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We analyze optimal budget allocations to acquire protected areas for carbon storage
while balancing risk and return from protection under economic growth uncertainty
in a local community. Our study is the first to explore how risk of uncertain economic
growth affects cost of protected area acquisition using real estate values at the parcel
level, enabling us to estimate the site-specific opportunity cost of carbon storage. The
Pareto optimal trade-off frontier between the expected carbon storage benefit and its
variance provides a continuum of risk-return combinations. The pattern of the trade-
off relationship implies that risk mitigation is less costly in terms of foregone expected
benefit when risk is higher than when it is lower. Our results also find that the
difference in cluster-specific budget allocations between the strong economic
growth scenario and the weak economic growth scenario subsequently decreases
between the point of expected benefit maximization and the point of variance
minimization. Our findings of optimal hectares of land for protected area acquisition
for carbon storage and corresponding benefits and costs serve as an empirically
informed knowledge base to help a local community prioritize acquisition of
potential protected areas for carbon storage under economic growth uncertainty.

Keywords: Optimal budget allocations, Protected area acquisitions, Economic
growth uncertainty, Local community, Multi-objective

1. Introduction

Due to increased economic growth in recent years, cities in the United States are
facing yet another wave of sprawl, with development converting hinterlands
surrounding cities to urban uses (Sorensen et al. 2018). Cities in regions with
embedded beliefs that land development rights should not be restricted by
governmental organizations find themselves with few legal tools to control
the direction and rate of land conversion (Pincetl 2006). At the same time,
urban communities are experiencing pressure to approach development in a
planned, sustainable manner so that nearby lands, including forestland,
pastureland, and cropland, can be preserved to maintain ecosystem services
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such as offsetting greenhouse gas (GHG) emissions in the face of climate change
(Reid and Satterthwaite 2007; de Zeeuw and Dubbeling 2009; Condon et al.
2010; Dubbeling and de Zeeuw 2011; Hellwinckel et al. 2014).
A common conservation strategy is to establish protected areas through land

acquisition using conservation contracts, such as fee simple acquisitions and
conservation easements (Land Trust Alliance 2019). In establishing protected
areas through acquisition, the non-market values of those areas to
communities are typically acknowledged, and valuations have been
approached through estimating communities’ willingness to pay (WTP) for
the programs using survey analysis (Cho, Newman, and Bowker 2005;
Hemby 2016; Vizek and Nielsen-Pincus 2017). Those studies typically
estimate WTP for hypothetical or factual programs to assess potential
support and values to the communities. Although this approach has provided
evidence of demand for land preservation, potentially high levels of
uncertainty regarding benefits and costs of protected areas have been mostly
ignored in the literature. Economic growth fluctuations are a vital source of
uncertainty related to conservation costs because the opportunity cost of
holding land depends on fluctuations in the returns from competing land
uses such as urban development (Schatzki 2003; Verick and Islam 2010). For
example, the opportunity cost of deforestation for urbanization fluctuates
depending on real estate market conditions and thus affects the performance
of conservation investments (Cho et al. 2018; Cho and Sharma 2019).
A branch of literature deals with the uncertainty associated with conservation

benefits in targeting conservation investments (Williams et al. 2005; Pressey
et al. 2007; Heller and Zavaleta 2009; Hodgson et al. 2009; Carvalho et al.
2011; Armsworth et al. 2015; Albers et al. 2016). Many of those studies focus
on the influence of climate uncertainty on the benefits of conservation
investments that affect the spatial targeting of investments (Hultman 2006;
Ando et al. 2018; Runting et al. 2018). For example, the risk-diversification
strategy of Markowitz (1952) from the finance perspective is suggested as a
way to incorporate future climate uncertainty related to ecological outcomes
(i.e., program benefits) in allocating conservation investments (Halpern et al.
2011; Ando and Mallory 2012; Dunkel and Weber 2012; Hoekstra 2012;
Mallory and Ando 2014; Shah et al. 2017).
Limited literature deals with the variation in costs and benefits under

changing climatic or economic conditions for optimal spatial conservation
investment decisions. For example, Mallory and Ando (2014) utilized modern
portfolio theory (MPT) to address fluctuations in both the ecological benefits
and land values of potential conservation sites under uncertain future
climate-change scenarios. The authors incorporated benefits and costs, which
vary spatially across multiple scenarios, into the variance-covariance
structure to generate a portfolio of conservation sites corresponding to an
optimal mean-variance combination reflecting risk-return preference. Despite
such efforts, few studies have focused on the impact of the risk derived from
uncertainty in conservation costs associated with economic growth
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uncertainty and its implications for the spatial targeting of conservation and
restoration investments. The risks associated with conservation costs, such as
land acquisition costs, are mostly driven by persistent uncertainty in relevant
land values, thus requiring their forecasting and incorporation into
conservation investment decisions.
Incorporating uncertainty of economic growth into decisions related to

protected area acquisition is critical to prioritizing spatial targets based on
conservation return-on-investment (ROI), commonly quantified by dividing a
numerical measure of the conservation benefit by an historic estimate of the
acquisition cost (e.g., Murdoch et al. 2007; Goldstein Pejchar, and Daily 2008;
Wilson et al. 2011; Withey et al. 2012; Kovacs et al. 2013; Sutton and
Armsworth 2014; Armsworth et al. 2017; Cho et al. 2019). Historic estimates
of conservation ROI that ignore uncertainty of economic growth may mislead
the spatial targeting of protected area acquisition.
Under the assumption that a conservation agency is interested in cost-efficient

budget allocation, protected area acquisition from the agency’s perspective is a
riskier investment than short-term conservation investment, such as payments
for ecosystem services, because the former is typically irreversible once
implemented. Given the uncertainty in future economic growth, the possibility
of spatially varying changes in costs and benefits that leads to spatially varying
changes of ROI in the future is a potential risk to the conservation objective of
spatially allocating a budget cost-efficiently. Hence, we recognize a critical need
to balance risk and return in spatial targeting of protected areas for acquisition
based on anticipated future economic growth conditions.
To fill the gap in the literature, we find spatially optimal budget allocations for

