
1
Review

The standard model of strong, weak, and electromagnetic interactions is a rela-
tivistic quantum field theory that describes all known interactions of quarks and
leptons. This chapter provides a quick review of features of the standard model
that are relevant for heavy quark systems, and of basic field theory techniques
such as the operator product expansion. It will also serve the purpose of defining
some of the normalization conventions and notation to be used in the rest of the
book.

1.1 The standard model

The standard model is a gauge theory based on the gauge group SU(3) × SU(2) ×
U(1). The SU(3) gauge group describes the strong color interactions among
quarks, and the SU(2) × U(1) gauge group describes the electroweak interac-
tions. At the present time three generations of quarks and leptons have been
observed. The measured width of the Z boson does not permit a fourth genera-
tion with a massless (or light) neutrino. Many extensions of the minimal standard
model have been proposed, and there is evidence in the present data for neutrino
masses, which requires new physics beyond that in the minimal standard model.
Low-energy supersymmetry, dynamical weak symmetry breaking, or something
totally unexpected may be discovered at the next generation of high-energy par-
ticle accelerators.

The focus of this book is on understanding the physics of hadrons containing
a bottom or charm quark. The technically difficult problem is understanding the
role strong interactions play in determining the properties of these hadrons. For
example, weak decays can be computed by using a low-energy effective weak
Hamiltonian. Any new physics beyond the standard model can also be treated
by using a local low-energy effective interaction, and the theoretical difficulties
associated with evaluating hadronic matrix elements of this interaction are vir-
tually identical to those for the weak interactions. For this reason, most of the
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discussion in this book will focus on the properties of heavy quark hadrons as
computed in the standard model.

The matter fields in the minimal standard model are three families of spin-
1/2 quarks and leptons, and a spin-zero Higgs boson, shown in Table 1.1. The
index i on the Fermion fields is a family or generation index i = 1, 2, 3, and the
subscripts L and R denote left- and right-handed fields, respectively,

ψL = PLψ, ψR = PRψ, (1.1)

where PL and PR are the projection operators

PL = 1

2
(1 − γ5) , PR = 1

2
(1 + γ5) . (1.2)

Qi
L , ui

R, d i
R are the quark fields and Li

L , ei
R are the lepton fields. All the particles

associated with the fields in Table 1.1 have been observed experimentally, except
for the Higgs boson. The SU(2) × U(1) symmetry of the electroweak sector is
not manifest at low energies. In the standard model, the SU(2) × U(1) symmetry
is spontaneously broken by the vacuum expectation value of the Higgs doublet

Table 1.1. Matter fields in the standard modela

Field SU(3) SU(2) U(1) Lorentz

Qi
L =

(
ui

L

d i
L

)
3 2 1/6 (1/2, 0)

ui
R 3 1 2/3 (0, 1/2)

d i
R 3 1 −1/3 (0, 1/2)

Li
L =

(
νi

L

ei
L

)
1 2 −1/2 (1/2, 0)

ei
R 1 1 −1 (0, 1/2)

H =
(

H+

H 0

)
1 2 1/2 (0, 0)

a The index i labels the quark and lepton family. The
dimensions of the SU(3) and SU(2) representations and
their U(1) charge are listed in the second, third, and fourth
columns, respectively. The transformation properties of the
fermion fields under the Lorentz group SO(3, 1) are listed
in the last column.
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1.1 The standard model 3

H . The spontaneous breakdown of SU(2) × U(1) gives mass to the W ± and Z0

gauge bosons. A single Higgs doublet is the simplest way to achieve the observed
pattern of spontaneous symmetry breaking, but a more complicated scalar sector,
such as two doublets, is possible.

The terms in the standard model Lagrangian density that involve only the
Higgs doublet

H =
(

H+
H 0

)
(1.3)

are

LHiggs = (DμH )†(DμH ) − V (H ), (1.4)

where Dμ is the covariant derivative and V (H ) is the Higgs potential

V (H ) = λ

4
(H †H − v2/2)2. (1.5)

The Higgs potential is minimized when H †H = v2/2. The SU(2) × U(1) sym-
metry can be used to rotate a general vacuum expectation value into the standard
form

〈H〉 =
(

0
v/

√
2

)
, (1.6)

where v is real and positive.
The generators of the SU(2) gauge symmetry acting on the Higgs (i.e., funda-

mental) representation are

T a = σ a/2, a = 1, 2, 3, (1.7)

where the Pauli spin matrices are

σ 1 =
(

0 1
1 0

)
, σ 2 =

(
0 −i
i 0

)
, σ 3 =

(
1 0
0 −1

)
, (1.8)

and the generators are normalized to Tr T aT b = δab/2. The U(1) generator Y
is called hypercharge and is equal to 1/2 acting on the Higgs doublet (see
Table 1.1). One linear combination of SU(2) × U(1) generators is left unbro-
ken by the vacuum expectation value of the Higgs field H given in Eq. (1.6).
This linear combination is the electric charge generator Q = T 3 + Y , where

Q = T 3 + Y =
(

1 0
0 0

)
, (1.9)

when acting on the Higgs representation. It is obvious from Eqs. (1.6) and (1.9)
that

Q〈H〉 = 0, (1.10)
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so that electric charge is left unbroken. The SU(3) × SU(2) × U(1) symmetry of
the standard model is broken to SU(3) × U(1)Q by the vacuum expectation value
of H , where the unbroken electromagnetic U(1)Q is the linear combination of
the original U(1) hypercharge generator, Y , and the SU(2) generator, T 3, given
in Eq. (1.9).

Expanding H about its expectation value

H (x) =
(

h+ (x)

v/
√

2 + h0 (x)

)
(1.11)

and substituting in Eq. (1.5) gives the Higgs potential

V (H ) = λ

4
(|h+|2 + |h0|2 +

√
2v Re h0)2. (1.12)

The fields h+ and Im h0 are massless. This is an example of Goldstone’s theo-
rem. The potential has a continuous three-parameter family of degenerate vacua
that are obtained from the reference vacuum in Eq. (1.6) by global SU(2) × U(1)
transformations. [Of the four SU(2) × U(1) generators, one linear combination
Q leaves the vacuum expectation value invariant, and so does not give a mass-
less mode.] Field excitations along these degenerate directions cost no potential
energy and so the fields h+ and Im h0 are massless. There is one massive scalar
that is destroyed by the (normalized) real scalar field

√
2 Re h0. At tree level, its

mass is

mRe h0 =
√

λ

2
v. (1.13)

Global SU(2) × U(1) transformations allow the space–time independent vac-
uum expectation value of H to be put into the form given in Eq. (1.6). Local
SU(2) × U(1) transformations can be used to eliminate h+ (x) and Im h0 (x)
completely from the theory, and to write

H (x) =
(

0

v/
√

2 + Re h0 (x)

)
. (1.14)

This is the standard model in unitary gauge, in which the W ± and Z bosons
have explicit mass terms in the Lagrangian, as is shown below. In this gauge, the
massless fields h+ and Im h0 are eliminated, and so do not correspond to states
in the spectrum of the theory.

The gauge covariant derivative acting on any field ψ is

Dμ = ∂μ + ig AA
μT A + ig2W a

μT a + ig1 BμY, (1.15)

where T A, A = 1, . . . , 8, are the eight color SU(3) generators T a , a = 1, 2, 3
are the weak SU(2) generators, and Y is the U(1) hypercharge generator. The
generators are chosen to be in the representation of the field ψ on which the co-
variant derivative acts. The gauge bosons and coupling constants associated with
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1.1 The standard model 5

these gauge groups are denoted AA
μ , W a

μ, and Bμ and g, g2, and g1, respectively.
The kinetic term for the Higgs field contains a piece quadratic in the gauge fields
when expanded about the Higgs vacuum expectation value using Eq. (1.11). The
quadratic terms that produce a gauge-boson mass are

L gauge-boson
mass

= g2
2v

2

8
(W 1W 1 + W 2W 2) + v2

8
(g2W 3 − g1 B)2, (1.16)

where for simplicity of notation Lorentz indices are suppressed. The charged
W -boson fields

W ± = W 1 ∓ iW 2

√
2

(1.17)

have mass

MW = g2v

2
. (1.18)

It is convenient to introduce the weak mixing angle θW defined by

sin θW = g1√
g2

1 + g2
2

, cos θW = g2√
g2

1 + g2
2

. (1.19)

The Z -boson field and photon field A are defined as linear combinations of the
neutral gauge-boson fields W 3 and B,

Z = cos θW W 3 − sin θW B,

A = sin θW W 3 + cos θW B.
(1.20)

The Z boson has a mass at tree level

MZ =
√

g2
1 + g2

2

2
v = MW

cos θW
, (1.21)

and the photon is massless.
The covariant derivative in Eq. (1.15) can be reexpressed in terms of the

mass-eigenstate fields as

Dμ = ∂μ + ig AA
μT A + i

g2√
2

(
W +

μ T + + W −
μ T −)

+ i
√

g2
1 + g2

2(T3 − sin2 θW Q)Zμ + ig2 sin θW QAμ, (1.22)

where T ± = T 1 ± iT 2. The photon coupling constant in Eq. (1.22) leads to the
relation between the electric charge e and the couplings g1,2,

e = g2 sin θW = g2g1√
g2

1 + g2
2

, (1.23)
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so the Z coupling constant
√

g2
1 + g2

2 in Eq. (1.22) is conventionally written as
e/(sin θW cos θW ).

