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Abstract. We give sharp, explicit estimates for linear forms in two logarithms, simultaneously
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1. Introduction

In 1940, Gelfond [14] (see also his book [15]) obtained the first nontrivial effective
lower bound for |hloga; —logay|, where b, a; and oy are algebraic numbers, with
o and o multiplicatively independent. More than twenty years later, Baker general-
ized this result to linear forms in an arbitrary number of logarithms of algebraic
numbers. His estimates have then been refined by many authors and, to date, the
best lower bounds are due to Laurent, Mignotte and Nesterenko [18] in the case
of two logarithms and to Baker and Wiistholz [3], Waldschmidt [30] and also
Matveev [21] in the general case. In parallel to the Archimedian theory, analogous
results have been obtained in a p-adic setting, first by Gelfond [14] and Schinzel
[26] in case of two logarithms, and then by Coates, SprindZzuk, van der Poorten
and finally Kunrui Yu [31] in the general case. To date, the best known result for
two logarithms is due to Bugeaud and Laurent [8], who have provided a sharp upper
bound for the p-adic valuation v,(A) of A = oclf = ocgz, where o and o, are algebraic
numbers and b; and b, are positive integers. All these results have many applica-
tions, in particular to Diophantine equations, which justify all the efforts made in
order to reduce the size of the numerical constants occurring in the estimates. In
the case of two Archimedean or non-Archimedean logarithms, the main results of
[18] and [8] are very satisfactory and allow us to solve completely Diophantine equa-
tions, modulo of course some computer calculations.

At the present time, there is no result treating simultanecously several non-
Archimedean places. The main reason is the following: the p-adic case offers a

COMP 4728 Pe: 356151 LE/CP/DISK (LATEX)
05-31-2002 14:53 1st Proof

https://doi.org/10.1023/A:1015825809661 Published online by Cambridge University Press


https://doi.org/10.1023/A:1015825809661

138 YANN BUGEAUD

hurdle, which is ignored in the Archimedean setting, namely the radius of conver-
gence of the p-adic exponential function is finite. The current methods (cf., for
instance, [8]) rest on analytic techniques and need the introduction of the function
z+> o, which has a priori no reason to be defined for every z in the ring of p-adic
integers, since the p-adic exponential function only converges in the open disk cen-
tered at 1 and of radius p~"/(»=1_ Thus, we use a trick, which costs roughly a factor
p in the upper estimate for v,(A) and leads us to fear that treating simultaneously
several places would not be possible.

However, in the very particular case when v,(x; — 1) > 1/(p — 1), we stay within
the disk of convergence without using the trick, and the dependence on p in the
upper bound for v,(A) is then almost optimal. This observation suggests that it
should be possible to obtain a simultaneous estimate for several places ¢, which
all satisfy vy(e; —1) > 1/(¢ — 1), and thus depend hardly on «;. In the first part of
the present work, we prove such an estimate, which is an extension of Theorem 2
of [6]. In the Archimedean setting, Shorey [28] was the first who noticed that one gets
the best possible estimates when the ;s are all very close to one. This is crucial for
numerous applications, especially to Diophantine equations.

Our work is organized as follows. Section 2 is concerned with the statement of our
main results, including an explicit upper estimate for v,(A) in the case where o, =
+1. The proofs are displayed in Section 3. Applications to explicit lower bounds
for the fractional part of powers of rational numbers are given in Section 4, while
Section 5 is devoted to the Diophantine equation (x" — 1)/(x — 1) = .

2. Linear Forms in m-adic Logarithms

Let m > 1 be an integer and write m = py' --- p'r, where p; < --- < p,, are distinct

prime numbers and the u;’s are positive integers. Let x be a nonzero integer and
let p be a prime. We recall that the p-adic valuation of x, denoted by v,(x), is the
greatest nonnegative integer v such that p” divides x. Analogously, we define the
m-adic valuation of x, which we denote by v,,(x), to be the greatest nonnegative inte-
ger v such that m" divides x. We observe that

. [, (x
Um(x) = min (%) ,
I1<i<w Uu;

where [-] denotes the integer part. Further, if a/b is a nonzero rational number with «
and b coprime, we set v,,(a/b) = v,,(a) — v,,(D).

Let x;/y; and x;/y; be two nonzero rational numbers with x;/y; # £1. Our aim is
to provide an upper bound for the m-adic valuation of

X b] X [72
-6~
y Y2

where b; and b, are positive integers. To this end, we should add some restrictions on
x1/y1 and x;/y,, namely we assume as in [8] that for all 1 <i<w we have
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Uy, (x1/¥1) = vp,(x2/y2) = 0. No further condition is required when m is prime, and we
refer to [8] for that case. The purpose of the present work is to deal with composite
m, and our method can be applied only if there exists a positive integer g, coprime
with p; - - p,, such that

X1 g X2 s . .

vpll—) —1)=zu, v,|{—) —1)=1 forallprimep;, 1 <i<w (HD)
V1 Y2
X1 & X2 & . ..

nl{—) =1)=2, ovll—=) —1)=2 if 2 divides m, (H2)
V1 Y2

both conditions we shall assume in the sequel of the paper.
With the above notation and hypotheses, we obtain the following extension of
Théoreme 1 of [8] and of Theorem 1 of [6] in the rational case.

and

THEOREM 1. Let K>3, L > 2, R, Ry, S1, Sy be positive integers and set

R=R/ +R)—1, S=8+5 —1, N =KL,

. _R+g-1 gN ; _S+g—-1 gN
TR 6RS+g—1) 277 28 6S(R+g—1)
For any 1 < i< w, denote by pl’ the greatest power of p; which divides simultaneously

by and by and assume that p; does not divide bz/p/”

