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MATRIX CALCULATIONS FOR MOMENTS OF MARKOV PROCESSES
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Abstract

Matryoshka dolls, the traditional Russian nesting figurines, are known worldwide for
each doll’s encapsulation of a sequence of smaller dolls. In this paper, we exploit the
structure of a new sequence of nested matrices we call matryoshkan matrices in order
to compute the moments of the one-dimensional polynomial processes, a large class of
Markov processes. We characterize the salient properties of matryoshkan matrices that
allow us to compute these moments in closed form at a specific time without computing
the entire path of the process. This simplifies the computation of the polynomial pro-
cess moments significantly. Through our method, we derive explicit expressions for both
transient and steady-state moments of this class of Markov processes. We demonstrate
the applicability of this method through explicit examples such as shot noise processes,
growth–collapse processes, ephemerally self-exciting processes, and affine stochastic
differential equations from the finance literature. We also show that we can derive
explicit expressions for the self-exciting Hawkes process, for which finding closed-form
moment expressions has been an open problem since their introduction in 1971. In gen-
eral, our techniques can be used for any Markov process for which the infinitesimal
generator of an arbitrary polynomial is itself a polynomial of equal or lower order.
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1. Introduction

In our recent study of the intensity of Markovian Hawkes processes, originally defined in
[33], we have been interested in computing all the moments of this process. In surveying the
previous literature for this process, there do not seem to be any closed-form transient solutions
at the fourth order or higher (see Proposition 5 of [29] for moments one through three), and
both steady-state solutions and ordinary differential equations (ODEs) have only been available
up to the fourth moment; see [15, 22]. Similarly, [2] give expressions for the fourth transient
moment of a self-exciting jump-diffusion model up to squared error in the length of time,
and one could simplify these expressions to represent the Markovian Hawkes intensity with
the same error. The standard methodology for finding moments is to differentiate the moment
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Matrix calculations for moments of Markov processes 127

generating function to obtain the moments, but this is intractable for practical reasons; see for
example [22]. The problem of finding the moments of the Hawkes process intensity is also the
subject of the recent interesting research in [13, 14], works that are concurrent with and inde-
pendent from this one. In [13], the authors propose a new approach for calculating moments
that they construct from elementary probability arguments and also relate to the infinitesi-
mal generator. Like the infinitesimal generator, this new methodology produces differential
equations that can be solved algebraically or numerically to yield the process moments, and
the authors provide closed-form transient expressions up to the second moment. The paper
[14] extends this methodology to cases of gamma decay kernels. In other recent previous
works [18, 41], the authors have identified the differential equation for an arbitrary moment
of the Hawkes process intensity, although the closed-form solutions for these equations have
remained elusive and prompted closer investigation. Upon inspecting the differential equa-
tion for a given moment of the Hawkes process intensity, one can notice that this expression
depends on the moments of lower order. Thus, to compute a given moment one must solve a
system of differential equations with size equal to the order of the moment, meaning one must
at least implicitly solve for all the lower-order moments first. This same pattern occurs in [13].
Noticing this nesting pattern leads one to wonder: what other processes have moments that
follow this structure?

In this paper, we explore this question by identifying what exactly this nesting structure
is. In the sequel, we will define a novel sequence of matrices that captures this pattern. Just as
matryoshka dolls—the traditional Russian nesting figurines—stack inside of one another, these
matrices are characterized by their encapsulation of their predecessors in the sequence. Hence,
we refer to this sequence as matryoshkan matrices. As we will show, these matrices can be
used to describe the linear system of differential equations that arise in solving for the moments
of the Hawkes process, as well as the moments of a large class of other Markov processes.
Similar structure has been successfully leveraged previously in the case of discrete state spaces
(see, e.g., [44, 43, 5]), but here we consider continuous state spaces as well, such as our original
motivating example, the Hawkes process. As we will demonstrate through detailed examples,
this includes a wide variety of popular stochastic processes, such as Itô diffusions and shot
noise processes. By utilizing this nesting structure we are able to solve for the moments of
these processes in closed form. In comparison to traditional methods of solving these systems
of differential equations numerically, the advantage of the approach introduced herein is the
fact that the moments can be computed at a specific point in time rather than on a path through
time.

In fact, the only assumption we make on these processes is that their moments satisfy dif-
ferential equations that do not depend on any higher-order moments. Notably, this assumption
exactly coincides with the definition of polynomial processes, hence specifying the exact class
of Markov processes we will consider. In [11], this is defined as the collection of Markov
processes such that the expected value of any polynomial is ‘again a polynomial in the initial
value of the process’ up to the same order. Hence, the processes we study here are precisely
the one-dimensional polynomial processes. The paper [11] demonstrates that the moments of
such processes can be computed through a matrix exponential, and thus our contributions to
the polynomial process literature are that the sequence of these matrices (and their inverses,
exponentials, and decompositions) exhibit a convenient nested structure that enables simple
iterative computation. Hence, this paper can be seen as building on a line of work that aims to
efficiently and/or recursively compute polynomial process moments, such as [26, 1, 3]. This
also provides context and relevance for the various examples on which we demonstrate our
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methods. For example, we show the nested matrix structure arising in Itô diffusions, and this
connects to a rich history of study on polynomial diffusions; see for example [47, 42, 26, 24,
25] and references therein. Polynomial processes have been used to great success in many
contexts in finance, such as [4, 10, 31], in addition to many of the papers mentioned above.

The breadth of applications of polynomial processes suggests that our methodology has
the potential to be quite relevant in practice. Of course, these techniques can be used to effi-
ciently calculate the commonly used first four moments, thus obtaining the mean, variance,
skewness, and kurtosis. Moreover, though, let us note that the higher moment calculations are
also of practical use. For example, these higher moments can be used in Markov-style con-
centration inequalities, as the higher order should improve the accuracy of the tail bounds. To
that end, one can also use the vector of moments to approximate generating functions such as
the moment generating function or Laplace–Stieltjes transforms. This could then be used to
characterize the stationary distribution of the process, for example, or to provide approximate
calculations of quantities such as the cumulative distribution function through transform meth-
ods. The calculation of moments is also highly relevant for many applications in mathematical
finance. One could also expect this efficiently calculated vector of moments to be of use in
estimation through method of moments techniques. Again in this case, access to higher-order
moments should improve fit.

The remainder of this paper is organized as follows. In Section 2, we introduce matryoshkan
matrix sequences and identify some of their key properties. In Section 3 we use these matrices
to find the moments of a large class of general Markov processes—the one-dimensional poly-
nomial processes. We also give specific examples. In Section 4, we conclude. Throughout the
course of this study, we make the two following primary contributions:

(i) We define a novel class of matrix sequences, which we call matryoshkan matrix
sequences for their nesting structure. We identify key properties of these matrices, such
as their inverses and matrix exponentials.

(ii) Through these matryoshkan matrices, we solve for closed-form expressions for the
moments of polynomial Markov processes. Furthermore, we demonstrate the gen-
eral applicability of this technique through application to notable stochastic processes,
including Hawkes processes, shot noise processes, Itô diffusions, growth–collapse
processes, and linear birth–death–immigration processes. In the case of the Hawkes
process and growth–collapse processes this resolves an open problem, as closed-form
expressions for these general transient moments were not previously known in the
literature.

2. Matryoshkan matrix sequences

For the sake of clarity, let us begin this section by introducing general notation patterns we
will use throughout this paper. Because of the heavy use of matrices in this work, we reserve
boldface uppercase variables for these objects; for example, we use I for the identity matrix.
Similarly we let boldface lowercase variables denote vectors—for example, using v for the
vector of all ones or vi for the unit vector in the ith direction. One can assume that all vectors
are column vectors unless otherwise noted. Scalar terms will not be bolded. A special matrix
that we will use throughout this work is the diagonal matrix, denoted by diag(a), which is a
square matrix with the values of the vector a along its diagonal and zeros elsewhere. We will
also make use of a generalization of this, denoted by diag(a, k), which instead contains the
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values of a on the kth off-diagonal, with negative k being below the diagonal and positive k
being above.

