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In this paper we determine the homotopy types of the reduced suspension space of
certain connected orientable closed smooth five-manifolds. As applications, we
compute the reduced K-groups of M and show that the suspension map between the
third cohomotopy set π3(M) and the fourth cohomotopy set π4(ΣM) is a bijection.
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1. Introduction

One of the goals of algebraic topology of manifolds is to determine the homotopy
type of the (reduced) suspension space ΣM of a given manifold M. This problem has
attracted a lot of attention since So and Theriault’s work [21], which showed how
the homotopy decompositions of the (double) suspension spaces of manifolds can
be used to characterize some important invariants in geometry and mathematical
physics, such as reduced K-groups and gauge groups. Several works have followed
this direction, such as [7, 9–12, 15]. The integral homology groups H∗(M) serve
as the fundamental input for this topic. As shown by these papers, the 2-torsion of
H∗(M) and potential obstructions from certain Whitehead products usually prevent
a complete homotopy classification of the (double) suspension space of a given
manifold M .

The main purpose of this paper is to investigate the homotopy types of the sus-
pension of a non-simply-connected orientable closed smooth five-manifold. Notice
that Huang [9] studied the suspension homotopy of five-manifolds M that are
S1-principal bundles over a simply-connected oriented closed four-manifold. The
homotopy decompositions of Σ2M are successfully applied to determine the homo-
topy types of the pointed looped spaces of the gauge groups of a principal bundle
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2 P. Li and Z. Zhu

over M . In this paper we greatly loosen the restriction on the homology groups
H∗(M) of the non-simply-connected five-manifold M by assuming that H1(M)
has a torsion subgroup that is not divided by 6 and H2(M) contains a general
torsion part.

To state our main results, we need the following notion and notations. Let
n � 2. Denote by η = ηn = Σn−2η the iterated suspension of the first Hopf map
η : S3 → S2. Recall from (cf. [25]) that π3(S2) ∼= Z〈η〉, πn+1(Sn) ∼= Z/2〈η〉 for
n � 3 and πn+2(Sn) ∼= Z/2〈η2〉. For an abelian group G, denote by Pn+1(G) the
Peterson space characterized by having a unique reduced cohomology group G in
dimension n + 1; in particular, denote by Pn+1(k) = Pn+1(Z/k) the mod k Moore
space of dimension n + 1, where Z/k is the group of integers modulo k, k � 2. There
is a canonical homotopy cofibration

Sn k−−→ Sn in−−→ Pn+1(k)
qn+1−−−→ Sn+1,

where in is the inclusion of the bottom cell and qn+1 is the pinch map to the top
cell. Recall that for each prime p and integer r � 1, there are higher order Bockstein
operations βr that detect the degree 2r map on spheres Sn. For each r � 1, there
are canonical maps η̃r : Sn+2 → Pn+2(2r) satisfying the relation qn+1η̃r = η, see
lemma 2.2. A finite CW-complex X is called an A2

n-complex if it is (n− 1)-
connected and has dimension at most n + 2. In 1950, Chang [4] proved that for
n � 3, every A2

n-complex X is homotopy equivalent to a wedge sum of finitely
many spheres and mod pr Moore spaces with p any primes and the following four
elementary (or indecomposable) Chang complexes:

Cn+2
η = Sn ∪η CSn+1 = Σn−2

CP 2, Cn+2
r = Pn+1(2r) ∪inη CSn+1,

Cn+2,s = Sn ∪ηqn+1 CPn+1(2s), Cn+2,s
r = Pn+1(2r) ∪inηqn+1 CPn+1(2s),

where CX denotes the reduced cone on X and r, s are positive integers. We
recommend [14, 26–29] for recent work on the homotopy theory of Chang
complexes.

Now it is prepared to state our main result. Let M be an orientable closed
five-manifold whose integral homology groups are given by

i 1 2 3 4 0, 5 �6

Hi(M) Z
l ⊕H Z

d ⊕ T Z
d ⊕H Z

l
Z 0 , (1.1)

where l, d are positive integers and H, T are finitely generated torsion abelian
groups.

Theorem 1.1. Let M be an orientable smooth closed five-manifold with H∗(M)
given by (1.1). Let T2

∼= ⊕t2
j=1 Z/2rj be the 2-primary component of T and suppose

that H contains no 2- or 3-torsion. There exist integers c1, c2 that depend on M
and satisfy

0 � c1 � min{l, d}, 0 � c2 � min{l − c1, t2}
and c1 = c2 = 0 if and only if the Steenrod square Sq2 acts trivially on H2(M ; Z/2).
Denote T [c2] = T/⊕c2

j=1 Z/2rj .
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Suspension homotopy of 5-manifolds 3

(1) Suppose M is spin, then there is a homotopy equivalence

ΣM �
(

l∨
i=1

S2

)
∨
(

d−c1∨
i=1

S3

)
∨
(

d∨
i=1

S4

)
∨
(

l−c1−c2∨
i=1

S5

)
∨ P 3(H) ∨ P 5(H)

∨
(

c1∨
i=1

C5
η

)
∨ P 4(T [c2]) ∨

⎛⎝ c2∨
j=1

C5
rj

⎞⎠ ∨ S6.

(2) Suppose M is non-spin, then there are three possibilities for the homotopy
types of ΣM .
(a) If for any u, v ∈ H4(ΣM ; Z/2) satisfying Sq2(u) �= 0 and Sq2(v) = 0,

there holds u + v /∈ im(βr) for any r � 1, then there is a homotopy
equivalence

ΣM �
(

l∨
i=1

S2

)
∨
(

d−c1∨
i=1

S3

)
∨
(

d∨
i=2

S4

)

∨
(

l−c1−c2∨
i=1

S5

)
∨ P 3(H) ∨ P 5(H)

∨
(

c1∨
i=1

C5
η

)
∨ P 4(T [c2]) ∨

⎛⎝ c2∨
j=1

C5
rj

⎞⎠ ∨ C6
η ;

(b) otherwise either there is a homotopy equivalence

ΣM �
(

l∨
i=1

S2

)
∨
(

d−c1∨
i=1

S3

)
∨
(

d∨
i=1

S4

)

∨
(

l−c1−c2∨
i=1

S5

)
∨ P 3(H) ∨ P 5(H)

∨
(

c1∨
i=1

C5
η

)
∨
⎛⎝ c2∨

j=1

C5
rj

⎞⎠ ∨ P 4

(
T [c2]

Z/2rj1

)
∨ (P 4(2rj1 ) ∪η̃rj1

e6),

or there is a homotopy equivalence

ΣM �
(

l∨
i=1

S2

)
∨
(

d−c1∨
i=1

S3

)
∨
(

d∨
i=1

S4

)

∨
(

l−c1−c2∨
i=1

S5

)
∨ P 3(H) ∨ P 5(H)

∨
(

c1∨
i=1

C5
η

)
∨ P 4(T [c2]) ∨

⎛⎝ c2∨
j1 �=j=1

C5
rj

⎞⎠ ∨ (C5
rj1
∪iP η̃rj1

e6),
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4 P. Li and Z. Zhu

where iP : P 5(2rj1 )→ C6
rj1

is the canonical inclusion map; in both cases,
rj1 is the minimum of rj such that u + v ∈ im(βrj1

).

In Theorem 1.1 we characterize the homotopy types of ΣM by elementary com-
plexes of dimension at most six, up to certain indeterminate A2

n-complexes. Note
that wedge summands of the form

∨v
i=u X with v < u are contractible and can

be removed from the homotopy decompositions of ΣM . More generally, if M is
a 5-dimensional Poincaré duality complex (i.e., a finite CW-complex whose inte-
gral cohomology satisfies the Poincaré duality theorem) satisfying the conditions
in Theorem 1.1, then Theorem 1.1 gives the homotopy types of ΣM , except that
there are two additional possibilities when the Steenrod square acts trivially on
H3(M ; Z/2), See remark 4.5.

Due to lemma 2.3 (2), the 3-torsion of H can be well understood when studying
the homotopy types of the double suspension Σ2M .

Theorem 1.2. Let M be an orientable smooth closed five-manifold with H∗(M)
given by (1.1), where H is a 2-torsion free group. Then the suspensions of the homo-
topy equivalences in Theorem 1.1 give the homotopy types of the double suspension
Σ2M .