acquiring protected areas to store carbon on forestland, pastureland, and
cropland by balancing the risk and return from protection under three
economic growth scenarios (i.e., strong, weak, moderate). In doing so, our
study is the first to apply the risk of uncertain economic growth that affects
the cost of protected area acquisition using real estate values at the parcel
level, which is described in detail in Step 2 of the four-step procedure in the
“Method and Data” section. This spatial resolution is required because achieving
cost efficient outcomes relies on how finely a conservation agency can resolve
spatial variation in costs and use this variation in applying the site-specific
opportunity costs of supplying carbon storage. The findings from the empirical
model provide a critical way to deal with the risk of uncertain economic growth
that affects the cost of protected area acquisition for the purpose of preserving
carbon storage in a local community, which has never been done before.
We focus on the spatial targeting of potential candidate areas and their

optimal budget allocations with return measured by the total expected
benefit of carbon storage and the risk measured by the variance of the total
carbon storage benefit across uncertain future economic growth scenarios.
The differences in forecasted acquisition costs and the resulting variability in
conservation benefits across the future economic growth conditions comprise
a conservation agency’s risk associated with conservation investment.
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We consider that a conservation agency wishing to implement land
acquisitions in a local community under economic growth uncertainty has the
options of either maximizing the expected benefit of carbon storage or
maximizing the expected benefit for an acceptable variance level using the
Mavrotas (2009) multi-objective mathematical programming (MOMP) model.
In the MOMP, the solution is the Pareto optimal one. We solve for several
Pareto optimal budget allocations, each of which cannot be improved upon in
terms of net benefits without increasing the variance. Under this premise, a
completely risk-averse conservation agency would prefer widespread
diversification of spatial investments to minimize the variance of benefits of
carbon storage across the economic growth scenarios, while a risk-neutral
agency would prefer spatial investments that maximize the expected benefit
of carbon storage irrespective of the level of risk involved.
We find cluster-specific budget allocations (dollars invested in acquiring

candidate areas from the clusters) based on optimal land acquisition
decisions (hectares of candidate areas from the clusters) that represent
Pareto-optimal solutions that maximize the total expected carbon storage
(dollar values of the tons of carbon stored) at a given level of variance from
the acquired clusters primarily dictated by the forecasted acquisition cost
(dollar per hectare) and associated available carbon storage (tons per
hectare) in eligible clusters. Our framework of a cluster-specific budget
distribution implicitly assumes that determining the budget distribution for
larger geographic areas, like our clusters, is a necessary first step prior to
more micro-level funding allocation decisions, i.e. parcel-level decisions.
A conservation agency determining optimal clusters for a given combination

of optimized risk and return can either implement MOMP or MPT to achieve the
objectives. Noticeable differences exist between these approaches in the ways
objectives are defined and addressed. First, our MOMP approach maximizes
the total expected benefit of carbon storage at a given variance of total
carbon storage and a specified expected budget constraint, while the MPT
approach maximizes the portfolio expected ROI for a given portfolio variance.
Second, the objective function for our MOMP approach is driven by hectares
of clusters, whereas it is guided by spatial portfolio weights in the MPT
approach. Third, the total expected benefit of carbon storage in our MOMP
approach is the probability weighted sum of the benefits of total carbon
storage across the economic growth scenarios, whereas the portfolio
expected ROI in the MPT approach is the portfolio weighted sum of the
expected ROIs of the clusters. Fourth, the variance in our MOMP approach is
the variance of the benefit of total carbon storage across the economic
growth scenarios, while the portfolio variance in the MPT approach is a
composite term consisting of portfolio weights and a variance-covariance
structure of cluster ROIs across economic growth scenarios.
Because of theMOMP approach’s inability to take advantage of the full benefit of

diversification by addressing the variance-covariance structure across clusters,
optimal spatial targeting is potentially riskier than targeting based on the MPT.
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For example, the carbon storage benefits could have the identical spatial variance
but different combined response (covariance) across alternative economic growth
scenarios. If a conservation agency is focusing on balancing the return and risk of
conservation investment, the variance-covariance structure, rather than
individual variances, would make cost-effective budget allocation. Thus, optimal
spatial targeting based on the MOMP approach is potentially riskier than
targeting based on criteria that account for their variance-covariance structures.
Despite the relative disadvantage against the MPT, the MOMP approach has a

computational advantage. Specifically, in our analysis a smaller number of
uncertain scenarios (i.e., observations per asset in MPT) than the number of
eligible clusters (i.e., assets in MPT) results in a non-invertible, non-positive
semi-definite variance-covariance matrix of assets’ ROIs across scenarios. The
problem arises because the number of assets that can be used in truly
optimized optimal portfolio analysis should not exceed the limit of N-1 where
N is the number of scenarios. For example, Ando et al. (2018) conducted
optimal portfolio analysis by creating 24 subunits for the U.S. portion of the
Prairie Pothole Region, 7 subregions for birds of the Eastern U.S., and 11
subregions for Southern Appalachian salamanders across 71, 8, and 12
climate scenarios, respectively, where the number of subunits (or assets) is
smaller than the number of scenarios (or observations per subunit).
The MOMP approaches have been widely used in literature addressing

conflicting economic and environmental objectives either under the
assumption of perfect or imperfect knowledge of random economic and
environmental variables. For example, Zakariazadeh, Jadid, and Siano (2014)
applied a stochastic multi-objective assessment of the operational method in a
high-penetration wind energy generation and distribution system by
minimizing the total expected operational costs and emissions providing a
continuum of Pareto-optimal solutions. Under deterministic assumptions, a
bicriterion feedstock cost and GHG emission minimization objective is
considered in Yu et al. (2014) for determining an optimal switchgrass supply
system in Tennessee, whereas Zhong et al. (2016) applied a multi-objective
optimization model to determine the potential trade-offs among the objectives
of minimizing feedstock cost, GHG emission, and soil erosion in the design of a
sustainable switchgrass supply chain in Tennessee. Both of these studies found
that the type of agricultural land converted for switchgrass production has a
major influence on the economic and environmental performance of the
supply chain with the opportunity costs of land-use conversion and the net
change in soil carbon sequestration under feedstock production being the
major drivers of a particular kind of land-use change. Conceptually different
from the aforementioned studies, Cho and Sharma (2019) applied a MOMP
approach using a mean-variance framework in spatial targeting of
conservation investment for forest-based carbon sequestration in the U.S.
central and southern Appalachian region addressing the risk preferences of
conservation agencies in terms of conservation costs (net opportunity costs of
retaining forestland) under economic growth uncertainty.
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Given our objectives and the previously mentioned computational constraint,
we use the MOMP approach under economic growth uncertainty to generate
Pareto-optimal expected budget allocations that maximize the expected total
carbon storage benefit at a given level of variance. This approach not only
addresses uncertain economic growth but also provides optimal solutions for
the expected benefit of carbon storage and its variance in an effort to balance
the return and risk of conservation investment in protected area acquisition
with the preferences of conservation agencies. In using this approach, we
assume present optimal land acquisition decisions are made based on the
anticipated probabilities of occurrence of future economic growth scenarios
and agency preferences.
In addition to theMOMP approach, we solve the problemwith a single-objective

