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RINGS WITH A SPECIAL KIND OF AUTOMORPHISM 

BY 

JEFFREY B E R G E N A N D I. N. HERSTEIN ( 1 ) 

ABSTRACT. In this paper we examine the nature of rings R with 
unit having an automorphism <£#1 such that x—<t>(x) is 0 or 
invertible for every x e R. We show that the only examples of such 
rings are R=D, R= D2, and R=D@D, where D is a division ring. 
Furthermore, for the case D2 , we describe the division rings that are 
possible. 

In a recent paper [1] we considered the structure of a ring R with 1 having 
non-zero derivation, d, such that d(x) = 0 or is invertible for every xeR. If R 
has no 2-torsion we showed that R is either a division ring, D, or D2 , the ring 
of 2 x 2 matrices over D. Moreover we completely characterized those D for 
which D 2 has such a derivation. Even if R has 2-torsion similar results were 
obtained, when R is semi-prime or when d is inner. 

If 4> is an automorphism of a ring R then the map 8 defined by 8(x) = 
x — (f)(x) behaves almost like a derivation in that 8(xy) = 8(x)y + 4>(x)8(y). We 
shall consider here the nature of rings 1? with 1 having an automorphism cf> / 1 
such that x-<f)(x) is 0 or invertible for every xeR. Note that unlike the 
situation for derivations described above, outside of D and D 2 there is another 
obvious candidate, namely R= D © D, where D is any division ring. The 
automorphism 4> defined on R by <f)(a, b) = (b, a) has the property that <f>(x) — x 
is 0 or invertible for every xeR. We shall show that these 3 examples, D, D2 , 
and D®D are the only possible rings with such an automorphism. Further­
more, for the case D2 , we describe the division rings that are possible. 

In what follows, R will always be a ring with 1 and 4> i= 1 will be an 
automorphism of R such that JC-<f)(x) is either 0 or invertible, for every xeR. 

We begin with 

LEMMA 1. If cf)(x) = x then x = 0 or x is invertible. 

Proof. Since cf) = 1 there is an reR such that a = 4>(r)-r^0, hence a is 
invertible. Suppose that 0 ^ (f>(x) = x ; then <f)(rx) — rx — ax ^ 0 since a is inverti­
ble and x^O, hence ax is invertible. Thus x is invertible. 
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COROLLARY. If LfR is a left ideal of R then L n 4>{L) = 0. 

Proof. We may suppose that LfO; let O ^ X G L O ^ L ) , then .x = <£(y) for 
some y e L and y-<£(y)eL. Since LfR, y-<t>(y) cannot be invertible, hence 
y = <f)(y). Since y f 0, by the Lemma we have that y is invertible, implying that 
L = R. 

We continue the study of I? by giving a closer look at its left ideals. 

LEMMA 2. Every non-trivial left ideal of R is a minimal left ideal. 

Proof. If Lf 0, JR is a left ideal of JR then I = L + <j>(L) is also a left ideal of 
R. Since in<f>(I) ^c^(L) ^ 0 , by the Corollary to Lemma 1 we get that 
R=I = L + <f)(L). Also by the Corollary to Lemma 1, L H <f>(L) = 0, so i? is the 
direct sum of L and <f)(L). If 0 ^ La <= L is a left ideal of R then, by the same 
token, R=L1 + <I)(L1)9 so if OfteL then f = u-h^>(u) where u,veLl. Thus 
<MD) = t - u e L f l ^ ( L ) so v=0 by the Corollary to Lemma 1. This gives us 
t = ueLx, hence L^LU and so L = Lx. This proves the minimality of L. 

Lemma 2 tells us that every left ideal of R is both minimal and maximal, 
hence R is certainly artinian of Goldie rank at most 2. From Lemma 2 we now 
obtain 

LEMMA 3. 1/ JR is not simple, then R = i\ © I2 where Ix is an ideal of R, 
I2 = <t>(Ii), and Iu I2 are isomorphic division rings. 

Proof. Let If 0, JR be an ideal of R. By Lemmas 1 and 2, JR = I © </>(!), and 
I is a minimal left ideal of R. Moreover, I has no non-trivial left ideals (of 
itself) for, if 0=^/ is a left ideal of I then, since 1 e R, O # R 7 = ( / 0 ^ ( / ) U = 
IJczj , so J is a left ideal of R, whence J = I by Lemma 2. Since I has no 
non-trivial left ideals, J is a division ring. 

We also have 

LEMMA 4. If R is simple then, for some division ring D, R= D or R= D2. 