—2/(K*-K)
p= R Dy + (5= Db (1—[ k,)

Put h = max; ¢;<, h; and

Assume that there exist two residue classes ¢y and ¢y modulo g such that

Card{(i) (;Z> 0<r<R,0<s<S], mlr+mzs_clmodulog} >L,
1 2

Card{rby+sby; 0 <r <Ry, 0<s<Sy,mr+ms=cmodulog}>(K—1)L.
Under the condition

K(L—1)logm—(1+2w)log N—(K—1)log b—
— 71 LR max{|xi], [yil} — 2 LS max{|xa], [y2[} > 0, (1
we have
v(A) < KL+ h—1/2,

As we shall see in the two applications discussed in Sections 4 and 5, our hypothesis
(H2) is not very restrictive.
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We observe that inequality (1) is exactly the same as inequality (2) in [8] when m is
an odd prime. Further, it also contains inequality (5) of [6] in the rational case. The
only new parameter appearing when m is composite is the number of its distinct
prime factors, but this is at most of the order of logm/loglogm, thus (1+
2w)log N remains a second-order term. Consequently, the upper bound for v,,(A)
should be of nearly the same quality as in the case m prime. Indeed, this is true,
and we now display explicit numerical estimates. As in [8] and in [6], we let
Ay > 1, Ay > 1 be real numbers such that

log A; > max{log|x;|,log ||, logm}, (i=1,2)

and we put

;o bl b2
b " log 4> +logA1 '

In [8], we have provided explicit constants only assuming that x;/y; and x;/y, are
multiplicatively independent. However, in the first application we present here, this
additional condition has no reason to be satisfied. Thus, the next statements are
given without this extra hypothesis.

THEOREM 2. For all u € {4, 6,8, 10, 15} define ¢i(1) and c2(u) by the following:
u 4 6 8 10 15
ci(p) 668 46.1 369 32 26.1
co(u) 53.6 355 274 229 18

Under hypotheses (H1) and (H2), and if m, by and b, are relatively prime, we have the
upper estimate

ci(weg

(logm)’ (max{log b’ + loglogm + 0.64, ulogm})* log A log 4,

vm(A) <

Sfor all u e {4,6,8,10, 15}. If, moreover, x1/y| and x,/y, are multiplicatively indepen-
dent, then the above upper bound is true with c;(u) in place of ci(u).

As is apparent in the statement of Theorem 2, we may have some problems when
m, by and b, have common prime factors. Indeed, the term / occurring in the
conclusion of Theorem 1 is then positive, and we see no way for bounding it in
the general case where m is composite. We point out that in the two applications
of Theorem 2 which we present in the sequel of our work, the assumption on m,
by and b, is clearly satisfied, since in each case b; or b, is equal to 1.

Less trouble occurs when m is a power of a prime, as is shown in [8] and in [6], and
the trivial bound for /4 is enough to conclude. For sake of completeness, we give
explicit estimates in that case, without any further assumption on b, and b,.

THEOREM 3. For all u € {4, 6,8, 10, 15} define c3(u) by the following
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u 4 6 8 10 15
c3() 67 463 37 32 262
With the above notation and under hypotheses (H1) and (H2), if, moreover, m = p7' is
a power of a prime, then, for all u € {4, 6,8, 10, 15}, we have the upper estimate

ui
1

awg

(max{logd’ + loglogm + 0.64, ulog m})*log A, log A>.
a )*
ogm

vl‘ﬂ (A) <

Remark. We observe that the numerical constants are smaller when x;/y; and
X3/y, are assumed to be multiplicatively independent. Indeed, as it is clear from the
proof of Theorems 2 and 3, our choice of parameters L, K, R and S yields an
asymptotic constant 15.46. . ., whence the asymptotic constant obtained in [8] is 64/9.

Remark. The numerical estimates obtained in [8] are less strong for the prime 2
than for the other small primes p, because of the factor p/(log p)4. However, using
Theorem 1, it is possible to slightly refine the bound in that case. Consider for
instance A = x}f‘ — x}z’2 with x; and x; integers and assume that x; = 1 mod 4 and
x1 =1 or 3 (mod 4). Then x? = 1 mod 8 and we may apply the theorem with m = 23
to A' = (x%)b‘ — x%bl. This trick is used in Sections 4 and 5 below, and allows us to

decrease the numerical constant by a factor 3/2.

Further, Theorem 2 could be seen as a first step towards the proof of a conjecture
of Philippon [24] on estimates for linear forms in logarithms of rational numbers.

CONIJECTURE. Let ay, ay, by and by be integers with a,, ay > 0 and all"ag2 # +1. Let
S be a finite set of places on Q and set Nv = p if v corresponds to the place p and
Nv =1 if v = co. Then there exists an effectively computable positive constant C such
that

— Zlog |all"a[2’2 1, <C- Zlong -(log3a;)(log 3ay) max{log |3b;|, log |3b,|}.

veS veS

3. Proofs of Theorems 1, 2 and 3

Proof of Theorem 1. We use the same ideas as in [8] and we consider the N x RS
matrix M, whose coefficients are the numbers

("6 G

k n) \»n/)
where (k,€) (0 < k < K, 0 < £ < L) denotes the index of the lines and (r, s) (0 <
r< R,0<s <S) the index of the columns. In [8], with the notation of that paper,
x1/y1 and x,/y, should be raised to the power p’, in order to be in the disk of con-
vergence of the p-adic exponential function. In the rational case, we have 1t =0
except for p = 2. However, as is observed in [6], we can take also ¢ = 0 in that case
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provided that v, ((x1/y1)° — 1) and v2((x2/y2)* — 1) are = 2. In view of our hypoth-
esis (H2), this is indeed the case here, hence, for any prime divisor p; of m, the cor-
responding p;-adic analytic function is well defined, and we can use the method of [8]
to estimate v,,(A).