In addition to the characterization of the homotopy types of iterated loop spaces
of the gauge groups of principal bundles over M , as shown by Huang [9], we apply
the homotopy types of ΣM (or Σ2M) to study the reduced K-groups and the
cohomotopy sets πk(M) = [M, Sk] of the non-simply-connected manifold M .

Corollary 1.3 (See proposition 5.2). Let M be a five-manifold given by Theorems
1.1 or 1.2. Then the reduced complex K-group and KO-group of M are given by

K̃(M) ∼= Z
d+l ⊕H ⊕H, K̃O(M) ∼= Z

l ⊕ (Z/2)l+d+t2 .

The third cohomotopy set π3(M) possess the following property.

Corollary 1.4 (See proposition 5.6). Let M be a five-manifold given by Theorems
1.1 or 1.2. Then the suspension Σ: π3(M)→ π4(ΣM) is a bijection.

We also apply the homotopy decompositions of ΣM to compute the group struc-
ture of π3(M) ∼= π4(ΣM), see proposition 5.6. The second cohomotopy set π2(M)
always admits an action of π3(M) induced by the Hopf map η : S3 → S2, see lemma
5.3 or [13, Theorem 3]. Finally, it should be noting that when M is a 5-dimensional
Poincaré duality complex with H1(M) torsion free, similar results have been proved
independently and concurrently by Amelotte, Cutler and So [1].

This paper is organized as follows. Section 2 reviews some homotopy theory of
A2

n-complexes and introduces the basic analysis methods to study the homotopy
type of homotopy cofibres. In § 3 we study the homotopy types of the suspension
of the CW-complex M of M with its top cell removed. The basic method is the
homology decomposition of simply-connected spaces. Section 4 analyzes the homo-
topy types of ΣM and contains the proofs of Theorems 1.1 and 1.2. As applications
of the homotopy decomposition of ΣM or Σ2M , we study the reduced K-groups
and the cohomotopy sets of the five-manifolds M in § 5.
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2. Preliminaries

Throughout the paper we shall use the following global conventions and notations.
All spaces are based CW-complexes, all maps are base-point-preserving and are
identified with their homotopy classes in notation. A strict equality is often treated
as a homotopy equality. Denote by 1X the identity map of a space X and sim-
plify 1n = 1Sn . For different X, we use the ambiguous notations ik : Sk → X and
qk : X → Sk to denote the possible canonical inclusion and pinch maps, respectively.
For instance, there are inclusions in : Sn → C for each elementary Chang com-
plex C and there are inclusions in+1 : Sn+1 → X for X = Cn+2,s and Cn+2,s

r . Let
iP : Pn+1(2r)→ Cn+2

r and iη : Cn+2
η → Cn+2

r be the canonical inclusions. Denote
by Cf the homotopy cofibre of a map f : X → Y . For an abelian group G generated
by x1, · · · , xn, denote G ∼= C1〈x1〉 ⊕ · · · ⊕ Cn〈xn〉 if xi is a generator of the cyclic
direct summand Ci, i = 1, · · · , n.

2.1. Some homotopy theory of A2
n-complexes

For each prime p and integers r, s � 1, n � 2, there exists a map (with n omitted
in notation)

B(χr
s) : Pn+1(pr)→ Pn+1(ps)

satisfies ΣB(χr
s) = B(χr

s) and the relation formulas (cf. [3]):

B(χr
s)in = χr

s · in, qn+1B(χr
s) = χs

r · qn+1, (2.1)

where χr
s is a self-map of spheres, χr

s = 1 for r � s and χr
s = ps−r for r < s.

Lemma 2.1. Let p be an odd prime and let n � 3, r, s � 1 be integers, m =
min{r, s}. There hold isomorphisms:

(1) π3(P 3(pr)) ∼= Z/pr〈i2η〉 and πn+1(Pn+i(pr)) = 0, i = 0, 1.

(2) [Pn(pr), Pn(ps)] ∼=
{

Z/pm〈B(χr
s)〉 ⊕ Z/pm〈i2ηq3〉, n = 3;

Z/pm〈B(χr
s)〉, n � 4.

(3) [Pn+1(pr), Pn(ps)] ∼=
{

Z/pm〈η̂sB(χr
s)〉, n=3;

0 n�4.
where η̂s : P 4(ps)→ P 3(ps)

satisfies η̂si3 = i2η.

Proof. The group π3(P 3(pr)) refers to [21, Lemma 2.1] and the groups
πn+1(Pn+i) = 0 was proved in [11, Lemma 6.3 and 6.4]. The groups and generators
in (2) and (3) can be easily computed by applying the exact functor [−, Pn(ps)] to
the canonical cofibrations for Pn+i(pr) with i = 0, 1, respectively; the details are
omitted here. �

Lemma 2.2 (cf. [3]). Let n � 3, r � 1 be integers.

(1) πn+1(Pn+1(2r)) ∼= Z/2〈inη〉.

(2) πn+2(Pn+1(2r)) ∼=
{

Z/4〈η̃1〉, r = 1;
Z/2⊕ Z/2〈η̃r, inη2〉, r � 2.
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The generator η̃r satisfies formulas

qn+1η̃r = η, 2η̃1 = inη2, B(χr
s)η̃r = χs

r · η̃s. (2.2)

(3) [Pn+1(2r), Pn+1(2s)] ∼=
{

Z/4〈1P 〉, r = s = 1;
Z/2m〈B(χr

s)〉 ⊕ Z/2〈iηq〉, otherwise,
where m = min{r, s}, iηq = inηqn+1.

Lemma 2.3. The following hold:

(1) π5(P 3(3r)) ∼= Z/3r+1, π5(P 3(pr)) = 0 for primes p � 5.

(2) The suspension Σ: π5(P 3(3r))→ π6(P 4(3r)) is trivial.

Proof. (1) Let F 3{pr} be the homotopy fibre of q3 : P 3(pr)→ S3 and consider the
induced exact sequence of p-local groups:

π6(S3; p)→ π5(F 3{pr}) (jr)�−−−→ π5(P 3(pr))
(q3)�−−−→ π5(S3; p) = 0.

By [18, Proposition 14.2] or [19, Theorem 3.1], there is a homotopy equivalence

ΩF 3{pr} � S1 ×
∞∏

j=1

S2pj−1{pr+1} × Ω

(∨
α

Pnα(pr)

)
,

where S2n+1{pr} is the homotopy fibre of the mod pr degree map on S2n+1, nα � 4
and the equality holds for exactly one α. It follows that

π5(F 3{pr}) ∼= π4(S2p−1{pr+1}) ∼=
{

Z/3r+1, p = 3;
0, p � 5.

Thus π5(P 3(pr)) = 0 for p � 5. By [19, Theorem 2.10], π5(P 3(3r)) contains a direct
summand Z/3r+1, therefore we have an isomorphism

(jr)� : π5(F 3{3r}) ∼=−−→ π5(P 3(3r)) ∼= Z/3r+1.

(2) Firstly, by [6] for any prime p � 5 and [19] for p = 3, there is a homotopy
equivalence

ΩP 4(pr) � S3{pr} × Ω

( ∞∨
k=0

P 7+2k(pr)

)
.

Second, for skeletal reasons, the suspension E : P 3(pr)→ ΩP 4(pr) factors as the

composite P 3(pr) i−−→ S3{pr} j−−→ ΩP 4(pr), where i is the inclusion of the bottom
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Moore space and j is the inclusion of a factor. Third, there is a homotopy fibration
diagram

that defines the space E3{pr}. By [5], for any prime p � 5 and [19] for p = 3, there
is a homotopy equivalence

ΩE3{pr} �Wn ×
∞∏

j=1

S2pj−1{pr+1} × Ω

(∨
α

Pnα(pr)

)
,

where Wn is the homotopy fibre of the double suspension. This decomposition has
the property that the factor

∏∞
j=1 S2pj−1{pr+1} of ΩF 3{pr}may be chosen to factor

through ΩE3{pr}.
Consequently, when p = 3, as the Z/3r+1 factor in π4(ΩP 3(pr)) came from

π4(
∏∞

j=1 S2pj−1{pr+1}), it has the property that it composes trivially with the
map Ωi : ΩP 3(3r)→ ΩS3{3r}. Hence, as ΩE factors through Ωi, the Z/3r+1 factor
in π4(ΩP 3(pr)) composes trivially with ΩE. Thus the Z/3r+1 factor in π5(P 3(pr))
suspends trivially. �

Lemma 2.4 (cf. [14]). Let n � 3 and r � 1. There hold isomorphisms

(1) πn+2(Cn+2
η ) ∼= Z〈ζ̃〉, where ζ̃ satisfies qn+2ζ̃ = 2 · 1n+2.