Outside of unitary gauge the H kinetic term also has a piece quadratic in the
fields where the Goldstone bosons h+, Im h0 mix with the longitudinal parts of
the massive gauge bosons. This mixing piece can be removed by adding to the
Lagrange density the ’t Hooft gauge fixing term

L gauge
fix

= − 1

2ξ

∑
a

[
∂μW a

μ + ig2ξ (〈H〉†T a H − H †T a〈H〉)]2

− 1

2ξ

[
∂μBμ + ig1ξ (〈H〉†Y H − H †Y 〈H〉)]2

, (1.24)

which gives the Lagrangian in Rξ gauge, where ξ is an arbitrary parameter. The
fields h± and Im h0 have mass terms proportional to the gauge fixing constant ξ .
In Feynman gauge ξ = 1 (the easiest for doing calculations), these masses are the
same as those of the W ± and Z . Im h0 and h± are not physical degrees of freedom
since in unitary gauge ξ → ∞ their masses are infinite and they decouple from
the theory.

SU(3) × SU(2) × U(1) gauge invariance prevents bare mass terms for the
quarks and leptons from appearing in the Lagrange density. The quarks and
leptons get mass because of their Yukawa couplings to the Higgs doublet,

LYukawa = gi j
u ūi

R H T εQ j
L −gi j

d d̄i
R H †Q j

L −gi j
e ēi

R H †L j
L +h.c. (1.25)

where h.c. denotes Hermitian conjugate. Here repeated indices i, j are summed
and the antisymmetric matrix ε is given by

ε =
(

0 1
−1 0

)
. (1.26)

Color indices and spinor indices are suppressed in Eq. (1.25). Since H has a
vacuum expectation value, the Yukawa couplings in Eq. (1.25) give rise to the
3 × 3 quark and lepton mass matrices

Mu = vgu/
√

2, Md = vgd/
√

2, and Me = vge/
√

2. (1.27)

Neutrinos do not get mass from the Yukawa interactions in Eq. (1.25), since
there is no right-handed neutrino field.

Any matrix M can be brought into diagonal form by separate unitary transfor-
mations on the left and right, M → L DR†, where L and R are unitary, and D is
real, diagonal and nonnegative. One can make separate unitary transformations
on the left- and right-handed quark and lepton fields, while leaving the kinetic
energy terms for the quarks, Q̄i

L i∂/ Qi
L , ūi

Ri∂/ ui
R , and d̄ i

Ri∂/ di
R , and also those for
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1.1 The standard model 7

the leptons, invariant. The unitary transformations are

uL = U (u, L) u′
L ,

dL = U (d, L) d ′
L ,

eL = U (e, L) e′
L ,

u R = U (u, R) u′
R,

dR = U (d, R) d ′
R,

eR = U (e, R) e′
R.

(1.28)

Here u, d, and e are three-component column vectors (in flavor space) for the
quarks and leptons, and the primed fields represent the corresponding mass
eigenstates. The transformation matrices U are 3 × 3 unitary matrices, which
are chosen to diagonalize the mass matrices

U (u, R)†Mu U (u, L) =
⎛
⎝mu 0 0

0 mc 0
0 0 mt

⎞
⎠ , (1.29)

U (d, R)†Md U (d, L) =
⎛
⎝md 0 0

0 ms 0
0 0 mb

⎞
⎠ , (1.30)

and

U (e, R)†Me U (e, L) =
⎛
⎝me 0 0

0 mμ 0
0 0 mτ

⎞
⎠ . (1.31)

Diagonalizing the quark mass matrices in Eqs. (1.29) and (1.30) requires
different transformations of the uL and dL fields, which are part of the same
SU(2) doublet QL . The original quark doublet can be rewritten as⎛

⎝uL

dL

⎞
⎠ =

⎛
⎝U (u, L) u′

L

U (d, L) d ′
L

⎞
⎠ = U (u, L)

⎛
⎝ u′

L

V d ′
L

⎞
⎠ , (1.32)

where the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix V is defined by

V = U (u, L)† U (d, L) . (1.33)

It is convenient to reexpress the standard model Lagrangian in terms of the
primed mass-eigenstate fields. The unitary matrices in Eq. (1.32) leave the quark
kinetic terms unchanged. The Z and A couplings are also unaffected, so there
are no flavor-changing neutral currents in the Lagrangian at tree level. The W
couplings are left unchanged by U (u, L), but not by V , so that

g2√
2

W + ūLγ μdL = g2√
2

W + ū′
Lγ μV d ′

L . (1.34)

As a result there are flavor-changing charged currents at tree level.
The CKM matrix V is a 3 × 3 unitary matrix, and so is completely specified

by nine real parameters. Some of these can be eliminated by making phase
redefinitions of the quark fields. The u and d quark mass matrices are unchanged
if one makes independent phase rotations on the six quarks, provided the same
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phase is used for the left- and right-handed quarks of a given flavor. An overall
equal phase rotation on all the quarks leaves the CKM matrix unchanged, but
the remaining five rotations can be used to eliminate five parameters, so that V
is written in terms of four parameters. The original Kobayashi-Maskawa para-
meterization of V is

V =

⎛
⎜⎜⎜⎝

c1 s1c3 s1s3

−s1c2 c1c2c3 − s2s3eiδ c1c2s3 + s2c3eiδ

−s1s2 c1s2c3 + c2s3eiδ c1s2s3 − c2c3eiδ

⎞
⎟⎟⎟⎠ , (1.35)

where ci ≡ cos θi , and si ≡ sin θi for i = 1, 2, 3. The angles θ1, θ2, and θ3 can
be chosen to lie in the first quadrant, where their sines and cosines are positive.
Experimentally it is known that these angles are quite small. The CKM matrix
is real if δ = 0, so that δ �= 0 is a signal of CP violation in the weak interactions.
It describes the unitary transformation between the mass-eigenstate basis di ′,
and the weak interaction eigenstate basis di . The standard notation for the mass-
eigenstate fields is u′1 = u, u′2 = c, u′3 = t , d ′1 = d, d ′2 = s, d ′3 = b.

So far we have only considered the left-handed quark couplings to the gauge
bosons. For the right-handed quarks there are no W -boson interactions in the
standard model, and in the primed mass-eigenstate basis the couplings of the Z ,
photon, and color gauge bosons are flavor diagonal. The analysis for leptons is
similar to that for quarks, with one notable difference – because the neutrinos
are massless, one can choose to make the same unitary transformation on the
left-handed charged leptons and neutrinos. The analog of the CKM matrix in the
lepton sector can be chosen to be the unit matrix, and the leptons can be chosen
to be simultaneously mass and weak eigenstates. We adopt the notation ν ′1 = νe,
ν ′2 = νμ, ν ′3 = ντ , e′1 = e, e′2 = μ, e′3 = τ . From now on, we will use the
mass-eigenstate basis for labeling the quark and lepton fields.

1.2 Loops

Loop diagrams in the standard model have divergences from the high-momentum
(ultraviolet) region of the momentum integrals. These divergences are interpreted
by a renormalization procedure; the theory is regulated in some way and terms
that diverge as the regulator is removed are absorbed into the definitions of the
couplings and masses. Theories in which all divergences in physical quantities
(e.g., S-matrix elements) can be removed in this way using a finite number
of counterterms are called renormalizable. In the unitary gauge, ξ → ∞, the
standard model is manifestly unitary (i.e., only physical degrees of freedom
propagate because the “ghost” Higgs associated with h± and Im h0 have infinite
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1.2 Loops 9

mass). The vector-boson propagator

−i
gμν − kμkν/M2

W,Z

k2 − M2
W,Z

(1.36)

is finite as k → ∞, and naive power counting suggests that the standard model is
not renormalizable. In the Feynman gauge, ξ = 1, the vector-boson propagator
is

−i
gμν

k2 − M2
W,Z

, (1.37)

which falls off as 1/k2, and naive power counting shows that the standard model is
renormalizable. The potentially disastrous divergences that occur in the unitary
gauge must cancel. However, unitarity is not manifest in the Feynman gauge
because the unphysical degrees of freedom associated with h± and Im h0 are
included as intermediate states in Feynman diagrams. The standard model is
manifestly unitary in one gauge and manifestly renormalizable in another. Gauge
invariance assures us that the theory is both unitary and renormalizable.