stochastic optimization approach that assumes risk-neutrality and deterministic
optimization approaches that assume perfect knowledge of future economic
growth. Figure 1 provides a schematic representation of the objective functions,
decision variables, assumptions about economic growth uncertainty, associated
risks, and intended applicability of the optimization approaches.
We use five clusters of land in and around the urban areas of Knox County, TN,

as a case study (see Figure 2). A local community, instead of a larger area, is
used as a case study because local communities are under increasing
pressure to adopt innovative strategies to increase or sustain carbon storage

Figure 1. Schematic Representation of Cluster-Level Optimization Approaches
(Note: Bold Arrows and Boxes Indicate the Schematic Portion of the MOMP
Approach)
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(Elmqvist et al. 2015; Miller Hauer, and Werner 2015; Andersson-Sköld et al.
2018). The clusters are chosen for having large tracts of undeveloped
contiguous land. Knox County, TN, is an appropriate case study because it has
experienced sustained economic growth coupled with growth in population
and income that has brought about rapid changes in land use and created
pressure for GHG mitigation in the face of climate change (Murray et al.
2018). Although Knox County, TN, is chosen as a case study, the procedure
used to solve the MOMP problem to generate spatially optimal expected
budget allocations under economic growth uncertainty can be replicated for
any area where the necessary data are available for modeling (see the next
section for details about the needed datasets).

2. Method and Data

To accomplish the objective, we employ a four-step procedure (see a schematic
representation of the four steps in Figure 3), which is organized in four
subsections.

Figure 2. Candidate Clusters of Parcels (Clusters 1, 2, 3, 4, and 5) in Knox
County, TN
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Step 1: Identify Potential Candidates for Protection

The first step entails identifying land areas that are potential candidates for
protected area acquisition in Knox County, TN. We initially identify five
clusters for targeting given firsthand expert knowledge about local
conservation issues based on interviews with local planners and other
community representatives. Within each cluster, we use the National Land
Cover Database (NLCD 2006, 2011) to select forestland, pastureland, and
cropland areas that are eligible for protected area acquisition to store carbon.
We group the NLCD classifications of deciduous forest, evergreen forest, and

mixed forest as “forestland,” pasture/hay and grassland/herbaceous as
“pastureland,” and cultivated cropland as “cropland.” Then, within each
cluster all eligible lands for acquisition are identified in each 1 km2 area, and
the shares of the land-use categories are calculated for each of those areas
and averaged across the areas within each cluster to form cluster-specific
shares of eligible lands. This procedure was performed using data from the
2006 and 2011 NLCD datasets, assuming strong and weak economic growth
scenarios based on the historical economic status in those years, respectively.

Figure 3. Schematic Representation of the Four Steps to Accomplish the
Objective
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These average shares are later converted to aggregated areas within each
cluster for each of the three land-use categories as the product of the shares
and the total cluster area. By averaging the shares of the 1 km2 areas for each
land use, we simultaneously average the carbon stored in tons per hectare
for each aggregated land use in each cluster. The aggregated area within each
cluster as well as the average carbon stored in tons per hectare for each
aggregated land use in each cluster for the moderate growth scenario is then
assumed as the average value of the strong and weak economic growth
scenarios. The area-weighted average of historic carbon stored within each
cluster is later converted to scenario-specific U.S. dollar values using the U.S.
Environmental Protection Agency (EPA)’s social cost of carbon (SCC), which
is the value of avoided damage or the marginal cost of emission abatement,
as benefit estimates.

Step 2: Forecast Acquisition Cost

In this step, we forecast (1) acquisition cost per hectare for each of the five
clusters for each economic growth scenario, and (2) median housing values
at the census-block group (CBG) level. Forecast of acquisition costs are based
on 2018 average assessed land values and total housing values of the parcels
that represent eligible lands for acquisition. We consider four parcel-level
land-use classifications (i.e. agriculture/forestry/vacant, private recreation,
right of way/open space, and rural residential) as lands (see Figure 2) that
are potential candidates for carbon storage acquisition, because those areas
are mostly undeveloped lands that can capture and store carbon in greater
amounts than can the other land-use classifications (e.g., single and multi-
family residential, and commercial).
We assume future residential property value as the leading indicator of the

future value of the eligible parcels since the candidate parcel clusters are in or
around urban communities within Knox County, TN, and their real estate
values are dictated by residential property values. Under this assumption, we
first develop an autoregressive distributed lag (ARDL) model at the CBG level
using 1990–2016 data in which the median value of owner-occupied housing
units (or median housing value) is regressed on three explanatory variables:
unemployment rate, housing vacancy rate, and real mortgage rate. The latter is
calculated as the nominal 30-year fixed rate (Federal Reserve Bank of St. Louis
2018) minus inflation (U.S. Bureau of Labor Statistics 2018). Annual median
housing value data at the CBG level are only available for the years
corresponding to the decennial U.S. Censuses in 1990 and 2000 (U.S. Census
Bureau 1990, 2010). The 1990 data are used as the baseline year in
estimating median housing values from 1991 to 1999 for each CBG. Median
housing values are estimated by multiplying the previous year’s housing value
by the ratio of the current year’s inflation-adjusted housing price index (HPI)
to the previous year’s HPI. Similarly, the median housing values from 2001 to
2016 are estimated using 2000 Census data and HPI data for 2001–2016.
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Next, we apply average values of the three explanatory variables during the
1998–2006 and 2007–2012 periods as baselines for strong and weak economic
growth scenarios, as those years loosely match with the corresponding growth
cycle. Then we apply the future values of the independent variables to the
ARDL model to forecast median housing value for each CBG in 2046 for the
economic growth scenarios. The year 2046 as a future forecast year is a
relatively ad hoc choice, because it is far enough in the future but not too far
from the present. Any alternative future year meeting this criterion could be
chosen without affecting the findings and general conclusions of our study. The
average values for the three explanatory variables during the 1998–2006 and
2007–2012 periods are used to simulate future conditions for the strong and
weak economic growth scenarios, respectively.
The 1990–2016 CBG data for the explanatory variables are obtained from U.S.