Thanks to a zero lemma due to Nesterenko (see Lemme 6 of [8]), we extract from
M a nonsingular square matrix M of size N x N. Denote by A the determinant of
M. We shall estimate |A| from below and from above.

e Arithmetic lower bound.
We use the following version of Liouville’s inequality. We recall that the logarith-

mic height of a rational a/b with a and b coprime is h(a/b) = logmax{|«], |b|}.

LEMMA 1. Let Pe Z[X, Y] and x,y € Q such that P(x,y) # 0. Let vy, ..., v, be
distinct places of Q. Then we have

> log|P(x, ), = —log|Pl; — (degy P)h(x) — (degy P)h(y),
i=1

where |P|; is the maximum of |P(E, {)| for & and  on the unit circle.
Proof. By the maximum principle, we have
log|P(x, y)| < (degy P)logmax({l, |x|} + (degy P)logmax{l, |y[} + log|P|;.
Further, for any non-Archimedean valuation v, we get
log|P(x, y)I, < (degy P)logmax{l, |x|,} + (degy P)log max{l, |yl }.

From the product formula

Y log|P(x, y)l, =0,

v place on Q
we infer that

w
> log|P(x. p)l, = —log|Pl; = Y ((degy P)logmax{l, |x|,}+
i=1

v place on Q
+ (degy P)logmax({l, [yl,})
> —log|P|; — (degy P)h(x) — (degy P)h(y),

as claimed. ]

We proceed exactly as in Lemme 11 of [8], except that we apply Lemma 1, and we
obtain

23 "loglAl, > — N(log N + (K — Dlog b+ 7 LRmax{|x|, [y [}+
i=1
+ y, LS max{|xa|, [y2}). )

e Analytic upper bound and completion of the proof.
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We already know that Lemme 8 of [8] extends as follows (see [6], Proof of Theo-
rem 1) since we have assumed that g does not divide any p;, 1 <i<< w.

LEMMA 2. Let 1 <i< w and assume that v, (A) = u; (N — 1/2) + h;. Then we get
i NK(L — 1
vp.(A)Zu’N( ) N ogN'
L 2 log p;

We now complete the proof of Theorem 1. Assume that for all 1 < i< w we have
Up,(A) = uj (N —1/2) + h;. Then from Lemma 2 we get

2 Z log Al < Z(u, NK(L — 1)log p; — 2N log N) )

< 2wNlog N — NK(L — 1)logm.
Combining (2) and (3) and dividing by N, we see that (1) cannot hold. Thus, there

ex1sts 1 <i<w with v,(A) < u;(N—1/2)+ h; and, consequently, v,(A) < KL+
—1/2. L]

Proof of Theorems 2 and 3. For convenience, we keep the notation of [8], hence
we set

1 1 i i i
D = and @, = og4 > max il , il
logm logm logm " logm

, 1} i=1,2).
Further, let B> D'logh be a positive real that we will fix later. We search para-
meters K, L, R and S satisfying

K(L—-1)> (1+2w)D'logN + (K —1)B+y,LRa; + y,LSas, @)
since then (1) will be automatically satisfied.

Let k and £ be two positive constants and set
L=[¢Bl+2, K=lkglLaja;]+1, Ry =gL, S =1,

Ry =[Vg(K—1DLar/a1] + 1, Sy =[Ve(K—1)La/a] + 1

We have the obvious lower bounds
RSt = gL, RS, > g(K—1)L.

We shall give an upper estimate for y, LRa;, y,LSa; and (K — 1)B, which occur in the
right-hand side of (4).

LEMMA 3. We have the upper bounds

y1Ra; < g(K—1)Laya, + (gL + g — 1)__}_%
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and

1 a a
1Say < 3Ve(K = DLaa +% +(eL+g—17.

Proof. As in the proof of Lemme 12 of [8], we start from the formula

_(R+g—Da gKLa;

. R —

Vi 2 T6(S+g—1)
cRitg—T+R —Da  gK-1DLa
= 2 6(S2+g—1)’

and we use the estimates

R1+g—1+Rz—1<gL+g—1+\/g(K—1)La2/a1

1 1
=
S+g—-1" g+ /e(K—1Laj/a
1 1

> JeK — DLayja, (K—DLai/ay’

The same method yields our upper bound for y,Sa; .

O

We can now reformulate our condition (4) in a numerical relation between the

parameters k, £, B, a;, a,. Set 4 = £ 4+ (2/B) and notice that
(B<L—-1<L<{B+2=)B.
We observe that
K(L — 1) > kgLaia> x {B > kt’gB*a a>,
and that we have the upper bound
(K—1)B < kgLaja, x B < kgBaja({B + 2) = kgB’aja> + 2kgBajas.
Further, Lemma 3 and (5) yield

4, 2
9, LRaj + y,LSar < nga1a2< N/ +_+T>

and we have

N=KL < kgL2a1a2 + L < kingzalaz + AB.