Proof. If JR is not a division ring then, by Lemma 2, all non-trivial left ideals 
of R are minimal and maximal. Since R is then simple artinian we immediately 
have that R = D 2 for some division ring D. 

In view of Lemma 4 the question naturally arises for what D does D2 

possess an automorphism <f> of the required kind? If 4> is inner, say <j>(x) = txC1 

for all xeD2 then the condition <f>(x) — x=0 or invertible becomes tx-xt = 0 
or invertible for all xeD2. This situation was completely described by Lemma 
9 of [1]; the answer is that D does not contain all quadratic extensions of its 
center Z. Thus our interest here is mainly in the case in which <f) is not inner. A 
complete answer to the question is furnished us in 

LEMMA 5. D2 has a non-inner automorphism 4> such that, for all xeD2, 
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4>(x) = x or x — cf)(x) is invertible if and only if D has a non-inner automorphism 
\\f such that if/2(x) = u~lxu for all xeD, where i(/(u) = u and u^y\\f{y) for ail 
yeD. 

Proof. If D has such an automorphism i// define </> on D2 by 

(x y \ /0 1\/«K*) ^ ( y ) \ / 0 l r 1 

0 \ z wl \u oAïKz) <Mw)/\u 0/ 

Clearly cf> is an automorphism of D 2 and is not inner, for if <f> is inner we get 
that 

iKx) ^ ( y ) \ = / a 6 \ / x y\la by 
I\J{Z) X\J{W)I \c d)\z w)\c d) 

This implies that \fy(x)a = ax, i[/(x)b = bx, and not both a = 0 and b = 0 (since 
a b\ 

. is invertible), contradicting that î  is non-inner on D. 
c a / 
We verify that <\>(x) — x is invertible or 0 for all xeD2. Clearly 

<t>(x y)-(x y 

\z w/ \z w 
is 0 or invertible according as 

/0 l \ / * ( x ) *(y)\_(x y \ / 0 l \ = / i 
\u 0 /W(z) i//(w)7 \z w / l u 0/ W 

i)/(z) — yu ifj(w) — x 

ijj(x) — wu u\\f{y) — z 

is 0 or invertible. Since x = iff(t)9 y = if/(s) for some s,teD and I(J2 is inner by 
w, i//(w) = u, we have that 

A = I , where a = £ — w, D = su — z. 
\ au b J 

If either a = 0 or b = 0 it is immediate to see that A = 0 or is invertible ; 
suppose then that aj=0, b^O. Then A is invertible if and only if 

(\\f(b) - if/(a)b~1au i(f(a)^ 
B V 0 5 

is invertible, that is, if and only if i/r(&) ^ i(f(a)b~1au. This latter is certainly the 
case, for if ifj(b) = i(/(<a)b~1au then u = (a~^b)i(/(a~1b)7 contradicting our 
hypothesis on u. 

Suppose, on the other hand, that D2 has a non-inner automorphism $ such 
that for all x e D2 , x — <j>(x) is 0 or invertible. By the nature of automorphisms 
on matrix rings, 

(x y \ M(x) * (y ) \ 

^\z w) W ) *(w)/ ' 

where i/> is an automorphism of D and t e D2 is invertible. Our condition on cf> 
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immediately implies that ^ is not inner on D and that: 

(a b\ 
Let t = I 1; then, by Lemma 1, 

C % K X >• 
so is invertible, that is ^ ) is invertible. Hence b^O, c^O. Let 

\c 0 / 

/x y \ M ( x ) <Ky)\ 
\z w/ W(z) i//(w)/' 

If A G D 2 is invertible and YeD2 then r F ( A Y A ~ 1 ) - A Y A ^ t = 
AiA^tWiA^iY)- YA'U^iA^iAy1 is 0 or invertible, hence the same 
holds for A~1til/(A)^(Y)-YA"1til/(A) for all YeD2. Thus we can change the 
t in condition (1) into A~xtil/(A) for any invertible AeD2. 

We claim that we may assume that t=\ I. We see this in a few steps. 
\u 0/ 

Firstly we assert that we may assume that a = 0, for, if not, then using 

A.G -"), ( 1-A- .*M , -(c° i :•> 
as we saw above, &t / 0, ĉ  ^ 0. Thus 

B-»«B)-C ^ — «.(»• J). 

