8k
;

valid for k5 5.

Proof of Theorems 4 and 5. There exist integers q and r with

ða‘þ 1Þk ¼ qðb‘Þk þ r and r ¼ ðb‘Þk �






�
a‘þ 1

b‘

�k



: ð9Þ

Since ‘5 2, we have r 6¼ 0 and the ‘-adic valuation of L ¼ ða‘þ 1Þk � r is at least

equal to k. Further, we note that r � 1 mod ‘. For ‘ ¼ 2, we apply Théor�eme 3 of

[8] and we observe that Theorem 4 is true in that case. If ‘ is odd or is divisible

by 4, then we may apply Theorem 2 with m ¼ ‘. Otherwise, because of hypothesis

(H2), we apply it with m ¼ ‘=2. Since the first case obviously leads to stronger esti-

mates, we do our computation only for the second one, hence we apply Theorem 2

with m ¼ ‘=2, g ¼ 1, x1=y1 ¼ a‘þ 1, x2=y2 ¼ r, b1 ¼ k and b2 ¼ 1, and we get

k4 vmðLÞ4
66:8

ðlogmÞ
4
logða‘þ 1Þmaxflogm; log jrjg�

�

�
max

�
log

�
k

maxflogm; log jrjg
þ

1

logm

�
þ log logmþ 0:64; 4 logm

��2

:

Assume first that jrj5m. According as the first maximum equals 4 logm or not, we

get

log jrj5
k

1069

log2 m

logða‘þ 1Þ

or

k logm4
66:8

ðlogmÞ
2

logða‘þ 1Þ

logm
�

�

�
log

�
k

log jrj
þ

1

logm

�
þ log logmþ 0:64

�2

logjrj;

whence, in both cases, we deduce

k

log jrj
4

25000

log ‘
ðlog� aÞðlog� log� aÞ2: ð10Þ

Further, if jrj < m, then k is bounded:

k4 max

�
1069 logða‘þ 1Þ

logm
;

66:8

ðlogmÞ
3
logða‘þ 1Þ log2

�
kþ 1

logm

��
: ð11Þ
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Consequently, from (9), (10) and (11), we get

a‘þ 1

b‘

� �k

























5 1

bk‘kð1�1=ð25000ðlog� aÞðlog� a log� aÞ2ÞÞ
:

The proof of Theorem 5 follows the same lines, and we omit it. &

Proof of Theorem 6. Let k5 5 be an integer, and write 3k ¼ q2k þ r, with q, r

integers and jrj4 2k�1. Since for any integer n5 1 we have v2ð3
n � 1Þ4 1þ 2v2ðnÞ,

we observe that jrj 6¼ 1, thus r and 3 are multiplicatively independent when k5 5.

Further, k4 v2ð3
k � rÞ4 v2ð9

k � r2Þ and r � 1 (mod 8), so we apply Theorem 2 with

g ¼ 1, m ¼ 8, m ¼ 4 to L ¼ 9k � r2, and, since r2 5 8, we get

kþ 1

3
4 v8ðLÞ

4
53:6

ðlog 8Þ4
ðmaxflogðk=ð2 log jrjÞ þ 1=log 9Þ þ 0:74; 4 log 8gÞ2ðlog 9Þðlog r2Þ;

whence k4 2615 log jrj, and




�
3

2

�k



5 2�kek=2615 5
1

20:9995k
;

as claimed.

Let k5 3 be an integer, and write 4k ¼ q3k þ r, with q, r integers and jrj < 3k=2.

Clearly, we have r � 1 ðmod 3Þ. Further, r 6¼ 1, since v3ð4
k � 1Þ ¼ 1þ v3ðkÞ < k for

k5 2. Finally, using that v3ð2
n þ 1Þ ¼ v3ðnÞ and v3ð2

nþ1 � 1Þ ¼ v3ðnþ 1Þ for any

odd positive integer n, we can also show that jrj is not a power of 2, thus that 4

and r are multiplicatively independent. We apply Theorem 2 with g ¼ 1, m ¼ 3,

m ¼ 8 to L ¼ 4k � r, and we get

k4 v3ðLÞ4
27:4

ðlog 3Þ4
ðmaxflogðk=log jrj þ 1= log 4Þ þ 0:74; 8 log 3gÞ2 log 4 log jrj;