In this book we will regularize Feynman diagrams by using dimensional reg-
ularization. Diagrams are calculated in n = 4−ε dimensions, and the ultraviolet
divergences that occur in four dimensions appear as factors of 1/ε, as ε → 0.

To review how dimensional regularization works, consider the quantum elec-
trodynamics (QED) Lagrangian

LQED = −1

4
F (0)

μν F (0)μν + iψ̄ (0)γ μ
(
∂μ − ie(0)A(0)

μ

)
ψ (0) − m(0)

e ψ̄ (0)ψ (0), (1.38)

which is part of the standard model Lagrangian. The superscript (0) is used to
denote a bare quantity. Here

F (0)
μν = ∂μA(0)

ν − ∂νA(0)
μ (1.39)

is the bare electromagnetic field strength tensor. In n dimensions, the action

SQED =
∫

dnx LQED (1.40)

is dimensionless, since ei SQED is the measure in the Feynman path integral (we use
units where h̄ = c = 1). It follows that the dimensions of the fields, the coupling
constant e(0), and the electron mass, m(0)

e , are[A(0)
] = (n − 2)/2 = 1 − ε/2,[

ψ (0)
] = (n − 1)/2 = 3/2 − ε/2,[

e(0)
] = (4 − n)/2 = ε/2,[

m(0)
e
] = 1.

(1.41)
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The bare fields are related to the renormalized fields by

Aμ = 1√
Z A

A(0)
μ ,

ψ = 1√
Zψ

ψ (0),

e = 1

Ze
μ−ε/2e(0),

me = 1

Zm
m(0)

e .

(1.42)

The factor of μ−ε/2 is included in the relation between the bare and renormalized
electric couplings so that the renormalized coupling is dimensionless. Here μ is
a parameter with dimensions of mass and is called the subtraction point or renor-
malization scale of dimensional regularization. In terms of these renormalized
quantities the Lagrange density is

LQED = −1

4
Z A Fμν Fμν + i Zψψ̄γ μ

(
∂μ − iμε/2 Ze

√
Z AeAμ

)
ψ

−Zm Zψmeψ̄ψ,

= −1

4
Fμν Fμν + iψ̄γ μ

(
∂μ − iμε/2eAμ

)
ψ − meψ̄ψ + counterterms.

(1.43)

It is straightforward to compute the renormalization constants Z A,ψ,e,m by
using the formula for one-loop integrals in dimensional regularization,∫

dnq

(2π )n

(q2)α

(q2 − M2)β

= i

2nπn/2
(−1)α+β(M2)α−β+n/2 �(α + n/2)�(β − α − n/2)

�(n/2)�(β)
, (1.44)

and the Feynman trick for combining denominators,

1

am1
1 · · · amn

n
= �(M)

�(m1) · · · �(mn)

×
∫ 1

0
dx1xm1−1

1 · · ·
∫ 1

0
dxnxmn−1

n

δ
(
1 − ∑n

i = 1 xi
)

(x1a1 + · · · + xnan)M
, (1.45)

where

M =
n∑

i = 1

mi .

The Z ’s are determined by the condition that time-ordered products of renor-
malized fields (i.e., Green’s functions) be finite when expressed in terms of the
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renormalized coupling and mass. This condition still leaves considerable free-
dom in how the Z ’s are chosen. The precise way that the Z ’s are chosen is called
the subtraction scheme. The Z ’s can be chosen to have the form

Z = 1 +
∞∑

p=1

Z p(e)

ε p
, (1.46)

where the Z p(e) are independent of ε. This choice is called minimal subtraction
(MS) because only the poles in ε are subtracted and no additional finite pieces
are put into the Z ’s. We will use the MS scheme, which is minimal subtrac-
tion followed by the rescaling μ2 → μ2eγ /4π , where γ = 0.577 . . . is Euler’s
constant.

The photon wavefunction renormalization Z A to order e2 can be determined
by computing the photon–photon correlation function. There are two pieces to
this order; the first is a tree-level contribution from the counterterm

−1

4
(Z A − 1)Fμν Fμν. (1.47)

After truncating the external photon propagators, it gives

i(Z A − 1)(pμ pν − p2gμν), (1.48)

where p is the photon four momentum. The second contribution is from the
one-loop diagram Fig. 1.1,

(−1) (ie)2 με

∫
dnq

(2π )n

Tr[γμi(q/ + /p + me)γνi (q/ + me)][
(q + p)2 − m2

e

][
q2 − m2

e

] . (1.49)

The factor of (−1) arises from the closed fermion loop. The renormalization
constant only depends on the 1/ε pole, so the γ matrix algebra can be performed
in four dimensions. Expanding

με = 1 + ε ln μ + · · · , (1.50)

one sees that με can be set to unity for the infinite part of the diagram, and finite

q

p + q

p p

Fig. 1.1. One-loop vacuum polarization contribution to the photon propagator.
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parts only depend logarithmically on μ. The denominators are combined using
Eq. (1.45):

1[
(q + p)2 − m2

e

][
q2 − m2

e

] =
∫ 1

0
dx

1[
q2 + 2xq · p + p2x − m2

e

]2 . (1.51)

Making the change of variables k = q + px gives

−4e2
∫ 1

0
dx

∫
dnk

(2π )n

1[
k2 + p2x(1 − x) − m2

e

]2

× [
2kμkν − (

k2 − m2
e

)
gμν − 2x(1 − x)pμ pν + p2x(1 − x)gμν

]
. (1.52)

Terms odd in k vanish upon integration and have been dropped. Evaluating the
k integral using Eq. (1.44), keeping only the part proportional to 1/ε (using
� (ε/2) = 2/ε + · · ·), and doing the x integral gives the divergent part of the
one-loop contribution:

i

16π2ε

(
8e2

3

)
(pμ pν − p2gμν). (1.53)

For the photon two-point correlation function to be finite as ε → 0, the sum of
Eqs. (1.53) and (1.48) must be finite. One therefore chooses

Z A = 1 − 8

3

(
e2

16π2ε

)
. (1.54)

The wave-function renormalization constant Zψ for the electron field ψ is
obtained from the electron propagator. The counterterms

(Zψ − 1)ψ̄i∂/ ψ − (Zm Zψ − 1)meψ̄ψ (1.55)

contribute

i(Zψ − 1)/p − i(Zm Zψ − 1)me (1.56)

to the propagator. In the Feynman gauge, the one-loop diagram Fig. 1.2 is

με(ie)2
∫

dnq

(2π )n
γνi

/p + q/ + me

(p + q)2 − m2
e

γμ

(−i)gμν

q2
. (1.57)

q

p + qp p

Fig. 1.2. One-loop correction to the electron propagator.
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1.2 Loops 13

Combining denominators and shifting the momentum integration as in the pre-
vious case gives

2e2
∫

dnk

(2π )n

∫ 1

0
dx

−2me + /p(1 − x)[
k2 − m2

e x + p2x(1 − x)
]2 . (1.58)

Performing the k integration by using Eq. (1.44) and then the x integration gives

i

16π2ε
(4e2)

(
−2me + 1

2
/p

)
(1.59)

for the divergent contribution. The electron propagator is finite if

Zψ = 1 − 2

(
e2

16π2ε

)
(1.60)

and

Zm = 1 − 6

(
e2

16π2ε

)
(1.61)

in the Feynman gauge.
The remaining renormalization factor Ze can be determined by computing

the ψψ̄ A three-point function to order e2. The Feynman graph that has to be
computed is the vertex renormalization graph of Fig. 1.3. The counterterm is

Ze = 1 + 4

3

(
e2

16π2ε

)
. (1.62)

Note that Ze = 1/
√

Z A to order e2.
The relation between the bare and renormalized couplings at order e2 is

e(0) = με/2eZe = με/2e

[
1 + 4

3

(
e2

16π2ε

)]
, (1.63)

using Eqs. (1.62) and (1.42). The bare fields, coupling, and mass are independent
of the subtraction point μ, which is an arbitrary quantity with dimensions of mass
introduced so that the renormalized coupling is dimensionless. Since the bare

Fig. 1.3. One-loop vertex correction.
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coupling constant is independent of μ,

0 = μ
d

dμ
e(0) = μ

d

dμ
με/2eZe = με/2eZe

[
ε

2
+ 1

e
β (e) + μ

Ze

dZe

dμ

]
, (1.64)

where the β function is defined by

β(e) = μ
de

dμ
. (1.65)

This gives

β(e) = −ε

2
e − e

d ln Ze

d ln μ
. (1.66)

Using Eq. (1.62),

d ln Ze

d ln μ
=

(
4

3

)
1

16π2ε
μ

d

dμ
e2 + · · ·

= − e2

12π2
+ · · · , (1.67)

where the ellipses denote terms of higher order in e2. The one-loop β function
is