Bureau of Labor Statistics (2018) and U.S. Census Bureau (2018). See Table A1
for the variables used in the ARDL model with their descriptions and Table A2
for the ARDL estimates for a randomly selected CBG as an example. The
forecasted CBG-level median housing values are averaged across CBGs within
the boundary of each cluster to generate cluster-specific estimates for the
economic growth scenarios. The forecasted average median housing values
are then multiplied by average land value ratios per hectare for each of the
five clusters to extract the land-value portions of the forecasts for each
economic growth scenario. These forecasts are used as forecasted acquisition
costs in 2046 for each of the five clusters and for each of the economic
growth scenarios. Finally, the average values of these forecasts are assumed
to reflect the moderate growth scenario in 2046.

Step 3: Estimate Benefit of Carbon Storage

In this step, we estimate cluster-level average carbon storage for the eligible
lands by applying the dynamic Terrestrial Ecosystem Model (TEM) (ORNL
2016). Cluster-level carbon storage for the eligible lands for the growth
scenarios are assumed to be time invariant projections into the future to
2046. We estimate carbon, nitrogen, and water fluxes on a monthly basis for
each cohort (or area of continuous vegetation) based on spatially referenced
information on climate, elevation, soils, and vegetation as input into the TEM.
The cohort-level carbon, nitrogen, and water fluxes are converted into carbon
storages at the 1 km2 level, which are averaged to the cluster-level by
accounting for net total carbon uptake through photosynthesis against carbon
losses of the forestland, pastureland, and cropland. See Table 1 for a
summary of the cluster-specific total area, scenario-specific aggregated areas
of the three land uses, i.e., forestland, pastureland, and cropland, in 2018 (or,
eligible land for acquisition), scenario-specific average carbon storages per
hectare, cluster-specific average assessed eligible land values, and scenario-
specific forecasted acquisition costs in 2046 in dollars per hectare, for the
five clusters and the three economic growth scenarios.
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Since the total expected benefit of carbon storage is maximized for a given
variance of total benefit of carbon storage across the economic growth
scenarios, we use a price of $612 (2010 USD) per ton of carbon to reflect the
economic value of the carbon stored in perpetuity. Because the benefit
estimate of $612 per ton of carbon in perpetuity comes from the EPA’s
forecast of the annualized SCC for the year 2045 (i.e., $64 per ton of CO2 in
2007 USD at 3% discount rate) (U.S. Interagency Working Group 2016), it is
reasonable to assume the SCC values differ for different economic growth
scenarios because of different marginal abatement costs associated with
different growth scenarios. Given the premise and findings from existing
literature (e.g., Ji and Zhou 2020), we assume higher marginal abatement cost
and thus a higher benefit estimate for the stronger economic growth
scenario. Specifically, we assume a cost of $612 per ton of carbon for the
moderate economic growth scenario, and $640 and $570 per ton of carbon
for the corresponding strong and weak economic growth scenarios, which are
proportional to the average, maximum, and minimum U.S. per capita gross
domestic product (GDP) from 2001–2012 (U.S. Bureau of Economic Analysis
2020), respectively. Since we have no way of knowing how much benefit
must be associated with different growth scenarios, we implement a similar
sensitivity test using TN per capita GDP from 2001–2012 (U.S. Bureau of
Economic Analysis 2020) with avoided costs (benefits) of $612, $636, and
$577 per ton of carbon for the moderate, strong, and weak economic growth
scenarios, respectively.

Table 1. Summary of the cluster-specific total area, aggregated area of
eligible lands, average carbon storage capacity, average assessed land
value, and forecasted acquisition cost in 2046

Variable Scenario
Cluster

1
Cluster

2
Cluster

3
Cluster

4
Cluster

5

Total area (ha) - 1,807 3,230 3,306 3,216 2,112

Aggregated area of
eligible lands
(ha)

Strong 1,172 2,829 2,896 2,268 1,737
Weak 1,172 2,830 2,896 2,260 1,745

Moderate 1,172 2,830 2,896 2,264 1,741

Average carbon
storage capacity
(ton/ha)

Strong 237 211 120 175 182
Weak 237 211 119 175 182

Moderate 237 211 119 175 182

Average assessed
land value
($/ha)

- 43,373 19,263 25,633 123,909 104,802

Forecasted
acquisition cost
($/ha)

Strong 8,964 8,111 9,318 31,771 9,155
Weak 6,953 5,279 6,130 19,797 6,576

Moderate 7,958 6,695 7,724 25,784 7,865
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Step 4: Identify Spatially Optimal Budget Allocation

In this step, we identify spatially optimal budget allocations for protected area
acquisition to store carbon on the eligible lands of the five clusters using the
MOMP approach. The MOMP problem maximizes the total expected benefit of
carbon storage benefit at a given level of variance over the three economic
growth scenarios across the five clusters, given an expected hypothetical
budget of $61.36 million (or roughly equal to what is required to achieve
50% of the total expected carbon storage potential of all eligible lands in the
five clusters). Alternatively, we solve the problem with a single-objective
stochastic optimization approach and deterministic optimization approaches
given the same expected hypothetical budget. (Details are provided in
sections “S1” and “S2”, respectively.) Here we describe the details of how
MOMP is used to generate optimal expected budget allocations and their
corresponding ROIs.
We first maximized the total expected benefit (E(π)) of carbon storage and

then minimized the variance of total benefit (Var(π)) of carbon storage
across the three economic growth scenarios in eqns. (1) and (2), respectively,
as follows:

Maximize: E(π) ¼
X
s∈S

π(s) × prob (s) ¼
X
i∈I

X
s∈S

bs × xis × qis × prob (s):(1)