Let us now introduce a sequence of matrices that will be at the heart of this work. We begin
as follows: consider a sequence of lower triangular matrices

{
Mn, n ∈Z

+} such that

Mn =
[

Mn−1 0n−1×1

mn mn,n

]
, (1)

where mn ∈R
n−1 is a row vector, mn,n ∈R, and M1 = m1,1, an initial value. Taking inspiration

from matryoshka dolls, the traditional Russian nesting dolls, we will refer to these objects as
matryoshkan matrices. Using their nested and triangular structures, we can make four quick
observations of note regarding matryoshkan matrices.

Proposition 1. Each of the following statements is a consequence of the definition of
matryoshkan matrices given by Equation (1):

(i) If Xn ∈R
n×n and Yn ∈R

n×n are both matryoshkan matrix sequences, then so are Xn +
Yn and XnYn.

(ii) If mi,i �= 0 for all i ∈ {1, . . . , n} then the matryoshkan matrix Mn ∈R
n×n is nonsingular.

Moreover, the inverse of Mn is given by the recursion

M−1
n =

⎡
⎣ M−1

n−1 0n−1×1

− 1
mn,n

mnM−1
n−1

1
mn,n

⎤
⎦ . (2)

(iii) If mi,i �= 0 for all i ∈ {1, . . . , n} and are all distinct, then the matrix exponential of the
matryoshkan matrix Mn ∈R

n×n multiplied by t ∈R follows the recursion

eMnt =
[

eMn−1t 0n−1×1

mn
(
Mn−1 − mn,nI

)−1(
eMn−1t − emn,ntI

)
emn,nt

]
. (3)

(iv) If mi,i �= 0 for all i ∈ {1, . . . , n} and are all distinct, then the matrices Un ∈R
n×n and

Dn ∈R
n×n are such that

MnUn = UnDn

for the matryoshkan matrix Mn ∈R
n×n, when defined recursively as

Un =
[

Un−1 0n−1×1

mn
(
Dn−1 − mn,nI

)−1 Un−1 1

]
, Dn =

[
Dn−1 0n−1×1

01×n−1 mn,n

]
. (4)

One can pause to note that in some sense any lower triangular matrix could be considered
matryoshkan, or at least could satisfy these properties. However, we note that some of the most
significant insights we can gain from the matryoshkan structure are the recursive implications
available for sequences of matrices. Moreover, it is the combination of the nested relationship
of consecutive matrices and the lower triangular structure that enables us to find these pat-
terns. We will now see how this notion of matryoshkan matrix sequences and the associated
properties above can be used to specify element-wise solutions to a sequence of differential
equations.
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Lemma 1. Let Mn ∈R
n×n, cn ∈R

n, and sn(t) : R+ →R
n be such that

Mn =
[

Mn−1 0n−1×1

mn mn,n

]
, cn =

[
cn−1

cn

]
, and sn(t) =

[
sn−1(t)

sn(t)

]
,

where mn ∈R
n−1 is a row vector, cn−1 ∈R

n−1, sn(t) ∈R, and M1 = m1,1. Further, suppose
that

d

dt
sn(t) = Mnsn(t) + cn.

Then, if mk,k �= 0 for all k ∈ {1, . . . , n}, the vector function sn(t) is given by

sn(t) = eMntsn(0) − M−1
n

(
I − eMnt)cn, (5)

and if all mk,k �= 0 for k ∈ {1, . . . , n} are distinct, the nth scalar function sn(t) is given by

sn(t) = mn
(
Mn−1 − mn,nI

)−1 (
eMn−1t − emn,ntI

)(
sn−1(0) + cn−1

mn,n

)
+ emn,ntsn(0)

− cn

mn,n

(
1 − emn,nt)+ mn

mn,n
M−1

n−1

(
I − eMn−1t)cn−1, (6)

where t ≥ 0.

In Equation (5), we can see that the vector solution to the n-dimensional ODE system is
written in terms of both the inverse and the exponential of the nth matryoshkan matrix. To
compute the full vector solution, then, we could simply directly exploit the matryoshkan struc-
ture of both the inverse and the exponential from Equations (2) and (3) and calculate each
individual matrix function recursively. However, one promising method to compute these at
once would be to instead leverage the matryoshkan form of the diagonalized decomposition
in Equation (4). That is, both the matrix exponential and the inverse can of course be easily
computed from the decomposition matrices, but this way one can also conveniently use the
recursion in Equation (4) to simultaneously compute terms needed for both the matrix expo-
nential and the inverse. At each step in the recursion, one needs to compute Un, U−1

n , and Dn.
Because Un is itself a matryoshkan matrix, note that we can use Equation (2) to find U−1

n .
Starting from U1 = U−1

1 = 1 and D1 = m1,1 with pre-allocated space, the update from n − 1 to
n takes O(1) operations to append mn,n to Dn−1, O(n − 1) operations to compute the divisions

needed to form the vector mn
(
Dn−1 − mn,nI

)−1 for U−1
n , and O

(
(n − 1)2

)
operations to then

multiply this vector by Un−1 for Un. Thus, Step i is O
(
(i − 1)2

)
for i ∈ {1, . . . n}, yielding that

in sum it takes O
(
n3
)

operations to form Un, U−1
n , and Dn. Naturally, these same ideas apply to

the computation of Equation (6), where many matryoshkan forms—the inverses, exponentials,
and even products of square matrices—can be recognized and calculated recursively.

With this lemma in hand, we can now move to using these matrix sequences for calculat-
ing Markov process moments. To do so, we will use the infinitesimal generator, a key tool
for Markov processes, to find the derivatives of the moments through time. By identifying a
matryoshkan matrix structure in these differential equations, we are able to apply Lemma 1 to
find closed-form expressions for the moments.

3. Calculating moments through matryoshkan matrix sequences

In this section we connect matryoshkan matrix sequences with the moments of Markov pro-
cesses. In Subsection 3.1, we prove the main result, which is the computation of the moment of
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a one-dimensional polynomial Markov process through matryoshkan matrices. To demonstrate
the applicability of this result, we now apply it to a series of examples. First, in Subsection 3.2,
we obtain the moments of the self-exciting Hawkes process, for which finding moments in
closed form has been an open problem. Then, in Subsection 3.3, we study the Markovian shot
noise process, a stochastic intensity process that trades self-excitement for external shocks.
Next, in Subsection 3.4, we showcase the use of these techniques for diffusive dynamics
through application to Itô diffusions. In Subsection 3.5, we consider growth–collapse processes
as an application of these techniques to models with state-dependent and randomly sized down
jumps. Finally, in Subsection 3.6 we apply this technique to a process with jumps both upwards
and downwards, a linear birth–death–immigration process we have studied previously. In each
scenario, we describe the process of interest, define the infinitesimal generator, and identify
the matrix structure. Through this, we solve for the process moments.

3.1. The moments of general polynomial Markov processes

The connection between matryoshkan matrices and Markov processes is built upon a key
tool for Markov processes, the infinitesimal generator. For a detailed introduction to infinitesi-
mal generators and their use in studying Markov processes, see e.g. [23]. For a Markov process
Xt on a state space S, the infinitesimal generator on a function f : S→R is defined as

L f (x) = lim
τ→0

E
[
f (Xτ ) | X0 = x

]− f (x)

τ
.

In our context and in many others, the power of the infinitesimal generator comes through use
of Dynkin’s formula, which gives us that

d

dt
E
[
f (Xt)

]=E
[L f (Xt)

]
.

To study the moments of a Markov process, we are interested in functions f that are polynomi-
als. Let us suppose now that Lxn for any n ∈Z

+ is polynomial in the lower powers of x for a
given Markov process Xt, meaning that Xt is a one-dimensional polynomial process. Then we
can write

LXn
t = θ0,n +

n∑
i=1

θi,nXi
t,

which implies that the differential equation for the nth moment of this process is

d

dt
E
[
Xn

t

]= θ0,n +
n∑

i=1

θi,nE
[
Xi

t

]
,

for some collection of constants θ0,n, θ1,n, θn,n. Thus, to solve for the nth moment of Xt we
must first solve for all the moments of lower order. We can also observe that to solve for
the (n − 1)th moment we must have all the moments below it. In comparing these systems
of differential equations, we can see that all of the equations in the system for the (n − 1)th
moment are also in the system for the nth moment. No coefficients are changed in any of these
lower moment equations; the only difference between the two systems is the inclusion of the
differential equation for the nth moment in its own system. Hence, the nesting matryoshkan
structure arises. By expressing each system of linear ODEs in terms of a vector of moments,
a matrix of coefficients, and a vector of shift terms, we can use these matrix sequences to
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capture how one moment’s system encapsulates all the systems below it. This observation
then allows us to calculate all the moments of the process in closed form, as we now show in
Theorem 1. In steady state, this also implies that the (n + 1)th moment can be computed as a
linear combination of moments 1 through n.