(2) πn+2(Cn+2
r ) ∼= Z〈iη ζ̃〉 ⊕ Z/2〈iP η̃r〉.

It follows that a map fC : Sn+2 → C with C = Cn+2
η or Cn+2

r induces the trivial
homomorphism in integral homology if and only if

fC =
{

0 for C = Cn+2
η ;

0 or iP η̃r for C = Cn+2
r ,

where f = 0 means f is null-homotopic.

The following Lemma can be found in [14, Theorem 3.1, (2)]; since it hasn’t been
published yet, we give a proof here.
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Lemma 2.5. For integers n � 3 and r � 1, there exists a map

ξ̄r : Cn+2
r → Pn+1(2r+1)

satisfying the homotopy commutative diagram of homotopy cofibrations

Moreover, there hold formulas

ξ̄r ◦ iP = B(χr
r+1), B(χs+1

r )ξ̄s(iP η̃s) = η̃r for r > s. (2.3)

Proof. Dual to the relation in lemma 2.4 (1), there exists a map ζ̄ : Cn+2
η → Sn

satisfying ζ̄in = 2 · 1n. It follows that the first square in the Lemma is homo-
topy commutative, and hence the map ξ̄r in the Lemma exists. Recall we have
the composition

in = iη ◦ in : Sn → Cn+2
η → Cn+2

r .

Then ξ̄rin = (ξ̄riη)in = (inζ̄)in = 2in implying that

ξ̄r ◦ iP = B(χr
r+1) + ε · inηqn+1

for some ε ∈ {0, 1}. If ε = 0, we are done; otherwise we replace ξ̄r by ξ̄r + inηqn+1

to make ε = 0. Note that all the relations mentioned above still hold even if we
make such a replacement. Thus we prove the first formula in (2.3), which implies
the second one. �

2.2. Basic analysis methods

We give some auxiliary lemmas that are useful to study the homotopy types of
homotopy cofibres.

Lemma 2.6. Let CX
k be the homotopy cofibre of fX

k : X → P 3(ps), where k ∈
Z/pmin{r, s} and r =∞ for X = S3,

fX
k =

{
k · i2η, X = S3;
k · i2ηq3, X = P 3(pr).

Then the cup squares in H∗(CX
k ; Z/pmin{r, s}) are given by

u2 � u2 = k · u4,

where ui ∈ Hi(CX
k ; Z/pmin{r, s}) are generators, i = 2, 4. It follows that all cup

squares in H∗(CX
k ; Z/pmin{r, s}) are trivial if and only if k = 0.

Proof. It is well-known that the map kη has Hopf invariant H(kη) = kH(η) = k. Let
m = min{r, s} and define u2 � u2 = H̄(fX

k ) · u4 for some H̄(fX
k ) ∈ Z/pm, which is
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called the mod pm Hopf invariant. Then by naturality it is easy to deduce the
formula

H̄(fX
k ) = H(kη) (mod pm) = k,

which completes the proof of the Lemma. �

Lemma 2.7. Let k ∈ Z/pmin{r, s} and consider the homotopy cofibration

P 4(pr)
gk=k·η̂sB(χr

s)−−−−−−−−−→ P 3(ps)→ Cgk
.

Let vi be generators of Hi(Cgk
; Z/ps), i = 2, 4, then

v2 � v2 = k · v4 ∈ H4(Cgk
; Z/ps) ∼= Z/pmin{r,s}.

It follows that gk is null-homotopic if and only if k = 0.

Proof. By lemma 2.1 (3), there is a homotopy commutative diagram of homotopy
cofibrations

It follows that ı in the right-most column induces an isomorphism

H2(Cgk
; Z/ps) ı∗−−→∼= H2(Ckχr

s
; Z/ps) ∼= Z/ps

and a monomorphism

H4(Cgk
; Z/ps) ∼= Z/pmin{r,s} ı∗−−→ H4(Ckχr

s
; Z/ps) ∼= Z/ps.

Let vi ∈ Hi(Cgk
; Z/ps) be generators, i = 2, 4; let u2 = ı∗(v2) and u4 be generators

of H2(Ckχr
s
; Z/ps) and H4(Ckχr

s
; Z/ps), respectively. Let H̄(gk) be the mod ps Hopf

invariant of gk. By the naturality of cup products and lemma 2.6, we have

kχr
s · u4 = u2 � u2 = ı∗(v2 � v2) = ı∗(H̄(gk)v4) = H̄(gk) · (χr

s · u4).

Thus H̄(gk) = k, which completes the proof. �

The method of proof for the following lemma is due to [7, Lemma 2.4].
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Lemma 2.8. Let X1, X2 ∈ {S2, P 3(2r), C4
s} with r, s � 1. Let

ι1 : ΣX1 → ΣX1 ∨ ΣX2, ι2 : ΣX1 → ΣX2 ∨ ΣX2

be the canonical inclusion maps. Then any map u′ in the composition

u : S5 u′
−−→ ΣX1 ∧X2

[ι1,ι2]−−−−→ ΣX1 ∨ ΣX2

is null-homotopic if and only if all cup products in H∗(Cu;G) are trivial, where Cu

is the homotopy cofibre of u and G = H2(X1)⊗H2(X2).

Proof. The ‘only if’ part is clear. For the ‘if’ part, consider the following homotopy
commutative diagram of homotopy cofibrations

which induces the commutative diagram with exact rows and columns:

Note that H6(ΣX1 × ΣX2;G) is generated by cup products, while all cup products
in H6(Cu;G) are trivial by assumption. It follows that j̄∗ = 0 and hence δ1 is surjec-
tive. The homomorphism δ2 is obviously an isomorphism for X1, X2 ∈ {S2, P 3(2r)}
because H5(ΣX1 ∨ ΣX2;G) = 0; for X2 = C4

s , X1 = S2, P 3(2r) or C4
r , we have

Hj(C4
s ;G) ∼= G for j = 2, 3, 4, where G = Z/2s or Z/2min{r, s}. By computations,

H5(ΣX1 ∧ C4
s ;G) ∼=

⊕
i+j=5

H̃i(ΣX1; H̃j(C4
s ;G)) ∼= H3(ΣX1;H2(C4

s ;G)),

H6(ΣX1 × C5
s ;G) ∼=

⊕
i+j=6

Hi(ΣX1;Hj(C5
s ;G)) ∼= H3(ΣX1;H3(C5

s ;G)).

Thus δ2 is an isomorphism for all X1, X2. The upper commutative square then
implies that (i′)∗ is surjective and therefore (u′)∗ is the zero map by exactness.
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Since ΣX1 ∧X2 is 4-connected, the universal coefficient theorem for cohomology
implies that

0 = (u′)∗ : H5(S5)→ H5(ΣX1 ∧X2).

Therefore u′ is null-homotopic, by the Hurewicz theorem. �

Lemma 2.9. The Steenrod square Sq2 : Hn(C; Z/2)→ Hn+2(C; Z/2) is an isomor-
phism for every (n + 2)-dimensional elementary Chang complex C.

Proof. Obvious or see [27]. �

For n � 3 and r � 1, we define homotopy cofibres

An+3(η̃r) = Pn+1(2r) ∪η̃r
en+3, An+3(iP η̃r) = Cn+2

r ∪iP η̃r
en+3. (2.4)

Lemma 2.10. The Steenrod square Sq2 : Hn+1(X; Z/2)→ Hn+3(X; Z/2) is an
isomorphism for X = An+3(η̃r) and An+3(iP η̃r).

Proof. The statement for X = An+3(η̃r) refers to [15, Lemma 2.6]. For X =
An+3(iP η̃r), consider the homotopy commutative diagram of homotopy cofibrations

From the first two rows of the homotopy commutative diagram, it is easy to compute
that

Hn+i(An+3(η̃r); Z/2) ∼= Hn+i(An+3(iP η̃r); Z/2) ∼= Z/2 for i = 1, 3.

