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Abstract We study the possible singularities of an m-subharmonic function ϕ along a complex
submanifold V of a compact Kähler manifold, finding a maximal rate of growth for ϕ which depends
only on m and k, the codimension of V. When k < m, we show that ϕ has at worst log poles along V,
and that the strength of these poles is moreover constant along V. This can be thought of as an analogue
of Siu’s theorem.

1. Introduction

Let (Xn,ω) be a closed Kähler manifold, and let mSH(X,ω) be the space of (m,ω)-sh

functions on X, 1 �m � n. m-sh functions were introduced by B�locki [9] as the natural

space of weak solutions to the complex m-Hessian equation on domains in C
n, and they

naturally interpolate between plurisubharmonic (psh) and subharmonic (sh) functions as

m varies.

As such, m-sh functions share many similarities with psh functions. Both support a
robust potential theory which has been the subject of much interest in recent years

(see, e.g., [7, 8, 9, 1, 19, 28, 12]). One major difference however is the lack of a strong

relation between m-sh functions and analytic geometry, something which can be seen,
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for instance, in our inability to solve the ∂-problem with generic m-sh weights. This

geometric connection is utilized to great effect in the study of psh functions, and is
largely responsible for our understanding of what singularities of psh functions can look

like, for example, Demailly approximation [16] and Siu’s theorem [32].

Our goal in this paper is to develop a better understanding of the singularities of m-sh

functions, proceeding in a more ad-hoc manner. A natural starting place is to study their
behaviour along complex submanifolds:

Theorem 1.1. Let V ⊂X be a closed, complex submanifold of codimension k and Ω a

sufficiently small m-hyperconvex neighborhood of V.

For each m � k, there exists an (m,ω)-sh function ψV on X, locally bounded and
maximal on Ω\V , with the same singularity type as

Gm(r) :=

{
logr when m= k

−r−2( k
m−1) when m< k,

where here r := distω(·,V ) is the ω-distance to V.

With the function ψV in hand, we can study generalized Lelong numbers, in the sense
of Demailly [17], and relative types, in the sense of Rashkovskii [30], of arbitrary m-sh

functions along V.

Corollary 1.2. Let V, ψV and r be as in Theorem 1.1. Then for any ϕ ∈mSH(X,ω),

the limit

ν(ϕ,ψV ) := lim
s→0

Ck,m

s2k−2k/m

∫
{r<s}

√
−1∂∂ϕ∧ (

√
−1∂∂r2)m−1∧ωn−m

exists and is both finite and nonnegative. Here, Ck,m is a constant depending only on k

and m.

Corollary 1.3. Let V and ψV be as in Theorem 1.1. Let Ws := {ψV < s}. Then for any

ϕ ∈mSH(X,ω), the limit

σ(ϕ,ψV ) := lim
s→−∞

maxWs
ϕ

s
,

exists and is both finite and nonnegative.

Note that, if m> k, then we can still apply Corollaries 1.2 and 1.3 by just considering

ϕ ∈mSH(X,ω)⊂ kSH(X,ω).

Corollaries 1.2 and 1.3 are the first such results about the singularities of m-sh functions
along submanifolds of positive dimension – for more information about Lelong numbers

of m-sh functions at points, we refer the reader to [19], and also [22, 23, 11]. As one sees

from Theorem 1.1 and Corollary 1.2, the natural scaling changes with the codimension k
when k �m, something quite different from the psh case.

The scaling we obtain agrees with what one might naively expect if they were to assume

that the restriction of ϕ to any k -dimensional submanifold transverse to V were still
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m-sh. This assumption is very much not true; ϕ will generally lose positivity when
restricted to a submanifold since

√
−1∂∂ϕ can have negative eigenvalues. That we still

recover this optimal scaling may seem surprising in light of this.

This loss of positivity also means that we cannot use a slicing argument to reduce
our situation to the case of studying the singularity of ϕ at the origin, as one does

in the psh case. Instead, we show Theorem 1.1 by constructing smooth sub- and

supersolutions (essentially) to the equation Hm(ϕ) = 0 on Ω\V . This is done by taking

small perturbations of Gm(r), using the computations of Tam-Yu [33] for the Hessian
of r. The function ψV is then realized as a singularity type envelope; the sub- and

supersolutions guarantee that ψV has the correct singularity type.

We show that our construction of subsolutions can be modified in Proposition 3.7 to
produce m-sh functions whose behaviour near V is roughly like

−θGm(r)

for any smooth θ � 0 (see Proposition 3.7 for a precise statement). This behaviour is

predicted by Åhag-Cegrell-Czyż-Hiê.p’s [1], and Hung-Phu’s [24], solutions to certain
highly degenerate complex Monge-Ampère (resp. complex Hessian) equations. Their

solutions are constructed as a sequence of envelopes, and the resulting behaviour of

the solutions near V is not easily seen. Our examples provide constraints on what
that behaviour can be (which can be quite strong in fact – see Remark 3.8), but

without corresponding supersolutions, we cannot deduce the exact singularity types of

the solutions.

In the context of this paper, the examples in Proposition 3.7 are interesting in that
they show that σ(ϕ,ψV ) �= ν(ϕ,ψV ) in general, unlike the more classical case when the

weight is singular only at a point. Indeed, these examples show that it is possible to have

σ(ϕ,ψV ) = 0 but ν(ϕ,ψV )> 0 – the reverse is impossible (see Corollary 2.12).
We conclude that we cannot expect constraints which are significantly stronger than

Corollaries 1.2 and 1.3 when V has codimension �m. When the codimension is less than

m, however, our next result finds that the situation is much closer to the psh case:

Theorem 1.4. Suppose that V ⊂ X is a complex submanifold of codimension k and

ϕ ∈mSH(X,ω). Suppose that k <m, and let ψV ∈ kSH(X,ω) be the function constructed

in Theorem 1.1. Then the function

LψV
(ϕ)(z) := liminf

z′→z
z′ �∈V

ϕ(z′)

ψV (z′)
z ∈ V

is constant along V.

Theorem 1.4 can be seen as a version of Siu’s theorem in our context. Note in particular

that it implies a certain propagation of singularities along V since the function LψV
(ϕ)

is defined pointwise.