Minimize: Var(π) ¼
X
s∈s

[π(s)� E(π)]2 × prob (s):(2)

subject to

xis � eis ∀ i, s(3)
X
i∈I

X
s∈S

cis × xis × prob (s) ¼ θ(4)

xis � 0(5)

where π(s) is the total benefit of carbon storage achieved under future
economic growth scenario s in U.S. dollars, prob (s) is the anticipated
probability of future occurrence of economic growth scenario s, bs is the
benefit associated with carbon storage under economic growth scenario s in
U.S. dollar/ton, xis is the eligible land acquired from cluster i under economic
growth scenario s in hectares, qis is the carbon storage in cluster i under
economic growth scenario s in ton/hectare, eis is the total land eligible for
acquisition from cluster i under economic growth scenario s in hectares, cis is
the acquisition cost of cluster i under economic growth scenario s in U.S.
dollar/hectare, and θ is the total expected budget available for acquiring
eligible land parcels within the clusters.
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Eq. (3) constrains the total area acquired for conservation in each cluster
under each economic growth scenario to equal at most the total area eligible
for acquisition in each cluster under each economic growth scenario.
Similarly, the total expected budget spent to acquire eligible parcels from the
clusters is constrained to equal at most the total expected budget available
for protected area acquisition for carbon storage in eq. (4). Eq. (5) simply
imposes non-negativity on the decision variables, i.e., land acquired from each
cluster under each economic growth scenario.
Assuming a risk-averse conservation agency, the augmented ε�constraint

method (Mavrotas 2009) is utilized to solve the objective of maximizing total
expected benefit of carbon storage for a targeted variance level. The MOMP is
implemented in eq. (6), subject to the constraints in eqns. (7)–(8) as follows:

Maximize: Multi ¼ E(π)þ ε ×
d
r
:(6)

subject to

Var(π)þ d ¼ e(7)

e ¼ en � en � e0
k

� �
× h, h ¼ 0, 1, 2, . . . k(8)

where ε is a small number set to 10-3 in the current study, d is a non-negative
slack variable introduced to impose equality in the constrained objective
function (eq. (7)), r is the range of the objective Var(π) between the
minimum variance level (e0) solved using eq. (2) and the unconstrained
variance level (en) solved using eq. (1), and e is the constraint applied to the
variance level which represents the hth range of the objective Var(π) (eq. (8)).
The range of the objective Var(π) is divided into k identical intervals
representing the targeted variance levels resulting in a total of (kþ1) pairs of
optimal [E(π), Var(π)] points. The same constraints which are imposed on
both the total expected benefit maximization and its variance minimization
also apply to the MOMP.
Using the optimal solution of the MOMP, an efficient trade-off frontier is drawn

by connecting four Pareto-optimal points of total expected benefits and
corresponding standard deviations. We initially obtain the upper and lower
limits of the variance of total carbon storage benefits from protected area
acquisition using unconstrained total expected benefit maximization and
variance minimization, respectively. Using MOMP, we arbitrarily divide the
variance range into three equal intervals, generating four points (each point
being an optimal combination of expected benefit and its variance) to quantify
the trade-off relationship between the conflicting objectives (see Figure 4).
The points along the mean-variance trade-off frontier in Figure 4, where

variance is scaled to standard deviation for numerical convenience, illustrate
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the efficient options for allocating a given budget. Specifically, each point is
Pareto-optimal since further risk (variance) mitigation is associated with
corresponding expected return (expected benefit) reduction. A conservation
agency would choose a point along the mean-variance trade-off frontier in
Figure 4 depending on its risk preference. A risk-neutral conservation agency
would prefer point A because the maximum benefits is achieved at that point
irrespective of risk. Conversely, a completely risk-averse agency would prefer
point D because risk is minimized irrespective of benefit. Agencies with
preferences aligning with points down the frontier between A and D (i.e.,
points B and C) would be willing to sacrifice benefit to reduce risk.

3. Empirical Results and Discussion

Table 1 reports a summary of the characteristics related to the five clusters
based on the aggregated areas of the three land uses in 2018 and the average
carbon storages per hectare for 2006 and 2011 along with average assessed
land values and forecasted acquisition costs in 2046 in dollars per hectare,
for the three economic growth scenarios. The cluster-specific carbon storages
reported in Table 1 are the area-weighted averages of the average carbon
storages across the three eligible lands, i.e., forestland, pastureland, and

Figure 4. Trade-off Relationship between the Pareto-Optimal Total Expected
Benefit of Carbon Storage and Its Variance
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cropland (see Table 2). Average carbon storage per hectare is relatively high in
Clusters 1 and 2 and relatively low in Clusters 3, 4, and 5. On the other hand,
average assessed land value per hectare is relatively low in Clusters 1, 2, and
3 and relatively high in Clusters 4 and 5. The high average carbon storage
per hectare occurs because of the relatively small area of cropland with
relatively low carbon storage capacity per hectare and the relatively larger
area of forestland and pastureland with relatively larger carbon storage
capacities per hectare (see Table 2). The differences in the average assessed
land values per hectare reflect the differences in the status of local-regional
real estate markets.
The mean-variance trade-off frontier in Figure 4 shows that reductions in

variance down the curve between successively lower points require greater
sacrifices in the expected benefit of carbon storage. For example, moving
from the maximum expected benefit of $910.83 million with a standard
deviation of $29.97 million at point A to an expected benefit of $910.36
million with a standard deviation of $24.47 million at point B results in a
sacrifice of $0.08 in expected benefit for a $1 reduction in the standard
deviation (or trade-off ratio of 0.08 $/$). The moves from points B to C and
from C to the minimal variance point D result in trade-off ratios of 0.18 $/$
and 23.85 $/$, respectively.
The implication of the trade-off pattern is that risk mitigation is less costly in

terms of forgone expected benefit when the risk level is higher and is more
costly when the risk level is lower. The moves from points A to B, B to C, and
C to D are associated with sacrifices in expected ROIs of $0.01 (or 0.05%),
$0.02 (or 0.14%), and $6.72 (or 45.36%), respectively, and are also
associated with reductions of standard deviations by $0.09 (or 18.35%),
$0.12 (or 29.29%), and $0.28 (or 100%), respectively, assuming the ROIs are
calculated based on the expected budget allocation.
Table 3 summarizes the scenario-specific and expected optimal budget

allocations for the five clusters corresponding to the four points on the mean-
variance trade-off frontier in Figure 4. The expected budget distribution at
point A is largely influenced by the moderate economic growth scenario given
its probability of 0.50 (strong and weak economic growth scenarios with equal
probabilities of 0.25) and the strong economic growth scenario with its highest
carbon storage benefit in addition to the highest acquisition cost among all the
scenarios for any cluster (see Table 2). In contrast, the expected optimal
budget distribution at point D is mostly affected by the weak economic growth
scenario with its lowest carbon storage benefit in addition to the lowest
acquisition cost among all the scenarios for any cluster (see Table 2).
Subsequently, the differences in cluster-specific budget allocations between the
strong and other (especially weak) economic growth scenarios is highest at
point A, except for Cluster 3, whereas it is lowest at point D, except for Cluster
4 (Table 3).
According to the expected optimal budget allocations at point A (Table 3),