)

Replacing the terms occurring in (4) by the above estimates and dividing by gB*a,a»,

we obtain that the inequality

2k 4) (1+2W)D/1og(kzzg32ala2+w)

ke? E——/lz D=5+
([+ )= 3B gB2a a;

where the right-hand side tends to 0 when B tends to infinity, implies (4).
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It now remains to compare B > D’logb with #’, as in Lemme 13 of [§]. Recall that
we have set

b] bz 1 bl b2
’_ Z<
b _logA2+logA1 logm(a2+a1>

and

2/(K2—K)
y_ (R= 1)b2+(S— )by <H"'> .

LEMMA 4. We have the upper bound

logh < logh' + loglogm + 3 —log2 —}—log(\/}_k—l— 1) + 10g<1 +K11)

Proof. It has been proved in Lemme 8 of [18] that

Kol \“2/(K-K)
k=1

< exp{—log(K—l)+g—

logQ2n(K — 1)//e) log K
K—1 +61<(1<—1)}'

Neglecting the negative term

_ log(2n(K — 1)/Je) log K

K—1 6K(K—1)
we get
po (R=Db(S= b1 3
2K—1)
JVe(K—1Layay (by by 32 g(L—1)by + by 32
< YOV A (2L, 2 oy~ e T 7
STok=) \am &)t oaw—n
,/g(K—l)Lalaz—i—(gL—1)a1+a2 bl @ 2
2K—-1) a Cll
VEKE =D+ K (b, b7 32
S T2AK-Dk \ata)S
Then it follows that
VE(K—1) K
logh < logh’ + loglogm —log2 +3 + log (Vk( +f)f,
k(K —1)
as claimed. O
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Since x;/y; # +£1, our choice S| = 1 implies that the condition

Cdl‘d{(i]) (?) :0<r<R;,0<s < Sy, mr+ mys = cmodulo g}
1 2

= Card{(r,s); 0 <r < R|,0 < s < Sy, mr+ mys = cmodulo g}
is trivially fulfilled. Further, if there exists a residue class ¢ modulo g such that

Card{byr + b15;0 <r < Ry, 0 <5 < Sy, myr+ mys = cmodulo g}
< Card{(r,s); 0 <r < Ry, 0 < s < Sy, mr+ mps = cmodulo g},

we have established in [8] the upper bound
vp(A) < gD’ log2 + 2 kigBayay + h;
for any prime divisor p; of m, whence we obviously get

vm(A) < gD'log2 + 2v/kigBayay + h.
Assume now that for any residue class ¢ modulo g we have

Card{byr +b15;0 <r < Ry, 0 <5 < Sy, mr+ mys = cmodulo g}
= Card{(r, s); 0 < r < Ry, 0 <5 < Sy, mr + mps = ¢modulo g}.

By Theorem 1, if (6) is satisfied, then we have v,,(A) < KL + h — 1/2. If we are inter-
ested only in the value of the asymptotical constant, we have only to consider the
terms of leading degree in B, hence the left-hand side of (6). Arguing as in Subsec-
tion 6.2 of [8], we search values of k and ¢ such that k¢ — k€ —22°(Vk+1) > 0
and the product k¢? is minimal. Hence, our choice of parameters cannot yield
an asymptotic constant smaller than 15,46..., which is obtained with k =
(26 + 4+/22)/9 and ¢ = 3k/ (3k — 2k — 2).
Summing up all we have proved yet, it follows that if (6) is satisfied, then

vm(A) < max{KL, gD'log2 + 2vkigBa\a>} + h.
Now, we make explicit this upper bound. Let u be a positive integer and set

1 - 2
B=——max{logh’ +loglogm + 0.64, ulogm}, A=4~€+-—,
logm U

in such a way that B > p and i+ 2/B. Observe that we may assume that m > 3.
Indeed, if we are interested in the 2-adic valuation of A, our hypothesis (H2) implies
that we may bound v4(A). Thus, we get (1 + 2w)D’ < 2.8 and we have to find k and ¢
such that

2% 4 7 2.8log(ki2 2 + i)

ke — ke —¥Vk+ DD = = Tt p : (7)

provided that

log(kt?u? + dkly + Ly + dk +2) =2
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in which case the last term of the left-hand side of (7) is a decreasing function of the
variable u. We observe that these conditions are satisfied by the triples (k, €, u) for
we{4,6,8,10,15} given in the following table:

L 4 6 8 10 15
k(u) 5.7 53 52 55 5.7
ey 29 2.6 24 22 2

Since K > [k[€u + 2] + 1], we easily check that

k+1 1
log(14+——-) <0.64
)—i—og( +K—1> 0.6

3 —log2 —i—log(f

for all our choices of k(n) and £(x). Lemma 4 then shows that the condition
B = D'loghb is satisfied. Consequently, we have the following upper bound for v,,(A):

vm(A) < max{KL, gD'log2 + 2vkigBaja>} + h

- 1 log 2 .
< max{ (k/lz + lﬁl>ngala2’ %gb’ + ZﬂlgBalaz} +h

< c(wgBavay + h,

with

A log?2 2K
c(u) = max{ ki? + =, + .
®) : poplog3d  p

When m, b; and b, are coprime, we have & = 0. Substituting then the numerical
values of k and ¢ given above for any u € {4, 6, 8, 10, 15}, we get

