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RINGS WITH A SPECIAL KIND OF AUTOMORPHISM

BY
JEFFREY BERGEN AND I. N. HERSTEIN"

ABSTRACT. In this paper we examine the nature of rings R with
unit having an automorphism ¢# 1 such that x—d¢(x) is 0 or
invertible for every x € R. We show that the only examples of such
rings are R =D, R =D,, and R =D®D, where D is a division ring.
Furthermore, for the case D,, we describe the division rings that are
possible.

In a recent paper [1] we considered the structure of a ring R with 1 having
non-zero derivation, d, such that d(x)=0 or is invertible for every x€ R. If R
has no 2-torsion we showed that R is either a division ring, D, or D,, the ring
of 2?2 matrices over D. Moreover we completely characterized those D for
which D, has such a derivation. Even if R has 2-torsion similar results were
obtained, when R is semi-prime or when d is inner.

If ¢ is an automorphism of a ring R then the map & defined by 8(x)=
x — ¢(x) behaves almost like a derivation in that 8(xy)=5(x)y + ¢(x)8(y). We
shall consider here the nature of rings R with 1 having an automorphism ¢ # 1
such that x —¢(x) is 0 or invertible for every x € R. Note that unlike the
situation for derivations described above, outside of D and D, there is another
obvious candidate, namely R=D & D, where D is any division ring. The
automorphism ¢ defined on R by ¢(a, b) = (b, a) has the property that ¢(x)—x
is 0 or invertible for every x € R. We shall show that these 3 examples, D, D,,
and D @ D are the only possible rings with such an automorphism. Further-
more, for the case D,, we describe the division rings that are possible.

In what follows, R will always be a ring with 1 and ¢#1 will be an
automorphism of R such that x — ¢(x) is either 0 or invertible, for every x € R.

We begin with

Lemma 1. If ¢(x) = x then x =0 or x is invertible.

Proof. Since ¢ =1 there is an re R such that a=¢(r)—r#0, hence a is
invertible. Suppose that 0 # ¢(x) = x; then ¢(rx) —rx = ax # 0 since a is inverti-
ble and x# 0, hence ax is invertible. Thus x is invertible.
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CoroLLARY. If L# R is a left ideal of R then LN$(L)=0.

Proof. We may suppose that L#0; let 0# xe L N¢(L), then x = ¢(y) for
some ye L and y—¢(y)e L. Since L# R, y—¢(y) cannot be invertible, hence
y = ¢(y). Since y# 0, by the Lemma we have that y is invertible, implying that
L=R

We continue the study of R by giving a closer look at its left ideals.
LemMA 2. Every non-trivial left ideal of R is a minimal left ideal.

Proof. If L#0, R is a left ideal of R then I =L+ ¢(L) is also a left ideal of
R. Since INd(I)>¢(L)#0, by the Corollary to Lemma 1 we get that
R =1I=L+¢(L). Also by the Corollary to Lemma 1, LN ¢(L)=0, so R is the
direct sum of L and ¢(L). If 0# L, < L is a left ideal of R then, by the same
token, R=L,+¢(L,), so if 0#teL then t=u+d¢(v) where u, ve L,. Thus
d(v)=t—ueLNdg¢(L) so v=0 by the Corollary to Lemma 1. This gives us
t=uel,, hence L<L,, and so L =L,;. This proves the minimality of L.

Lemma 2 tells us that every left ideal of R is both minimal and maximal,
hence R is certainly artinian of Goldie rank at most 2. From Lemma 2 we now
obtain

Lemma 3. If R is not simple, then R=1,D I, where I, is an ideal of R,
L, = ¢(1,), and I,, I, are isomorphic division rings.

Proof. Let I#0, R be an ideal of R. By Lemmas 1 and 2, R=1@® ¢(I), and
I is a minimal left ideal of R. Moreover, I has no non-trivial left ideals (of
itself) for, if 0# J is a left ideal of I then, since 1€ R, 0# RJ=(IDo(I)J =
U<, so J is a left ideal of R, whence J=1 by Lemma 2. Since I has no
non-trivial left ideals, I is a division ring.