Theorem 1. Let Xt be a Markov process such that the time derivative of its nth moment can be
written as

d

dt
E
[
Xn

t

]= θ0,n +
n∑

i=1

θi,nE
[
Xi

t

]
, (7)

for any n ∈Z
+, where t ≥ 0 and θi,n ∈R for all i ≤ n. Let �n ∈R

n×n be defined
recursively by

�n =
[
�n−1 0n−1×1

θn θn,n

]
, (8)

where θn = [θ1,n, . . . , θn−1,n] and �1 = θ1,1. Furthermore, let θ0,n = [θ0,1, . . . , θ0,n]T.
Then, if θk,k �= 0 for all k ∈ {1, . . . , n} are distinct, the nth moment of Xt can be expressed as

E
[
Xn

t

]= θn
(
�n−1 − θn,nI

)−1 (
e�n−1t − eθn,ntI

) (
xn−1(x0) + θ0,n−1

θn,n

)

+ xn
0eθn,nt − θ0,n

(
1 − eθn,nt

)
θn,n

+ θn

θn,n
�−1

n−1

(
I − e�n−1t)θ0,n−1, (9)

where x0 is the initial value of Xt and where xn(a) ∈R
n is such that (xn(a))i = ai. If Xt has a

stationary distribution and the nth steady-state moment E
[
Xn∞

]
exists, it is given by

E
[
Xn∞

]= 1

θn,n

(
θn�

−1
n−1θ0,n−1 − θ0,n

)
, (10)

and these steady-state moments satisfy the recursive relationship

E
[
Xn+1∞

]= − 1

θn+1,n+1

(
θn+1sX

n (∞) + θ0,n+1
)
, (11)

where sX
n (∞) ∈R

n is the vector of steady-state moments such that
(
sX

n (∞)
)

i =E
[
Xi∞

]
.

Proof. Using the definition of �n in Equation (8), Equation (7) gives rise to the system of
ODEs given by

d

dt
sX

n (t) = �nsX
n (t) + θ0,n, (12)

where sX
n (t) ∈R

n is the vector of transient moments at time t ≥ 0 such that
(
sX

n (t)
)

i =E
[
Xi

t

]
for all 1 ≤ i ≤ n. We can observe that by definition the matrices �n form a matryoshkan
sequence, and thus by Lemma 1 we achieve the stated transient solution. To prove the steady-
state solution, we can first note that if the process has a steady-state distribution then the vector
sX

n (∞) ∈R
n defined by

(
sX

n (∞)
)

i =E
[
Xi∞

]
will satisfy

0 = �nsX
n (∞) + θ0,n, (13)
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as this is the equilibrium solution to the differential equation corresponding to each of the
moments. This system has a unique solution, since �n is nonsingular owing to the assump-
tion that the diagonal values are unique and nonzero. Using Proposition 1, we find the nth
moment by

E
[
Xn∞

]= −vT
n �−1

n θ0,n =
[

1
θn,n

θn�
−1
n−1 − 1

θn,n

] [θ0,n−1

θ0,n

]
= 1

θn,n

(
θn�

−1
n−1θ0,n−1 − θ0,n

)
,

which completes the proof of Equation (10). To conclude, one can note that each line of the
linear system in Equation (13) implies the stated recursion. �

3.2. Application to Hawkes process intensities

For our first example of this method let us turn to our motivating application, the Markovian
Hawkes process intensity. Via [33], this process is defined as follows. Let λt be a stochastic
arrival process intensity such that

λt = λ∗ + (λ0 − λ∗)e−βt +
∫ t

0
αe−β(t−s)dNs = λ∗ + (λ0 − λ∗)e−βt +

Nt∑
i=1

αe−β(t−Ai),

where
{
Ai | i ∈Z

+} is the sequence of arrival epochs in the point process Nt, with

P(Nt+s − Nt = 0 |Ft)= P(Nt+s − Nt = 0 | λt)= e− ∫ s
0 λt+udu,

where Ft is the filtration generated by the history of λt up to time t. Let us note that the Hawkes
process as defined in [33] is not in general a Markov process. If we restrict the excitation kernel
to being exponential, then we obtain a Markovian process. In what remains, we will assume
that the excitation kernel is exponential. Moreover, we will assume that β > α > 0, so that
the process has a stationary distribution, and we will also let λ∗ > 0 and λ0 > 0. Note that
the process behaves as follows: at arrivals λt increases by α, and in the interims it decays
exponentially at rate β towards the baseline level λ∗. Thus, (λt,Nt) is referred to as a self-
exciting point process, as the occurrence of an arrival increases the intensity and thus increases
the likelihood that another arrival will occur soon afterwards. Because the intensity λt forms
a Markov process, we can follow the literature (see, e.g., Equation (7) of [15]) and write its
infinitesimal generator for a (sufficiently regular) function f : R+ →R as follows:

L f (λt) = λt( f (λt + α) − f (λt))− β
(
λt − λ∗) f ′(λt),

where f ′(x) is the first derivative of f (·) evaluated at x. Note that this expression showcases the
process dynamics that we have described, as the first term on the right-hand side corresponds
to the product of the arrival rate and the change in the process when an arrival occurs, while
the second term captures the decay.

To obtain the nth moment we must consider f (·) of the form f (x) = xn. In the simplest case,
when n = 1, this formula yields an ODE for the mean, which can be written as

d

dt
E[λt] = αE[λt] − β

(
E[λt] − λ∗)= βλ∗ − (β − α)E[λt].

By comparison, for the second moment at n = 2 we have

d

dt
E
[
λ2

t

]=E

[
λt
(
(λt + α)2 − λ2

t

)− 2βλt
(
λt − λ∗)]= (

2βλ∗ + α2)
E[λt] − 2(β − α)E

[
λ2

t

]
,

https://doi.org/10.1017/apr.2022.8 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.8
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and we can note that while the ODE for the mean is autonomous, the second moment equation
depends on both the mean and the second moment. Thus, to solve for the second moment we
must also solve for the mean, leading us to the following system of differential equations:

d

dt

[
E[λt]

E
[
λ2

t

]
]

=
[ −(β − α) 0

2βλ∗ + α2 −2(β − α)

] [
E[λt]

E
[
λ2

t

]
]

+
[
βλ∗

0

]
.

Moving on to the third moment, the infinitesimal generator formula yields

d

dt
E
[
λ3

t

]=E

[
λt
(
(λt + α)3 − λ3

t

)− 3βλ2
t

(
λt − λ∗)]

= α3
E[λt] + 3

(
βλ∗ + α2)

E
[
λ2

t

]− 3(β − α)E
[
λ3

t

]
,

and hence we see that this ODE now depends on all of the first three moments. Thus, to solve
for E

[
λ3

t

]
we need to solve the system of ODEs

d

dt

⎡
⎢⎢⎣
E[λt]

E
[
λ2

t

]
E
[
λ3

t

]
⎤
⎥⎥⎦=

⎡
⎢⎢⎣

−(β − α) 0 0

2βλ∗ + α2 −2(β − α) 0

α3 3
(
βλ∗ + α2

) −3(β − α)

⎤
⎥⎥⎦
⎡
⎢⎢⎣
E[λt]

E
[
λ2

t

]
E
[
λ3

t

]
⎤
⎥⎥⎦+

⎡
⎢⎣
βλ∗

0

0

⎤
⎥⎦ ,

and this now suggests the matryoshkan structure of these process moments: we can note that
the system for the second moment is nested within the system for the third moment. That
is, the matrix for the three-dimensional system contains the two-dimensional system in its
upper left-hand block, just as the vector of the first three moments has the first two moments
in its first two coordinates. In general, we can see that the nth moment will satisfy the ODE
given by

d

dt
E
[
λn

t

]=E
[
λt
(
(λt + α)n − λn

t

)− nβλn−1
t

(
λt − λ∗)]