Cluster 4 does not receive a budget allocation which has the highest
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Table 2. Summary of cluster-specific areas of eligible lands and their carbon storage capacities

Variable Land use Scenario Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Area of eligible lands (ha) Forest Strong 1,018 2,131 1,292 1,406 1,230
Weak 1,018 2,132 1,291 1,408 1,237

Pasture Strong 30 38 245 113 39
Weak 31 38 247 108 40

Crop Strong 124 661 1,359 749 468
Weak 123 661 1,359 744 468

Carbon storage capacity (ton/ha) Forest Strong 270 274 248 271 252
Weak 270 274 248 271 252

Pasture Strong 66 71 72 67 72
Weak 66 71 72 67 72

Crop Strong - 15 6 10 7
Weak - 15 6 10 7
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forecasted acquisition cost. However, consistently higher budgets are allocated
to Cluster 4 down the frontier with moves from points A to B, B to C, and C to
D. A further investigation of the scenario-specific budget allocations reveals
consistently higher budgets allocated to Cluster 4 in moving from points B to
C and C to D for the weak economic growth scenario, whereas for moderate
and strong economic growth scenarios Cluster 4 receives a budget allocation
only for the move from point C to D. Specifically, the strong and moderate
scenarios have higher budget allocations in Cluster 4 than the weak economic
growth scenario when moving from point C to D, mainly for two reasons.
First, the variance of total benefit across scenarios is minimized at point D,
thus requiring more land acquisitions even when the strong and moderate
scenarios are more costly than the weak scenario. Second, the benefit
associated with carbon storage is higher for the strong and moderate
scenarios compared to the weak scenario. Furthermore, the budget allocation
to Cluster 4 at point D for the strong scenario is the highest because it has
the highest carbon storage benefit, whereas for moderate scenario, the
budget allocation mainly reflects the highest probability of occurrence. These
findings have an interesting implication for optimal budget allocations when

Table 3. Scenario-specific and expected optimal budget allocations across
the five clusters corresponding to the four points on the mean-variance
trade-off frontier in Figure 4

Point Cluster

Scenario ($)

Expected ($)Strong Weak Moderate

A Cluster 1 10,508,190 8,150,146 9,329,144 9,329,156
Cluster 2 22,946,311 14,941,262 18,944,626 18,944,206
Cluster 3 15,099,555 17,747,141 22,370,853 19,397,100
Cluster 4 - - - -
Cluster 5 15,901,163 11,473,511 13,692,454 13,689,896

B Cluster 1 10,508,180 8,150,139 9,329,137 9,329,148
Cluster 2 22,946,297 14,941,254 18,944,616 18,944,195
Cluster 3 16,571,034 17,747,121 21,635,121 19,397,099
Cluster 4 11 19 6 11
Cluster 5 15,901,146 11,473,501 13,692,443 13,689,883

C Cluster 1 10,508,178 8,150,140 9,329,136 9,329,147
Cluster 2 22,946,294 14,941,254 18,944,614 18,944,194
Cluster 3 18,566,216 17,747,128 20,333,656 19,245,164
Cluster 4 14 607,760 7 151,947
Cluster 5 15,901,143 11,473,503 13,692,441 13,689,882

D Cluster 1 4,652,339 4,055,732 4,198,759 4,276,397
Cluster 2 5,773,572 4,450,660 4,675,748 4,893,932
Cluster 3 11,541,482 8,747,815 9,690,186 9,917,417
Cluster 4 42,674,673 26,331,057 38,923,591 36,713,228
Cluster 5 6,284,985 5,119,615 5,416,467 5,559,384
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applying the MOMP approach. Namely, the optimal solutions with increasing
preferences for variance (risk) minimization at points B, C, and D result in
more diversified budget allocations, with more funds going to costly
investments than the optimal solution for expected benefit (return)
maximization at point A.
Table 4 reports the scenario-specific total benefits and costs and the total

expected benefits, costs, and ROIs associated with the four Pareto-optimal
points on the mean-variance trade-off frontier in Figure 4. The expected ROIs
essentially capture variation in the expected benefits across the optimal
points, because the expected costs are numerically equal to the expected
budget constraint in the MOMP model. The Knox County, TN, community
could choose any point between expected benefit maximization (expected
ROI of 14.84 $/$ at point A) and variance minimization (expected ROI of 8.10
$/$ at point D), but their risk preferences would likely lie between the
extremes of complete risk-aversion (zero variance) and risk neutrality
(maximum benefit).
Tables S1 and S2 provide summary results from the single-objective

stochastic optimization model and deterministic models. The highest
expected number of hectares (2,830) acquired in Cluster 2 provides expected
carbon storage of 596,529 tons (or $362.99 million expected benefit) at an
expected cost of $18.94 million, yielding an expected ROI of 19.16 $/$
(Table S1). The highest expected ROI among the clusters (Cluster 2) reflects
the relatively higher carbon storages and the lowest forecasted acquisition
costs among the economic growth scenarios (Table 1). Although less than for

Table 4. Scenario-Specific Benefits and Costs, and Expected Benefits, Costs
and ROIs Associated with the Four Pareto Optimal Points along the Mean-
Variance Trade-Off Frontier in Figure 4

Point Scenario Benefit ($) Cost ($)
E(Benefit)

($) E(Cost) ($)
E(ROI)
($/$)

A Strong 885,580,497 64,455,219 910,829,022 61,360,358 14.84
Weak 876,478,183 52,312,061
Moderate 940,628,704 64,337,076

B Strong 897,653,811 65,926,667 910,364,892 61,360,336 14.84
Weak 876,477,560 52,312,034
Moderate 933,664,098 63,601,322