Since the analyticity of V is already assumed, the proof of Theorem 1.4 is pleasantly

elementary and boils down to essentially the weak Harnack inequality and Corollary 1.3.
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Taken together, our results indicate a stark dichotomy in the behaviour of m-sh
functions, depending on the size of their singular set. The situation where the singular

set is small appears to be easier since it can be ‘selected’ by assuming that ϕ has a well-

defined complex Hessian measure – specifically, one sees that, if we assume that ϕ ∈ Em

(the m-subharmonic version of Cegrell’s class) then ν(ϕ,ψV ) = 0 for all k �m. The small

codimension case is likely to be more interesting from a geometric point of view however,

and it is unclear if there is a similar potential theoretic assumption one can make to limit

to this situation. Finding conditions which work well in both cases appears challenging.
We conclude this introduction with an outline of the rest of the paper. In Section 2, we

recall some background results, which should be more-or-less standard to experts. Since

we will need to utilize the lack of boundary of V at several points, it is important that we
do not restrict ourselves to domains in C

n and work rather on abstract m-hyperconvex

manifolds. In Section 3, we prove Theorem 1.1 (Theorem 3.4), as well as Corollary 1.2

(Proposition 3.6). The examples in Proposition 3.7 are constructed in Subsection 3.4.
Theorem 1.4 is finally shown in Section 4 (Theorem 4.2).

2. Background and notation

Throughout, we shall assume that (Xn,ω) is a closed Kähler manifold of complex

dimension n, with Kähler form ω. (Ωn,ω) will always denote a compact Kähler manifold

with boundary. In this paper, we will always assume that Ω ⊂ X, mostly as a matter
of convenience. We always assume that V n−k ⊂ Ω is a compact submanifold without

boundary and (complex) codimension k (so that V has complex dimension n−k).

Definition 2.1. Suppose that (Ωn,ω) is a Kähler manifold, with boundary, and let m be

an integer between 1 and n. We say a smooth (1,1)-form α is m-subharmonic (or m-sh) if

αk ∧ωn−k � 0 for each k ∈ {1, . . . ,m}.

We denote the set of all m-sh forms by Γm(Ω), or Γm
ω (Ω) if the metric needs to be

specified.
In [9], B�locki defines a real (1,1)-current T to be m-sh if

T ∧α2∧. . .∧αm∧ωn−m � 0 for all α2, . . . ,αm ∈ Γm(Ω).

By G̊arding’s inequality [20], the above definitions are consistent. Additionally, we shall

say that T is strictly m-sh if T − δω is m-sh for some δ > 0.

We say a function ρ on Ω is m-sh if the (1,1)-current ddcρ is m-sh and write mSH(Ω)
for the space of m-sh functions on Ω (or mSHω(Ω), if the metric needs to be specified).

We will also say that ρ is strictly m-sh if i∂∂ρ is.

Given a closed, real (1,1)-form θ, we say that a function u is (m,θ)-sh if θu := θ+ddcu
is m-sh and write mSH(X,θ) for the set of all (m,θ)-sh functions on X.

Classically, the case which has been most studied is when θ = ω; however, it is easy to

check that essentially all standard results hold when θ is any closed, strictly m-sh form.
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2.1. m-hyperconvex manifolds

We have the following m-sh analogue of hyperconvex manifolds.

Definition 2.2. We say a compact Kähler manifold (Ω,ω) is m-hyperconvex if there

exists a strictly m-sh exhaustion function on Ω◦ which is smooth up to the boundary,
that is, a strictly m-sh function 0>ρ∈C∞(Ω) such that Ωc := {ρ< c}�Ω for each c < 0.

It is easy to see thatm-hyperconvex manifolds can contain nontrivial closed subvarieties.

This basic observation is key to our setting, so it is important that we do not restrict our
definition to domains in C

n, which has been the primary case considered in much of the

literature. Many of those previous results do not heavily utilize this assumption, however,

and can be shown to hold for arbitrary hyperconvex domains with only minor changes to
their proofs.

One difference between the two settings which is worth pointing out is that it is

crucial for ρ to be strictly m-subharmonic in Definition 2.2. Without this, the complex

Hessian operator may fail to be well-defined; for example, consider a neighborhood U
of a smooth, ample divisor D ⊂ CP

n. If we let s be a holomorphic section of OCPn(D)

with {s= 0}=D, and h a positive metric on OCPn(D), then it is well-known that the

product (
√
−1∂∂ log |s|h)2∧ωn−m is not well-defined, even though there exists a smooth,

psh exhaustion function on U. For positive results in this direction, see the recent papers

[3, 6, 4, 10, 5], which define product currents which retain some of the singular nature of

log |s|h.
Since we repeatedly make use of the fact that codimension m-subvarieties admit

m-hyperconvex neighborhoods, we record this fact here:

Proposition 2.3. Suppose that (Xn,ω) is a compact Kähler manifold and that V ⊂X is a
compact submanifold of codimension m. Then there exists an m-hyperconvex neighborhood

U of V with smooth boundary.

Proof. Let r(z) := distω(z,V ) be the Riemannian distance function to V. When r is
sufficiently small, r2 is smooth. By [33],

√
−1∂∂r2 =

(
Im 0

0 0

)
+o(1),

where o(1) denotes a term satisfying limr→0 o(1) = 0. It is clear that the leading term

belongs to Γm. Then we can take any sublevel set of r2 to be the desired m-hyperconvex

neighborhood of V.

2.2. The complex Hessian operator

For later use, we recall some basic facts about the complex Hessian operator on

m-hyperconvex domains – see, for example, [34], which draws heavily from the work
of Demailly [13, 14, 15, 17, 18] in the psh case. The above papers phrase their results in

terms of a weight function ψ, and they required the unbounded locus of ψ to be a discrete

set. However, it is easy to see that this assumption is superfluous for the results we will
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need below – all that is needed is for the unbounded locus of ψ to be compact and that
it not intersect the boundary of Ω, as in [18].

Throughout, we will be assuming that (Ωn,ω) is an m-hyperconvex manifold (which

recall we assume to be compact with boundary). We start by defining the classes of
weights which we will study:

Definition 2.4. We say that ψ is a weight on Ω if ψ satisfies the following:

(1) ψ is bounded above.

(2) Sing(ψ) := {ψ =−∞} is closed.

(3) the level sets Ws := {z ∈Ω | ψ(z)< s} are connected and relatively compact for all

s sufficiently negative.

Additionally, we will require our weights to satisfy a differential inequality.

• We say ψ is an m-subweight if ψ is m-sh.
• We say ψ is anm-superweight if ψ ∈C∞(Ω\Sing(ψ)) and (

√
−1∂∂ψ)m∧ωn−m �

0 there.
• We say ψ is a maximal m-weight if ψ is m-sh such that (

√
−1∂∂ψ)m∧ωn−m = 0

on Ω\Sing(ψ).

Sub- and superweights are suited to different measurements of the singularities of m-sh

functions; subweights work well for Lelong numbers, while superweights are required when

working with the relative type. Maximal m-weights are precisely those weights for which
these two types of measurements can be compared.

Now, by [18, 34], for any m-subweight ψ, the complex Hessian operator

(
√
−1∂∂ψ)m∧ωn−m

is a well-defined, positive Borel measure on Ω, with locally finite mass, which is continuous

along decreasing sequences (that is to say that ψ ∈ Em(Ω), the m-sh version of the
Cegrell class [26]). More generally, if ψ1, . . . ,ψm−1 are all m-subweights and ϕ ∈mSH(Ω)

is arbitrary, then the mixed measure:
√
−1∂∂ϕ∧

√
−1∂∂ψ1∧. . .∧

√
−1∂∂ψm−1∧ωn−m

shares these same properties and is moreover multilinear in each argument.