=
n∑

k=1

(
n

k − 1

)
αn−k+1

E
[
λk

t

]− nβE
[
λn

t

]+ nβλ∗
E
[
λn−1

t

]
,

where we have simplified by use of the binomial theorem. Thus, the system of differential equa-
tions needed to solve for the nth moment uses the matrix from the (n − 1)th system augmented
below by the row[

αn nαn−1,
(

n
2

)
αn−2, . . . ,

(
n

n − 3

)
α3,

(
n

n − 2

)
α2 + nβλ∗, −n(β − α)

]
, (14)

and buffered on the right by a column of zeros. To collect these coefficients into a coherent
structure, let us define the matrix Pn(a) ∈R

n×n for a ∈R such that

(Pn(a))i,j =
⎧⎨
⎩
(

i
j − 1

)
ai−j+1, i ≥ j,

0, i< j.
(15)

If we momentarily disregard the terms with β in the general augment row in Equation (14), one
can observe that the remaining terms in this vector are given by the bottom row of the matrix
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Pn(α). Furthermore, by definition
{Pn(a) | n ∈Z

+} forms a matryoshkan matrix sequence.
We can also note that Pn(a) can be equivalently defined as

Pn(a) =
n∑

k=1

a

[
0n−k×n−k 0n−k×k

0k×n−k Lk(a)

]
,

where Lk(a) = eadiag(1:k−1,−1) is the kth lower triangular Pascal matrix; i.e. the nonzero terms in
Lk(1) yield the first k rows of Pascal’s triangle. Alternatively, Pn(a) can be found by creating a
lower triangular matrix from the strictly lower triangular values in Ln+1(a). For these reasons,
we refer to the sequence of Pn(a) as matryoshkan Pascal matrices. For brief overviews and
beautiful properties of Pascal matrices, see [8, 9, 49, 21]. As we have seen in the preceding
derivation, matryoshkan Pascal matrices arise naturally in using the infinitesimal generator to
calculate moments of Markov processes. This follows from the application of the binomial
theorem to jump terms. Now, in the case of the Markovian Hawkes process intensity we find
closed-form expressions for all transient moments in Corollary 1.

Corollary 1. Let λt be the intensity of a Hawkes process with baseline intensity λ∗ > 0,
intensity jump α > 0, and decay rate β > α. Then the nth moment of λt is given by

E
[
λn

t

]= mλ
n

(
Mλ

n−1 + n(β − α)I
)−1 (

eMλ
n−1t − e−n(β−α)tI

) (
xn−1(λ0) − βλ∗v1

n(β − α)

)

+ λn
0e−n(β−α)t + I{n=1}

βλ∗

β − α

(
1 − e−(β−α)t)

− βλ∗

n(β − α)
mλ

n

(
Mλ

n−1

)−1
(

I − eMλ
n−1t

)
v1, (16)

for all t ≥ 0 and n ∈Z
+, where v1 ∈R

n is the unit vector in the first coordinate, Mλ
n =

βλ∗diag(2 : n,−1)− βdiag(1 : n)+Pn(α), mλ
n =

[(
Mλ

n

)
n,1 , . . . ,

(
Mλ

n

)
n,n−1

]
is given by

(
mλ

n

)
j =

⎧⎪⎨
⎪⎩
(

n

j − 1

)
αn−j+1 if j< n − 1,

(
n

n − 2

)
α2 + nβλ∗ if j = n − 1,

and xn(a) ∈R
n is such that (xn(a))i = ai. In steady state, the nth moment of λt is given by

lim
t→∞ E

[
λn

t

]= − βλ

n(β − α)
mλ

n

(
Mλ

n−1

)−1v1, (17)

for n ≥ 2, with limt→∞ E[λt] = βλ∗
β−α . Moreover, the (n + 1)th steady-state moment of the

Hawkes process intensity is given by the recursion

lim
t→∞ E

[
λn+1

t

]= 1

(n + 1)(β − α)
mλ

n+1sλn, (18)

for all n ∈Z
+, where sλn ∈R

n is the vector of steady-state moments defined so that
(
sλn
)

i =
limt→∞ E

[
λi

t

]
for 1 ≤ i ≤ n.
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3.3. Application to shot noise processes

As a second example of calculating moments through matryoshkan matrices, consider a
Markovian shot noise process; see e.g. [16, Chapter 6] for an introduction. That is, let ψt be
defined so that

ψt =
Nt∑

i=1

Jie
−β(t−Ai),

where β > 0,
{
Ji | i ∈Z

+} is a sequence of independent and identically distributed positive
random variables with cumulative distribution function FJ(·), Nt is a Poisson process at rate
λ> 0, and

{
Ai | i ∈Z

+} is the sequence of arrival times in the Poisson process. These dynamics
yield the following infinitesimal generator:

L f (ψt) = λ

∫ ∞

0
( f (ψt + j) − f (ψt)) dFJ( j) − βψtf

′(ψt),

which can be simplified directly from Equation (2.2) of [17]. We can note that this is similar
to the Hawkes process discussed in Subsection 3.2, as the right-hand side contains a term for
jumps and a term for exponential decay. However, this infinitesimal generator formula also
shows key differences between the two processes, as the jumps in the shot noise process are of
random size and they occur at the fixed, exogenous rate λ> 0. Supposing the mean jump size
is finite, this now yields that the mean satisfies the ODE

d

dt
E[ψt] = λE[J1] − βE[ψt],

whereas if E
[
J2

1

]
<∞, the second moment of the shot noise process is given by the

solution to

d

dt
E
[
ψ2

t

]=E

[
λ
(
(ψt + J1)2 −ψ2

t

)− 2βψ2
t

]
= λE

[
J2

1

]+ 2λE[J1]E[ψt] − 2βE
[
ψ2

t

]
,

which depends on both the second moment and the mean. This gives rise to the linear system
of differential equations

d

dt

[
E[ψt]

E
[
ψ2

t

]
]

=
[ −β 0

2λE[J1] −2β

] [
E[ψt]

E
[
ψ2

t

]
]

+
[
λE[J1]

λE
[
J2

1

]
]
,

and by observing that the differential equation for the third moment depends on the first three
moments if the third moment of the jump size is finite,

d

dt
E
[
ψ3

t

]=E

[
λ
(

(ψt + J1)3 −ψ3
t

)
− 3βψ3

t

]
= λE

[
J3

1

]+ 3λE
[
J2

1

]
E[ψt]

+ 3λE[J1]E
[
ψ2

t

]− 3βE
[
ψ3

t

]
,

we can see that the system for the first two moments is again contained in the system for the
first three moments:

d

dt

⎡
⎢⎢⎣
E[ψt]

E
[
ψ2

t

]
E
[
ψ3

t

]
⎤
⎥⎥⎦=

⎡
⎢⎢⎣

−β 0 0

2λE[J1] −2β 0

3λE
[
J2

1

]
3λE[J1] −3β

⎤
⎥⎥⎦
⎡
⎢⎢⎣
E[ψt]

E
[
ψ2

t

]
E
[
ψ3

t

]
⎤
⎥⎥⎦+

⎡
⎢⎢⎣
λE[J1]

λE
[
J2

1

]
λE
[
J3

1

]
⎤
⎥⎥⎦ .
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By use of the binomial theorem, we can observe that if E
[
Jn

1

]
<∞ then the nth moment of the

shot noise process satisfies

d

dt
E
[
ψn

t

]=E
[
λ
(
(ψt + J1)n −ψn

t

)− nβψn
t

]= n−1∑
k=0

(
n
k

)
E

[
Jn−k

1

]
E

[
ψk

t

]
− nβE

[
ψn

t

]
,

which means that the n-dimensional system is equal to the preceding one augmented below by
the row vector[

nλE
[
Jn−1

1

]
,
(

n
2

)
λE

[
Jn−2

1

]
,
(

n
3

)
λE

[
Jn−3

1

]
, . . . ,

(
n

n − 2

)
λE

[
J2

1

]
, nλE[J1] −nβ

]
,

and to the right by zeros. Bringing this together, this now leads us to Corollary 2.