β(e) = −ε

2
e + e3

12π2
+ · · · , (1.68)

which is finite as ε → 0,

β(e) = e3

12π2
+ · · · . (1.69)

The β function gives the μ dependence of the renormalized coupling e. Here
μ is an arbitrary scale parameter, so physical quantities do not depend on μ.
However, some choices for μ are more convenient than others for computations.
Consider the cross section for σ (e+e− → anything) at a center of mass energy
squared, s = (pe+ + pe−)2 � m2

e . In QED this cross section is finite as me → 0
and so for large s we neglect me. The cross section has a power series expansion
in the coupling e(μ), and it is independent of the subtraction point μ. The implicit
μ dependence in the coupling is canceled by an explicit μ dependence in the
Feynman diagrams. (One can see this by computing, e.g., the finite parts of
Figs. 1.1–1.3.) Typically one finds that terms in the perturbation series have the
form [α (μ) /4π ]n lnm s/μ2, with m ≤ n, where

α (μ) = e2(μ)

4π
(1.70)

is the (scale-dependent) fine structure constant. If s/μ2 is not of the order of
unity, the logarithms can get large and cause a breakdown of perturbation theory.
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1.3 Composite operators 15

One usually chooses μ2 ∼ s, which “minimizes” the higher-order terms in the
perturbation expansion that have not been computed. With this choice of μ, one
expects that perturbation theory is an expansion in α(

√
s)/4π .

When perturbation theory is valid we can use Eqs. (1.65) and (1.69) to solve
explicitly for the dependence of the coupling on μ at one loop:

1

e2 (μ2)
= 1

e2 (μ1)
− 1

12π2
ln

(
μ2

2

μ2
1

)
. (1.71)

The β function in Eq. (1.69) is positive, so e increases as μ increases, as can be
seen explicitly from the solution in Eq. (1.71).

1.3 Composite operators

Composite operators involve products of fields at the same space–time point.
Consider, for example, the bare mass operator

S(0) = ψ̄ (0)ψ (0) (x) . (1.72)

Green’s functions with an insertion of S(0) are usually divergent. An additional
operator renormalization (beyond wave-function renormalization) is required to
make the Green’s functions finite. The renormalized operator S is

S = 1

ZS
S(0) = 1

ZS
ψ̄ (0)ψ (0) = Zψ

ZS
ψ̄ψ, (1.73)

where ZS is the additional operator renormalization. The operator S = ψ̄ψ +
counterterms is conventionally denoted by just ψ̄ψ , with the counterterms im-
plicit. Green’s functions with insertions of S are finite in perturbation theory.

The renormalization factor ZS can be computed from the three-point function
of the time-ordered product of ψ, ψ̄ , and S. It is simpler to use the one-particle
irreducible Green’s function � rather than the full Green’s function G to com-
pute ZS . The counterterm contribution to the one-particle irreducible Green’s
function is

Zψ

ZS
− 1. (1.74)

The one-loop contribution to � is shown in Fig. 1.4. The operator S contains
no derivatives (and ZS is mass independent in the MS scheme), so ZS can be
determined by evaluating Fig. 1.4 at zero external momentum (and neglecting
the electron mass), giving

με(ie)2
∫

dnq

(2π )n
γ α iq/

q2

iq/

q2
γ β (−i)gαβ

q2
= −4ie2

∫
dnq

(2π )n

1

(q2)2
+ · · · , (1.75)
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Fig. 1.4. One-loop graph with an insertion of a fermion-bilinear composite operator
(denoted by ⊗) such as ψ̄ψ .

where the ellipsis denote terms finite as ε → 0. Note that neglecting external
momenta and the electron mass has produced an infrared (i.e., low momentum)
divergence. Regulating this with a mass m by replacing q2 in the denominator
with (q2 − m2) gives

8e2

16π2ε
, (1.76)

for the ultraviolet divergent part of Eq. (1.75). Adding Eqs. (1.74) and (1.76)
together and using Eq. (1.60), we find that the 1/ε divergence cancels, provided

ZS = 1 + 6

(
e2

16π2ε

)
. (1.77)

The anomalous dimension of the composite operator S is defined by

γS = μ
d ln ZS

dμ
(1.78)

so that

γS = − 6e2

16π2
. (1.79)

Similar calculations can be performed for the vector and axial vector currents
ψ̄γμψ and ψ̄γμγ5ψ , and one finds ZV = Z A = 1, so that the currents are not
renormalized and their anomalous dimensions vanish at one loop. Note that
Z = 1 means that the infinite part of Fig. 1.4 is canceled by wave-function renor-
malization, not that Fig. 1.4 is finite. The result Z = 1 arises because for me = 0
both the axial and vector currents are conserved and the zero-component of these
currents (integrated over all space) are charges Q A,V with commutation relations
of the form

[QV , ψ] = −ψ, (1.80)

for example. A conserved charge Q cannot be multiplicatively renormalized
since that would spoil such commutation relations. In dimensional regularization
with minimal subtraction, electron mass effects cannot induce a renormalization
for the axial current because the renormalization factors are independent of
particle masses. This is an example of a general result that “soft” symmetry
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1.4 Quantum chromodynamics and chiral symmetry 17

breaking effects, i.e., symmetry breaking terms with operator dimensions less
than four, do not affect renormalization in the MS scheme.

The axial current is not conserved at one loop because of the axial anomaly.
The divergence of the axial current is proportional to the dimension-four operator
F F̃ , so that symmetry breaking because of the anomaly is not soft. It produces
an anomalous dimension for the axial current at two loops.

We have considered a particularly simple example in which the operator S was
multiplicatively renormalized, since there are no other gauge invariant local op-
erators with the same quantum numbers. In general, one can have many different
operators Oi with the same quantum numbers, and one needs a renormalization
matrix,

O (0)
i = Zi j O j . (1.81)

This is referred to as operator mixing. In the MS scheme, Zi j is dimensionless, so
operators can only mix with other operators of the same dimension. This greatly
simplifies the analysis of operator mixing. In a general mass-dependent scheme,
operators can also mix with operators of lower dimension.

1.4 Quantum chromodynamics and chiral symmetry

The portion of the standard model that describes the strong interactions of quarks
and gluons is called quantum chromodynamics (QCD). The QCD Lagrange
density including for the moment only the “light” u, d, and s quark flavors is

LQCD = −1

4
G A

μνG Aμν + q̄(i /D − mq )q + counterterms, (1.82)

where q is the triplet of light quarks

q =
⎛
⎝u

d
s

⎞
⎠ , (1.83)

and mq is the quark mass matrix

mq =
⎛
⎝mu 0 0

0 md 0
0 0 ms

⎞
⎠ . (1.84)

Here Dμ = ∂μ + ig AA
μT A is the SU(3) color covariant derivative and G A

μν is the
gluon field strength tensor,

G A
μν = ∂μ AA

ν − ∂ν AA
μ − g f ABC AB

μ AC
ν , (1.85)

where the structure constants f ABC are defined by [T A, T B] = i f ABC T C . The
QCD renormalization factors can be calculated at order g2 in a manner similar
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Fig. 1.5. One-loop gluon contribution to the vacuum polarization.

to that for QED. For example, quark wave-function and mass renormalization
Zq and Zm are given by Fig. 1.2 with the photon replaced by a gluon. They can
be obtained from the QED result by replacing e2 by g2T AT A, where T AT A =
(4/3)11 for quarks in QCD. In the Feynman gauge, the order g2 wave-function
and mass renormalization factors are√

Zq = 1 − g2

12π2ε
, Zm = 1 − g2

2π2ε
. (1.86)

A major difference between QCD and QED occurs in the coupling constant
renormalization. The β function for QCD is

β(g) = − g3

16π2

(
11 − 2

3
Nq

)
+ O(g5), (1.87)

where Nq is the number of quark flavors. The quark contribution to the β func-
tion can be computed from Fig. 1.1 with the photon replaced by a gluon. It
is obtained from the QED calculation by the replacement e2 → Nq g2/2, since
Tr T AT B = δAB/2 for each quark flavor in the loop. The other term in the β

function is from gluon self-interactions, as in Fig. 1.5, and is not present in an
Abelian gauge theory such as QED. The QCD β function is negative, as long
as the number of quark flavors Nq is less than 16, so the QCD fine structure
constant

αs(μ) = g2(μ)

4π
(1.88)

becomes smaller at larger μ, a phenomenon known as asymptotic freedom.
At high energies, the coupling constant is small, and QCD perturbation theory
should be reliable. We can explicitly solve for the μ-dependence of αs just as in
QED:

αs(μ2) = 1[
1/αs(μ1) + β0 ln

(
μ2

2/μ
2
1

)] , (1.89)

where β0 is proportional to the first term in the QCD β function,

β0 =
(

33 − 2Nq

12π

)
. (1.90)