whence k4 2015 log jrj, and






�
4

3

�k



5 3�kek=2015 5
1

30:9996k
;

as claimed. &

5. Application to the Diophantine Equation ðxn � 1Þ=ðx� 1Þ ¼ yq

To date, the only three known solutions of the Diophantine equation

xn � 1

x� 1
¼ yq; in integers x > 1; y > 1; n > 2; q5 2: ð12Þ
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are given by ðx; y; n; qÞ ¼ ð3; 11; 5; 2Þ, ð7; 20; 4; 2Þ and ð18; 7; 3; 3Þ. It is conjectured

that these are the only ones, but the question whether (12) has only finitely many

solutions remains an open problem. However, we have several partial results. For

instance, (12) has been completely solved by Nagell [23] and Ljunggren [19] when

n is divisible by 3 or 4 and also when q ¼ 2. Recently, several authors have obtained

new and interesting results, and (12) is now solved for infinitely many values of x,

including all integers x ¼ zt, with t5 1 and z4 104 (Theorem BM below, see also

[9] for more references). Further, Bugeaud, Mignotte and Roy [11] proved the fol-

lowing criterion which provides a sufficient condition on x ensuring that there is

no triple ðy; n; qÞ with ðx; y; n; qÞ being a solution of (12).

THEOREM BMR. Equation ð12Þ has no solution ðx; y; n; qÞ where x and y satisfy the

following hypothesis

Every prime divisor of x also divides y� 1;

excepted ð18; 7; 3; 3Þ. Consequently, for all other solutions ðx; y; n; qÞ of ð12Þ with q

prime, there exists a prime number p such that p divides x and q divides p� 1.

Since (12) is completely solved for q ¼ 2, Theorem BMR allows us among others

to treat (12) for any integer x whose prime factors are of the form 2a þ 1, with a5 0,

for instance for all integers x of the form 2a3b5c17d, where a, b, c and d are non-

negative integers. Thanks to the main result of the present paper, we are now able

to extend Theorem BMR as follows.

THEOREM 7. Assume that ðx; y; n; qÞ is a fourth solution of ð12Þ. Write x ¼ x1x2,

where x1 is composed by the prime divisors pj of x such that y � 1 ðmod pjÞ and x2 is

composed by the prime divisors qk of x such that y 6� 1 ðmod qkÞ. We define n by

x1 ¼ xn. If x1 > 1 then we have

q4
532

n2

�
log

82

n

�2

:

Moreover for any n0 > 5=6, there exists an effectively computable constant C, depend-

ing only on n0, such that we have either n < n0 or x4C. In particular, if

x5 4:2� 1011, then we have n4 10=11.

As is clear from the proof, one can get some other effective statements. For

instance, using Theorem BM below and inequalities (20) below, we obtain that there

is no new solution to (12) with q ¼ 3 and n > 0:981, with q ¼ 5 and n > 0:876, and

also with q ¼ 7 and n > 0:838. Further, we observe that with the notation of Theo-

rem 7, Theorem BMR asserts that n < 1.

Theorem 7 allows us now to solve equation (12) for a wide set of integers x, con-

siderably larger than the set S3 as defined in [6]. To this end, we first recall some defi-

nitions from [6]. Let S1 be the set of all positive integers whose prime factors are all

of the form 2a þ 1, with a5 0. Let S2 be the set of all positive integers whose prime

factors are all of the form 2a3b þ 1, with a5 0 and b > 0. We observe that S1 [ S2
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includes all integers between 2 and 20, except 11. Let S3 be the set of all integers of

the form x3 ¼ x1x2x, with x1 2 S1, x2 2 S2, x4 ðx1x2Þ
1=10, gcdðx; x1x2Þ ¼ 1 and, if

x2 6¼ 1, we moreover assume that x3 � �2;�4 (mod 9) or x3 � �2;�3 ðmod 7Þ.

THEOREM 8. Let x3 2 S3 and t5 1. Then ð12Þ has no solution ðxt3; y; n; qÞ if

xt3 5 4:2� 1011.

Our set S3 contains and is much bigger than the sets S3 defined in [27] and in [6]. In

particular, we point out that S3 has positive lower logarithmic density.

As already noticed in [27] and in [6], Theorem 8 can be applied to prove the irra-

tionality of some numbers of Mahler’s type. Let us introduce the following notation.