The third column homotopy cofibration implies that the induced homomorphisms ı∗

are monomorphisms of mod 2 homology groups of dimension n + 1 and n + 3, hence
it is an isomorphism. Then we complete the proof by the naturality of Sq2. �

Lemma 2.11 (Lemma 6.4 of [12]). Let S
f−−→ (

∨n
i=1 Ai) ∨B

g−−→ ΣC be a homotopy
cofibration of simply-connected CW-complexes. For each j = 1, · · · , n, let

pj :

(∨
i

Ai

)
∨B → Aj , qB :

(∨
i

Ai

)
∨B → B

be the obvious projections. Suppose that the composite pjf is null-homotopic for
each j � n, then there is a homotopy equivalence

ΣC �
(

n∨
i=1

Ai

)
∨ CqBf ,

where CqBf is the homotopy cofibre of the composite qBf .
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Lemma 2.12. Let (
∨n

i=1 Ai) ∨B
f−−→ C → D be a homotopy cofibration of CW-

complexes. If the restriction of f to Ai is null-homotopic for each i = 1, · · · , n,
then there is a homotopy equivalence

D �
(

n∨
i=1

ΣAi

)
∨ E,

where E is the homotopy cofibre of the restriction f |B : B → C.

Proof. Clear. �

Let X = ΣX ′, Yi = ΣY ′
i be suspensions, i = 1, 2, · · · , n. Let

il : Yl →
n∨

j=i

Yi, pk :
n∨

i=1

Yi → Yk

be respectively the canonical inclusions and projections, 1 � k, l � n. By the
Hilton–Milnor theorem, we may write a map f : X → ∨n

i=1 Yi as

f =
n∑

k=1

ik ◦ fk + θ,

where fk = pk ◦ f : X → Yk and θ satisfies Σθ = 0. The first part
∑n

k=1 ik ◦ fk is
usually represented by a vector uf = (f1, f2, · · · , fn)t. We say that f is com-
pletely determined by its components fk if θ = 0; in this case, denote f = uf . Let
h =

∑
k,l ilhlkpk be a self-map of

∨n
i=1 Yi which is completely determined by its

components hkl = pk ◦ h ◦ il : Yl → Yk. Denote by

Mh := (hkl)n×n =

⎡⎢⎢⎢⎣
h11 h12 · · · h1n

h21 h22 · · · h2n

...
...

. . .
...

hn1 hn1 · · · hnn

⎤⎥⎥⎥⎦
Then the composition law h(f + g) � hf + hg implies that the product

Mh[f1, f2, · · · , fn]t

given by the matrix multiplication represents the composite h ◦ f . Two maps f = uf

and g = ug are called equivalent, denoted by

[f1, f2, · · · , fn]t ∼ [g1, g2, · · · , gn]t,

if there is a self-homotopy equivalence h of
∨n

i=1 Yi, which can be represented by
the matrix Mh, such that

Mh[f1, f2, · · · , fn]t � [g1, g2, · · · , gn]t.

Note that the above matrix multiplication refers to elementary row operations
in matrix theory; and the homotopy cofibres of the maps f = uf and g = ug are
homotopy equivalent if f and g are equivalent.
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3. Homology decomposition of ΣM

Recall the homology decomposition of a simply-connected space X (cf. [8, Theorem
4H.3]). For n � 2, the nth homology section Xn of X is a CW-complex constructed
from Xn−1 by attaching a cone on a Moore space M(HnX, n− 1); by definition,
X1 = ∗. Note that for each n � 2, there is a canonical map jn : Xn → X that induces
an isomorphism jn∗ : Hr(Xn)→ Hr(X) for r � n and Hr(Xn) = 0 for r > n.

Firstly we note that similar arguments to the proof of [21, Lemma 5.1] proves
the following lemma.

Lemma 3.1. Let M be an orientable closed manifold with H1(M) ∼= Z
l ⊕H, where

l � 1 and H is a torsion abelian group. Then there is a homotopy equivalence

ΣM �
l∨

i=1

S2 ∨ ΣW,

where W = M/
∨l

i=1 S1 is the quotient space with H1(W ) ∼= H.

By lemma 3.1 and (1.1), the homology groups of ΣW is given by

i 2 3 4 5 0, 6 otherwise

Hi(ΣW ) H Z
d ⊕ T Z

d ⊕H Z
l

Z 0
(3.1)

Let Wi be the ith homology section of ΣW . There are homotopy cofibrations in
which the attaching maps are homologically trivial (induce trivial homomorphisms
in integral homology):(

d∨
i=1

S2

)
∨ P 3(T )

f−−→ P 3(H)→W3,

(
d∨

i=1

S3

)
∨ P 4(H)

g−−→W3 →W4,

l∨
i=1

S4 h−−→W4 →W5, S5 φ−−→W5 → ΣW.

(3.2)

From now on we assume that H ∼= ⊕h
j=1 Z/q

sj

j where qj are odd primes and sj � 1.

Lemma 3.2. There is a homotopy equivalence

W3 �
(

d∨
i=1

S3

)
∨ P 3(H) ∨ P 4(T ).
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Proof. It suffices to show the map f in (3.2) is null-homotopic, or equivalently the
following components of f are null-homotopic:

fS :
d∨

i=1

S2 ↪→
(

d∨
i=1

S2

)
∨ P 3(T )

f−−→ P 3(H),

fT : P 3(T ) ↪→
(

d∨
i=1

S2

)
∨ P 3(T )

f−−→ P 3(H),

where ↪→ denote the canonical inclusion maps. f is homologically trivial, so are fS

and fT . Then the Hurewicz theorem and lemma 2.1 (1) imply fS is null-homotopic.
Since [P 3(pr), P 3(qs)] = 0 for different primes p, q, it suffices to consider the

case where T and H have the same prime factors. Denote by TH
∼= ⊕

j Z/q
rj

j the
component of T that has the same prime factors with H. The canonical inclusion
ı3 : W3 → ΣW induces an isomorphism with mj = min{rj , sj}:

ı∗3 : H2(ΣW ; Z/q
mj

j )→ H2(W3; Z/q
mj

j ).

It follows that all the cup squares of cohomology classes of H2(W3; Z/q
mj

j ), and
hence of H2(CfT ; Z/q

mj

j ) are trivial for any j. Let CfT
j

be the homotopy cofibre of
the compositions

fT
j : P 3(qrj

j ) ↪→ P 3(T )
fT

−−→ P 3(H) � P 3(qsj

j ),

where the unlabelled maps are the canonical inclusions and projections, respec-
tively. Then [21, Lemma 4.2] implies that all cup squares of cohomology classes of
H2(CfT

j
; Z/q

mj

j ) are trivial for any j and hence fT
j is null-homotopic, by lemma 2.6.

Therefore fT is also null-homotopic and we complete the proof. �

Lemma 3.3. There is a homotopy equivalence

W4 �
(

d∨
i=1

(S3 ∨ S4)

)
∨ P 3(H) ∨ P 5(H) ∨ P 4(T ).

Proof. By (3.2) and lemma 3.2, W4 is the homotopy cofibre of a homologically
trivial map

ḡ :

(
d∨

i=1

S3

)
∨ P 4(H)

g−−→W3
e−−→�

(
d∨

i=1

S3

)
∨ P 3(H) ∨ P 4(T ).
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Consider the compositions

S3 ↪→
(

d∨
i=1

S3

)
∨ P 4(H)

g−−→W3 →
d∨

i=1

S3 → S3,

S3 ↪→
(

d∨
i=1

S3

)
∨ P 4(H)

g−−→W3 → P 4(T ),

P 4(qsj

j ) ↪→
(

d∨
i=1

S3

)
∨ P 4(H)

g−−→W3 →
d∨

i=1

S3 → S3,

P 4(qsj

j ) ↪→
(

d∨
i=1

S3

)
∨ P 4(H)

g−−→W3 → P 4(T )→ P 4(qrj

j ),

where the unlabelled maps are the canonical inclusions and projections. Since
[P 4(pr), S3] = 0, the Hurewicz theorem and lemma 2.1 (2) imply that all the
above compositions are null-homotopic. Hence by lemma 2.11 there is a homotopy
equivalence

W4 �
(

d∨
i=1

S3

)
∨ P 4(T ) ∨ Cg′

for some map g′ :
(∨d

i=1 S3
)
∨ P 4(H)→ P 3(H).