Equation (1.89) is valid as long as μ1 and μ2 are large enough that the order
g5 terms in Eq. (1.87) can be neglected, i.e., as long as αs (μ1) and αs (μ2) are
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1.4 Quantum chromodynamics and chiral symmetry 19

both small. It is convenient to introduce a subtraction-point independent constant
�QCD with dimensions of mass, defined by

�QCD = μe−1/[2β0αs (μ)]. (1.91)

Then our expression for the strong interaction fine structure constant becomes

αs(μ) = 12π

(33 − 2Nq ) ln
(
μ2/�2

QCD

) . (1.92)

Equation (1.92) suggests that the QCD coupling constant diverges as μ → �QCD.
Of course, this expression for αs ceases to be valid when αs gets large. Never-
theless, one can still view �QCD as the scale at which QCD becomes strongly
coupled so that perturbation theory breaks down and nonperturbative effects be-
come important. Experimentally, �QCD is ∼200 MeV, and it sets the scale for
nonperturbative strong interaction effects. One expects hadron masses such as
the ρ meson mass to be dimensionless multiples of �QCD. It is believed that
QCD is a confining theory at long distances, i.e., the spectrum of physical states
consists of color singlet states called hadrons; there are no colored hadrons.
Bosonic hadrons are called mesons and fermionic hadrons are called baryons.
The simplest ways to form color singlet combinations of the quark fields are
q̄αqα and εαβγ qαqβqγ .

The u, d, and s quark masses are small compared with the scale �QCD of
nonperturbative strong interaction physics, and so it is useful to consider an
approximation to QCD in which the masses of these light quarks are set to zero,
and to do perturbation theory in mq about this limit. The limit mq → 0 is known
as the chiral limit, because the light quark Lagrangian

L light
quarks

= q̄ i /D q = q̄ L i /D qL + q̄ R i /D qR (1.93)

has an SU(3)L × SU(3)R chiral symmetry

qL → L qL qR → R qR, (1.94)

[L ∈SU(3)L , R ∈SU(3)R] under which the right- and left-handed quark fields
transform differently. The Lagrange density in Eq. (1.93) also has a baryon
number U(1) symmetry where the left- and right-handed quarks transform by
a common phase, and an axial U(1) where all the left-handed quarks transform
by a phase and all the right-handed quarks transform by the opposite phase.
Although these axial U(1) transformations leave the Lagrange density invariant,
they change the measure in the path integral, an effect known as the axial anomaly.
Hence, the axial U(1) is not a symmetry of QCD.

The chiral SU(3)L × SU(3)R symmetry of massless three-flavor QCD is spon-
taneously broken by the vacuum expectation value of quark bilinears〈

q̄ j
Rqk

L

〉 = v δk j , (1.95)

where v is of order �3
QCD. [Here v should not be confused with the Higgs vacuum
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expectation value.] The indices j and k are flavor indices, q1 = u, q2 = d, q3 = s,
and color indices are suppressed. If we make a SU(3)L × SU(3)R transformation
q → q ′, 〈

q̄ ′ j
R q ′k

L

〉 = v(L R†)k j . (1.96)

Transformations with L = R leave the vacuum expectation value unchanged.
Thus the nonperturbative strong interaction dynamics spontaneously breaks the
SU(3)L × SU(3)R chiral symmetry to its diagonal subgroup SU(3)V . The eight
broken SU(3)L × SU(3)R generators transform the composite field q̄ j

Rqk
L along

symmetry directions, and so leave the potential energy unchanged. Fluctuations
in field space along these eight directions are eight massless Goldstone bosons.
We can describe the Goldstone boson fields by a 3 × 3 special unitary matrix
�(x), which represents the possible low-energy long-wavelength excitations
of q̄ RqL . Here v�k j (x) ∼ q̄ j

R (x) qk
L (x) gives the local orientation of the quark

condensate. � has vacuum expectation value 〈�〉 = 11. Under SU(3)L × SU(3)R

transformations,

� → L � R†. (1.97)

The low-momentum strong interactions of the Goldstone bosons are described
by an effective Lagrangian for � (x) that is invariant under the chiral symmetry
transformation in Eq. (1.97). The most general Lagrangian is

Leff = f 2

8
Tr ∂μ � ∂μ�† + higher derivative terms, (1.98)

where f is a constant with dimensions of mass. There are no terms without any
derivatives since Tr ��† = 3. At a low enough momentum the effects of the
higher derivative terms can be neglected since they are suppressed by powers of
p2

typ/�
2
CSB, where ptyp is a typical momentum and �CSB is the scale associated

with chiral symmetry breaking, �CSB ∼ 1 GeV.
The field � (x) is an SU(3) matrix and it can be written as the exponential

� = exp

(
2i M

f

)
, (1.99)

of M , a traceless 3 × 3 Hermitian matrix. Under the unbroken SU(3)V subgroup
(L = R = V ), � → V �V †, which implies that M → V MV †, i.e., M transforms
as the adjoint representation. M can be written out explicitly in terms of eight
Goldstone boson fields:

M =

⎛
⎜⎜⎜⎝

π0/
√

2 + η/
√

6 π+ K +

π− −π0/
√

2 + η/
√

6 K 0

K − K̄ 0 −2η/
√

6

⎞
⎟⎟⎟⎠ . (1.100)
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The factor of 2/ f is inserted in Eq. (1.99) so that the Lagrangian in Eq. (1.98)
gives kinetic-energy terms for the Goldstone bosons with the standard normal-
ization.

In the QCD Lagrangian the light quark mass terms,

Lmass = q̄ LmqqR + h.c., (1.101)

transform under chiral SU(3)L × SU(3)R as (3̄L , 3R) + (3L , 3̄R). We can in-
clude the effects of quark masses (to first order) on the strong interactions of
the pseudo-Goldstone bosons, π, K , and η, by adding terms linear in mq to
Eq. (1.98) that transform in this way. Equivalently we can view the quark mass
matrix itself as transforming like mq → Lmq R† under SU(3)L × SU(3)R . Then
the Lagrange density in Eq. (1.101) is invariant under chiral SU(3)L × SU(3)R .
With this transformation rule for mq , we include the effects of quark masses in
the strong interactions of the π, K , and η by adding to Eq. (1.98) terms linear in
mq and m†

q that are invariant under SU(3)L × SU(3)R . This gives

Leff = f 2

8
Tr ∂μ� ∂μ�† + v Tr(m†

q� + mq�†) + · · · . (1.102)

The ellipses in Eq. (1.102) represent terms with more derivatives or more in-
sertions of the light quark mass matrix. The quark mass terms in the Lagrange
density in Eq. (1.102) give masses to the Goldstone bosons

m2
π± = 4v

f 2
(mu + md ),

m2
K ± = 4v

f 2
(mu + ms),

m2
K 0 = m2

K̄ 0 = 4v

f 2
(md + ms),

(1.103)

and hence the π , K , and η are referred to as pseudo-Goldstone bosons. The kaon
masses are much larger than the pion masses, implying that ms � mu,d . For the
η − π0 system there is a mass-squared matrix with elements

m2
π0π0 = 4v

f 2
(mu + md ),

m2
ηπ0 = m2

π0η
= 4v√

3 f 2
(mu − md ),

m2
ηη = 4v

3 f 2
(4ms + mu + md ) .

(1.104)

Because ms � mu,d , the off-diagonal terms are small compared with m2
ηη. Hence,
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up to corrections suppressed by (mu − md )2/m2
s ,

m2
π0 � 4v

f 2
(mu + md ) (1.105)

and

m2
η � 4v

3 f 2
(4ms + mu + md ) . (1.106)

It is interesting to note that the neutral pion mass is near the charged pion masses,
not because mu/md is near unity, but rather because mu −md is small compared
with ms . A more detailed study of mass relations, including electromagnetic
corrections, leads to the expectation that mu/md � 1/2.

The chiral Lagrangian in Eq. (1.102) contains two parameters, v with dimen-
sions of (mass)3 and f with dimensions of mass. Since the quark masses always
appear in conjunction with v it is not possible using the effective Lagrangian in
Eq. (1.102) to determine the quark masses themselves. The effective theory de-
scribing the low-momentum interactions of the pseudo-Goldstone bosons only
determines the ratios of quark masses, since v cancels out.