Definition 2.5. [18, 34] Suppose that ψ is an m-subweight on Ω such that {ψ <−1}�Ω.

Let ϕ ∈mSH(Ω) be such that ϕ�−1. For any s <−1, set

Ws := {ψ < s}.

Then we define:

νm(ϕ,ψ) := lim
s→−∞

∫
Ws

√
−1∂∂ϕ∧ (

√
−1∂∂ψ)m−1∧ωn−m (2.1)

=

∫
{ψ=−∞}

√
−1∂∂ϕ∧ (

√
−1∂∂ψ)m−1∧ωn−m.
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We call νm(ϕ,ψ) the generalized m-Lelong number of ϕ with respect to ψ or, more

compactly, the (m,ψ)-Lelong number of ϕ. By standard results, νm(ϕ,ψ) is always finite

and nonnegative, and the sequence in Equation (2.1) is monotone decreasing.

The following comparison theorem for m-polar measures is standard, and can be

obtained by following the proof of [1, Lemma 4.1] (see also [17, 24]):

Proposition 2.6. Suppose that ψ1,ψ2 are m-subweights and ϕ1,ϕ2 ∈mSH(Ω) are such

that ψ1 � ψ2 +C and ϕ1 � ϕ2 +C for some constant C. Let S := Sing(ψ2)∩ Sing(ϕ2).
Then

χS

√
−1∂∂ϕ2∧ (

√
−1∂∂ψ2)

m−1∧ωn−m � χS

√
−1∂∂ϕ1∧ (

√
−1∂∂ψ1)

m−1∧ωn−m.

2.3. Relative types

Relative-types were first studied by Rashkovskii in [30]. The natural generalization of his
original definition is the following lower semicontinuous function defined on Sing(ψ):

Definition 2.7. Suppose that ψ�−1 is an m-superweight (or a maximal m-weight) and
ϕ ∈mSH(Ω). We define

Lψ(ϕ)(z0) := liminf
z→z0

z �∈Sing(ψ)

ϕ(z)

ψ(z)
.

It is easy to see that Lψ(ϕ) is a lower-semincontinous function on Sing(ψ) (Proposition
2.11).

For a general ψ, this definition is somewhat lacking on its own. One of the main
applications of the relative type is to get bounds of the form ϕ � Lψ(ϕ) ·ψ+C on a

neighbourhood of Sing(ψ) – but since Lψ(ϕ) is nonconstant, the right-hand side is only

defined up to fixing an extension of Lψ(ϕ) to a neighborhood of Sing(ψ). Since Lψ(ϕ) is
only lower semicontinuous and Sing(ψ) can be very poorly behaved, it seems possible to

us that this inequality may fail to hold if Lψ(ϕ) is extended haphazardly.

A definition which can be more easily applied to get upper bounds for ϕ is the following,

which recovers the minimum of Lψ(ϕ) (although we will see later that this definition has
drawbacks of its own):

Definition 2.8. Suppose that (Ωn,ω) ⊂ (Xn,ω) is an m-hyperconvex manifold. Let
ψ be an m-superweight (or maximal m-weight) on Ω. Suppose that W0 = {z ∈
Ω | ψ(z)< 0}� Ω.

There exists a constant A> 0 such that for any ϕ ∈mSH(X,ω), we have

ϕ+Aρ ∈mSH(Ω).

Define

Ms(ϕ+Aρ) := max
Ws

(ϕ+Aρ).
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Then we define the relative type of ϕ with respect to ψ to be

σ(ϕ,ψ) := lim
s→−∞

Ms(ϕ+Aρ)

s
= lim

s→−∞

maxWs
(ϕ)

s
. (2.2)

That σ(ϕ,ψ) is well-defined comes from the following three-circles type result (see, e.g.,
[25] for similar results in the psh case):

Proposition 2.9. The function Ms(ϕ+Aρ) in Definition 2.8 is convex on (−∞,− 1).
It follows that the limit (2.2) exists, and σ(ϕ,ψ) is always finite and nonnegative.

Proof. Suppose first that ψ is a superweight and that ϕ is also smooth on Ω. Let ρ� 0
be a strictly m-sh function on Ω, and define ϕε := ϕ+(A+ε)ρ. Let −∞< s1 < s2 <−1,

and consider the function

F (z) :=
s2−ψ(z)

s2−s1
Ms1(ϕε)+

ψ(z)−s1
s2−s1

Ms2(ϕε)

defined on W :=Ws2 \W s1 . We seek to show that

ϕε(z)� F (z) on W.

It is clear this inequality holds on ∂W , so suppose for the sake of a contradiction that

ϕε−F admits an interior maximum at some z0 ∈W . It follows that

0< (
√
−1∂∂ϕε(z0))

m∧ωn−m � (
√
−1∂∂F (z0))

m∧ωn−m.

But this is impossible, as F is a superweight. Taking the limit as ε→ 0 finishes the proof

in this case.

The case of a general ϕ follows now by using a decreasing sequence of smooth m-sh
functions which converge to ϕ [27, 29].

If ψ is instead a maximal subweight, we may bypass the smooth approximation

argument and instead appeal to the comparison principle directly since in this case,
F will be a maximal m-sh function on Ws2 \W s1 .

An immediate consequence of Proposition 2.9 is the following alternative definition for
σ(ϕ,ψ):

Proposition 2.10. σ(ϕ,ψ) = max{γ � 0 | ϕ� γψ+O(1)}.

Proof. The proof is standard – it suffices to check that

σ(ϕ,ψ) ∈ {γ � 0 | ϕ� γψ+O(1)}.

Let A> 0 be such that ϕ+Aρ ∈mSH(Ω). Convexity of Ms(ϕ+Aρ) implies that σ(ϕ,ψ)

can be computed by the slopes of the secant lines

σ(ϕ,ψ) = lim
s→−∞

Ms0(ϕ+Aρ)−Ms(ϕ+Aρ)

s0−s
(2.3)

for any fixed s0 < −1. Since Ms(ϕ+Aρ) is also decreasing as s→−∞, the sequence in

Equation (2.3) is decreasing, and we have

Ms(ϕ+Aρ)� σ(ϕ,ψ)s+Ms0(ϕ+Aρ)−σ(ϕ,ψ)s0,
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for all s < s0. From this, we see that

ϕ� σ(ϕ,ψ)ψ+O(1) on Ws0 .

For later use, we record the following facts:

Proposition 2.11. The function Lψ(ϕ) is lower semicontinuous on Sψ := Sing(ψ), and

σ(ϕ,ψ) = min
Sing(ψ)

Lψ(ϕ).