We also have
LeEmma 4. If R is simple then, for some division ring D, R=D or R=D,.

Proof. If R is not a division ring then, by Lemma 2, all non-trivial left ideals
of R are minimal and maximal. Since R is then simple artinian we immediately
have that R =D, for some division ring D.

In view of Lemma 4 the question naturally arises for what D does D,
possess an automorphism ¢ of the required kind? If ¢ is inner, say ¢(x) = txt ™’
for all x € D, then the condition ¢(x)—x =0 or invertible becomes tx —xt =0
or invertible for all x € D,. This situation was completely described by Lemma
9 of [1]; the answer is that D does not contain all quadratic extensions of its
center Z. Thus our interest here is mainly in the case in which ¢ is not inner. A
complete answer to the question is furnished us in

LEmMMA 5. D, has a non-inner automorphism ¢ such that, for all x € D,,
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@ (x) =x or x —P(x) isinvertible if and only if D has a non-inner automorphism
W such that ¥*(x)=u "xu for all xe D, where y(u)=u and u# yy(y) for all
yeD.

Proof. If D has such an automorphism ¢ define ¢ on D, by
o2 )=l ol e o)

Clearly ¢ is an automorphism of D, and is not inner, for if ¢ is inner we get

that
W) W)\ (a b\(x y\fa b\
(w(z) (b(w)>_ (c d)(z w)(c d) ’
This implies that ¢(x)a = ax, y(x)b = bx, and not both a=0 and b =0 (since

a by. . . - . .
( d) is invertible), contradicting that ¢ is non-inner on D.
c

We verify that ¢(x)—x is invertible or 0 for all x € D,. Clearly

x y\ (x vy
o0 )G
is 0 or invertible according as
A= (0 1>(¢(x) df(y))_(x y)(O 1>:( ¥(z)—yu df(W)—x>
u 0/\g(z) Y(w) z w/\u 0 uf(x)—wu  up(y)—z
is 0 or invertible. Since x = ¢(t), y = y(s) for some s, te D and ? is inner by
u, Y(u) =u, we have that

A= (TH0) @

) where a=t—w,b=su—z.
au b

If either a=0 or b=0 it is immediate to see that A =0 or is invertible;
suppose then that a#0, b#0. Then A is invertible if and only if

(b)) —¢(a)b au  Y(a)
B_( 0 b )

is invertible, that is, if and only if y(b) # ¢(a)b 'au. This latter is certainly the
case, for if @(b)=wy(a)b 'au then u=(a 'b)Y(a'b), contradicting our
hypothesis on u.

Suppose, on the other hand, that D, has a non-inner automorphism ¢ such
that for all x € D,, x — ¢(x) is 0 or invertible. By the nature of automorphisms

on matrix rings,
X y\ Px)  ¢(y) -1
({)(z w) B t(d:(z) d/(w))t ’

where  is an automorphism of D and t € D, is invertible. Our condition on ¢
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immediately implies that ¢ is not inner on D and that:

(1 t(Ig; :[;ll((v)\)/))>_ (: vi) t =0 or is invertible for all (; ‘Z> eD,.

b
Let t= <a ); then, by Lemma 1,
c d
a b\/1 0>“(1 0>(a b>
(c d><0 0 0 0/\¢ d #0,
.. . . (0 —=b\ . . .
so is invertible, that is (c 0 is invertible. Hence b#0, c¢#0. Let

\{,<x )’>: (llf(x) llf(}’)>
z w U(z) w(w)/

If AeD, is invertible and YeD, then t¥Y(AYA ")—AYA 't=
AA MV (AP(Y)- YA UP(A)WP(A) ! is O or invertible, hence the same

holds for A ' t(A)Y(Y)— YA 'typ(A) for all Y e D,. Thus we can change the
t in condition (1) into A 'ty(A) for any invertible A € D,.