Equation (1.102) is an effective Lagrangian that describes the low-momentum
interactions of the pseudo-Goldstone bosons. One can use the effective theory
to compute scattering processes, such as π − π scattering. Expanding out � in
terms of the meson fields, one finds that the Tr ∂μ� ∂μ�† part of the Lagrangian
has the four-meson interaction term,

1

6 f 2
Tr[M, ∂μM][M, ∂μM]. (1.107)

Its tree-level matrix element (shown in Fig. 1.6) gives a contribution to the π–π

scattering amplitude of the form

M ∼ p2
typ

f 2
, (1.108)

where ptyp is a typical momentum. The amplitude is of the order of p2
typ since

the vertex contains two derivatives. The mass terms also give a contribution of
this form if we set p2

typ ∼ m2
π . The contributions of higher derivative operators

Fig. 1.6. Tree-level contribution to π–π scattering.
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Fig. 1.7. One-loop contribution to π–π scattering.

in the chiral Lagrangian are suppressed by more factors of the small momentum
ptyp.

What about loop diagrams? There are one-loop diagrams with two insertions
of the ππππ vertex, such as Fig. 1.7. Each vertex gives a factor of p2/ f 2, the
two meson propagators give a factor of 1/p4, and the loop integration gives a
factor of p4. The resulting amplitude in the MS scheme is

M ∼ p4
typ

16π2 f 4
ln
(

p2
typ/μ

2). (1.109)

The factor of p4
typ in the numerator is required by dimensional analysis, since

there is a factor of f 4 in the denominator and the subtraction point μ, which
also has dimensions of mass, only occurs in the argument of logarithms. The
16π2 in the denominator typically occurs in the evaluation of one-loop diagrams.
The one-loop diagram gives a contribution of the same order in the momentum
expansion as operators in the chiral Lagrangian with four derivatives (or two
insertions of the quark mass matrix). The total amplitude at order p4 is the sum
of one-loop diagrams containing order p2 vertices and of tree graphs from the
p4 terms in the Lagrangian. The total p4 amplitude is μ independent; the μ

dependence in Eq. (1.109) is canceled by μ dependence in the coefficients of the
p4 terms in the Lagrangian.

The pattern we have just observed holds in general. More loops give a con-
tribution of the same order as a term in the Lagrangian with more derivatives.
One can show that a graph with L loops, and nk insertions of vertices of order
pk , produces an amplitude of order pD , where (see Problem 6)

D = 2 + 2L +
∑

k

(k − 2) nk . (1.110)

Thus each loop increases D by two, and each insertion of a vertex of order
pk increases D by k − 2. Note that k − 2 ≥ 0, since the Lagrangian starts at
order p2, so that each term in Eq. (1.110) is positive. Loop corrections and
higher derivative operators are of comparable importance when the mass scale
�CSB that suppresses higher derivative operators is approximately equal to 4π f .
The computation of pseudo-Goldstone scattering amplitudes in a momentum
expansion using an effective Lagrangian is known as chiral perturbation theory.
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Although the u, d, and s quark masses are small, the spectrum of QCD suggests
that the theory contains quasi-particles that transform like u, d, and s under the
unbroken SU(3)V group but have a larger mass of approximately 350 MeV.
These quasi-particles are called constituent quarks, and the hadronic spectrum
is consistent at least qualitatively with spectra calculated from nonrelativistic
potential models for the interactions of constituent quarks.

1.5 Integrating out heavy quarks

The top, bottom, and charm quark masses are mt � 175 GeV, mb � 4.8 GeV,
and mc � 1.4 GeV. For processes that occur at energies well below the masses
of these quarks, it is appropriate to go over to an effective theory of the strong
interactions where these heavy quarks are integrated out of the theory and no
longer occur as explicit degrees of freedom in the Lagrangian. The effects of
Feynman diagrams with a virtual heavy quark Q are taken into account by non-
renormalizable operators suppressed by factors of 1/m Q , and through shifts in
the coupling constants of renormalizable terms in the effective Lagrangian. For
definiteness, imagine integrating out the top quark and making a transition from
the six-quark theory of the strong interactions to an effective five-quark theory.
The strong coupling in the original theory with six flavors will be denoted by
g(6), and in the effective five-quark theory by g(5). The relation between the
two couplings is determined by ensuring that the scattering amplitudes com-
puted in the five- and six-quark theories are the same. The general form of the
relation is g(5) (μ) = g(5)[mt/μ, g(6)(μ)], since the g’s are dimensionless. The
power series expansion of g(5) in powers of g(6) has coefficients that, for μ

very different from mt , contain large logarithms of m2
t /μ

2. If instead we pick
μ = mt , g(5) has a power series expansion in g(6)(mt ) with coefficients that are
not enhanced by any large logarithms. At tree level, g(5)(μ) = g(6)(μ), so one
expects

g(5)(mt ) = g(6)(mt )
{
1 + O[

α(6)
s (mt )

]}
. (1.111)

An explicit calculation shows that the one-loop term in this equation vanishes,
so the first nontrivial contribution is at two loops. The strong coupling in the
effective theory with n quarks is written as in Eq. (1.92), where the value of
�QCD now depends on which particular effective theory is being used (i.e.,
�QCD → �

(n)
QCD). Equation (1.111) implies that, at leading order, the coupling

constants are continuous at μ = mt . Combining this with Eq. (1.92), we find that

�
(5)
QCD = �

(6)
QCD

(
mt

�
(6)
QCD

)2/23

. (1.112)
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Integrating out the bottom and charm quarks to go over to effective four- and
three-quark theories gives

�
(4)
QCD = �

(5)
QCD

(
mb

�
(5)
QCD

)2/25

, (1.113)

�
(3)
QCD = �

(4)
QCD

(
mc

�
(4)
QCD

)2/27

. (1.114)

Equations (1.112)–(1.114) determine the most important influence of virtual
heavy quarks on low-energy physics. For example, the proton mass m p is gen-
erated by nonperturbative dynamics in the effective three-quark theory so m p ∝
�

(3)
QCD, where the constant of proportionality is independent of the heavy quark

masses. Imagining that the value of the strong coupling is fixed at some very-
high-energy scale (e.g., the unification scale), Eqs. (1.112)–(1.114) give the de-
pendence of the proton mass on the heavy quark masses. For example, doubling
the charm quark mass increases the proton mass by the factor 22/27 � 1.05.

1.6 Effective Hamiltonians for weak decays

The strong and electromagnetic interactions conserve quark and lepton flavor, so
many particles can only decay by means of the weak interactions. The simplest
example of such a decay is the weak decay of a muon, μ → eνμν̄e. This decay is
a purely leptonic process, since it does not involve any quark fields. The lowest-
order graph for this decay has a single W boson exchanged, as shown in Fig. 1.8.
The tree-level amplitude for the decay is

M(μ → eνμν̄e) =
(

g2√
2

)2 [
ū
(

pνμ

)
γα PLu(pμ)

][
ū(pe)γβ PLv

(
pνe

)]

× 1[(
pμ − pνμ

)2 − M2
W

]
[

gαβ −
(

pμ − pνμ

)α(
pμ − pνμ

)β
M2

W

]
, (1.115)

μ−
e−

νμ

νe

Fig. 1.8. Lowest-order diagram for μ decay.
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where g2 is the weak SU(2) coupling constant, and the W propagator has been
written in the unitary gauge. The muon mass is much smaller than the W -
boson mass MW , so the momenta of all the leptons involved in μ decay are
much smaller than MW . As a result, we can approximate the denominator of
the W -boson propagator, (pμ − pνμ

)2 − M2
W , by −M2

W and neglect the factor of
(pμ − pνμ

)α(pμ − pνμ
)β/M2

W in the numerator of the W -boson propagator. This
approximation simplifies the decay amplitude to

M(μ → eνμν̄e) � −4G F√
2

[
ū
(

pνμ

)
γα PLu(pμ)

][
ū(pe)γ α PLv

(
pνe

)]
, (1.116)

where the Fermi constant G F is defined by

G F√
2

= g2
2

8M2
W

. (1.117)

The decay amplitude Eq. (1.116) is the same as that produced by the tree-level
matrix element of the local effective Hamiltonian:

HW = −LW = 4G F√
2

[ν̄μγα PLμ][ēγ α PLνe]. (1.118)

It is simpler to use an effective Hamiltonian description of the weak interactions
in computing weak decay amplitudes at energies much smaller than MW and MZ ,
particularly if one wants to compute radiative corrections to decay amplitudes.

Electromagnetic loop corrections to the μ → eν̄eνμ decay amplitude go partly
into matrix elements of the Hamiltonian in Eq. (1.118) and partly into modifying
the Hamiltonian itself. The corrections to the Hamiltonian are calculated by
comparing amplitudes in the full theory with the W boson present as a dynamical
field to amplitudes in the effective theory with the W boson removed. These
corrections come from regions of loop momenta of order MW , since the effective
Hamiltonian has been chosen to correctly reproduce the full Hamiltonian for
momenta much smaller than MW . For this reason, the electron and muon masses
occur as me,μ/MW in the effective Hamiltonian, and they can be neglected at
leading order. They are, of course, very important for the matrix elements of the
effective Hamiltonian.