Proof. We first show the lower semicontinuity of Lψ(ϕ). Fix a point z0 ∈ Sψ, and let
zi ∈ Sψ be a sequence of points converging to z0. For any ε > 0, there exists xi ∈X \Sψ

such that

distω(xi,zi)� i−1,
ϕ(xi)

ψ(xi)
� Lψ(ϕ)(zi)+ ε.

It is clear that xi → z0. By definition,

Lψ(ϕ)(z0)� liminf
i→∞

ϕ(xi)

ψ(xi)
� liminf

i→∞
Lψ(ϕ)(zi)+ ε.

Letting ε→ 0 concludes.

Now, it is clear from the definitions that Lψ(ϕ)� σ(ϕ,ψ). To see that it is the minimum,
using that ϕ is upper semicontinuous, we can find a sequence of points zi ∈ W−i =

{ψ � −i} such that ϕ(zi) = maxW−i
ϕ. It follows from compactness of Sψ that there

exists a convergent subsequence zi → z0 ∈ Sψ, and so we see that Lψ(ϕ)(z0) � σ(ϕ,ψ),

finishing the proof.

Again, following Demailly [18], Proposition 2.6 can be used to compare σ(ϕ,ψ) and
νm(ϕ,ψ). For notational convenience, we set

Sψ := Sing(ψ) and μψ := χSψ
(
√
−1∂∂ψ)m∧ωn−m.

Note that Supp(μψ) ⊆ Sψ, but the inclusion may be proper; indeed, as Example 2.1 of

[2] shows, Supp(μψ) can be quite small inside Sψ.

Corollary 2.12. Suppose that ψ � −1 is a maximal m-weight such that μψ(Sψ) > 0.

Then

σ(ϕ,ψ)� 1

μψ(Sψ)
νm(ϕ,ψ).

Proof. By Corollary 2.10, we have that

ϕ� σ(ϕ,ψ)ψ+C

in some neighborhood of Sψ. By Proposition 2.6, it follows that

σ(ϕ,ψ)(
√
−1∂∂ψ)m∧ωn−m �

√
−1∂∂ϕ∧ (

√
−1∂∂ψ)m−1∧ωn−m.

Integrating over Sψ finishes the proof.
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Remark 2.13. Proposition 2.6 allows us to define the Radon–Nikodym derivative of
χSψ

√
−1∂∂ϕ∧ (

√
−1∂∂ψ)m−1 ∧ωn−m with respect to μψ in certain cases, for example,

when ϕ ∈ Em(Ω) (see [1, Lem. 4.4]). It is interesting to ask how different this function is

from Lψ(ϕ).

3. Construction of m-Weights along submanifolds

In this section, we construct our maximal m-weights ψV , associated to the complex

submanifold V.

3.1. Construction of the m-subweight associated to V

Let V ⊆ X be a smooth submanifold of codimension k. Let r(z) := distω(z,V ) be the

Riemannian distance function to V, and choose 0 < sV < 1 sufficiently small so that

Ω := {z ∈X | r(z)< sV } does not intersect the cut-locus of V.

It follows that r will be smooth on Ω\V , so that

rε :=
√
r2+ ε

will be smooth on all of Ω for any ε > 0.

Define Gm : R�0 → R∪{−∞}:

Gm(t) :=

{
log t if m= k

−t2−
2k
m if m< k.

Gm will be the natural scaling of a maximal m-weight near V – by perturbing it slightly,

we will be able to produce sub- and superweights. Our perturbations will be of the form

h(s) := s+As1+δ,

where max
{
1,2

(
k
m −1

)}
< δ will be a uniform constant for all s sufficiently small. We

will also have A = ±1, depending on if we are constructing the sub- or supersolution.

Note that as long as max
{
1,2

(
k
m −1

)}
< δ, Gm(h(r)) and Gm(r) will have the same

singularity type on Ω, for either choice of A.

We will need to choose suitable coordinates for our computations, which we fix once
and for all. Let z ∈ Ω \V , and let x ∈ V be the unique nearest point to z. Consider the

geodesic connecting these points, which will be normal to V at x. Choose a unitary frame

{ei}ni=1 at x such that

e1 =
1√
2
(∇r−

√
−1J∇r),

the e2, . . . ,ek are perpendicular to V, and the ek+1, . . . ,en are tangent to V ; we also write

{ei}ni=1 for the parallel transport of this frame to z. Then, according to [33, Lemma 2.2],

in these coordinates we have that

rij =

⎛
⎝ 1

2r 0 0

0 1
r · Idk−1 0

0 0 0

⎞
⎠+o(1),
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where o(1) denotes a term satisfying limr→0 o(1) = 0 (see in particular Equation (2.22) in

[33]).

In what follows, it suffices to restrict to the case m� k, since, if m> k, then the m-sh
functions we construct will also be k -sh.

Proposition 3.1. Suppose that z ∈Ω\V and that m� k. Let Dk,m =
(
2k
m −2

)−1
if k �=m

and Dk,m = 1 if k =m.

Then for any ε > 0, we have

Dk,mh
2k
m (

√
−1∂∂Gm(h(rε)))ij =

⎛
⎝1− k

m +AB1r
δ
ε 0 0

0
(
1+AB2r

δ
ε

)
Idk−1 0

0 0 0

⎞
⎠

+
ε

r2ε

⎛
⎝ k

m +AB3r
δ
ε +o(rδε) 0 0

0 0 0

0 0 0

⎞
⎠+o(rδε), (3.1)

where we define the constants

B1 = 2

[
1− k

m
+

(
1− k

m

)
δ+

δ2

4

]

and

B2 := 2+ δ, B3 := 2

[
k

m
+ δ

(
k

m
− 1

2

)
− δ2

4

]
.

The terms o(rδε) satisfy o(rδε) � crδε for any 0 < c and all 0 < rδε < rc, where rc depends

on both c and an upper bound for δ >max
{
1,2

(
k
m −1

)}
.

Since the constant Dk,m > 0, it will have no bearing on the positivity/negativity of√
−1∂∂Gm(h(rε)), and we will omit it in all of the below computations.

For later use, we also remark that it will be clear from the below proof that (3.1) still
holds if either ε > 0 and z ∈ V or if ε = 0 and z �∈ V (replacing o(rε) with o(r) in this

case).

Proof. The proof is a computation. To start, if m< k, then we have

(Gm(h(rε)))ij =

(
2k

m
−2

)
·h− 2k

m ·
(
hh′(rε)ij +

(
hh′′+

(
1− 2k

m

)
(h′)2

)
(rε)i(rε)j

)
,

while if m= k

(Gm(h(r)))ij = h−2 ·
(
hh′(rε)ij +

(
hh′′− (h′)2

)
(rε)i(rε)j

)
.