L 4 6 8 10 15
c(n) 66.8 46.1 369 32 26.1

as asserted in Theorem 2.
To prove the second statement of Theorem 2, we observe that we have to deal with
2 o 2k 4737 4] 28log(k2i i + 7
K — kb —S(WEk+ D)D) > D2t 2 oslkX " + 1)
3 woo3J/m 3 1
instead of (7), and to argue as above.
Finally, to prove Theorem 3, we use the trivial upper bound » < B>aja»/u given

in [8]. n

4. Application to Fractional Parts of Powers of Rationals

We denote by || - || the distance to the nearest integer. Let a,b € Z with b > 0,
a/b > 1 and a/b ¢ Z. Obviously, for every integer k > 1, we have
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> ®)

and there is no reason for this lower bound to be the best possible in terms of k.
Indeed, Mahler [20] proved that for any ¢ > 0, there exists a ky depending only on
a, b and ¢ such that for any k > ko we have ||(a/b)|| > e~. However, the arguments
used by Mahler rest on the theorem of Roth—Ridout and the proof does not yield a
computable value for ky. The first effective improvement of (8) was obtained by
Baker and Coates [2] and can be stated as follows.

THEOREM BC. For any relatively prime integers a,b with a > b = 2, there exist
effectively computable numbers K and 0 < n < 1, depending on a and b, such that

()

for all integers k = K.

1

= bk

Their proof depends on the theory of linear forms in p-adic logarithms and yields a
value for 5 very close to 1.

Another approach allows us to strengthen (8) in an effective way when a/b is
assumed to be close to 1. This has been worked out by Beukers [5] who, for
instance, showed that [(3/2)"|| = 27°% for all k > 5000 (notice that this estimate
has been refined by Dubitskas [13] and, very recently, by Habsieger [16]). The
method is based on the use of Padé approximants to the functions z+> (1 + z)'/*
and the results obtained are considerably better than those of Baker and Coates,
but they can be applied only to a restricted class of rationals. For instance, accord-
ing to a remark of Bennett [4], it seems that this approach does not yield any
improvement of (8) for a/b = 4/3.

Recently, new effective improvements of (8) have been obtained by Corvaja [12],
assuming again that a/b is close to 1. His main result is the following.

THEOREM C. Let 0 < 6 < 1 be real. There exist effectively computable constants
K = K(0) and N = N(0) such that for any integers k > K and n > N we have

)

Suitable values for K and N are

> Nk,

N = exp{17567> 4+ 22506} and K = 122885 °N°.

Corvaja’s proof rests on the Thue principle, and his result yields very strong esti-
mates when N and k are both large.
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One of the disadvantages of the method based on p-adic linear forms of logarithms
is that the result depends on the prime factors of 5. Roughly speaking, if p divides b,
we obtain

a k
G-
for some explicit ¢ > 0 very small. Thus the estimate closely depends on the prime
divisors of b and, hence, should be uniform.

The purpose of the present work is to show that, under some hypothesis, we may
apply the theory of linear forms in m-adic logarithms in order to get uniform esti-
mates.

Since we do not want to give too technical statements, we merely present two new

results, which illustrate the type of estimates our method yields. For convenience, we
write log*x for max{log x, 1}.

1
= phpik’

THEOREM 4. Let a>= b = 1 and € = 2 be integers. For any integer k > 1, we have

at + 1\*
be

with 1(a) = 25000(log*a)(log*log*a)’.

1
= pkgk(i=1/1(a)’

Theorem 4 is uniform in the following sense. We fix ¢ and b, which do not need to
satisfy a/b close to 1, and we observe that the quality of the improvement of (8) does
not depend on £. This is absolutely not the case in the work of Baker and Coates.

THEOREM 5. Let u>v =1 and £ = 2 be integers. For any integer k = 1, we have

)1

t(u/v) = 25000(log™®) (log*log* ).

1
TR = 1/e(u/v)

with

Further, in order to point out how the improvements obtained since the paper of
Baker and Coates are significant, we compute by the same method effective lower
bounds for [(3/2)|| and ||(4/3)"].

THEOREM 6. For any integer k = 5, we have

G-

and, for any integer k = 2, we have

20 20,9995k ’
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- 1
= 30.9996k :

G
)
Theorem 6 is far from solving the Waring problem, of course, and it does not yield
the up to now best known uniform lower bound for [|(3/2)"|, which is (see [16])

6)

valid for k = 5.

1
>
= 20.8k>

Proof of Theorems 4 and 5. There exist integers ¢ and r with

at + 1\
(%) |
Since ¢ > 2, we have r # 0 and the ¢-adic valuation of A = (a + 1)* — r is at least
equal to k. Further, we note that » = | mod ¢. For £ = 2, we apply Théoreme 3 of
[8] and we observe that Theorem 4 is true in that case. If £ is odd or is divisible
by 4, then we may apply Theorem 2 with m = £. Otherwise, because of hypothesis
(H2), we apply it with m = £/2. Since the first case obviously leads to stronger esti-
mates, we do our computation only for the second one, hence we apply Theorem 2
withm=1¢/2, g=1,x1/y1 =al+ 1, x2/yo =r, by =k and b, = 1, and we get

66.8
k <v,(A) < ﬁlog(aﬁ + 1) max{logm, log |r|}x

(logm

k 1 :
X (max{bg(max{logm, fog 1] + log m) + loglogm + 0.64, 410gm}> .