By the homology decomposition for ΣW and the universal coefficient theorem
for cohomology, the canonical map ı4 : W4 → ΣW induces isomorphisms

ı∗4 : Hi(ΣW )→ Hi(W4), i = 2, 4.

Consider the commutative diagram

where �2 denotes the cup squares. All cup squares in H∗(ΣW ; Z/q
sj

j ) are trivial
implying that all cup squares in H4(W4; Z/q

sj

j ) are trivial. Let Cg′
j

and Cg′
ij

be the
homotopy cofibres of the compositions

g′j : S3 ↪→
(

d∨
i=1

S3

)
∨ P 4(H)

g′
−−→ P 3(H) � P 3(qsj

j ),

g′ij : P 4(qri
j ) ↪→

(
d∨

i=1

S3

)
∨ P 4(H)

g′
−−→ P 3(H) � P 3(qsj

j ).
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By [21, Lemma 4.2], we get the triviality of cup squares in H∗(Cg′
j
; Z/q

sj

j ) and
H∗(Cg′

ij
; Z/q

sj

j )). Then lemmas 2.6 and 2.7 imply that g′j and g′ij are both null-
homotopic. Thus by lemma 2.12, there is a homotopy equivalence

Cg′ �
(

d∨
i=1

S4

)
∨ P 3(H) ∨ P 5(H),

which completes the proof of the Lemma. �

Proposition 3.4. There is a homotopy equivalence

W5 � P 3(H) ∨ P 5(H) ∨ P 4(T �=2) ∨
(

d−c1∨
i=1

S3

)
∨
(

d∨
i=1

S4

)
∨
(

l−c1−c2∨
i=1

S5

)

∨
(

c1∨
i=1

C5
η

)
∨
⎛⎝ t2∨

j=c2+1

P 4(2rj )

⎞⎠ ∨
⎛⎝ c2∨

j=1

C5
rj

⎞⎠ ,

where 0 � c1 � min{l, d} and 0 � c2 � min{l − c1, t2}; c1 = c2 = 0 if and only if
Sq2(H2(M ; Z/2)) = 0.

Proof. By (3.2) and lemma 3.3, W5 is the homotopy cofibre of a map

l∨
i=1

S4 h−−→W4 �
(

d∨
i=1

(S3 ∨ S4)

)
∨ P 3(H) ∨ P 5(H) ∨ P 4(T ).

Similar arguments to that in the proof of lemma 3.3 show that there is a homotopy
equivalence

W5 �
(

d∨
i=1

S4

)
∨ P 3(H) ∨ P 5(H) ∨ P 4(T �=2) ∨ Ch′ , (3.3)

where h′ :
∨l

i=1 S4 →
(∨d

i=1 S3
)
∨
(∨t2

i=1 P 4(2ri)
)
.

Since π4(P 4(2r)) ∼= Z/2〈i3η〉, we may represent the map h′ by a (d + t2)×
l-matrix Mh′ with entries 0, η or i3η. There hold homotopy equivalences[

13 0
i3 1P

] [
η

i3η

]
�

[
η
0

]
: S4 → S3 ∨ P 4(2r),[

1P 0
B(χr

s) 1P

] [
i3η
i3η

]
�

[
i3η
0

]
: S4 → P 4(2r) ∨ P 4(2s)for r � s.

Then by elementary matrix operations we have an equivalence

Mh′ ∼

⎡⎢⎣Dc1 O
O O

O
[

Ec2 O

O O

]
⎤⎥⎦ ,

where O denote suitable zero matrices, Dc1 is the diagonal matrix of rank c1 whose
diagonal entries are η, Ec2 is a c2 × c2-matrix which has exactly one entry i3η in
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each row and column. It follows that there is a homotopy equivalence

Ch′ �
(

l−c1−c2∨
i=1

S5

)
∨
(

d−c1∨
i=1

S3

)
∨
⎛⎝ t2∨

j=c2+1

P 4(2rj )

⎞⎠ ∨(
c1∨

i=1

C5
η

)
∨
⎛⎝ c2∨

j=1

C5
rj

⎞⎠ .

The proof of the Lemma then follows by (3.3) and lemma 2.9. �

4. Proof of Theorems 1.1 and 1.2

Let M be the given five-manifold described in Theorem 1.1. By (3.2) there is a

homotopy cofibration S5 φ−−→W5 → ΣW with W5 (and integers c1, c2) given by
proposition 3.4. Since φ is homologically trivial, so are the compositions

φη : S5 φ−−→W5 �
c1∨

i=1

C5
η � C5

η ,

φCj
: S5 φ−−→W5 �

c2∨
j=1

C5
rj

� C5
rj

,

φH,j : S5 φ−−→W5 � P 3(H) � P 3(qsj

j ).

By lemma 2.4, φη is null-homotopic and φCj
= wj · iP η̃rj

for some wj ∈ Z/2. By
lemma 2.3, φH,j is null-homotopic for primes qj � 5 and ΣφH,j are null-homotopic
for all odd primes qj . Write H = H3 ⊕H�5 with H3 the 3-primary component of
H. It follows by lemmas 2.1 (2) and 2.11 that there are homotopy equivalences

ΣW � P 3(H�5) ∨ P 5(H) ∨ P 4(T �=2) ∨
(

l−c1−c2∨
i=1

S5

)
∨
(

c1∨
i=1

C5
η

)
∨ Cφ̄, (4.1)

Σ2W � P 4(H) ∨ P 6(H) ∨ P 5(T �=2) ∨
(

l−c1−c2∨
i=1

S6

)
∨
(

c1∨
i=1

C6
η

)
∨ CΣφ̄, (4.2)

for some homologically trivial map

φ̄ : S5 → P 3(H3) ∨
(

d−c1∨
i=1

S3

)
∨
(

d∨
i=1

S4

)
∨
⎛⎝ t2∨

j=c2+1

P 4(2rj )

⎞⎠ ∨
⎛⎝ c2∨

j=1

C5
rj

⎞⎠ .

From now on we assume that H3 = 0 to study the homotopy type of ΣW or the
homotopy cofibre Cφ̄. By lemmas 2.2 and 2.4 we may put

φ̄ =
d−c1∑
i=1

xi · η2 +
d∑

i=1

yi · η +
t2∑

j=c2+1

(zj · η̃rj
+ εj · i3η2) +

c2∑
j=1

wj · iP η̃rj
+ θ, (4.3)
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where all coefficients belong to Z/2 and θ is a linear combination of Whitehead
products. By the Hilton-Milnor theorem the domain Wh of θ is given by

Wh =
⊕

1�i,j�d−c1

π5(ΣS2
i ∧ S2

j )⊕
⊕

1�i�d−c1
c2+1�j�t2

π5(ΣS2
i ∧ P 3(2rj ))

⊕
⊕

1�i�d−c1
1�j�c2

π5(ΣS2
i ∧ C4

rj
)⊕

⊕
c2+1�i,j�t2

π5(ΣP 3(2ri) ∧ P 3(2rj ))

⊕
⊕

c2+1�i�t2
1�j�c2

π5(ΣP 3(2ri) ∧ C4
rj

)⊕
⊕

1�i,j�c2

π5(ΣC4
ri
∧ C4

rj
).

Note that all the spaces ΣXi ∧Xj are 4-connected and hence there are Hurewicz
isomorphisms π5(ΣXi ∧Xj) ∼= H5(ΣXi ∧Xj). For different Xi and Xj , we use the
ambiguous notations

ι1 : ΣXi → ΣXi ∨ ΣXj , ι2 : ΣXj → ΣXi ∨ ΣXj

to denote the natural inclusions. Then we can write

θ = aij + bij + cij + eij + fij , (4.4)

where

aij : S5
a′

ij−−→ ΣS2
i ∧ S2

j

[ι1,ι2]−−−−→ ΣS2
i ∨ ΣS2

j ,

bij : S5
b′ij−−→ ΣS2

i ∧ P 3(2rj )
[ι1,ι2]−−−−→ ΣS2

i ∨ ΣP 3(2rj ),

cij : S5
c′ij−−→ ΣS2

i ∧ C4
rj

[ι1,ι2]−−−−→ ΣS2
i ∨ ΣC4

rj
,

dij : S5
d′

ij−−→ ΣP 3(2ri) ∧ P 3(2rj )
[ι1,ι2]−−−−→ ΣP 3(2ri) ∨ ΣP 3(2rj ),

eij : S5
e′

ij−−→ ΣP 3(2ri) ∧ C4
rj

[ι1,ι2]−−−−→ ΣP 3(2ri) ∨ ΣC4
rj

,

fij : S5
f ′

ij−−→ ΣC4
rj
∧ C4

ri

[ι1,ι2]−−−−→ ΣC4
ri
∨ ΣC4

rj
.