Thus, we may deal with both cases simultaneously by computing

hh′(rε)ij +

(
hh′′+

(
1− 2k

m

)
(h′)2

)
(rε)i(rε)j . (3.2)
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We now compute

(rε)i =
rri√
r2+ ε

=
rri
rε

, (rε)i(rε)j =
r2rirj
r2ε

and

(rε)ij =
rrij√
r2+ ε

+
rirj√
r2+ ε

−
r2rirj

(r2+ ε)
3
2

=
rrij
rε

+
εrirj
r3ε

.

Hence, in our coordinates, we have

(rε)i(rε)j =
r2rirj
r2ε

=

⎛
⎜⎝

r2

2r2ε
0 0

0 0 0
0 0 0

⎞
⎟⎠

and

(rε)ij =
rrij
rε

+
εrirj
r3ε

=

⎛
⎝

1
2rε

+ ε
2r3ε

0 0

0 1
rε

· Idk−1 0

0 0 0

⎞
⎠+

r

rε
·o(1).

Applying this to Equation (3.2) gives

hh′(rε)ij +

(
hh′′+

(
1− 2k

m

)
(h′)2

)
(rε)i(rε)j

=

⎛
⎜⎝(hh′)

(
1

2rε
+ ε

2r3ε

)
+ r2

2r2ε
hh′′+

(
1
2 −

k
m

)
r2

r2ε
(h′)2 0 0

0 (hh′) 1
rε

· Idk−1 0

0 0 0

⎞
⎟⎠+o(r)

as hh′ = rε+o(rε).

We simplify this matrix. Recalling that h(s) = s+As1+δ, we have

h′(s) = 1+A(1+ δ)sδ, and h′′(s) =Aδ(1+ δ)sδ−1.

It follows that

hh′ = s+(2+ δ)As1+δ +(1+ δ)A2s1+2δ

hh′′ = (1+ δ)δAsδ +(1+ δ)δA2s2δ

(h′)2 = 1+2(1+ δ)Asδ +(1+ δ)2A2s2δ

so that the first entry simplifies to

(hh′)

(
1

2rε
+

ε

2r3ε

)
+

r2

2r2ε
hh′′+

(
1

2
− k

m

)
r2

r2ε
(h′)2

=
(
rε+(2+ δ)Ar1+δ

ε +(1+ δ)A2r1+2δ
ε

)( 1

2rε
+

ε

2r3ε

)
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+

(
1

2
− ε

2r2ε

)(
(1+ δ)δArδε +(1+ δ)δA2r2δε

)
+

(
1

2
− ε

2r2ε

)(
1− 2k

m

)(
1+2(1+ δ)Arδε +(1+ δ)2A2r2δε

)
=

(
1

2
+

ε

2r2ε

)(
1+(2+ δ)Arδε +(1+ δ)A2r2δε

)
+

(
1

2
− ε

2r2ε

)(
(1+ δ)δArδε +(1+ δ)δA2r2δε

)
+

(
1

2
− ε

2r2ε

)(
1− 2k

m

)(
1+2(1+ δ)Arδε +(1+ δ)2A2r2δε

)
= 1− k

m
+2A

[
1− k

m
+

(
1− k

m

)
δ+

δ2

4

]
rδε +o(rδε)

+
ε

r2ε

(
k

m
+2A

(
k

m
+ δ

(
k

m
− 1

2

)
− δ2

4

)
rδε +o(rδε)

)

= 1− k

m
+AB1r

δ
ε +

ε

r2ε

(
k

m
+AB3r

δ
ε +o(rδε)

)
+o(rδε).

As hh′

rε
= 1+AB2r

δ
ε +o(rδε) and 0<max{r,√ε}� rε, we conclude Equation (3.1).

We may now construct our m-subweights.

Proposition 3.2. Suppose that m� k. Then for any δ >max
{
1,2

(
k
m −1

)}
, there exists

a 0< s < sV /2 such that for all 0< ε < sV /2 we have that

ψ
V ,ε

:=Gm(h(rε)) ∈mSH(Ws),

where h(s) := s+s1+δ. Moreover, as ε→ 0, we have that

ψ
V ,ε

↘Gm(h(r)) := ψ
V
∈mSH(Ws).

The constant s depends on k,m,ω,V , and an upper bound for δ.

Proof. Since Gm(h(rε)) is smooth on Ω, it will be sufficient to check that it is m-sh at

an arbitrary z ∈Ω\V (though the computations translate easily to the case when z ∈ V ).

Choose coordinates as before, so that Proposition 3.1 with A= 1 gives

Dk,mh
2k
m (

√
−1∂∂ψ

V ,ε
)ij =

⎛
⎝1− k

m +B1r
δ
ε 0 0

0
(
1+B2r

δ
ε

)
Idk−1 0

0 0 0

⎞
⎠

+
ε

r2ε

⎛
⎝ k

m +B3r
δ
ε +o(rδε) 0 0
0 0 0

0 0 0

⎞
⎠+o(rδε). (3.3)

B3 can be bounded using an upper bound on δ, so long as s is sufficiently small the second

matrix will be positive semidefinite for any ε > 0 and can be dropped from all further

computations.
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When k =m, Equation (3.3) now simplifies to

h2(
√
−1∂∂ψ

V ,ε
)ij �

⎛
⎝ δ2

2 r
δ
ε 0 0

0 Idk−1 0
0 0 0

⎞
⎠+o(rδε).

The error term can be controlled by shrinking s if necessary, again depending on δ,

completing this case.

We now deal with the case when m < k. We compute the leading term of the j -th

symmetric polynomial (1� j �m) of Equation (3.3) to be(
1− k

m
+B1r

δ
ε

)
(1+B2r

δ
ε)

j−1+

(
k

j
−1

)
(1+B2r

δ
ε)

j

=
k

j
− k

m
+

[
B1+

((
1− k

m

)
(j−1)+

(
k

j
−1

)
j

)
B2

]
rδε +o(rδε),

omitting a multiplicative factor of j · (k−1). . . (k− j+1). When j <m, the leading term

is positive. When j =m, this term is zero, so the leading order term becomes[
B1+

((
1− k

m

)
(m−1)+

(
k

m
−1

)
m

)
B2

]
rδε

=

[
B1+

(
k

m
−1

)
B2

]
rδε

= δ

[
δ

2
−
(

k

m
−1

)]
rδε

since we have assumed

δ > 2

(
k

m
−1

)
.

By taking s sufficiently small depending on the above constant, we can control the error
term, showing that

√
−1∂∂ψ

V ,ε
is an m-subweight. Letting ε→ 0 shows the secondary

statement in the proposition immediately.