Assume first that |r| = m. According as the first maximum equals 4logm or not, we

(al + D)f = b0y +r and r= (be)* x

©)

get
k log®> m
loglr| 2 —————
1069 log(at + 1)
or
klogm < 66.8 log(al + 1) 9

(logm)> logm
k 1 2
x | log +-——) + loglogm + 0.64 ) log|r|,
log|r|  logm
whence, in both cases, we deduce

k 25000 . 1 0
- < .
ol S Tog¢ (log™ a)(log™ log™ a) (10)

Further, if |r| < m, then k is bounded:

k+1
2 _
slog(al + 1)log <logm)}' (1

k< maX{1069 log(at + 1)7 66.8
logm (logm)
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Consequently, from (9), (10) and (11), we get

at + 1\*
bt

The proof of Theorem 5 follows the same lines, and we omit it. OJ

1
= phpk(1-1/(25000(log" a)(log* alog* a)?)) *

Proof of Theorem 6. Let k > 5 be an integer, and write 3% = ¢2X 4+ r, with ¢, r
integers and |r| < 257!, Since for any integer n > 1 we have 15(3" & 1) < 1 + 205(n),
we observe that |r| # 1, thus r and 3 are multiplicatively independent when k > 5.
Further, k < 123 — r) < v2(9¥ — #?) and r = 1 (mod 8), so we apply Theorem 2 with
g=1,m=8, u=4to A=9%—2, and, since r* > 8, we get

kel < vg(A)
3
53.6
< W(max{log(k/(2 log |r]) + 1/log9) + 0.74, 410g 8})*(log 9)(log 1?),
og

whence k < 2615log|r|, and

6

as claimed.

Let k > 3 be an integer, and write 4 = ¢3% + r, with ¢, r integers and |r| < 3/2.
Clearly, we have r = 1 (mod 3). Further, r # 1, since v3(4* — 1) = 1 4 v3(k) < k for
k > 2. Finally, using that v3(2" 4+ 1) = v3(n) and v3(2"*' — 1) = v3(n + 1) for any
odd positive integer n, we can also show that |r| is not a power of 2, thus that 4
and r are multiplicatively independent. We apply Theorem 2 with g =1, m = 3,
u=_8toA=4—r and we get

1
—k k/2615
>2"e Z 509995k °

274
k<v3(A) < (1773)4(max{10g(k/log Ir| 4+ 1/log4) +0.74, 8log 3})* log 4 log ||,
og

whence k < 20151og|r|, and

)

as claimed. O

1
—k ok /2015
>3"e > 309996k

5. Application to the Diophantine Equation (x" — 1)/(x — 1) = y7
To date, the only three known solutions of the Diophantine equation

x"—1

{ =)7, inintegersx > 1,y>1,n>2,4g>2. (12)
X —
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are given by (x,y,n,q) = (3,11,5,2), (7,20,4,2) and (18, 7, 3, 3). It is conjectured
that these are the only ones, but the question whether (12) has only finitely many
solutions remains an open problem. However, we have several partial results. For
instance, (12) has been completely solved by Nagell [23] and Ljunggren [19] when
n is divisible by 3 or 4 and also when ¢ = 2. Recently, several authors have obtained
new and interesting results, and (12) is now solved for infinitely many values of x,
including all integers x = z/, with > 1 and z < 10* (Theorem BM below, see also
[9] for more references). Further, Bugeaud, Mignotte and Roy [11] proved the fol-
lowing criterion which provides a sufficient condition on x ensuring that there is
no triple (y, n, ¢) with (x, y, n, ¢) being a solution of (12).

THEOREM BMR. Equation (12) has no solution (x, y, n, q) where x and y satisfy the
following hypothesis

Every prime divisor of x also divides y — 1,

excepted (18,7, 3, 3). Consequently, for all other solutions (x, y, n, q) of (12) with ¢
prime, there exists a prime number p such that p divides x and q divides p — 1.

Since (12) is completely solved for ¢ = 2, Theorem BMR allows us among others
to treat (12) for any integer x whose prime factors are of the form 2¢ + 1, with a > 0,
for instance for all integers x of the form 2¢3°5¢17¢, where a, b, ¢ and d are non-
negative integers. Thanks to the main result of the present paper, we are now able
to extend Theorem BMR as follows.

THEOREM 7. Assume that (x,y,n, q) is a fourth solution of (12). Write x = x1x2,
where x1 is composed by the prime divisors p; of x such that y =1 (mod p;) and x, is
composed by the prime divisors qi of x such that y # 1 (mod qx). We define v by
x1 = x". If x; > 1 then we have

532 (. 82\’
qg< — |log—) .
v v
Moreover for any vy > 5/6, there exists an effectively computable constant C, depend-

ing only on vy, such that we have either v <vy or x< C. In particular, if
x =42 x 10" then we have v < 10/11.

As is clear from the proof, one can get some other effective statements. For
instance, using Theorem BM below and inequalities (20) below, we obtain that there
is no new solution to (12) with ¢ = 3 and v > 0.981, with ¢ = 5 and v > 0.876, and
also with ¢ = 7 and v > 0.838. Further, we observe that with the notation of Theo-
rem 7, Theorem BMR asserts that v < 1.

Theorem 7 allows us now to solve equation (12) for a wide set of integers x, con-
siderably larger than the set S; as defined in [6]. To this end, we first recall some defi-
nitions from [6]. Let S| be the set of all positive integers whose prime factors are all
of the form 29 4 1, with @ > 0. Let S, be the set of all positive integers whose prime
factors are all of the form 243 + 1, with ¢ > 0 and » > 0. We observe that S; U S,
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includes all integers between 2 and 20, except 11. Let S5 be the set of all integers of
the form x3 = x1xx, with x; € S1, x2 € S5, x < (xlxg)l/w, ged(x, x1x2) =1 and, if
x; # 1, we moreover assume that x3 = 2, +4 (mod 9) or x3 = £2, £3 (mod 7).