Let g5 2 and h5 2 be integers. For any integer m5 1, we define ðmÞh ¼ a1 . . . ar to

be the sequence of digits of m written in h-ary notation, i.e. under the form

m ¼ a1 h
r�1 þ � � � þ ar, with a1 > 0 and 04 ai < h for 14 i4 r. For a sequence

ðniÞi5 1 of non negative integers, we put

ahðgÞ ¼ 0:ðgn1 Þh ðg
n2 Þh . . .

and we call Mahler’s numbers the real numbers obtained in this way. It is known

that ahðgÞ is irrational for any unbounded sequence ðniÞi5 1; see the work of Sander

[25] for an account of earlier results in this direction. Sander also considered the case

when ðniÞi5 1 is bounded with exactly two elements occurring infinitely many times,

which are called, by definition, limit points. As mentioned in [27], his paper con-

tained an incorrect application of a result of Shorey and Tijdeman [29], hence, his

Theorem 3 remains unproved. Here, we extend Corollary 1 of [6] as follows.

THEOREM 9. Let ðniÞi5 1 be a bounded sequence of nonnegative integers which is not

ultimately periodic and has exactly two limit points N1 < N2. Let g5 2 and h5 2 be

integers such that g 6¼ 1þ hþ � � � þ hL�1 for every integer

L5 2 if ðN1;N2Þ 6¼ ð0; 1Þ. Assume also that ðN1;N2; g; hÞ is not equal to

ð0; 2; 11; 3Þ, ð0; 2; 20; 7Þ, ð0; 3; 7; 18Þ or to ð1; 4; 7; 18Þ and that gN2�N1 is not equal

to 1þ h whenever gN1 < h. Let t be given by the inequalities ht�1 4 gN1 < ht. If

h 2 S3 and ht 5 4:2� 1011 then ahðgÞ is irrational.

Before proceeding with the proofs of Theorems 7, 8 and 9, we need to summarize

several known results concerning (12).

AUXILIARY RESULTS

THEOREM NL. The only solutions of ð12Þ with q ¼ 2 or n divisible by 3 or n divisible

by 4 are given by ðx; y; n; qÞ ¼ ð3; 11; 5; 2Þ, ð7; 20; 4; 2Þ and ð18; 7; 3; 3Þ.

Proof. This is due to Nagell [23] and Ljunggren [19]. &

THEOREM I. Let ðx; y; n; 3Þ be a solution of ð12Þ. Then y is not a cube, x � 0;�1

ðmod 7Þ and x � 0;�1 ðmod 9Þ.

Proof. This is due to Inkeri [17]. &
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THEOREM BHM. Let ðx; y; n; qÞ be a solution of ð12Þ with q5 3 and n 6¼ 3. Let p be

an odd prime divisor of n. Then we have p5 29 or ð p; qÞ 2 f ð17; 17Þ; ð19; 19Þ, ð23; 23Þg.

Moreover, we have p5 101 if q ¼ 3 and ð p; qÞ 62 fð29; 5Þ; ð29; 19Þ, ð29; 23Þ; ð31; 23Þ;

ð37; 5Þ; ð37; 7Þ; ð37; 11Þ; ð67; 5Þg.

Proof. This is Théorèmes 2 to 4 of [7]. &

THEOREM BM. Equation ð12Þ has no new solution ðx; y; n; qÞ with x4 106, and with

x ¼ zt, where t5 1 and z4 104 are positive integers.

Proof. This is due to Bugeaud and Mignotte [9, 10]. &

LEMMA SS. Let ðx; y; n; qÞ be a solution of Equation ð12Þ. Let p1; . . . ; p‘; q1; . . . ; qm
be the distinct prime divisors of x such that x ¼ x1x2, where x1 ¼ pu11 . . . pu‘‘ with y � 1

ðmod piÞ for 14 i4 ‘ and x2 ¼ qv11 . . . qvmm with y 6� 1 ðmod qjÞ for 14 j4m. Then we

have

xnþ1�2b
1 4

�
nþ 3

4

�2 �
2þ

4

x

�n�1

q
a q
q�1 xn�1þ2b

2 ;

where a ¼ nþ 1 if q does not divide x, a ¼ 2n if q divides x, and b ¼ maxf1; n=qg.