Corollary 2. Let ψt be the intensity of a shot noise process with epochs given by a Poisson
process with rate λ> 0, jump sizes drawn from the sequence of independent and identically
distributed random variables

{
Ji | i ∈Z

+}, and exponential decay at rate β > 0. If E
[
Jn

1

]
<∞,

the nth moment of ψt is given by

E
[
ψn

t

]= mψ
n

(
Mψ

n−1 + nβI
)−1(

eMψ
n−1t − e−nβtI

) (
xn−1(ψ0)− λjn−1

nβ

)
+ψn

0 e−nβt

+ λE
[
Jn

1

]
nβ

(
1 − e−nβt)− λmψ

n

nβ

(
Mψ

n−1

)−1 (
I − eMψ

n−1t
)

jn−1, (19)

for all t ≥ 0 and n ∈Z
+, where jn ∈R

n is such that
(
jn

)
i =E

[
Ji

1

]
; Mψ

n ∈R
n×n is recursively

defined by

Mψ
n =

[
Mψ

n−1 0n−1×1

mψ
n −nβ

]
,

with the row vector mψ
n ∈R

n−1 defined so that
(
mψ

n
)

i =
(

n
i

)
λE

[
Jn−i

1

]
, and with Mψ

1 = −β;

and xn(a) ∈R
n is such that (xn(a))i = ai. In steady state, the (n + 1)th moment of the shot

noise process is given by

lim
t→∞ E

[
ψn

t

]= λ

nβ

(
E
[
Jn

1

]− mψ
n

(
Mψ

n−1

)−1
jn−1

)
(20)

for n ≥ 2, where limt→∞ E[ψt] = λ
β
E[J1]. Moreover, if E

[
Jn+1

1

]
<∞, the (n + 1)th moment of

the shot noise process is given by the recursion

lim
t→∞ E

[
ψn+1

t

]= 1

(n + 1)β

(
mψ

n+1sψn +E
[
Jn+1

1

])
, (21)

for all n ∈Z
+, where sψn ∈R

n is the vector of steady-state moments defined so that
(
sψn
)

i =
limt→∞ E

[
ψ i

t

]
for 1 ≤ i ≤ n.

3.4. Application to Itô diffusions

For our third example, we consider an Itô diffusion; see e.g. [45] for an overview. Let St be
given by the stochastic differential equation

dSt = g(St)dt + h(St)dBt,
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where Bt is a Brownian motion and g(·) and h(·) are real-valued functions. By Theorem 7.9 of
[45], the infinitesimal generator for this process is given by

L f (St) = g(St)f
′(St) + h(St)2

2
f ′′(St),

where f ′′(x) is the second derivative of f (·) evaluated at x. Because we will be considering
functions of the form f (x) = xn for n ∈Z

+, we will now specify the forms of g(·) and h(·) to be
g(x) =μ+ θx for some μ ∈R and θ ∈R and h(x) = σxγ /2 for some σ ∈R and γ ∈ {0, 1, 2}.
One can note that this encompasses a myriad of relevant stochastic processes including many
that are popular in the financial models literature, such as Ornstein–Uhlenbeck processes, geo-
metric Brownian motion, and Cox–Ingersoll–Ross processes. In this case, the infinitesimal
generator becomes

L f (St) = (μ+ θSt) f ′(St) + σ 2Sγt
2

f ′′(St),

meaning that we can express the ODE for the mean as

d

dt
E[St] =μ+ θE[St],

and similarly the second moment will be given by the solution to

d

dt
E
[
S2

t

]=E
[
2(μ+ θSt)St + σ 2Sγt

]= 2μE[St] + 2θE
[
S2

t

]+ σ 2
E
[
Sγt
]
.

For the sake of example, we now let γ = 1, as is the case in the Cox–Ingersoll–Ross process.
Then the first two transient moments of St will be given by the solution to the system

d

dt

[
E[St]

E
[
S2

t

]
]

=
[

θ 0

2μ+ σ 2 2θ

] [
E[St]

E
[
S2

t

]
]

+
[
μ

0

]
.

By observing that the third moment differential equation is

d

dt
E
[
S3

t

]=E

[
3(μ+ θSt)S

2
t + 3σ 2Sγ+1

t

]
= 3μE

[
S2

t

]+ 3θE
[
S3

t

]+ 3σ 2
E
[
Sγ+1

t
]
,

we can note that the third moment system for γ = 1 is

d

dt

⎡
⎢⎢⎣
E[St]

E
[
S2

t

]
E
[
S3

t

]
⎤
⎥⎥⎦=

⎡
⎢⎢⎣

θ 0 0

2μ+ σ 2 2θ 0

0 3μ+ 3σ 2 3θ

⎤
⎥⎥⎦
⎡
⎢⎢⎣
E[St]

E
[
S2

t

]
E
[
S3

t

]
⎤
⎥⎥⎦+

⎡
⎢⎣
μ

0

0

⎤
⎥⎦ ,

and this showcases the matryoshkan nesting structure, as the second moment system is con-
tained within the third. Because the general nth moment for n ≥ 2 has differential equation
given by

d

dt
E
[
Sn

t

]=E

[
n(μ+ θSt)S

n−1
t + n(n − 1)σ 2

2
Sn+γ−2

t

]

= nμE
[
Sn−1

t

]+ nθE
[
Sn

t

]+ n(n − 1)σ 2

2
E

[
Sn+γ−2

t

]
,
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we can see that the (n − 1)th system can be augmented below by the row vector for γ = 1,[
0, 0, . . . , 0, nμ+ n(n−1)σ 2

2 , nθ
]
,

and to the right by zeros. Through this observation, we can now give the moments of Itô
diffusions in Corollary 3.

Corollary 3. Let St be an Itô diffusion that satisfies the stochastic differential equation

dSt = (μ+ θSt)dt + σSγ /2t dBt, (22)

where Bt is a Brownian motion, μ, θ, σ ∈R, and γ ∈ {0, 1, 2}. Then the nth moment of St is
given by

E
[
Sn

t

]= mS
n

(
MS

n−1 − χnI
)−1(

eMS
n−1t − eχntI

) (
xn−1(S0) + μv1 + σ 2

I{γ=0}v2

χn

)

+ Sn
0eχnt − (

μI{n=1} + σ 2
I{γ=0,n=2}

)1 − eχnt

χn

+ mS
n

χn

(
MS

n−1

)−1(
I − eMS

n−1t
) (
μv1 + σ 2

I{γ=0}v2

)
, (23)

for all t ≥ 0 and n ∈Z
+, where χn = nθ + n

2 (n − 1)σ 2
I{γ=2};

MS
n = θdiag(1 : n) +μdiag(2 : n,−1) + σ 2

2
diag

(
d2−γ

n+γ−2, γ − 2
)

for dj
k ∈R

k such that
(
dj

k

)
i = ( j + i)( j + i − 1);

mS
n =

[(
MS

n

)
n,1, . . . ,

(
MS

n

)
n,n−1

]
is such that

(
mS

n

)
j
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

nμ+ n(n−1)σ 2

2 I{γ=1}, j = n − 1,

n(n−1)σ 2

2 I{γ=0}, j = n − 2,

0, 1 ≤ j< n − 2;

and xn(a) ∈R
n is such that (xn(a))i = ai. If θ < 0 and γ ∈ {0, 1}, then the nth steady-state

moment of St is given by

lim
t→∞ E

[
Sn

t

]= μ

χn
mS

n

(
MS

n−1

)−1
v1, (24)

for n ≥ 2, with limt→∞ E[St] = −μ
θ

. Moreover, the (n + 1)th steady-state moment of St is given
by the recursion

lim
t→∞ E

[
Sn+1

t

]= − 1

χn
mS

n+1sS
n, (25)

for all n ∈Z
+, where sS

n ∈R
n is the vector of steady-state moments defined so that

(
sS

n

)
i =

limt→∞ E
[
Si

t

]
for 1 ≤ i ≤ n.
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As a consequence of these expressions we can also gain insight on the moments of an
Itô diffusion in the case of non-integer γ ∈ [0, 2], as is used in volatility models such as the
CEV model and the SABR model; see e.g. [34]. This can be achieved through bounding the
differential equations, as the nth moment of such a diffusion is again given by

d

dt
E
[
Sn

t

]= nμE
[
Sn−1

t

]+ nθE
[
Sn

t

]+ n(n − 1)σ 2

2
E

[
Sn+γ−2

t

]
,

the rightmost term of which can be bounded above and below by

E

[
Sn+
γ �−2

t

]
≤E

[
Sn+γ−2

t

]
≤E

[
Sn+�γ −2

t

]
,

and the differential equations given by substituting these bounded terms form a closed sys-
tem solvable by Corollary 3. Assuming the true differential equation and the upper and lower
bounds all share an initial value, the solution to the bounded equations bounds the solution to
the true moment equation; see [32].