Neglecting the electron and muon masses, we know that the Hamiltonian must
be of the form in Eq. (1.118). In this limit electromagnetic corrections do not
change chirality and so [ν̄μγα PLμ][ēγ α PLνe] and [ν̄μγα PLνe][ēγ α PLμ] are the
only possible dimension-six operators that can occur. Terms with three gamma
matrices between the fermion fields can be reduced to single gamma matrices
by using the identity

γαγβγν = gαβγν + gβνγα − gανγβ − iεαβνηγ
ηγ5, (1.119)

where the sign convention is ε0123 = 1. Higher dimension operators are

https://doi.org/10.1017/9781009402125.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402125.002


1.6 Effective Hamiltonians for weak decays 27

negligible, being suppressed by powers of 1/MW . The Fierz operator identity,

[ψ̄1γα PLψ2][ψ̄3γ
α PLψ4] = [ψ̄1γα PLψ4][ψ̄3γ

α PLψ2], (1.120)

allows one to replace [ν̄μγα PLνe][ēγ α PLμ] by [ν̄μγα PLμ][ēγ α PLνe]. So be-
yond tree level the effective Hamiltonian is modified to

HW = 4G F√
2

C

[
MW

μ
, α(μ)

]
[ν̄μγ α PLμ][ēγα PLνe], (1.121)

where μ is the subtraction point, and α is the electromagnetic fine structure
constant. The only modification due to radiative corrections is the coefficient
C , which is unity at tree level. Loop corrections at μ = MW with virtual loop
momenta of order MW determine the deviation of the coefficient C from unity,
so one expects

C[1, α(MW )] = 1 + O [α (MW )]. (1.122)

Any dependence of the matrix elements of the four-fermion operator [ν̄μγα PL

μ][ēγ α PLνe] on the subtraction point is canceled by the μ dependence of C , so
that physical quantities such as decay rates do not depend on μ. If the Hamil-
tonian above is used to calculate the muon decay rate, with μ = MW naively
one would think that there are large logarithms of (m2

μ/M2
W ) in the perturbative

expansion of the matrix elements of the Hamiltonian. In fact we know that C is
μ-independent and hence such logarithms do not occur. A simple explanation
of this fact follows using the Fierz identity in Eq. (1.120), which allows us to
rewrite the effective Hamiltonian in the form [ν̄μγα PLνe][ēγ α PLμ]. The neu-
trino fields do not interact electromagnetically, so the only renormalization is
that of ēγ α PLμ. In the limit me = mμ = 0, ēγ α PLμ is a conserved current and
does not get renormalized.

The electromagnetic coupling α is so small that even when it is multiplied by
large logarithms, perturbation theory is usually adequate. However, this is not the
case for the strong interactions. For an example in which such logarithms are im-
portant and must be summed, consider the effective Hamiltonian for nonleptonic
b → c decays at tree level,

H (�c = 1)
W = 4G F√

2
VcbV ∗

ud[c̄αγμ PLbα][d̄βγ μ PLuβ]. (1.123)

In Eq. (1.123) α and β are color indices and repeated indices are summed. There
is a contribution to the effective Hamiltonian for nonleptonic b → c decays where
the d quark is replaced by a s quark. It has a coefficient that is suppressed by
|Vus/Vud | ≈ 0.2 compared to Eq. (1.123). This “Cabibbo suppressed” contri-
bution is neglected here. Also, we are focusing on �c = 1 decays. There are
nonleptonic decays where, at tree level, the final state has both a c and c̄ quark.
For these decays the coefficient in the effective Hamiltonian H (�c = 0)

W is not
smaller than Eq. (1.123).
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Strong interaction loop corrections change the form of the Hamiltonian for
b → c decays. An argument similar to that used for μ decay shows that there are
two possible terms in the �c = 1 effective Hamiltonian,

HW = 4G F√
2

VcbV ∗
ud

{
C1

[
MW

μ
, αs(μ)

]
O1(μ) + C2

[
MW

μ
, αs(μ)

]
O2(μ)

}
,

(1.124)

where

O1(μ) = [c̄αγμ PLbα][d̄βγ μ PLuβ],

O2(μ) = [c̄βγμ PLbα][d̄αγ μ PLuβ].
(1.125)

The coefficients C1,2 are determined by comparing Feynman diagrams in the
effective theory with the W -boson integrated out with analogous diagrams in the
full theory. At μ = MW we have from Eq. (1.123) that

C1[1, αs(MW )] = 1 + O[αs(MW )],

C2[1, αs(MW )] = 0 + O[αs(MW )].
(1.126)

Subtraction-point dependence of the operators O1,2 cancels that in the coef-
ficients C1,2. Here O1,2 are local four-quark operators, and they must be renor-
malized to render their matrix elements finite. The relationship between bare and
renormalized operators has the form

O (0)
i = Zi j O j , (1.127)

where i, j = {1, 2} and the repeated index j is summed over. Since the bare
operator is μ independent,

0 = μ
d

dμ
O (0)

i (μ) =
(

μ
d

dμ
Zi j

)
O j + Zi j

(
μ

d

dμ
O j

)
, (1.128)

which implies that

μ
d

dμ
O j = −γ j i Oi (μ), (1.129)

where

γ j i = Z−1
jk

(
μ

d

dμ
Zki

)
. (1.130)

Here γi j (g) is called the anomalous dimension matrix. It can be calculated order
by order in the coupling constant from the Z ’s. The subtraction-point indepen-
dence of the weak Hamiltonian implies that

0 = μ
d

dμ
HW = μ

d

dμ
(C j O j ), (1.131)
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yielding (
μ

d

dμ
C j

)
O j − C jγ j i Oi = 0. (1.132)

Since the operators O1,2 are independent we conclude that

μ
d

dμ
Ci = γ j i C j . (1.133)

The solution to this differential equation is

Ci

[
MW

μ
, αs(μ)

]
= P exp

[∫ g(μ)

g(MW )

γ T (g)

β(g)
dg

]
i j

C j [1, αs(MW )]. (1.134)

Here P denotes “coupling constant ordering” of the anomalous dimension ma-
trices in the exponent, and γ T is the transpose of γ .

It is straightforward to calculate the anomalous dimension matrix for O1,2. At
one loop, it is

γ (g) = g2

8π2

(−1 3
3 −1

)
. (1.135)

It is convenient to diagonalize this matrix by forming the linear combinations of
operators

O± = O1 ± O2. (1.136)

Using the Fierz identity in Eq. (1.120), it is evident that O+ is symmetric under
interchange of the d and c quark fields, whereas O− is antisymmetric. Under an
SU(2) flavor group under which the d and c quark fields form a doublet, O− is a
singlet and O+ is a triplet. The c, d mass difference breaks this flavor symmetry.
Quark masses do not affect the renormalization constants Zi j , so mixing between
O+ and O− is forbidden by this symmetry. In terms of O± the effective weak
Hamiltonian is

HW = 4G F√
2

VcbV ∗
ud

{
C+

[
MW

μ
, αs(μ)

]
O+(μ) + C−

[
MW

μ
, αs(μ)

]
O−(μ)

}
,

(1.137)

where

C±[1, αs(MW )] = 1

2
+ O[αs(MW )]. (1.138)

At any other subtraction point

C±
[

MW

μ
, αs(μ)

]
= exp

[∫ g(μ)

g(MW )

γ±(g)

β(g)
dg

]
C±[1, αs(MW )], (1.139)
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where

γ+(g) = g2

4π2
+ O(g4),

γ−(g) = − g2

2π2
+ O(g4),

(1.140)

and β (g) is given by Eq. (1.87). Provided μ � �QCD, the strong coupling αs(μ)
is small over the range of integration in Eq. (1.139) and higher-order terms in g
can be neglected in γ± and β. This gives

C±
[

MW

μ
, αs(μ)

]
= 1

2

[
αs(MW )

αs(μ)

]a±
, (1.141)

where

a+ = 6

33 − 2Nq
, a− = − 12

33 − 2Nq
. (1.142)

Expressing αs(MW ) in terms of αs(μ) using Eq. (1.89), the perturbative power
series expansions of C± have the form

1

2
+ a1 αs(μ) ln(MW /μ) + a2 α2

s (μ) ln2(MW /μ) + · · · . (1.143)

The expression for C± in Eq. (1.143) sums all leading logarithms of the form
αn

s (μ) lnn (MW /μ), neglecting subleading logarithms of order αn
s lnn−1 (MW /μ).

The series of subleading logarithms can be summed by using two-loop renor-
malization group equations, and so on. The subtraction-point dependence in the
coefficients C± cancels that in the matrix elements of the operators O± so any
value of μ can be used. However, if ptyp is the typical momentum in a nonleptonic
decay, the matrix elements of O± will contain large logarithms of (μ2/p2

typ), for
μ very different from ptyp. Roughly these logarithms come from integrations
over momenta in the region between ptyp and μ. They are summed by scaling
the coefficients down from the subtraction point MW to one of order ptyp, which
moves the logarithms from the matrix elements of O± to the coefficients C±.