C Strong 914,024,756 67,921,845 909,063,999 61,360,334 14.82
Weak 879,541,520 52,919,785
Moderate 921,344,859 62,299,854

D Strong 496,751,162 70,927,051 496,751,162 61,360,358 8.10
Weak 496,751,162 48,704,880
Moderate 496,751,162 62,904,751

Note: E is the expectation operator. ROI refers to return-on-investment.
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Cluster 2, model optimally selects 2,577, 1,741, and 1,172 expected hectares of
land in Clusters 3, 5, and 1, respectively (Table S1), whereas no land is selected
in Cluster 4 because its forecasted acquisition cost is highest for all economic
growth scenarios (Table 1).
Table S2 presents the results for the single-objective stochastic optimization

and the deterministic approaches (the note for Table S2 gives definitions of the
approaches.) in terms of the optimal scenario-specific and the expected ROIs.
The expected ROI for the stochastic solution (14.84) is marginally higher
than the expected-value approach (14.79) (Column 8) and substantially
higher than the “strong” wait-and-see approach (14.02) (bold number in
Column 5), but slightly and marginally lower than the “weak” and “moderate”
wait-and-see approaches (15.03 and 14.87, respectively) (bold numbers in
Column 5). Contrastingly, the expected ROI from the stochastic approach is
substantially lower and higher compared to the “strong” and “weak” wait-
and-see approaches (15.67 and 12.93, respectively) (see Column 8), but
marginally higher than the “moderate” wait-and-see approach (14.79) (see
Column 8).
The deterministic approaches assume specific values of future economic

growth. Ignoring uncertainty while making acquisition decisions could lead to
costly consequences when a scenario, other than the one anticipated, is
realized. Contrary to the deterministic approaches, the single-objective
stochastic approach has less dependence on the uncertain future realization
of economic growth. However, this approach implicitly assumes risk-
neutrality given the possibility of spatially varying changes in costs and
benefits under economic growth uncertainty. The assumption exposes
conservation agencies’ potential risks to the conflicting objectives of
maximizing the benefit and minimizing its variance, and the MOMP approach
accounts for such risk.
The sensitivity analysis based on TN per capita GDP is available in Appendix

Figure A1 and Tables A3–A4 for MOMP, whereas the same is available in
Supplementary Tables S3 and S4 for single-objective stochastic and
deterministic optimizations, respectively. Although the state GDP results are
not shown, the sensitivity analysis found that the pattern of results and,
therefore the interpretation, remains identical whether using federal or state
per capita GDP to approximate future benefits of carbon storage.

4. Conclusions

The literature dealing with spatial targeting of conservation investments has
largely focused on the risk associated with ecological benefits under climate-
change induced uncertainty, with little concern for the economic growth
uncertainty reflected in conservation costs (e.g., Mallory and Ando 2014;
Armsworth et al. 2015; Albers et al. 2016; Shah et al. 2017). Integrating risk
on the cost side of conservation is especially important for protected area

Sharma et al. Optimal Budget Allocations for Protected Area Acquisition 227

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/a

ge
.2

02
0.

10
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/age.2020.10


acquisition because such investments are commonly irreversible and thus are
riskier than relatively shorter-term conservation investments. Therefore, a
substantial need exists to manage the risk associated with cost uncertainty in
spatial targeting strategies for acquiring protected areas.
In filling this gap in the literature, we develop a case study to identify

optimal spatial budget allocations for protected land acquisition for carbon
storage from five selected clusters of land in and around the urban areas of
the Knox County, TN, community under three economic growth scenarios
(i.e., strong, weak, moderate). In doing so, we apply the risk of uncertain
economic growth that affects the cost of protected area acquisition using
real estate values at the parcel level, which is elaborated in Step 2 of the
method section. The application of this spatial resolution allows us to
obtain the site-specific opportunity costs of carbon storage. This application
is a vital contribution to the literature in its own right because it offers
local communities a way to deal with the risk of uncertain economic growth
that affects the cost of protected area acquisition for the purpose of
preserving carbon storage.
We determine optimal budget allocations based on cluster-specific changes in

historic carbon storage estimates and forecasted eligible land acquisition costs
using MOMP under three uncertain 2046 economic growth scenarios. (A single-
objective stochastic optimization approach and deterministic optimization
approaches are also applied as alternatives.) While carbon storage per
hectare varies considerably across the five clusters (range and standard
deviation of 117 and 39 tons/hectare, respectively), the major determining
factor for the optimal distribution is the difference in the forecasted
acquisition cost of 23,660, 14,518, and 19,089 $/hectare (standard deviations
of 9,163, 5,454, and 7,303 $/hectare) for strong, weak, and moderate
economic growth scenarios, respectively.
The Pareto-optimal trade-off frontier between the expected carbon storage

benefit and its variance, generated using MOMP, provides a continuum of
risk-return combinations, the selection of which depends on the community’s
risk preferences. The pattern of the trade-off relationship implies that risk
mitigation is less costly in terms of forgone expected benefit when risk is
higher than when it is lower. Our results also find that the difference in
cluster-specific budget allocations between the strong economic growth
scenario and the weak economic growth scenario subsequently decreases
between the point of expected benefit maximization and the point of variance
minimization. Interestingly, the cluster-specific expected budget allocations
are generally higher at the point of expected benefit maximization because
fewer clusters receive budget allocations, whereas they are generally lower
at the point of variance minimization because more clusters receive
budget allocations.
The findings provide three critical lessons to local communities in identifying

optimal spatial budget allocations for protected area acquisition for carbon
storage under uncertainty of future economic growth. First, economic growth
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conditions pose significant risks regarding the future spatial distribution of
budget allocations in terms of both the physical and monetary benefits of
conservation investment. Second, conservation investment and diversification
of spatial targeting should be considered with attention to changes in the
amount of expected benefit sacrificed for a given reduction of the variance of
the benefit (risk) across multiple future economic growth conditions. Third,
local communities can determine spatial targeting that provides an optimal
risk-return combination based on their risk preferences by addressing the
risk associated with uncertain carbon ROIs as measured by the variance of
those values.
Our findings of the optimal hectares of land for protected area acquisition for