3.5. Application to growth–collapse processes

For a fourth example, we consider growth–collapse processes with Poisson-driven shocks.
These processes have been studied in a variety of contexts; see e.g. [7, 38, 39, 6]. More recently,
these processes and their related extensions have seen renewed interest in connection with
the study of the crypto-currency Bitcoin; see for example [28, 40, 37, 27]. While growth–
collapse processes can be defined in many different ways, for this example we use a definition
in the style of Section 4 from [7]. We let Yt be the state of the growth–collapse model and let
{Ui | i ∈Z

+} be a sequence of independent Uni(0, 1) random variables that are also indepen-
dent from the state and history of the growth–collapse process. From Proposition 1 of [7], the
infinitesimal generator of Yt is given by

L f (Yt) = λf ′(Yt) +μ

∫ 1

0
(f (uYt) − f (Yt)) du.

Thus, Yt experiences linear growth at rate λ> 0 throughout time, but it also collapses at epochs
given by a Poisson process with rate μ> 0. At the ith collapse epoch the process falls to a frac-
tion of its current level; specifically it jumps down to UiYt. Using the infinitesimal generator,
we can see that the mean of this growth–collapse process satisfies

d

dt
E[Yt] = λ+μ(E[U1Yt] −E[Yt])= λ− μ

2
E[Yt],

and its second moment satisfies

d

dt
E
[
Y2

t

]= 2λE[Yt] +μ
(
E
[
U2

1Y2
t

]−E
[
Y2

t

])= 2λE[Yt] − 2μ

3
E
[
Y2

t

]
.

Therefore, we can write the linear system of differential equations for the second moment of
this growth–collapse process as

d

dt

[
E[Yt]

E
[
Y2

t

]
]

=
[−μ

2 0

2λ − 2μ
3

] [
E[Yt]

E
[
Y2

t

]
]

+
[
λ

0

]
.

Moving to the third moment, via the infinitesimal generator we write its differential equation as

d

dt
E
[
Y3

t

]= 3λE
[
Y2

t

]+μ
(
E
[
U3

1Y3
t

]−E
[
Y3

t

])= 3λE
[
Y2

t

]− 3μ

4
E
[
Y3

t

]
,

https://doi.org/10.1017/apr.2022.8 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.8


Matrix calculations for moments of Markov processes 141

which shows that the system of differential equations for the third moment is

d

dt

⎡
⎢⎢⎣
E[Yt]

E
[
Y2

t

]
E
[
Y3

t

]
⎤
⎥⎥⎦=

⎡
⎢⎢⎣

−μ
2 0 0

2λ − 2μ
3 0

0 3λ − 3μ
4

⎤
⎥⎥⎦
⎡
⎢⎢⎣
E[Yt]

E
[
Y2

t

]
E
[
Y3

t

]
⎤
⎥⎥⎦+

⎡
⎢⎣
λ

0

0

⎤
⎥⎦ ;

this obviously encapsulates the system for the first two moments. We can note that the general
nth moment will satisfy

d

dt
E
[
Yn

t

]= nλE
[
Yn−1

t

]+μ
(
E
[
Un

1Yn
t

]−E
[
Yn

t

])= nλE
[
Yn−1

t

]− nμ

n + 1
E
[
Yn

t

]
,

and thus the system for the nth moment is given by appending the row vector[
0, , 0, . . . , 0, nλ, − nμ

n+1

]
below the matrix from the (n − 1)th system augmented by zeros on the right. Following this
derivation, we reach the general expressions for the moments in Corollary 4. Furthermore, we
can note that because of the relative simplicity of this particular structure, we are able to solve
the recursion for the steady-state moments and give these terms explicitly.

Corollary 4. Let Yt be a growth–collapse process with growth rate λ> 0 and uniformly sized
collapses occurring according to a Poisson process with rate μ> 0. Then the nth moment of
Yt is given by

E
[
Yn

t

]= nλvT
n−1

(
MY

n−1 + nμ

n + 1
I
)−1(

eMY
n−1t − e− nμt

n+1 I
) (

xn−1(y0) − (n + 1)λv1

nμ

)

+ yn
0e− nμt

n+1 + (n + 1)λI{n=1}
nμ

(
1 − e− nμt

n+1

)
− (n + 1)λ2

μ
vT

n−1

(
MY

n−1

)−1
(

I − eMY
n−1t

)
v1, (26)

where y0 is the initial value of Yt, xn(a) ∈R
n is such that (xn(a))i = ai,

MY
n = λdiag(2 : n,−1)−μdiag

(
1

2
:

n

n + 1

)
,

and

mY
n =

[(
MY

n

)
n,1 , . . . ,

(
MY

n

)
n,n−1

]
is such that mY

n = nλvT
n−1. Moreover, the nth steady-state moment of Yt is given by

lim
t→∞ E

[
Yn

t

]= (n + 1)!
(
λ

μ

)n

, (27)

for n ∈Z
+.
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3.6. Application to ephemerally self-exciting processes

As a final detailed example of the applicability of matryoshkan matrices, we now consider a
stochastic process we have analyzed in [19]. This process is a linear birth–death–immigration
process, which has been of interest in classical teletraffic theory; see for example [46], [35], and
Section 8.4 of [36]. By comparison, our interests in [19] are in alternate representations of self-
exciting processes and alternate constructions of the original self-exciting process, the Hawkes
process. Here, the occurrence of an arrival increases the arrival rate by an amount α > 0, as in
the Hawkes process, and this increase expires after an exponentially distributed duration with
some rate μ>α. Accordingly, this process is an ephemerally self-exciting process. Given a
baseline intensity ν∗ > 0, let Qt be such that new arrivals occur at rate ν∗ + αQt and then the
overall rate until the next excitement expiration is μQt. One can then think of Qt as the number
of entities still causing active excitement at time t ≥ 0. We will refer to Qt as the number in
system for this ephemerally self-exciting process. The infinitesimal generator for a function
f : N→R is thus

L f (Qt) = (
ν∗ + αQt

)
( f (Qt + 1) − f (Qt))+μQt( f (Qt − 1) − f (Qt)) ,

which again captures the dynamics of the process, as the first term on the right-hand side is the
product of the up-jump rate and the change in function value upon an increase in the process,
while the second term is the product of the down-jump rate and the corresponding process
decrease. This now yields an ODE for the mean given by

d

dt
E[Qt] = ν∗ + αE[Qt] −μE[Qt] = ν∗ − (μ− α)E[Qt],

while the second moment will satisfy

d

dt
E
[
Q2

t

]=E

[(
ν∗ + αQt

) (
(Qt + 1)2 − Q2

t

)
+μQt

(
(Qt − 1)2 − Q2

t

)]
= (

2ν∗ +μ+ α
)
E[Qt] + ν∗ − 2(μ− α)E

[
Q2

t

]
.