We claim that e = 0. For, if x G D then 

f0 1\ M(x) i/^(x)w_1e - u~1eip(u)ilj2(x)ilj(u)~l 

\w e / \ 0 il/(uijj(x)u *) 

x x^"1(K~1e)-i//~1(w"1e)wi//(x)w"1\/0 1 

,0 m/f(x)u~l Aw e 

xif/~~l(u~1e)u - ^ -1(w_1e)w^(x) * 
0 0 

Therefore, by (1), W = 0, and so, for all x e D , if/~l(u~1e)uil/(x) = Xilf~A(u~le)u. 
But i/f is not inner, hence i(/~1(u~1e)u = 0, from which we get that e = 0. 
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Therefore we may assume that t = ( I. Computing 

/0 l \ M x ) 0 \ / x 0 \ / 0 1\ 
\U 0 / \ 0 ^(W^(x)w-1)/ \0 l#(x)u~V\w 0/ 

\0 0 / 

we obtain from (1) that */>2(x) = I^(M)"1XI//(K). Also 

/0 1 \ / 0 1\ /0 l \ / 0 l\/4f(u)-u 0\ 
\u 0 /U(w) 0/ \u o A u 0/ \ 0 0 / ' 

so by (1), ijj(u) = u; thus if/2(x) = u~^xu. Finally, for xeD, 

/0 l \ M ( x ) O W x 0 \ / 0 1\ / 1 -x\ 

\u 0/1 1 0/ \1 0/\u 0/~W(x) - 1 / 

is invertible by Lemma 1, hence 

(l-xuilf(x) —x\ 

\ 0 - 1 / 

is invertible. Thus 1 — xuil/(x) ^ 0 for all xeD, hence u^=yil/(y) for all y e D . 
This proves the lemma. 
Putting together all the pieces, we summarize what we have obtained in the 

THEOREM. Let Rbe a ring with 1 and cf>^l an automorphism of R such that 
for every xeR, x = <j>(x) or x — <f>(x) is invertible in R. Then R is either 

1. a division ring D, or 
2. D®D, or 
3. D2 . 

Furthermore, D2 is possible, with 4> non-inner, if and only if D has a non-inner 
automorphism i(/ such that ijj2(x) = u~1xu for all xeD, where if/(u) = u and 
u^y\\f{y) for all yeD, or with <£> inner if and only if D does not contain all 
quadratic extensions of its center Z. 

Note that if char D ^ 2 then D does not contain all quadratic extensions of Z 
if and only if some a eZ fails to be a square in D. In that case, using i(/ = 1 as 
the automorphism of D, clearly ij/2(x) = x = alxa and ai= yi/>(y) for all y e D . 
Thus, in this case, the division between inner and non-inner disappears, and 
the theorem reads: if 2JR^0 and R has an automorphism <£^1 such that 
x-cf)(x) is 0 or invertible for all xeR then R = D,D®D, or D2 , for some 
division ring D; furthermore, D2 is possible if and only if D has an automorph­
ism i\f such that $2{x) = u~1xu and i(/(u) = u and u^yi\f(y) for all yeD. 
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In line with what we did in [1] we also consider the situation in which we 
merely suppose that the automorphism <$> behaves in a given pattern, not on R 
itself, but merely on a left ideal of JR. 

Let R be a ring, L ^ 0, JR a left ideal of JR and c/> an automorphism of R such 
that is not the identity on L, and such that x-<j)(x) is 0 or invertible for each 
xeL. We shall show, as before, that R is either D, D2 , or D 0 D for some 
division ring D (although the condition we obtained previously on D does not 
necessarily carry over). 

If O^reR and cj)(r) = r then, since rLczL, we get that r(cj)(x)-x) = 0 or 
invertible for all x e L ; however, since <f)(x) - x ^ 0 for some xeL, allows us to 
conclude that r is invertible. As before, this immediately implies that L is a 
minimal left ideal of R and R — L 0 $(L); this latter clearly implies that R is 
artinian. 

R is semi-simple artinian, for if A 2 = 0 for some ideal A of JR then 
A = AR = AL® A<j)(L); because L, 4>(L) are minimal left ideals of JR and 
AL = L would force 0 = A2L = AL = L, we conclude that AL = A<f)(L) = 0. 
Thus A = 0. 

Since R is semi-simple artinian and R = L 0 <fi(L) with L, <f>(L) minimal left 
ideals of R, if L is not a 2-sided ideal of R, R = D2 follows by Wedderburn's 
theorem. If L is a 2-sided ideal of R, then L must be a division ring, D, and 
R—DQ)D. This proves the assertion made above. 
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