3.2. Construction of the m-superweight

We may now construct our m-superweight by very similar considerations:

Proposition 3.3. Suppose that m� k. Then for any δ >max
{
1,2

(
k
m −1

)}
, there exists

a 0<s<sV /2, depending on k,m,ω,V , and an upper bound for δ so that if h(s) := s−s1+δ,

then

ψV :=Gm(h(r))

is an m-superweight on Ws.

https://doi.org/10.1017/S1474748023000385 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748023000385


Lelong numbers of m-subharmonic functions along submanifolds 1811

Proof. By the remark immediately following Proposition 3.1, we have

h
2k
m (

√
−1∂∂ψV )ij =

⎛
⎝1− k

m −B1r
δ 0 0

0
(
1−B2r

δ
)
Idk−1 0

0 0 0

⎞
⎠+o(rδ). (3.4)

When k =m, Equation (3.4) simplifies to

h
2
(
√
−1∂∂ψV )ij =

⎛
⎝− δ2

2 r
δ 0 0

0 (1− (2+ δ)rδ)Idk−1 0

0 0 0

⎞
⎠+o(rδ).

Choosing s sufficiently small relative to δ again controls the error term so that this is a

superweight.

When m< k, we again compute the leading terms of the j -th symmetric polynomials

of the matrix in Equation (3.4). When j < m, the leading order term is the same as
the leading term in Proposition 3.2; when m= j, it becomes the negation of the term in

Proposition 3.2 and hence will be negative as long as δ > 2
(

k
m −1

)
. Again, the error terms

are an order of magnitude smaller than the leading order term and so can be controlled
assuming an upper bound for δ.

3.3. The maximal m-weight along V

We now show Theorem 1.1, and construct ψV from ψ
V

and ψV by using an envelope to

make the complex Hessian measure vanish.

Theorem 3.4. Suppose that m � k, and δ >max
{
1,2

(
k
m −1

)}
. Let ψ

V
and ψV be the

m-subweight and m-superweights constructed in Propositions 3.2 and 3.3, respectively, for
the given δ. Set s0 := min{s,s}. Then the function

ψV := sup{ϕ ∈mSH(X,ω) | ϕ� 0,ϕ(z)�Gm(r(z))+O(1)}∗

is a maximal m-weight on Ws0 , which moreover has the same singularity type as ψ
V
,ψV ,

and Gm(r).

Proof. As mentioned at the beginning of this section, the three functions ψ
V
,ψV , and

Gm(r) have the same singularity type so that

ψ
V
−C0 �Gm(r)� ψV +C0 � ψ

V
+C0

for some sufficiently large constant C0. Since it is clear that the definition of ψV only

depends on the singularity type of Gm(r), we have that

ψV := sup{ϕ ∈mSH(X,ω) | ϕ� 0,ϕ(z)� ψV (z)+O(1)}∗.

Since ψ
V
� 0, the envelopes

ψV ,C := sup{ϕ ∈mSH(X,ω) | ϕ�min{0,ψV +C}}∗
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satisfy

ψ
V
� ψV ,C

for all C � C0. Recall that the ψV ,C increase to ψV as C →∞ so that ψ
V
� ψV as well.

Let A> 0 be such that ψV +A� 0 on ∂Ws0 . By Lemma 3.5 below, we have that

ψV ,C � ψV +A on Ws0 .

Letting C → ∞ now shows that ψV � ψV +A, so ψV has the same singularity type as

Gm(r).

The conclusion about vanishing mass follows from a standard balayage argument – see,
for example, [7].

The following lemma is just a restatement of [31, Lemma 4.1].

Lemma 3.5. Suppose that ψ � 0 is an m-superweight (or a maximal m-weight) and

ϕ ∈ mSH(X,ω), ϕ � 0, is such that σ(ϕ,ψ) � 1. If ϕ � ψ on ∂Ω, then there exists a

constant, independent of ϕ so that ϕ� ψ+C on all of Ω.

Proof. Let s0 � 0 be such that Ws0 := {ψ(z) < s0} � Ω. Since σ(ϕ,ψ) � 1, we can use

Proposition 2.9 to see that

(ϕ+Aρ)(z)� ψ(z)−s0+Ms0(ϕ+Aρ)� ψ(z)−s0,

for all z ∈Ws0 .

It follows that ϕ+Aρ � ψ− s0 on ∂(Ω \Ws0). We can now conclude by the maxi-
mum/comparison principle, as in Proposition 2.9 (depending on if ψ is a super/maximal

weight).

We now show Corollary 1.2, proving a formula for ν(ϕ,ψV ) as a density of a weighted

Laplacian of ϕ, which has been averaged over V.

Proposition 3.6. Suppose that we are in the setting of the previous section so that r is

the geodesic distance to V n−k ⊂ Ωn. Let ϕ ∈mSH(Ω) with m� k. Then

νm(ϕ,ψV ) = lim
s→0

Ck,m

s2k−2k/m

∫
{r<s}

√
−1∂∂ϕ∧ (

√
−1∂∂r2)m−1∧ωn−m

for some constant Ck,m depending only on k,m.

Proof. For the sake of convenience, we only give the proof when k > m. Let Hm(t) :=

(−t)
− m

k−m . Note that Hm is convex and increasing on (−∞,0) and that

Hm(Gm(t)) = t2.
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Since {ψ
V
<Gm(s)}= {h(r)< s}, by [18, Chapter III, Formula (5.5)], we have that∫

{h<s}

√
−1∂∂ϕ∧ (

√
−1∂∂h2)m−1∧ωn−m

= (H ′m(Gm(s)))m−1

∫
{ψ

V
�Gm(s)}

√
−1∂∂ϕ∧ (

√
−1∂∂ψ

V
)m−1∧ωn−m

=

(
m

k−m

)m−1(
s

2(m−k)
m

)−k(m−1)
k−m

∫
{ψ

V
�Gm(s)}

√
−1∂∂ϕ∧ (

√
−1∂∂ψ

V
)m−1∧ωn−m

so that

νm(ϕ,ψ
V
) =

(
k−m

m

)m−1

lim
s→0

1

s2k−2k/m

∫
{h<s}

√
−1∂∂ϕ∧ (

√
−1∂∂h2)m−1∧ωn−m.

Since h is only a small perturbation of r, we can replace it with r in the above expression

by the following argument. By [33],
√
−1∂∂r2 =

(
Ik 0
0 0

)
+ o(1) is smooth and m-sh on

any sufficiently small neighborhood of V. By possibly increasing δ, we may assume that

it is a large integer so that h2 is also smooth.
Let T :=

√
−1∂∂ϕ∧ (

√
−1∂∂h2)m−2∧ωn−m. We have that

√
−1∂∂h2 =

√
−1∂∂

(
r+ r1+δ

)2
=
√
−1∂∂

(
r2+2r2+δ + r2+2δ

)
,

so away from V
√
−1∂∂r2+δ = (2+ δ)

√
−1∂

(
r1+δ∂r

)
= (2+ δ)r1+δ

√
−1∂∂r+(2+ δ)(1+ δ)rδ

√
−1∂r∧∂r

=
2+ δ

2
rδ
√
−1∂∂r2+ δ(2+ δ)rδ

√
−1∂r∧∂r.