Since the homotopy cofibre of φ is ΣW , similar arguments to the proof of [7, Lemma
4.2] show the following lemma.

Lemma 4.1. Let Cu be the homotopy cofibre of a map u with u given by (1) u = aij,
(2) u = bij, (3) u = cij, (4) u = dij, (5) u = eij, (6) u = fij. Then all cup products
in H∗(Cu;R) are trivial for any principal ideal domain R.

By lemmas 4.1 and 2.8 we then get

Corollary 4.2. The Whitehead product component θ (4.4) of φ̄ is trivial.
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For each n � 2, let Θn be secondary cohomology operation based on the null-
homotopy of the composition

Kn

θn=

[
Sq2 Sq1

Sq2

]
−−−−−−−−−−→ Kn+3 ×Kn+2

ϕn=[Sq1,Sq2]−−−−−−−−−→ Kn+4,

where Km = K(Z/2, m) denotes the Eilenberg–MacLane space of type (Z/2, m).
More concretely, Θn : Sn(X)→ Tn(X) is a cohomology operation with

Sn(X) = ker(θn)� = ker(Sq2) ∩ ker(Sq2 Sq1)

Tn(X) = coker(Ωϕn)� = Hn+3(X; Z/2)/ im(Sq1 + Sq2).

Note that Θn detects the maps η2 ∈ πn+2(Sn) and inη2 ∈ πn+2(Pn+1(2r)) (cf. [15,
Section 2.4]). By the method outlined in [16, page 32], the stable secondary oper-
ation Θ = {Θn}n�2 is spin trivial (cf. [24]), which means the following Lemma
holds.

Lemma 4.3. The secondary operation Θ: H∗(M ; Z/2)→ H∗+3(M ; Z/2) is trivial
for any orientable closed smooth spin manifold M .

Now we are prepared to classify the homotopy types of Cφ̄. Note that for a
closed orientable smooth five-manifold M , the second Stiefel–Whitney class equals
the second Wu class v2, which satisfies Sq2(x) = v2 � x for all x ∈ H3(M ; Z/2)
[17, page 132]. It follows that the orientable smooth five-manifold M is spin if
and only if Sq2 acts trivially on H3(M ; Z/2), which is equivalent to Sq2 acting
trivially on H4(ΣW ; Z/2) or H4(Cφ̄; Z/2), by lemma 3.1 and the homotopy
decomposition (4.1).

Proposition 4.4. If M is a closed orientable smooth spin five-manifold, then there
is a homotopy equivalence

Cφ̄ �
(

d−c1∨
i=1

S3

)
∨
(

d∨
i=1

S4

)
∨
⎛⎝ t2∨

j=c2+1

P 4(2rj )

⎞⎠ ∨
⎛⎝ c2∨

j=1

C5
rj

⎞⎠ ∨ S6.

Proof. The smooth spin condition on M , together with lemma 4.3, implies that xi =
εj = 0 for all i, j in (4.3). By the comments above proposition 4.4, M is spin implies
that the Steenrod square Sq2 acts trivially on H4(Cφ̄; Z/2). Then lemmas 2.9 and
2.10 imply yi = zj = wj = 0 for all i, j. Thus the map φ̄ in (4.3) is null-homotopic
and therefore we get the homotopy equivalence in the Proposition. �

Remark 4.5. If M is a general 5-dimensional connected Poincaré duality com-
plex such that Sq2 acts trivially on H3(M ; Z/2), then we have the following two
additional possibilities for the homotopy types of Cφ̄ in terms of the secondary
cohomology operation Θ:
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(1) If for any u ∈ H3(M ; Z/2) with Θ(u) �= 0 and any v ∈ ker(Θ), there holds
βr(u + v) = 0 for all r, then there is a homotopy equivalence

Cφ̄ �
(

d−c1∨
i=2

S3

)
∨
(

d∨
i=1

S4

)
∨
⎛⎝ t2∨

j=c2+1

P 4(2rj )

⎞⎠∨
⎛⎝ c2∨

j=1

C5
rj

⎞⎠∨(S3 ∪η2 e6).

(2) If there exist u ∈ H3(M ; Z/2) with Θ(u) �= 0 and v ∈ ker(Θ) such that
βr(u + v) �= 0, then there is a homotopy equivalence

Cφ̄ �
(

d−c1∨
i=1

S3

)
∨
(

d∨
i=1

S4

)
∨
⎛⎝ t2∨

j0�=j=c2+1

P 4(2rj )

⎞⎠∨
⎛⎝ c2∨

j=1

C5
rj

⎞⎠∨A6(2rj0 η2),

where A6(2rj0 η2) = P 4(2rj0 ) ∪i3η2 e6, j0 is the index such that rj0 is the
maximum of rj satisfying βrj

(u + v) �= 0.

Proposition 4.6. Suppose that Sq2 acts non-trivially on H3(M ; Z/2), or equiva-
lently Sq2 acts non-trivially on H4(Cφ̄; Z/2).

(1) If for any u, v ∈ H4(Cφ̄; Z/2) satisfying Sq2(u) �= 0 and Sq2(v) = 0, there
holds u + v /∈ im(βr) for any r � 1, then there is a homotopy equivalence

Cφ̄ �
(

d−c1∨
i=1

S3

)
∨
(

d∨
i=2

S4

)
∨
⎛⎝ t2∨

j=c2+1

P 4(2rj )

⎞⎠ ∨
⎛⎝ c2∨

j=1

C5
rj

⎞⎠ ∨ C6
η .

(2) If there exist u, v ∈ H4(Cφ̄; Z/2) with Sq2(u) �= 0 and v ∈ ker(Sq2) such that
u + v ∈ im(βr) for some r, then either there is a homotopy equivalence

Cφ̄ �
(

d−c1∨
i=1

S3

)
∨
(

d∨
i=1

S4

)
∨
⎛⎝ t2∨

j1�=j=c2+1

P 4(2rj )

⎞⎠∨
⎛⎝ c2∨

j=1

C5
rj

⎞⎠∨A6(η̃rj1
),

or there is a homotopy equivalence

Cφ̄ �
(

d−c1∨
i=1

S3

)
∨
(

d∨
i=1

S4

)
∨
⎛⎝ t2∨

j=c2+1

P 4(2rj )

⎞⎠∨
⎛⎝ c2∨

j1 �=j=1

C5
rj

⎞⎠∨A6(iP η̃rj1
),

where the last two complexes are defined by (2.4) and rj1 is the minimum of
rj such that u + v ∈ im(βrj

).

Proof. Recall the equation for φ̄ given by (4.3). Since Sq2 acts non-trivially on
H4(Cφ̄; Z/2), at least one of yi, zj , wj equals 1.

(1) The conditions in (1) implying that zj = wj = 0 for all j and hence yi = 1
for some i. Clearly we may assume that y1 = 1 and yi = 0 for all 2 � i � d.
By the equivalences
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η
η2

]
∼

[
η
0

]
: S5 → S4 ∨ S3,

[
η

i3η
2

]
∼

[
η
0

]
: S5 → S4 ∨ P 4(2r),

we may further assume that xi = εi = 0 for all i in (4.3). Thus we have

φ̄ = η : S5 → S4,

which proves the homotopy equivalence in (1).

(2) The conditions in (2) implies that zj = 1 or wj = 1 for some j. For maps
η̃r, i3η

2 : S5 → P 4(2r) and iP η̃s : S5 → C5
s , the formulas (2.1) and (2.2)

indicate the following equivalences

[
η̃r

ηa

]
∼

[
η̃r

0

]
(a = 1, 2),

[
iP η̃r

ηa

]
∼

[
iP η̃r

0

]
(a = 1, 2);[

η̃r

η̃s

]
∼

[
η̃r

0

]
(r � s),

[
iP η̃r

iP η̃s

]
∼

[
iP η̃r

0

]
(r � s);[

η̃r

i3η
2

]
∼

[
η̃r

0

]
(i3η2 ∈ π5(P 4(2s)), r �= s),

[
iP η̃r

i3η
2

]
∼

[
iP η̃r

0

]
.