Proof. This is due to Saradha and Shorey [27]. &

Proof of Theorem 7. Let ðx; y; n; qÞ be a solution of (12). By Theorem NL, we may

assume that q is an odd prime. Let p1; . . . ; p‘; q1; . . . ; qm be the distinct prime divisors

of x such that x ¼ x1x2, where x1 ¼ pu11 . . . pu‘‘ with y � 1 (mod pi) for 14 i4 ‘ and

x2 ¼ qv11 . . . qvmm with y 6� 1 (mod qj) for 14 j4m. We have assumed that x1 > 1 and

it follows from Theorem BMR that x2 > 1. Since ðx; y; n; qÞ is a solution of (12), the

x1-adic valuation of

L ¼ ð1� xÞ �

�
1

y

�q

¼ �xny�q ð13Þ

satisfies vx1 ðLÞ ¼ n. As 1� x and y are multiplicatively independent (for a proof, see

[27], below inequality (51)), we can apply Theorem 2 to get an upper bound for

vx1 ðLÞ. However, in view our hypothesis (H2), the worst case arises when 2kx1,

where, contrary to the other situations, we have to take g ¼ 2 or, alternatively, we

may estimate vx1=2ðLÞ. It turns out that the latter approach yields better estimates

than the first one. For convenience, we set m ¼ x1=2 or x1, according as 2kx1 or

not, and we define n0 by m ¼ xn
0

.

However, we have to consider separately the case x1 ¼ 2, where we apply

Theorem 2 to L0
¼ ð1� xÞ2 � ð1=yÞ2q, with m ¼ 23 and m ¼ 4. After noticing that

v2ðLÞ4 v2ðL
0
Þ, a rapid calculation shows that we get

q4
50

n2

�
log

8

n

�2

in that case.
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Assume now that x1 > 2 and apply Theorem 2 to (13) with a1 ¼ 1� x, b1 ¼ 1,

a2 ¼ 1=y and b2 ¼ q. Observe that one may rewrite (12) under the form

x
xn�1 � 1

x� 1
¼ ðy� 1Þ

yq � 1

y� 1
;

and recall that gcd
�
y� 1; ðyq � 1Þ=ðy� 1Þ

�
¼ q or 1, according as y � 1mod q or

not. It follows that if a prime power pu divides x1, then pu divides y� 1, unless

p ¼ q, in which case maxfp; pu�1g divides y� 1. Thus, in view of our hypothesis

on x1, we deduce that y� 15
ffiffiffiffiffi
x1

p
. Consequently, logA1 ¼ log x and

logA2 ¼ 2 log y are suitable choices. Theorem 2 with m ¼ 4 yields the upper bound

vmðLÞ4
107:2

ðlogmÞ
4

�
max

�
log

�
q

log x
þ

1

2 log y

�
þ log logmþ 0:64; 4 logm

��2

�

� log x log y; ð14Þ

whence we obviously have

vmðLÞ ¼ n: ð15Þ

We get from (12) that n log x > q log y, and we infer from (14) and (15) that

q4 107:2
log2 x

ðlogmÞ
4

�
max

�
log

�
q

log x
þ

1

2 log y

�
þ log logmþ 0:64; 4 logm

��2

:

By the definition of m, it yields

q4
200

n02

�
log

50

n0

�2

: ð16Þ

Hence, the first statement of the theorem follows from n0 5 ðn log 3Þ= log 6.
In the sequel, in view of Theorem BM, we may assume that x5 106. Further, we

assume n5 5=6. Then, it follows from (14) a much better estimate than (16), namely

we get

q4
1716

n02
: ð17Þ

We infer from

n0 ¼ n�
log 2

log x
¼ n

�
1�

log 2

n log x

�

that n0 5 0:939n, whence we deduce from (17) that

q4 2803: ð18Þ

Now, we apply the result of Saradha and Shorey given in Lemma SS. We set

b ¼ maxf1; n=qg and we get

x2nn�n�2bþ1 4
�
nþ 3

4

�2�
2þ

4

x

�n�1

q2nq=ðq�1Þ: ð19Þ
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Assume first that b ¼ n=q. By Theorem BHM, this is always true when q4 29 and