carbon storage and the corresponding benefits and costs serve as an empirically
informed knowledge base to help a local community prioritize acquisition of
potential protected areas for carbon storage under economic growth
uncertainty. Our approach is general and easily replicated for other
ecosystem services in other local communities as long as researchers have
access to critical information to carry out MOMP to generate spatially optimal
expected budget allocations: spatial distributions of scenario-specific benefits
and costs of potential protected areas and their corresponding probabilities.
With these data, the researchers can calculate different variability and
patterns of variance of conservation benefits that are necessary inputs for the
MOMP problem. In framing such studies, researchers may face the need for
evaluating different types of risk (e.g., climate and market risks) for
preserving different types of conservation benefits (e.g., biodiversity,
recreation, wildlife habitat, farmland, and water quality benefits) and
conservation costs. In particular, the procedure we developed for estimating
acquisition cost using real estate values at the parcel level is uniquely
required to estimate the site-specific opportunity costs of supplying an
amount of carbon storage.
Future analyses can implement modeling frameworks where multiple risk

factors and multiple conservation benefits and costs can be accommodated to
evaluate different risk-reward strategies. Future research is needed to
develop a framework for risk-reward conservation investments in the
presence of multiple interacting types of uncertainty associated with their
benefits and costs. Such efforts require consideration of correlation across
space and across sources of uncertainty. Depending on these variabilities,
efforts to diversify one type of risk may undermine or complement efforts to
diversify another type of risk.

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.
1017/age.2020.10
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Variable Definition

Dependent variable
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Independent variables
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(proportion)

Real mortgage rate National annual average real 30-year fixed mortgage rate
from 1990–2016 (proportion)

Vacancy rate State annual average homeowner vacancy rate from 1990–
2016 (proportion)

Structural shift dummy
variable

1 if period is 2000–2016, 0 otherwise

Note: The structural shift dummy variable accounts for the change in data beginning in 2000. Before
2000, median housing values were estimated based on 1990 Census data and housing price index
data. After 2000, median housing values were estimated based on 2000 Census data and housing
price index data.
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Table A2. ARDL Estimates for a Randomly Selected CBG as an Example

Variable Parameter Estimates(Std. Error)

Constant 9.460***(0.658)

Median housing value (natural log)

Lag 1 (one year) -0.028(0.058)

Lag 2 (two years) 0.092(0.057)

Lag 3 (three years) 0.086(0.043)

Unemployment rate (proportion)

Lag 0 (zero years) -0.141(0.431)

Lag 1 (one year) -0.961(0.428)

Lag 2 (two years) -0.168(0.473)

Lag 3 (three years) -1.680**(0.429)

Lag 4 (four years) -1.249*(0.413)

Real mortgage rate (proportion)

Lag 0 (zero years) -0.385(0.569)

Lag 1 (one year) -1.072(0.588)

Lag 2 (two years) -1.623**(0.475)

Lag 3 (three years) 1.452(0.675)

Lag 4 (four years) 1.240**(0.371)

Vacancy rate (proportion)

Lag 0 (zero years) 2.445(1.627)

Lag 1 (one year) -1.582(0.902)

Lag 2 (two years) -4.059(1.800)

Lag 3 (three years) -2.021(0.954)

Lag 4 (four years) -2.558*(0.942)

Structural shift dummy variable 0.318***(0.023)

Log-likelihood 101.732

Root MSE 0.008

Note: *, ** and *** denote significance at the 10%, 5%, and 1% levels, respectively.
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Table A3. Scenario-Specific and Expected Optimal Budget Allocations
across the Five Clusters Corresponding to the Four Points on the Mean-
Variance Trade-Off Frontier in Figure A1 as a Sensitivity Test using TN per
capita GDP

Point Cluster

Scenario ($)

Expected ($)Strong Weak Moderate

A Cluster 1 10,508,190 8,150,146 9,329,144 9,329,156
Cluster 2 22,946,311 14,941,262 18,944,626 18,944,206
Cluster 3 15,099,555 17,747,141 22,370,853 19,397,100
Cluster 4 - - - -
Cluster 5 15,901,163 11,473,511 13,692,454 13,689,896

B Cluster 1 10,508,178 8,150,138 9,329,136 9,329,147
Cluster 2 22,946,295 14,941,253 18,944,614 18,944,194
Cluster 3 16,268,936 17,747,115 21,786,173 19,397,100
Cluster 4 13 20 6 11
Cluster 5 15,901,144 11,473,499 13,692,441 13,689,881

C Cluster 1 10,508,161 8,150,127 9,329,124 9,329,134
Cluster 2 22,946,270 14,941,239 18,944,597 18,944,176
Cluster 3 18,078,906 17,747,088 20,881,192 19,397,095
Cluster 4 33 59 17 31
Cluster 5 15,901,114 11,473,484 13,692,422 13,689,860

D Cluster 1 4,652,339 4,055,732 4,198,759 4,276,397
Cluster 2 5,773,572 4,450,660 4,675,748 4,893,932
Cluster 3 11,541,482 8,747,815 9,690,186 9,917,417
Cluster 4 42,674,673 26,331,057 38,923,591 36,713,228
Cluster 5 6,284,985 5,119,615 5,416,467 5,559,384
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Figure A1. Trade-off relationship between the Pareto-optimal total expected
benefit of carbon storage and its variance as a sensitivity test using TN per
capita GDP

Table A4. Scenario-Specific Benefits and Costs, and Expected Benefits,
Costs and ROIs Associated with the Four Pareto-Optimal Points along the
Mean-Variance Trade-Off Frontier in Figure A1 as a Sensitivity Test using
TN per capita GDP

Point Scenario Benefit ($) Cost ($)
E(Benefit)

($) E(Cost) ($)
E(ROI)
($/$)

A Strong 880,045,619 64,455,219 912,136,245 61,360,358 14.87
Weak 887,241,950 52,312,061
Moderate 940,628,704 64,337,076

B Strong 889,580,100 65,624,566 911,752,243 61,360,333 14.86
Weak 887,241,180 52,312,024
Moderate 935,093,847 63,752,372

C Strong 904,337,588 67,434,483 911,157,900 61,360,296 14.85
Weak 887,240,289 52,311,996
Moderate 926,526,861 62,847,352

D Strong 496,751,162 70,927,051 496,751,162 61,360,358 8.10
Weak 496,751,162 48,704,880
Moderate 496,751,162 62,904,751

Note: E is the expectation operator. ROI refers to return-on-investment.
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