It follows that we may assume that xi = yi = 0 for all i regardless of whether zj = 1
or wj = 1.

(i) If zj = 1 for some j, we assume that zj = 1 for exactly one j, say zj1 = 1;
in this case, εj = 0 for all j �= j1. Note that 1P + i3ηq4 is a self-homotopy
equivalence of P 4(2r) and

(1P + i3ηq4)(η̃r + i3η
2) = η̃r + i3η

2 + i3η
2 = η̃r,

we may assume that εj1 = 1 and εj = 0 for j �= j1.

(ii) If wj = 1 for some j, then wj = 1 for exactly one j, say wj2 = 1; in this case,
εj = 0 for all j.

By (2.3) we have the equivalences for maps S5 → P 4(2r) ∨ C5
s :[

η̃r

iP η̃s

]
∼

[
η̃r

0

]
if r � s;

[
η̃r

iP η̃s

]
∼

[
0

iP η̃s

]
if r > s.

Thus we may assume that φ̄ = η̃rj1
if rj1 � rj2 ; otherwise φ̄ = iP η̃rj2

, which prove
the homotopy equivalences in (2). �

Proof of Theorem 1.1. Combine lemma 3.1, the homotopy decomposition (4.1) and
propositions 4.4 and 4.6. �

Proof of Theorem 1.2. The homotopy types of the discussion of the suspension
ΣCφ̄ is totally similar to that of Cφ̄. The Theorem then follows by lemma 3.1,
the homotopy decomposition (4.2) and the suspended version of propositions 4.4
and 4.6. �
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5. Some applications

In this section we apply the homotopy decomposition of Σ2M given by Theorem
1.1 to study the reduced K-groups and the cohomotopy sets of M .

5.1. Reduced K-groups

To prove Corollary 1.3 we recall that the reduced complex K-group K̃(Sn) is
isomorphic to Z if n is even, otherwise K̃(Sn) = 0; the reduced KO-groups of
spheres are given by

i (mod 8) 0 1 2 3 4 5 6 7

K̃O(Si) Z Z/2 Z/2 0 Z 0 0 0 . (5.1)

Using the reduced complex K-groups and KO-groups of spheres one can easily get
the following lemma, where the notations A7(η̃r) and A7(iP η̃r) refer to (2.4).

Lemma 5.1. Let m, r be positive integers and let p be a prime.

(1) K̃(P 2m(pr)) ∼= Z/pr and K̃(P 2m+1(pr)) = 0.

(2) K̃(C2m
η ) ∼= Z⊕ Z and K̃(C2m+1

η ) = 0.

(3) K̃(C6
r ) ∼= K̃(A7(iP η̃r)) ∼= Z, K̃(A7(η̃r)) = 0.

(4) K̃O
2
(P 4+i(pr)) = K̃O

2
(C7

η) = 0 for p � 3 and i = 0, 1, 2.

(5) K̃O
2
(P 5(2r)) ∼= K̃O

2
(A7(η̃r)) ∼= Z/2.

(6) K̃O
2
(C6

η) ∼= K̃O
2
(C6

r ) ∼= K̃O
2
(A7(iP η̃r)) ∼= Z⊕ Z/2.

Proposition 5.2. Let M be an orientable smooth closed five-manifold given by
Theorem 1.1 or 1.2. There hold isomorphisms

K̃(M) ∼= Z
d+l ⊕H ⊕H, K̃O(M) ∼= Z

l ⊕ (Z/2)l+d+t2 .

Proof. We only give the proof of K̃O(M) here, because the proof of K̃(M) is similar
but simpler. By Theorem 1.1 we can write

Σ2M �
(

l∨
i=1

S3

)
∨
(

d−c1∨
i=1

S4

)
∨
(

d∨
i=2

S5

)
∨
(

l−c1−c2∨
i=1

S6

)
∨ P 4(H) ∨ P 6(H)

∨
(

c1∨
i=1

C6
η

)
∨ P 5(

T [c2]
Z/2rj1

) ∨
⎛⎝ c2∨

j2 �=j=1

C6
rj

⎞⎠ ∨ Σ2X,
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where Σ2X � (S5 ∨ P 5(2rj1 ) ∨ C6
rj2

) ∪ e7. By lemma 5.1 and the table (5.1), there
is a chain of isomorphisms

K̃O(M) ∼= K̃O
2
(Σ2M) ∼=

⊕
l

K̃O
2
(S3)⊕

⊕
d−c1

K̃O
2
(S4)⊕

⊕
d

K̃O
2
(S5)

⊕
⊕

l−c1−c2

K̃O
2
(S6)⊕ K̃O(P 4(H) ∨ P 6(H))⊕

⊕
c1

K̃O
2
(C6

η)

⊕ K̃O
2
(P 5

(
T [c2]

Z/2rj1

)
)⊕

c2⊕
j2 �=j=1

K̃O
2
(C6

rj
)⊕ K̃O

2
(Σ2X)

∼= (Z/2)l+d−c1 ⊕ Z
l−c1−c2 ⊕ (Z⊕ Z/2)⊕c1 ⊕ (Z/2)t2−c2−1

⊕ (Z⊕ Z/2)⊕(c2−1) ⊕ K̃O
2
(Σ2X)

∼= Z
l ⊕ (Z/2)l+d+t2 ,

where K̃O
2
(Σ2X) ∼= Z⊕ Z/2 ⊕ Z/2 in all cases of Theorem 1.1 can be easily

computed by lemma 5.1. �

5.2. Cohomotopy sets

Let M be a closed five-manifold. It is clear that the cohomotopy Hurewicz maps

hi : πi(M)→ Hi(M), α �→ α∗(ιi)

with ιi ∈ Hi(Si) a generator are isomorphisms for i = 1 or i � 5. For π4(M), there
is a short exact sequence of abelian groups (cf. [22])

0→ H5(M ; Z/2)
Sq2

Z
(H3(M ; Z))

→ π4(M) h4

−−→ H4(M)→ 0,

which splits if and only if there holds an equality (cf. [23, Section 6.1])

Sq2
Z
(H3(M ; Z)) = Sq2(H3(M ; Z/2)) ⊆ H5(M ; Z/2).

The standard action of S3 on S2 = S3/S1 by left translation induces a natural
action of π3(M) on π2(M). More concretely, the Hopf fibre sequence

S1 −−→ S3 η−−→ S2 ı2−−→ CP∞ j−−→ HP∞

induces an exact sequence of sets

π1(M) κu−−→ π3(M)
η�−−→ π2(M) h−−→ H2(M)

j�−−→ π4(M), (5.2)

where [M, HP∞] = π4(M) because HP∞ has the 6-skeleton S4, h = h2 is the sec-
ond cohomotopy Hurewicz map. The homomorphism κu in (5.2) is given by the
following lemma.

https://doi.org/10.1017/prm.2024.49 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.49


24 P. Li and Z. Zhu

Lemma 5.3 (cf. Theorem 3 of [13]). The natural action of π3(M) on π2(M) is
transitive on the fibres of h and the stabilizer of u ∈ π2(M) equals the image of the
homomorphism

κu : π1(M)→ π3(M), κu(v) = κ(u× v)ΔM ,

where ΔM is the diagonal map on M , κ : S2 × S1 → S3 is the conjugation
(gS1, t) �→ gtg−1 by setting S2 = S3/S1.

Thus, in a certain sense we only need to determine the third cohomotopy group
π3(M). Recall the EHP fibre sequence (cf. [20, Corollary 4.4.3])

Ω2S4 ΩH−−→ Ω2S7 −−→ S3 E−−→ ΩS4 H−−→ ΩS7,

which induces an exact sequence

[M,Ω2S4]
(ΩH)�−−−−→ [M,Ω2S7] −−→ [M,S3]

E�−−→ [M,ΩS4]→ 0, (5.3)

where 0 = [M, ΩS7] = [ΣM, S7] by dimensional reason.

Lemma 5.4. Let M be a 5-manifold given by Theorem 1.1. Then

(1) [Σ2M, S7] ∼= Z〈q7〉, where q7 is the canonical pinch map;

(2) [Σ2M, S4] contains a direct summand Z〈ν4q7〉, where ν4 : S7 → S4 is the Hopf
map.