0 1
We claim that we may assume that ¢ = < 0). We see this in a few steps.
u

Firstly we assert that we may assume that a =0, for, if not, then using

(1 ac™! o ~<0 b,)_
A=y ) n-awia)- )

as we saw above, b, #0, ¢, #0. Thus

. (0 1) _(b1 0)
B tldf(B)—<u . where B = 0 1)

We claim that e =0. For, if x€ D then

W:(O 1><l/f(X) ll’(x)ufle_”vletll(u)(pz(x)(‘[,(u)ﬂ)

u e/\ 0 Ylup(x)u™")
_(x xdr"(u’le)—nb"‘(u‘le)uzlt(x)u“‘)(O 1)
0 uy(x)ut u e
_ (thf‘(u“e)u*t!f“(u"e)ut!f(x) ")
0 0/

Therefore, by (1), W=0, and so, for all xe D, ¢ "(u""e)ug(x) =x¢ '(u 'e)u.
But ¢ is not inner, hence ¢ '(u 'e)u=0, from which we get that e=0.
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0 1
Therefore we may assume that t = ( 0). Computing
u

e o0 o) 6wl o)

-0 ¢<u>¢2<x>0¢(u>*' )

we obtain from (1) that ¢2(x) = ¢(u) 'xy(u). Also
G o) oG o)G o)=("5 7" %)
so by (1), ¢(u)=u; thus *(x) =u 'xu. Finally, for xe D,
G0 060G o)l 1)
is invertible by Lemma 1, hence

S

is invertible. Thus 1—xuy(x)# 0 for all x € D, hence u# yys(y) for all ye D.
This proves the lemma.
Putting together all the pieces, we summarize what we have obtained in the

THEOREM. Let R be a ring with 1 and ¢# 1 an automorphism of R such that
for every xe R, x =¢(x) or x —d(x) is invertible in R. Then R is either

1. a division ring D, or

2. D® D, or

3. D,.
Furthermore, D, is possible, with ¢ non-inner, if and only if D has a non-inner
automorphism  such that Y*(x)=u""xu for all xe D, where y(u)=u and
u# yg(y) for all ye D, or with ¢ inner if and only if D does not contain all
quadratic extensions of its center Z.

Note that if char D# 2 then D does not contain all quadratic extensions of Z
if and only if some « € Z fails to be a square in D. In that case, using ¢y =1 as
the automorphism of D, clearly ¢*(x) =x =« 'xa and a# yy(y) for all ye D.
Thus, in this case, the division between inner and non-inner disappears, and
the theorem reads: if 2R#0 and R has an automorphism ¢# 1 such that
x—¢(x) is 0 or invertible for all xe R then R=D, D@D, or D,, for some
division ring D; furthermore, D, is possible if and only if D has an automorph-
ism ¢ such that ¢*(x)=u"xu and ¢(u)=u and u# yy(y) for all ye D.
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In line with what we did in [1] we also consider the situation in which we
merely suppose that the automorphism ¢ behaves in a given pattern, not on R
itself, but merely on a left ideal of R.

Let R be aring, L#0, R aleft ideal of R and ¢ an automorphism of R such
that is not the identity on L, and such that x —¢(x) is O or invertible for each
x € L. We shall show, as before, that R is either D, D,, or D@ D for some
division ring D (although the condition we obtained previously on D does not
necessarily carry over).

If 0#reR and ¢(r)=r then, since rL < L, we get that r(¢(x)—x)=0 or
invertible for all x € L; however, since ¢(x)—x# 0 for some x € L, allows us to
conclude that r is invertible. As before, this immediately implies that L is a
minimal left ideal of R and R =L @ ¢(L); this latter clearly implies that R is
artinian.

R is semi-simple artinian, for if A?>=0 for some ideal A of R then
A=AR=AL @ A¢(L); because L, (L) are minimal left ideals of R and
AL =L would force 0=A?L =AL =L, we conclude that AL =A¢(L)=0.
Thus A =0.

Since R is semi-simple artinian and R = L @ ¢ (L) with L, ¢(L) minimal left
ideals of R, if L is not a 2-sided ideal of R, R = D, follows by Wedderburn’s
theorem. If L is a 2-sided ideal of R, then L must be a division ring, D, and
R =D @ D. This proves the assertion made above.
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