Thus, the first two moments are given by the solution to the linear system

d

dt

[
E[Qt]

E
[
Q2

t

]]=
[ −(μ− α) 0

2ν∗ +μ+ α −2(μ− α)

] [
E[Qt]

E
[
Q2

t

]]+
[
ν∗

ν∗

]
,

and by observing that the third moment differential equation is

d

dt
E
[
Q3

t

]=E

[(
ν∗ + αQt

) (
(Qt + 1)3 − Q3

t

)+μQt
(
(Qt − 1)3 − Q3

t

)]
= (

3ν∗ + 3α + 3μ
)
E
[
Q2

t

]+ (
3ν∗ + α −μ

)
E[Qt] + ν∗ − 3(μ− α)E

[
Q3

t

]
,

we can see that the third moment system does indeed encapsulate the second moment system:

d

dt

⎡
⎢⎢⎣
E[Qt]

E
[
Q2

t

]
E
[
Q3

t

]
⎤
⎥⎥⎦=

⎡
⎢⎢⎣

−(μ− α) 0 0

2ν∗ +μ+ α −2(μ− α) 0

3ν∗ + α −μ 3ν∗ + 3α + 3μ −3(μ− α)

⎤
⎥⎥⎦
⎡
⎢⎢⎣
E[Qt]

E
[
Q2

t

]
E
[
Q3

t

]
⎤
⎥⎥⎦+

⎡
⎢⎣
ν∗

ν∗

ν∗

⎤
⎥⎦ .
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In general, the nth moment is given by the solution to

d

dt
E
[
Qn

t

]=E
[
(ν∗ + αQt)

(
(Qt + 1)n − Qn

t

)+μQt
(
(Qt − 1)n − Qn

t

)]
= ν∗ + ν∗

n−1∑
k=1

(
n
k

)
E

[
Qk

t

]
+ α

n∑
k=1

(
n

k − 1

)
E

[
Qk

t

]

+μ

n∑
k=1

(
n

k − 1

)
E

[
Qk

t

]
(−1)n−k−1,

which means that the nth system is given by augmenting the previous system below by[
nν∗ + α +μ(−1)n,

(
n
2

)
ν∗ + nα + nμ(−1)n−1, . . . , nν∗ +

(
n
2

)
α +

(
n
2

)
μ, −n(μ− α)

]
,

and to the right by zeros. By comparing this row vector to the definition of the matryoshkan
Pascal matrices in Equation (15), we arrive at explicit forms for the moments of this process,
shown now in Corollary 5.

Corollary 5. Let Qt be the number in system for an ephemerally self-exciting process with
baseline intensity ν∗ > 0, intensity jump α > 0, and duration rate μ>α. Then the nth moment
of Qt is given by

E
[
Qn

t

]= mQ
n

(
MQ

n−1 + n(μ− α)I
)−1(

eMQ
n−1t − e−n(μ−α)tI

) (
xn−1(Q0) − ν∗v

n(μ− α)

)

+ Qn
0e−n(μ−α)t + ν∗

n(μ− α)

(
1 − e−n(μ−α)t

)

− ν∗mQ
n

n(μ− α)

(
MQ

n−1

)−1(
I − eMQ

n−1t
)

v, (28)

for all t ≥ 0 and n ∈Z
+, where MQ

n = ν∗Pn(1)diag(v,−1) + αPn(1) +μPn(−1),

mQ
n =

[(
MQ

n

)
n,1
, . . . ,

(
MQ

n

)
n,n−1

]
is such that (

mQ
n

)
j
=
(

n
j

)
ν∗ +

(
n

j − 1

)
α +

(
n

j − 1

)
μ(−1)n−j−1,

and xn(a) ∈R
n is such that (xn(a))i = ai. In steady state, the nth moment of Qt is given by

lim
t→∞ E

[
Qn

t

]= ν∗

μ− α

(
1 − mQ

n

(
MQ

n−1

)−1
v
)
, (29)

for n ≥ 2, with limt→∞ E[Qt] = ν∗
μ−α . Moreover, the (n + 1)th steady-state moment of the

ephemerally self-exciting process is given by the recursion

lim
t→∞ E

[
Qn+1

t

]= 1

(n + 1)(μ− α)

(
mQ

n+1sQ
n + ν∗), (30)

for all n ∈Z
+, where sQ

n ∈R
n is the vector of steady-state moments defined so that

(
sQ

n
)

i =
limt→∞ E

[
Qi

t

]
for 1 ≤ i ≤ n.
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Let us note that the ephemerally self-exciting process is known to be negative binomi-
ally distributed in steady state [19]. Hence, while the vector and recursive computations in
Equations (29) and (30), respectively, may be useful for higher moments, for lower moments
there may be closed-form expressions available.

3.7. Additional applications by combination and permutation

While the preceding examples are the the only detailed examples we include in this paper,
we can note that these matryoshkan matrix methods can be applied to many other settings. In
fact, one can observe that these example derivations can be applied directly to processes that
feature a combination of their structures, such as the dynamic contagion process introduced in
[17]. The dynamic contagion process is a point process that is both self-excited and externally
excited, meaning that its intensity experiences jumps driven both by its own activity and by the
activity of an exogenous Poisson process. In this way, the process combines the behavior of
the Hawkes and shot noise processes. Hence, its infinitesimal generator can be written using
a combination of expressions used in Subsections 3.2 and 3.3, implying that all moments of
the process can be calculated through this methodology. Similarly, these methods can also
be readily applied to processes that combine dynamics from Hawkes processes and from Itô
diffusions, such as affine point processes. These processes, studied in e.g. [22, 48, 30], feature
both self-excitement and diffusion behavior and thus have an infinitesimal generator that can
be expressed using terms from the generators for Hawkes and Itô processes. One could also
study the combination of externally driven jumps and diffusive behavior, such as in affine jump
diffusions; see e.g. [20]. Of course, one can also consider permutations of the model features
seen in our examples, such as trading fixed-size jumps for random ones to form marked Hawkes
processes or changing to randomly sized batches of arrivals in the ephemerally self-exciting
process. In general, the key requirement from the assumptions in Theorem 1 is the closure of
the system of moment differential equations specified in Equation (7). This is equivalent to
having the infinitesimal generator of any polynomial being a polynomial of order no more than
the original, which again connects this work to the literature on polynomial processes. In fact,
the notion of closure of polynomial processes under combinations of infinitesimal generators
has been studied by [12]. In summary, infinitesimal generators of the form

L f (Xt) = (α0 + α1Xt)
∫ ∞

0
( f (Xt + a) − f (Xt))dFA(a)︸ ︷︷ ︸
Up-jumps

+ (α2 + α3Xt)f
′(Xt)︸ ︷︷ ︸

Drift, decay, or growth

+ (α4 + α5Xt)
∫ ∞

0
( f (Xt − b) − f (Xt))dFB(b)︸ ︷︷ ︸
Down-jumps

+ (
α6 + α7Xt + α8X2

t

)
f ′′(Xt)︸ ︷︷ ︸

Diffusion

+ α9

∫ ∞

0
(f (cXt) − f (Xt))dFC(c)︸ ︷︷ ︸

Expansion or collapse

can be handled by this methodology, where αj ∈R for all j and where the sequences {Ai}, {Bi},
and {Ci} are of mutually independent random variables with respective cumulative distribution
functions FA(·), FB(·), and FC(·). Finally we note that this example generator need not be
exclusive, as it is possible that other dynamics may also meet the closure requirements in
Equation (7).
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4. Conclusion

In this work, we have defined a novel sequence of matrices called matryoshkan matrices,
which stack like their Russian nesting doll namesakes. In doing so, we have found an efficient
manner of calculating the moments of a large class of Markov processes that satisfy a clo-
sure condition for the time derivatives of their transient moments, namely the one-dimensional
polynomial processes. Furthermore, this has yielded closed-form expressions for the transient
and steady-state moments of these process. Notably, this includes the intensity of the Hawkes
process, for which finding an expression for the nth moment was previously an open problem.
Other examples we have discussed include Itô diffusions from the mathematical finance liter-
ature and shot noise processes from the physics literature, which showcases the breadth of this
methodology.

We can note that there are many applications of this methodology that we have not explored
in this paper; these present opportunities for future work. For example, the vector form of the
moments arising from this matrix-based method naturally lends itself to use in the method of
moments. Thus, matryoshkan matrices have the potential to greatly simplify estimation for the
myriad of Markov processes to which they apply. Additionally, this vector of solutions may
also be of use in providing computationally tractable approximations of moment generating
functions. That is, by a Taylor expansion one can approximate a moment generating function
by a weighted sum of its moments. Because this paper’s matryoshkan matrix methods enable
efficient calculation of higher-order moments, this enables higher-order approximations of the
moment generating function.

As another important direction of future work, we are also interested in extending these
techniques to multivariate Markov processes. This is of practical relevance in many of the
settings we have described, such as point processes driven by the Hawkes or shot noise process
intensities. The challenge in this case arises in the fact that a moment’s differential equation
now depends on the lower product moments rather than just the lower moments, so the nesting
structure is not as neatly organized. Nevertheless, addressing this generalization is an extension
worth pursuing, as this would render these techniques even more widely applicable.

Appendix A. Proof of Proposition 1

Proof. For the sake of clarity and ease of reference, we will enumerate the proofs of the
four statements.