Since both sides are continuous across V, however, the above expression holds there as

well. Then
√
−1∂∂h2−

√
−1∂∂r2 =

(
(2+ δ)rδ +(1+ δ)r2δ

)√
−1∂∂r2

+2δ
(
(2+ δ)rδ +(2+2δ)r2δ

)√
−1∂r∧∂r

and so

0�
√
−1∂∂h2−

√
−1∂∂r2 � Cδr

δ
√
−1∂∂h2,

where the above �’s are understood as meaning that the difference between the two sides
is m-sh. It follows that

0�
χ{h<s}
s2k−2k/m

(
T ∧

√
−1∂∂h2−T ∧

√
−1∂∂r2

)
� Cδs

δ
( χ{h<s}
s2k−2k/m

T ∧
√
−1∂∂h2

)
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since the measure T ∧
√
−1∂∂h2 � 0. Taking s→ 0 now implies that

lim
s→0

1

s2k−2k/m

∫
{h<s}

T ∧
√
−1∂∂h2 = lim

s→0

1

s2k−2k/m

∫
{h<s}

T ∧
√
−1∂∂r2,

and it is easy to see that, by repeating the above argument m− 2 more times, we have

that

ν(ϕ,ψ
V
) =

(
k−m

m

)m−1

lim
s→0

1

s2k−2k/m

∫
{h<s}

√
−1∂∂ϕ∧ (

√
−1∂∂r2)m−1∧ωn−m.

By noting that {r < (1− ε)s} ⊂ {h < s} ⊂ {r < s} as long as s is sufficiently small

(depending on ε), we can also replace the set {h < s} with {r < s} in the above limit.

Finally, since ψ
V

and ψV have the same singularity type, we can conclude by using
Proposition 2.6.

3.4. Subweights with localized singularities

We now construct explicit m-subweights, ψθ, which have ‘nonconstant’ behavior along

V when k �m. It is easy to see from the construction that these subweights will satisfy
σ(ψθ,ψV ) = 0 and ν(ψθ,ψV )> 0 (Remark 3.9).

For any real number ν ∈ R, define Fν : R�0 → R∪{−∞} by

Fν(t) :=

⎧⎪⎨
⎪⎩
t2−2ν if ν < 1

log t if ν = 1

−t2−2ν if ν > 1.

We additionally define Dν := |2ν−2| if ν �= 1, and Dν = 1 if ν = 1. If m� k, then for any

ν < k
m we have that Gm < Fν .

Proposition 3.7. Suppose we are in the setting of the previous subsections and δ is

sufficiently large, depending only on k and m. Let θ be a smooth, nonnegative function on

V, and suppose that m� k. Then for any k
m − 1

2 � ν < k
m , there exists a C > 0 such that

ψ
θ
:= θψ

V
+CFν(h(r)) ∈ mSH(Ω),

where θ is a smooth extension of θ with compact support. When m = 1, we can take
k−1� ν < k.

The construction is local and so works if V is only locally defined in Ω.

Remark 3.8. The bounds on ν seem to be optimal. Note that when k < 3
2m, we can

choose ν < 1 so that the Fν term is bounded from below.

Proof. The proof is a computation which is very similar to Proposition 3.1, so we omit

several details. Working in the same geodesic normal coordinates as before, it follows

that
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√
−1∂∂(θψ

V
(h(rε))) = θ

√
−1∂∂Gm(h(rε))+

√
−1∂θ∧∂Gm(h(rε))

+
√
−1∂Gm(h(rε))∧∂θ+Gm(h(rε))

√
−1∂∂θ

�

⎛
⎜⎜⎜⎝

0 0
D−1

k,mr

r
2k
m
ε

∂θ

0 0 0
D−1

k,mr

r
2k
m
ε

∂θ 0 −1

r
2k
m

−2
ε

√
−1∂∂θ

⎞
⎟⎟⎟⎠,

where we again understand � as meaning the difference of the two sides is m-sh in this
proof. Here, we are also interpreting ∂θ as a 1×k matrix and ∂θ as its conjugate transpose.

From the previous proposition, we also have

(
√
−1∂∂Fν(h(rε)))ij �D−1

ν h−2ν

⎛
⎝1−ν 0 0

0 Idk−1 0

0 0 0

⎞
⎠+O(rδ−2ν

ε ).

This leading order matrix will be strictly m-sh as long as ν < k
m, by previous

computations.

We now have that

√
−1∂∂(θψ

V
+CFν(h(r)))�

⎛
⎜⎜⎝

C
r2νε

(1−ν) 0 r

r
2k
m
ε

∂θ

0 C
r2νε

Idk−1 0
r

r
2k
m
ε

∂θ 0 −1

r
2k
m

−2
ε

√
−1∂∂θ

⎞
⎟⎟⎠+O(rδ−2ν

ε ),

ignoring some multiplicative constants. This leading matrix will be (strictly) m-sh with
a positive term of order r2νε if we choose ν appropriately. This can be done by choosing

ν so that the strict m-subharmonicity of the Fν term beats the powers coming from the

θ terms. This can be seen by noting that r < rε so that, when m> 1, we need

2ν � 2k

m
−1,

giving the combined constraints

k

m
− 1

2
� ν <

k

m
;

when m= 1, we only need the trace to be positive, so we only require

2ν � 2k−2 =⇒ k−1� ν < k.

Remark 3.9. For ϕ in Cegrell’s class Em, we denote the complex Hessian operator of ϕ

by Hm(ϕ) :=
(√

−1∂∂ϕ
)m∧ωn−m. We claim that the ψ

θ
∈ Em constructed in Proposition

3.7 satisfies

χV

√
−1∂∂ψ

θ
∧ (

√
−1∂∂ψV )

m−1∧ωn−m = χV θH
m (ψV ) .
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Indeed, on any sufficiently small open B near z ∈ V , we have

(θ(z)+ ε)ψV −C � ψ
θ
� (θ(z)− ε)ψV +C,

so Proposition 2.6 implies that

χV ∩B(θ(z)− ε)mHm (ψV )� χV ∩BH
m(ψ

θ
)� χV ∩B(θ(z)+ ε)mHm (ψV ) .

Covering V with a disjoint collection of such B and then letting ε → 0 produces the

claimed equality.

Taking θ such that minV θ = 0 but θ �= 0 now gives a function such that

σ(ψ
θ
,ψV ) = 0, but ν(ψ

θ
,ψV )> 0.

Additionally, we can use Proposition 2.6 to see that χV H
m(ψ

θ
) = χV θ

mHm (ψV ) .

Solutions to Hm(v) = χV θ
mHm(ϕ) for any given ϕ ∈ Em(Ω) were constructed in [24],

following the work of [1] in the psh case, as a nested sequence of envelopes. Our ψ
θ
can

be seen as explicit contenders in these envelopes for ϕ= ψV .