Proof. By Theorem 1.1, there is a homotopy decomposition

Σ2M � U ∨ V,

where U is a 6-dimensional complex and V belongs to the set

S = {S7, C7
η , A7(η̃rj1

) = P 5(2rj1 ) ∪η̃rj1
e7, A7(iP η̃rj1

) = C6
rj1
∪iP η̃rj1

e7}.

Let qV : Σ2M → V be the pinch map onto V . Then it is clear that the pinch map q7

factors as the composite Σ2M
qV−−→ V

q7 or 17−−−−−→ S7. We immediately have the chain
of isomorphisms

[Σ2M,S7]
q�

V←−−∼= [V, S7] ∼= Z〈q7〉.

For the group [Σ2M, S4], we show that the direct summand [V, S4] (through the
homomorphism q�

V ) is isomorphic to Z〈ν4q7〉 ⊕ Z/12 for any V ∈ S.

https://doi.org/10.1017/prm.2024.49 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.49


Suspension homotopy of 5-manifolds 25

If V = S7, we clearly have [S7, S4] ∼= Z〈ν4〉 ⊕ Z/12. If V = C7
η , then from the

homotopy cofibre sequence

S6 η−−→ S5 i5−−→ C7
η

q7−−→ S7 η−−→ S6

we have an exact sequence

0→ π7(S4)
q�
7−−→ [C7

η , S4]
i�
5−−→ π5(S4)

η�

−−→ π6(S4).

Since η� is an isomorphism, i�5 is trivial and hence q�
7 is an isomorphism. Thus we

have

[C7
η , S4] ∼= (q7)�(π7(S4)) ∼= Z〈ν4q7〉 ⊕ Z/12.

If V = A7(η̃r) = P 5(2rj1 ) ∪η̃rj1
e7, the homotopy cofibre sequence

S6
η̃rj1−−−→ P 5(2rj1 ) iP−−→ A7(η̃r)

q7−−→ S7 −−→ P 6(2rj1 )

implying an exact sequence

0→ π7(S4)
q�
7−−→ [A7(η̃r), S4]

i�
P−−→ [P 5(2rj1 ), S4]

η̃�
rj1−−−→ π6(S4).

Since [P 5(2rj1 ), S4] ∼= Z/2〈ηq5〉, the formula q5η̃rj1
= η in (2.2) then implying η̃�

rj1
is an isomorphism. Thus

[A7(η̃r), S4] ∼= (q7)�(π7(S4)) ∼= Z〈ν4q7〉 ⊕ Z/12.

The computations for V = A7(iP η̃r) is similar. First, it is clear that

[C6
rj1

, S4]
i�
P←−∼= [P 5(2rj1 ), S4] ∼= Z/2〈ηq5〉.

Recall we have the composite q5 : P 5(2rj1 ) iP−−→ C6
rj1

q5−−→ S5. It follows that the

homomorphism [C6
rj1

, S4]
(iP η̃rj1

)�

−−−−−−→ π6(S4) is an isomorphism, and thus there is
an isomorphism

[A7(iP η̃r), S4] ∼= (q7)�(π7(S4)) ∼= Z〈ν4q7〉 ⊕ Z/12. �

Lemma 5.5. Let r � 1 be an integer. There hold isomorphisms

(1) [C5
η , S4] = 0 and [C5

r , S4] ∼= Z/2r+1.

(2) [A6(η̃r), S4] ∼= Z/2r−1, where Z/1 = 0 for r = 1.

(3) [A6(iP η̃r), S4] ∼= Z/2r.

Proof. (1) The groups in (1) refer to [2] or [14].

(2) The homotopy cofibre sequence for A6(η̃r), as given in the proof of lemma
5.4, implying an exact sequence

https://doi.org/10.1017/prm.2024.49 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.49


26 P. Li and Z. Zhu

[P 5(2r), S4]
η̃�

r−−→∼= [S6, S4]→ [A6(η̃r), S4]
i�
P−−→ [P 4(2r), S4]

η̃�
r−−→ [S5, S4].

Thus (iP )� is a monomorphism and im(iP )� = ker(η̃�
r) ∼= Z/2r−1〈2q4〉.

(3) The computation of the group [A6(iP η̃r), S4] is similar, by noting the
isomorphism [C5

r , S4] ∼= Z/2r+1〈q4〉 (cf. [2]). �

Proposition 5.6. Let M be a 5-manifold given by Theorems 1.1 or 1.2. The
homomorphism (ΩH)� in (5.3) is surjective and hence there is an isomorphism

Σ: π3(M)→ π4(ΣM).

Moreover, let M be the 5-manifold, together with the integers c1, c2 and rj1 , given
by Theorem 1.1, then we have the following concrete results:

(1) if M is spin, then

π3(M) ∼= Z
d ⊕ (Z/2)l+1−c1−c2 ⊕ T [c2]⊕

⎛⎝ c2⊕
j=1

Z/2rj+1

⎞⎠ ;

(2) if M is non-spin and the conditions in (a) hold, then

π3(M) ∼= Z
d ⊕ (Z/2)l−c1−c2 ⊕ T [c2]⊕

⎛⎝ c2⊕
j=1

Z/2rj+1

⎞⎠ ;

(3) if M is non-spin and the conditions in (b) hold, then π3(M) is isomorphic to
one of the following groups:

(i) Z
d ⊕ (Z/2)l−c1−c2 ⊕ T [c2]

Z/2rj1
⊕

⎛⎝ c2⊕
j=1

Z/2rj+1

⎞⎠⊕ Z/2rj1−1,

(ii) Z
d ⊕ (Z/2)l−c1−c2 ⊕ T [c2]⊕

⎛⎝ c2⊕
j1 �=j=1

Z/2rj+1

⎞⎠⊕ Z/2rj1 .

Proof. We first apply the exact sequence (5.3) to show that the suspension
π3(M) Σ−−→ π4(ΣM) is an isomorphism. By duality, it suffices to show the sec-
ond James–Hopf invariant H induces a surjection H� : [Σ2M, S4]→ [Σ2M, S7]. By
lemma 5.4, there hold isomorphisms

[Σ2M,S7] ∼= Z〈q7〉 and [Σ2M,S4] ∼= Z〈ν4q7〉 ⊕G

for some abelian group G. Then the surjectivity of H� follows by the homotopy
equalities

H(ν4) = 17, H(ν4q7) = H(ν4)q7 = q7.

Note the first statement only depends the homotopy type of the double suspension
Σ2M , so we can also assume that M is the five-manifold satisfying conditions in
Theorem 1.1.
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The computations of the group [ΣM, S4] follows by Theorem 1.1, lemma 5.5:

(1) If M is spin, then

[ΣM,S4] ∼=
(

d⊕
i=1

[S4, S4]

)
⊕

(
l−c1−c2⊕

i=1

[S5, S4]

)
⊕ [P 4(T [c2]), S4]

⊕
⎛⎝ c2⊕

j=1

[C5
rj

, S4]

⎞⎠⊕ [S6, S4].

(2) If M is non-spin and ΣM is given by (a), then

[ΣM,S4] ∼=
(

d⊕
i=2

[S4, S4]

)
⊕

(
l−c1−c2⊕

i=1

[S5, S4]

)
⊕ [P 4(T [c2]), S4]

⊕
⎛⎝ c2⊕

j=1

[C5
rj

, S4]

⎞⎠⊕ [C6
η , S4].

(3) If M is non-spin and ΣM is given by (b), then

[ΣM,S4] ∼=
(

d⊕
i=1

[S4, S4]

)
⊕

(
l−c1−c2⊕

i=1

[S5, S4]

)
⊕ [P 4

(
T [c2]

Z/2rj1

)
, S4]

⊕
⎛⎝ c2⊕

j=1

[C5
rj

, S4]

⎞⎠⊕ [A6(η̃rj1
), S4],

or

[ΣM,S4] ∼=
(

d⊕
i=1

[S4, S4]

)
⊕

(
l−c1−c2⊕

i=1

[S5, S4]

)
⊕ [P 4(T [c2]), S4]

⊕
⎛⎝ c2⊕

j1 �=j=1

[C5
rj

, S4]

⎞⎠⊕ [A6(iP η̃rj1
), S4]. �
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