(i) Suppose Xn and Yn are both matryoshkan matrices. Then, by Equation (1), we have that

Xn + Yn =
[

Xn−1 0n−1×1

xn xn,n

]
+
[

Yn−1 0n−1×1

yn yn,n

]
=
[

Xn−1 + Yn−1 0n−1×1

xn + yn xn,n + yn,n

]
,

and

XnYn =
[

Xn−1 0n−1×1

xn xn,n

] [
Yn−1 0n−1×1

yn yn,n

]
=
[

Xn−1Yn−1 0n−1×1

xnYn−1 + xn,nyn xn,nyn,n

]
.

We can now again invoke Equation (1) to observe that these forms satisfy this definition
and thus are also matryoshkan matrices.
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(ii) Let Mn ∈R
n×n be a matryoshkan matrix with all nonzero diagonal elements mi,i for

i ∈ {1, . . . , n}. By definition Mn is lower triangular and hence its eigenvalues are on
its diagonal. Since all the eigenvalues are nonzero by assumption, Mn is invertible.
Moreover, it is known that the inverse of a lower triangular matrix is lower triangu-
lar as well. Thus, we will now solve for a lower triangular matrix Wn ∈R

n×n such that
In = MnWn, where In ∈R

n×n is the identity. This can be written as[
In−1 0n−1×1

01×n−1 1

]
= In = MnWn =

[
Mn−1 0n−1×1

mn mn,n

] [
A 0n−1×1

b c

]
,

where A ∈R
n−1×n−1, b ∈R

1×n−1, and c ∈R. Because mi,i �= 0 for all i ∈ {1, . . . ,
n − 1}, we also know that Mn−1 is nonsingular. Thus, we can see that A = M−1

n−1 from

Mn−1A = In−1. Likewise, cmn,n = 1 implies c = 1
mn,n

. Then, we have that

01×n−1 = mnA + mn,nb = mnM−1
n−1 + mn,nb,

and so b = − 1
mn,n

mnM−1
n−1. This completes the solution for Wn, and hence provides the

inverse of Mn.

(iii) To begin, we will prove that

Mk
n =

⎡
⎣ Mk

n−1 0n−1×1

mn
∑k−1

j=0 Mj
n−1mk−1−j

n,n mk
n,n

⎤
⎦

for k ∈Z
+. We proceed by induction. The base case, k = 1, holds by definition.

Therefore we suppose that the hypothesis holds at k. Then at k + 1 we can observe
that

Mk+1
n = MnMk

n

=
[

Mn−1 0n−1×1

mn mn,n

]⎡⎣ Mk
n−1 0n−1×1

mn
∑k−1

j=0 Mj
n−1mk−1−j

n,n mk
n,n

⎤
⎦

=
⎡
⎣ Mk+1

n−1 0n−1×1

mnMk
n−1 + mn

∑k−1
j=0 Mj

n−1mk−j
n,n mk+1

n,n

⎤
⎦

=
⎡
⎣ Mk+1

n−1 0n−1×1

mn
∑k

j=0 Mj
n−1mk−j

n,n mk+1
n,n

⎤
⎦ ,

which completes the induction. We now observe further that for matrices A ∈R
n×n and

B ∈R
n×n such that AB = BA and A − B is nonsingular,

k−1∑
j=0

AjBk−1−j = (A − B)−1 (Ak − Bk).
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This relationship can verified by multiplying the left-hand side by A − B:

(A − B)
k−1∑
j=0

AjBk−1−j =
k−1∑
j=0

Aj+1Bk−1−j −
k−1∑
j=0

AjBk−j = Ak − Bk.

This allows us to observe that

Mk
n =

⎡
⎣ Mk

n−1 0n−1×1

mn
(
Mn−1 − mn,nI

)−1
(

Mk
n−1 − mk

n,nI
)

mk
n,n

⎤
⎦ ,

and thus

eMnt =
∞∑

k=0

tkMk
n

k! =
∞∑

k=0

tk

k!

⎡
⎣ Mk

n−1 0n−1×1

mn
(
Mn−1 − mn,nI

)−1
(

Mk
n−1 − mk

n,nI
)

mk
n,n

⎤
⎦

=
⎡
⎣ eMn−1t 0n−1×1

mn
(
Mn−1 − mn,nI

)−1(
eMn−1t − emn,ntI

)
emn,nt

⎤
⎦ ,

which completes the proof. Note that because Mn−1 is triangular and because we have
assumed m1,1, . . . ,mn,n are distinct, we know that Mn−1 − mn,nI is invertible.

(iv) From the statement, we seek a matrix A ∈R
n−1×n−1, a row vector b ∈R

1×n−1, and a
scalar c ∈R such that[

Mn−1 0n−1×1

mn mn,n

] [
A 0n−1×1

b c

]
=
[

A 0n−1×1

b c

] [
Dn−1 0n−1×1

01×n−1 mn,n

]
,

where Dn−1 ∈R
n−1×n−1 is a diagonal matrix with values m1,1, . . . ,mn−1,n−1. From

the triangular structure of Mn, we know that Dn contains all the eigenvalues of Mn. We
will now solve the resulting sub-systems. From Mn−1A = ADn−1, we take A = Un−1.
Substituting this forward, we see that

mnUn−1 + mn,nb = mnA + mn,nb = bDn−1

and so b = mnUn−1
(
Dn−1 − mn,nI

)−1, where as in Step (iii) we are justified in inverting
Dn−1 − mn,nI because of the fact that m1,1, . . . ,mn,n are distinct. Finally, we take c = 1,
as any value will satisfy cmn,n = cmn,n. �

Appendix B. Proof of Lemma 1

Proof. The vector solution in Equation (5) is known and is thus displayed for reference.
Expanding this expression in bracket-notation form, by use of Proposition 1 this is[

sn−1(t)

sn(t)

]
=
[

eMn−1t 0n−1×1

mn
(
Mn−1 − mn,nI

)−1(
eMn−1t − emn,ntI

)
emn,nt

] [
sn−1(0)

sn(0)

]

−
⎡
⎣ M−1

n−1 0n−1×1

− 1
mn,n

mnM−1
n−1

1
mn,n

⎤
⎦[ I − eMn−1t 0n−1×1

−mn
(
Mn−1 − mn,nI

)−1(
eMn−1t − emn,ntI

)
1 − emn,nt

] [
cn−1

cn

]
.
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Thus, we can find sn(t) by multiplying each left side of the equality by a unit row vector in the
direction of the nth coordinate, which we denote by vT

n . This yields

sn(t) = vT
n

[
sn−1(t)

sn(t)

]

=
[
mn
(
Mn−1 − mn,nI

)−1(
eMn−1t − emn,ntI

)
emn,nt

] [sn−1(0)

sn(0)

]

−
[
− 1

mn,n
mnM−1

n−1
1

mn,n

] [ I − eMn−1t 0n−1×1

−mn
(
Mn−1 − mn,nI

)−1(eMn−1t − emn,ntI
)

1 − emn,nt

] [
cn−1

cn

]

=
[
mn
(
Mn−1 − mn,nI

)−1(
eMn−1t − emn,ntI

)
emn,nt

] [sn−1(0)

sn(0)

]

−
[
− 1

mn,n
mnM−1

n−1
1

mn,n

] [ (
I − eMn−1t

)
cn−1

−mn
(
Mn−1 − mn,nI

)−1(
eMn−1t − emn,ntI

)
cn−1 + cn(1 − emn,nt)

]
.

Then, by taking these inner products, we obtain

sn(t) = mn
(
Mn−1 − mn,nI

)−1
(

eMn−1t − emn,ntI
)

sn−1(0) + sn(0)emn,nt

+ mnM−1
n−1

(
I − eMn−1t

) cn−1

mn,n

+ mn
(
Mn−1 − mn,nI

)−1
(

eMn−1t − emn,ntI
) cn−1

mn,n
− cn

mn,n

(
1 − emn,nt) ,

and this simplifies to the stated solution. �

Acknowledgements

We are grateful to the anonymous referees and to Nicolas Privault, who have improved the
paper through their comments and insights.

Funding information

We acknowledge the generous support of the National Science Foundation (NSF) for A.
D.’s Graduate Research Fellowship under grant DGE-1650441, received during his graduate
studies at Cornell.

Competing interests

There were no competing interests to declare which arose during the preparation or
publication process for this article.

References
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