we have n5 17. Further, q ¼ 3 (resp. q ¼ 5, q ¼ 7) implies n5 101 (resp. n5 31,

n5 29). Consequently, we get the upper estimates

x4 57:61=ð2n�5=3Þ; for q ¼ 3;

x4 128:41=ð2n�7=5Þ; for q ¼ 5;

x4 216:61=ð2n�9=7Þ; for q ¼ 7; ð20Þ

and

x4 2:421=ð2n�1�2=qÞq20=ð11ð2n�1�2=qÞÞ; for q5 11: ð21Þ

When b 6¼ n=q, then b ¼ 1 and q > n, thus, by Theorem BHM, we have n5 29 and

q5 31. We deduce from (19) the upper bound

x4 2:311=ð2n�30=29Þq31=ð30ðn�15=29ÞÞ; ð22Þ

and we see from (19), (20), (21) and (22) that for any n > 5=6 we obtain an upper

estimate for x, as claimed in the theorem.

To illustrate this statement, we provide an explicit estimate when n ¼ 10=11. From

(20), we have x4 4:2� 1011 (obtained for q ¼ 3), which bound also follows from

(18), (21) and (22), and our last claim is now proved. &

Proof of Theorem 8. Let ðxt3; y; n; qÞ be a solution of (12) with x3 2 S3. By The-

orem NL, we may assume that q5 3. Let p 2 S1 [ S2 be a prime divisor of x3. There

are integers a and b such that p ¼ 2a3b þ 1. By our assumptions in the case x2 > 1

together with Theorem I, we have q 6¼ 3. Hence q does not divide p� 1. This is also

true when x2 ¼ 1. Since yq � 1 mod p, we deduce that y � 1 mod p. Hence, one may

apply Theorem 7 with n5 10=11, and we obtain the result claimed. &

Proof of Theorem 9. Sander ([25], Theorem 2) proved that ahðgÞ is irrational if and

only if gN2�N1 6¼ ðhtL � 1Þ=ðht � 1Þ for every integer L5 1, where t is given in the

statement of the theorem. As noticed in [27], we have ðN1;N2Þ ¼ ð0; 1Þ or

N2 �N1 5 2. To the first case corresponds the first condition in the statement of

Theorem 9, and it is clear that if g ¼ 1þ hþ � � � þ hL�1 for an integer L5 2, then

ahðgÞ is rational. Now, we assume N2 �N1 5 2 and L ¼ 2, i.e. gN2�N1 ¼ ht þ 1. This

means that ðg; h;N2 �N1; tÞ is a solution ðx; y;m; nÞ of Catalan’s equation

xm � yn ¼ 1. We have t5 2 by assumption of the theorem, and we observe that

ðg; h; tÞ ¼ ð3; 2; 3Þ is excluded by g 6¼ 1þ hþ � � � þ hL�1.

For simplicity, write N ¼ N1 �N2. Let p be a prime divisor of h of the form

2a3b þ 1 and assume that p 6j g� 1. Since

gN � 1

g� 1
ðg� 1Þ ¼ ht;
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we obtain that p divides gN � 1. By known results on Catalan’s equation, the smal-

lest prime factor of N is at least 105 (see for instance [22]), hence a contradiction: p

must divide g� 1. Write h ¼ h0h00 with h0 2 S1 [ S2 and h00 4 h01=10. By Theorem 2, we

get the upper bound

t ¼ vh0 ðg
N � 1Þ4

66:8

ðlog h0Þ3
logmaxfg; h0g�

�

�
max

�
log

�
N

log h0
þ

1

log h0

�
þ log log h0 þ 0:64; 4 log h0

��2

: ð23Þ

Combining gN 4 2ht with (23), and using the lower estimates h0 > h10=11 and

h0 > ð104Þ10=11 (by Theorem BM), we get N4 1070, which leads to a contradiction

with the main result of [22].

Consequently, we have N2 �N1 5 2 and L5 3, whence we deduce from

Theorem 8 that there is no solution with ht 5 4:2� 1011. &
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briques, Canad. J. Math. 45 (1993), 176–224.
31. Yu, K.: p-adic logarithmic forms and group varieties, II, Acta Arith. 89 (1999), 337–378.

158 YANN BUGEAUD

https://doi.org/10.1023/A:1015825809661 Published online by Cambridge University Press

https://doi.org/10.1023/A:1015825809661