THEOREM 8. Let x3€ 83 and t = 1. Then (12) has no solution (x§,y,n,q) if
xh =42 x 10

Our set S5 contains and is much bigger than the sets S; defined in [27] and in [6]. In
particular, we point out that S3 has positive lower logarithmic density.

As already noticed in [27] and in [6], Theorem 8 can be applied to prove the irra-
tionality of some numbers of Mahler’s type. Let us introduce the following notation.
Let g > 2 and & > 2 be integers. For any integer m > 1, we define (m), = a; ...a, to
be the sequence of digits of m written in A-ary notation, i.e. under the form
m=a W' +...4a, with a; >0 and 0 <a; <h for 1 <i<r. For a sequence
(n)); > 1 of non negative integers, we put

an(g) = 0.(g"), (&) - - -

and we call Mahler’s numbers the real numbers obtained in this way. It is known
that a;(g) is irrational for any unbounded sequence (7;); . ; see the work of Sander
[25] for an account of earlier results in this direction. Sander also considered the case
when (1;), | is bounded with exactly two elements occurring infinitely many times,
which are called, by definition, limit points. As mentioned in [27], his paper con-
tained an incorrect application of a result of Shorey and Tijdeman [29], hence, his
Theorem 3 remains unproved. Here, we extend Corollary 1 of [6] as follows.

THEOREM 9. Let (n;); > | be a bounded sequence of nonnegative integers which is not
ultimately periodic and has exactly two limit points Ny < N,. Let g = 2 and h = 2 be
integers such that g # 1+ h+---+ h' for every integer

L>=2 if (Ny,N;)#(0,1). Assume also that (N;, N,,g,/h) is not equal to
0,2,11,3), (0,2,20,7), (0,3,7,18) or to (1,4,7,18) and that g™~ is not equal
to 14+ i whenever gV' < h. Let ¢ be given by the inequalities #~! < g™ < h'. If
he Sy and i > 4.2 x 10'! then a,(g) is irrational.

Before proceeding with the proofs of Theorems 7, 8 and 9, we need to summarize
several known results concerning (12).

AUXILIARY RESULTS

THEOREM NL. The only solutions of (12) with ¢ = 2 or n divisible by 3 or n divisible
by 4 are given by (x,y,n,q) = (3,11,5,2), (7,20,4,2) and (18,7, 3, 3).
Proof. This is due to Nagell [23] and Ljunggren [19]. O

THEOREM 1. Let (x, y,n,3) be a solution of (12). Then y is not a cube, x =0, +1

(mod 7) and x =0, £1 (mod 9).
Proof. This is due to Inkeri [17]. O
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THEOREM BHM. Let (x, y, n, q) be a solution of (12) with q = 3 and n # 3. Let p be
an odd prime divisor of n. Then we have p = 29 or (p, q) € { (17, 17), (19, 19), (23, 23)}.
Moreover, we have p = 101 if ¢ = 3 and (p, q) € {(29, 5), (29, 19), (29, 23), (31, 23),
(37,9), (37,7), (37, 11), (67, 5)}.

Proof. This is Théorémes 2 to 4 of [7]. O

THEOREM BM. Equation (12) has no new solution (x, y, n, q) with x < 10°, and with
x =z', where t > 1 and z < 10* are positive integers.
Proof. This is due to Bugeaud and Mignotte [9, 10]. O

LEMMA SS. Let (x, y, n, q) be a solution of Equation (12). Let py, ..., Pes q1s -+ Gm
be the distinct prime divisors of x such that x = x1x», where x; = p{' ...py" withy =1
(mod p;) for 1 <i<{landx,=q\" ...q"% withy # 1 (mod g¢)) for 1 <j< m. Then we

have
3 2 4 n—1 e
AL () ()

where oo = n+ 1 if q does not divide x, o« = 2n if q divides x, and p = max{l, n/q}.
Proof. This is due to Saradha and Shorey [27]. O

Proof of Theorem 7. Let (x, y, n, q) be a solution of (12). By Theorem NL, we may
assume that ¢ is an odd prime. Let py, ..., pe, q1, - . ., g be the distinct prime divisors
of x such that x = x;x5, where x; = p{' ... p;" with y =1 (mod p;) for 1 <i< ¢ and
x> =¢)" ...q% with y # 1 (mod ¢;) for 1 <j < m. We have assumed that x; > 1 and
it follows from Theorem BMR that x; > 1. Since (x, y, n, g) is a solution of (12), the
xp-adic valuation of

A=(1—-x)— (L)q = —x"y™? (13)

satisfies vy, (A) = n. As 1 — x and y are multiplicatively independent (for a proof, see
[27], below inequality (51)), we can apply Theorem 2 to get an upper bound for
vy, (A). However, in view our hypothesis (H2), the worst case arises when 2| xi,
where, contrary to the other situations, we have to take g = 2 or, alternatively, we
may estimate vy, 2(A). It turns out that the latter approach yields better estimates
than the first one. For convenience, we set m = x;/2 or x;, according as 2| x; or
not, and we define v/ by m = x"".