Let ψθ be the solution to Hm(ψθ) = χV θ
mHm(ψV ) constructed in [24]. If k � 3

2m, our

examples show that ψθ is actually bounded on V \ Supp(θ). We suspect our examples

actually compute the exact singularity type of ψθ on all of V.

3.5. Subharmonic functions and minimal submanifolds

We conclude this section with the observation that the above method can be copied

directly when V is only a minimal submanifold of X (which we still assume to be

Kähler), provided that we take m = 1. Subharmonic functions have long been known

to be intimately related with minimal submanifolds, and as such, we are unsure if a
similar construction is already present in the literature.

Proposition 3.10. Suppose that V is a minimal submanifold of X of (real) codimension
k. Then there exists an ω-subharmonic function ψV on a neighborhood Ω of V, which is

moreover ω-harmonic on Ω\V , such that ψV has the same singularity type as

− 1

rk−2
.

Proof. Construct real coordinates at a point z near V in the same way as done at the

beginning of this section so that e1 is in the direction of the geodesic connecting z and

V. By [33, Lemma 2.2], we have

rij =

⎛
⎝0 0 0
0 1

r · Idk−1 0

0 0 hij

⎞
⎠+o(1),

where here (hij)k+1�i,j�2n are the components of the second fundamental form of V

evaluated against e1. All of the computations in Proposition 3.1 go through verbatim,

with the exception that the second fundamental form term becomes rhij + o(rε). Since
V is minimal, this bad term disappears when we take the trace of

√
−1∂∂rk−2

ε , and the

computations in Propositions 3.2 and 3.3 can then be repeated.

Once a sub- and superweight have been produced, Proposition 3.4 is standard.
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4. A Siu-type theorem

We now present our Siu-type theorem, stated as Theorem 1.4 in the introduction. We
will need the following weak Harnack inequality:

Proposition 4.1 (Theorem 8.18 of [21]). Let Ω⊂ R
2n be a domain. Suppose that ϕ is a

nonpositive smooth subsolution of a linear elliptic operator L= aij∂i∂j, that is,

ϕ� 0, Lϕ� 0 inΩ,

and λI2n � (aij)� ΛI2n for positive constants λ and Λ. Then for any ball B2(y)⊂Ω and

p ∈ [1,n/(n−1)), we have

ϕ(y)�− 1

C(λ,Λ,p,n)

∫
B1(y)

(−ϕ)p � 0.

Theorem 4.2. Suppose that V is a compact, complex submanifold of codimension k. If

ϕ ∈mSH(Ω) is such that k <m, then LψV
(ϕ)≡ σ(ϕ,ψV ).

Proof. For convenience, set σ := σ(ϕ,ψV ). We will show that the set of points where

LψV
(ϕ) = σ is open in V – since LψV

(ϕ) is lower semicontinuous, it is clear that this set

is closed and nonempty, by Proposition 2.11.
Let z0 ∈ V be such that LψV

(ϕ)(z0) = σ. Choose local holomorphic coordinates

z = (z′,z′′) centered at z0 such that V = {z′ = 0} in these coordinates. Let BR be the

coordinate ball of radius 0<R� 2, centered at z0 = (0,0). Fix a uniform constant C such

that

C−1r(z)� |z′|� Cr(z) for all z ∈B2. (4.1)

Further, let ρ(z) be a smooth potential for ω on B2 such that −C � ρ(z)� 0.

By definition, there exists a sequence zi = (z′i,z
′′
i )→ z0, with zi ∈ Ω\V , such that

lim
i→∞

ϕ(zi)

ψV (zi)
= σ.

We assume without loss of generality that log |z′i|, logr(zi),ψV (zi) � −1. Since ψV and

logr have the same singularity type, by Equation (4.1), we have that

lim
i→∞

ϕ(zi)

log |z′i|
= σ

also. It follows that, for any ε > 0, we have

(σ+ ε) log |z′i|� ϕ(zi)� (σ− ε) log |z′i| (4.2)

for all i sufficiently large.

Define the functions ηi,ε on V2 := V ∩B2 by

ηi,ε(z
′′) :=

ϕ(z′i,z
′′)+ρ(z′i,z

′′)−ϕ(zi)+3ε log |z′i|
− log |z′i|

.

Note that ηi,ε is subharmonic on V2 with respect to the metric ω|{z′=z′i} since we have

assumed that m> k.
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We will show that ηij,εj → 0 pointwise a.e. for some subsequence ij →∞ of the i and
an associated sequence of εj → 0 by using the Harnack inequality. To utilize this, we need

to first verify that supηi,ε � 0. Increasing C if necessary, we have that

{z′ = z′i} ⊆ {log |z′|� log |z′i|} ⊆ {ψV (z)� log |z′i|+C},

so by the definition of σ we have

sup
V2

ϕ(z′i,·)� sup
{ψV (z)�log |z′

i|+C}
ϕ� (σ− ε)(log |z′i|+C).

Combining this with Equation (4.2) and our choice of ρ gives

sup
V2

ηi,ε �−(σ− ε)+(σ+ ε)−3ε+
(σ− ε)C

− log |zi|
�−ε+

(σ− ε)C

− log |zi|
< 0 (4.3)

for ε fixed and i sufficiently large.

Let εj > 0 be a sequence such that εj → 0 as j →∞. By Equation (4.3), for each j there

exists a sufficiently large ij such that ij →∞ as j →∞ and

sup
V2

ηij,εj < 0.

Letting V1 := V ∩B1, Proposition 4.1 now implies that

0�
∫
V1

(−ηij,εj )
p �−Cηij,εj (z

′′
ij )� Cεj,

for any p ∈ [1,n/(n−1)) (up to increasing C again, depending on p and ω). Fixing some

p > 1, it is clear that

lim
i→∞

∥∥ηij,εj∥∥Lp(V1)
= 0.

Hence, we see that ηij,εj → 0 in Lp as j →∞, and so after passing to a subsequence of
the j, we have that

ηij,εj → 0 pointwise a.e. on V1. (4.4)

Now, from our definition of ηi,ε, we see that

ϕ(z′ij,z
′′)

log |z′ij |
=

ϕ(z′ij,z
′′
ij
)

log |z′ij |
−ηij,εj (z

′′)−3εj −
ρ(z′ij,z

′′)

log |z′ij |
.

Using Equation (4.4) and taking the limit as j →∞ gives

lim
j→∞

ϕ(z′ij,z
′′)

log |z′ij |
= σ

for almost all z′′ ∈ V1. Then we conclude that

LψV
(ϕ)(0,z′′)� lim

j→∞

ϕ(z′ij,z
′′)

log |z′ij |
= σ

for almost every z′′ ∈ V1. It follows now from Proposition 2.11 that in fact LψV
(ϕ) ≡ σ

on V1, finishing the proof.
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