However, we have to consider separately the case x; =2, where we apply
Theorem 2 to A’ = (1 — x)* — (1/y)*, with m =2 and u = 4. After noticing that
v2(A) < v2(A"), a rapid calculation shows that we get

50 8\
(ISW log;

in that case.
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Assume now that x; > 2 and apply Theorem 2 to (13) with oy =1 —x, by =1,
oy = 1/y and by = ¢. Observe that one may rewrite (12) under the form
n—1 __ 1 q 1
i VRS §
x—1 y—1
and recall that ged(y — 1, (37 —1)/(y — 1)) = ¢ or 1, according as y = 1 mod ¢ or
not. It follows that if a prime power p* divides x;, then p* divides y — 1, unless
p = ¢, in which case max{p, p*~'} divides y — 1. Thus, in view of our hypothesis
on x;, we deduce that y—12>,/x;. Consequently, logA4; =logx and
log A, = 2log y are suitable choices. Theorem 2 with yu = 4 yields the upper bound

107.2 q 1 ) })2
vm(A) < ——— | max{lo + + loglogm + 0.64, 4logm X
) (bgnﬂ4< { g(ng 2logy o8 &

x log xlogy, (14)
whence we obviously have
vm(A) = n. (15
We get from (12) that nlogx > ¢glogy, and we infer from (14) and (15) that

2 2
q<107.2 (lljggm); <max{log<lozx + 21(1gy) + loglogm + 0.64, 4logm}) .

By the definition of m, it yields

200 50\°
q < 3 (log—> . (16)

v/
Hence, the first statement of the theorem follows from v > (vlog 3)/log6.
In the sequel, in view of Theorem BM, we may assume that x > 10°. Further, we

assume v = 5/6. Then, it follows from (14) a much better estimate than (16), namely
we get

1716
9< —5 - (17)
v
We infer from
y :v_log2 :v(l B log2>
log x vlog x
that v/ > 0.939v, whence we deduce from (17) that
q < 2803. (18)

Now, we apply the result of Saradha and Shorey given in Lemma SS. We set
p =max{1,n/q} and we get

2 n—1
2m=n=2f+1 < (I’l 1‘ 3) (2 +ﬂ> q2nq/(q—1). (19)
X
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Assume first that f = n/q. By Theorem BHM, this is always true when ¢ < 29 and
we have n > 17. Further, ¢ =3 (resp. ¢ =5, ¢ = 7) implies n > 101 (resp.n > 31,
n = 29). Consequently, we get the upper estimates

x < 57.6Y/@=33) for qg=73,
x < 128475 for g =5,
x < 216.6Y@%D  for g =1, (20)

and
x < 2.421/(2\'7172/q)q20/(11(2»‘*1*2/9{))’ for q > 11. (21)

When f # n/q, then f =1 and ¢ > n, thus, by Theorem BHM, we have n > 29 and
q = 31. We deduce from (19) the upper bound

x < 2'311/(2v—30/29)q31/(30(v—15/29)), (22)

and we see from (19), (20), (21) and (22) that for any v > 5/6 we obtain an upper
estimate for x, as claimed in the theorem.

To illustrate this statement, we provide an explicit estimate when v = 10/11. From
(20), we have x < 4.2 x 10'" (obtained for ¢ = 3), which bound also follows from
(18), (21) and (22), and our last claim is now proved. O

Proof of Theorem 8. Let (x5, y, n, q) be a solution of (12) with x3 € S3. By The-
orem NL, we may assume that ¢ > 3. Let p € S; U S, be a prime divisor of x3. There
are integers @ and b such that p = 293" + 1. By our assumptions in the case x; > 1
together with Theorem I, we have ¢ # 3. Hence ¢ does not divide p — 1. This is also
true when x; = 1. Since y? = 1 mod p, we deduce that y = 1 mod p. Hence, one may
apply Theorem 7 with v > 10/11, and we obtain the result claimed. O

Proof of Theorem 9. Sander ([25], Theorem 2) proved that a;(g) is irrational if and
only if gV=N £ (h't — 1)/(h' — 1) for every integer L > 1, where ¢ is given in the
statement of the theorem. As noticed in [27], we have (N, N;)=(0,1) or
N, — Ny = 2. To the first case corresponds the first condition in the statement of
Theorem 9, and it is clear that if g =14 h+---+ h%~! for an integer L > 2, then
aj(g) is rational. Now, we assume N> — Ny > 2 and L = 2, i.e. g¥>=™ = i’ + 1. This
means that (g,h, N, — Ny, f) is a solution (x,y,m,n) of Catalan’s equation
x™—y"=1. We have 7 > 2 by assumption of the theorem, and we observe that
(g.h,t)=(3,2,3)is excluded by g # 1 +h+ -+ ht1,

For simplicity, write N = N; — N,. Let p be a prime divisor of /& of the form
293 4 1 and assume that p |/g — 1. Since

gV —

1
D=4,
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we obtain that p divides gV — 1. By known results on Catalan’s equation, the smal-
lest prime factor of N is at least 10° (see for instance [22]), hence a contradiction: p
must divide g — 1. Write &/ = I'h” with i’ € S; U S, and /7 < #''/10. By Theorem 2, we
get the upper bound

66.3
t =g — 1) < ———logmax{g, '} x
N 1 , 1\
x | max { log( ——+——) +loglogh’ +0.64,4logh . (23)
logh’  logh’'

Combining gV <24’ with (23), and using the lower estimates # > h'/!' and
I o> (10411 (by Theorem BM), we get N < 1070, which leads to a contradiction
with the main result of [22].

Consequently, we have N, — Ny =2 and L >3, whence we deduce from
Theorem 8 that there is no solution with 4’ > 4.2 x 10'!, ]
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