The exponents a± in Eq. (1.142) depend on the number of quark flavors Nq .
It is convenient to integrate out the top quark at the same time as the W boson
so that Nq = 5. For inclusive weak decay of a hadron containing a b quark, the
typical momenta of the decay products are of the order of the b-quark mass, and
the large logarithms of (MW /mb)2 are summed by evaluating the coefficients
C± at μ = mb. In this case,

C+(mb) = 0.42, C−(mb) = 0.70, (1.144)

using αs(MW ) = 0.12 and αs(mb) = 0.22.
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1.7 The pion decay constant

Weak pion decay π− → μν̄μ determines the value for the parameter f that occurs
in the chiral Lagrangian for pion strong interactions in Eq. (1.98). Neglecting
electromagnetic corrections, the effective Hamiltonian for π− → μν̄μ decay is

Heff = 4G F√
2

Vud [ūγα PLd][μ̄γ α PLνμ]. (1.145)

Here color indices on the quark fields are suppressed. The current ūγα PLd is
conserved in the limit mu,d → 0, and consequently its strong interaction ma-
trix elements are subtraction-point independent. Taking the π− → μν̄μ matrix
element of Eq. (1.145) gives the pion decay amplitude

M = −i
√

2G F Vud fπ ū(pμ)/pπ PLv
(

pνμ

)
, (1.146)

where the pion decay constant, fπ , is the value of the pion-to-vacuum matrix
element of the axial current,

〈0|ūγ αγ5d|π−(pπ )〉 = −i fπ pα
π . (1.147)

The measured pion decay rate gives fπ � 131 MeV. In Eq. (1.147) the pion field
is normalized by using the standard covariant norm: 〈π (p′

π )|π (pπ )〉 = 2Eπ (2π )3

δ3(p′
π − pπ ). Parity invariance of the strong interactions implies that only the

axial current part of the left-handed current contributes in Eq. (1.146).
In the limit mu,d,s = 0, global SU(3)L transformations are a symmetry of

QCD. The conserved currents associated with this symmetry can be derived by
considering the change in the QCD Lagrangian under infinitesimal local SU(3)L

transformations,

L = 1 + iεA
L T A, (1.148)

with space–time dependent infinitesimal parameters εA
L (x). The change in the

QCD Lagrange density, Eq. (1.93), under this transformation is

δLQCD = −J A
Lμ∂μεA

L , (1.149)

where

J A
Lμ = q̄L T AγμqL (1.150)

are the conserved currents associated with SU(3)L transformations. We also know
how left-handed transformations act on the meson fields in �. The change in the
chiral Lagrange density under an infinitesimal left-handed transformation on the
� in Eq. (1.98) is

δLeff = −J A
Lμ∂μεA

L , (1.151)
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where

J A
Lμ = − i f 2

4
Tr T A � ∂μ�†. (1.152)

Comparing Eqs. (1.150) and (1.152) gives

q̄L T AγμqL = −i
f 2

4
Tr T A�∂μ�† + · · · , (1.153)

where the ellipses are contributions from higher derivative terms in the chiral
Lagrangian. Matrix elements of the quark current involving the pseudo-Goldstone
boson can be calculated by expanding � in terms of M on the right-hand side
of Eq. (1.153). In particular, the part linear in M yields the tree-level relation
f = fπ . Loops and higher derivatives operators in the chiral Lagrangian give
corrections to the relation between f and fπ . The kaon decay constant is defined
by

〈0|ūγ αγ5s|K −(pK )〉 = −i fK pα
K . (1.154)

The measured K − → μν̄μ decay rate determines fK to be ∼25% larger than the
pion decay constant, fK �164 MeV. At leading order in chiral SU(3)L × SU(3)R ,
f = fK = fπ , and the 25% difference between fπ and fK is the typical size of
SU(3)V breaking arising from the nonzero value of the strange quark mass.

At higher orders in chiral perturbation theory, the Noether procedure for find-
ing the representation of q̄ L T AγμqL in terms of pseudo-Goldstone boson fields
becomes ambiguous. Total derivative operators in the chiral Lagrangian can give
a contribution to the current J A

Lμ (although not to the charges Q A
L = ∫

d3x J A
L0),

even though they are usually omitted from the chiral Lagrangian because they
do not contribute to pseudo-Goldstone boson S-matrix elements. Note that at
leading order in chiral perturbation theory there are no possible total derivative
operators since ∂μ(Tr �†∂μ�) = 0.

1.8 The operator product expansion

The operator product expansion (OPE) is an important tool in particle physics and
condensed matter physics, and it will be applied later in this book to describe
inclusive B decay and to discuss sum rules. The use of the operator product
expansion is best illustrated by an explicit example. In this section, the OPE
will be applied to the study of deep inelastic lepton–proton scattering. The main
purpose of the discussion is to explain the use of the OPE, so the presentation of
the phenomenology of deep inelastic scattering will be kept to a minimum.

The basic deep inelastic scattering process is �(k) + proton(p) → �(k ′) +
X (p + q), in which an incoming lepton � with momentum k scatters off a
target proton, to produce an outgoing lepton � with momentum k ′, plus anything
X . The Feynman graph in Fig. 1.9 is the leading term in an expansion in the

https://doi.org/10.1017/9781009402125.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402125.002


1.8 The operator product expansion 33

k, E

k′, E′

q =  k - k′

p

X

Fig. 1.9. The basic diagram for deep inelastic lepton–hadron scattering. The virtual
photon momentum is q . The final hadronic state is not measured and is denoted by X .

electromagnetic fine structure constant α. The traditional kinematical variables
used to describe the inclusive scattering process are the momentum transfer
Q2 = −(k ′ − k)2, and the dimensionless variable x defined by

x = Q2

2p · q
, (1.155)

where q = k −k ′. Note that for deep inelastic scattering, Q2 > 0. It is also useful
to define ω = 1/x . The deep inelastic scattering cross section is the inclusive
cross section in the limit that Q2 is large with x fixed. The total cross section
is obtained from squaring the amplitude represented by Fig. 1.9 and performing
the appropriate phase space integrations. The lepton and photon parts of this
amplitude as well as the phase space integrals can easily be computed. The
nontrivial quantity is the square of the hadronic part of the diagram, which is∑

X

(2π )4δ4(q + p − pX )〈p|Jμ
em(0)|X〉〈X |J ν

em(0)|p〉, (1.156)

where the sum is over all possible final states X , and Jμ
em is the electromagnetic

current. For convenience momentum and spin labels on the state vectors are
suppressed. A spin average over the proton states |p〉 is also understood.

It is conventional to define the hadronic tensor

W μν(p, q) = 1

4π

∫
d4x eiq · x〈p|[Jμ

em(x), J ν
em(0)

]|p〉. (1.157)

Inserting a complete set of states gives

W μν(p, q) = 1

4π

∑
X

∫
d4x eiq · x[〈p|Jμ

em(x)|X〉〈X |J ν
em(0)|p〉

− 〈p|J ν
em(0)|X〉〈X |Jμ

em(x)|p〉], (1.158)

where the sum on X is a sum over all final states, as well as an integral over the
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allowed final state phase space. Translation invariance implies that

〈p|Jμ
em(x)|X〉 = 〈p|Jμ

em(0)|X〉ei(p−pX ) · x ,

〈X |Jμ
em(x)|p〉 = 〈X |Jμ

em(0)|p〉ei(pX −p) · x .
(1.159)

Inserting Eq. (1.159) into Eq. (1.158) gives

W μν(p, q) = 1

4π

∑
X

[
(2π )4δ4(q + p − pX )〈p|Jμ

em(0)|X〉〈X |J ν
em(0)|p〉

−(2π )4δ4(q + pX − p)〈p|J ν
em(0)|X〉〈X |Jμ

em(0)|p〉]. (1.160)

The only allowed final states are those with p0
X ≥ p0, since the baryon number

is conserved. For q0 > 0, only the first delta function in Eq. (1.160) can be
satisfied, and the sum in Wμν reduces to the expression in Eq. (1.156) involving
the hadronic currents, and the energy-momentum conserving delta function (up
to a factor of 1/4π). Since only the first term in Eq. (1.158) contributes, one could
have defined Wμν in Eq. (1.157) simply as the matrix element of Jμ

em(x)J ν
em(0)

without the commutator. The reason for using the commutator is that then Wμν

has a nicer analytic structure when continued away from the physical region.
The most general form of Wμν consistent with current conservation, parity and
time-reversal invariance is

Wμν = F1

(
−gμν + qμqν

q2

)
+ F2

p · q

(
pμ − p · q qμ

q2

)(
pν − p · q qν

q2

)
,

(1.161)

where F1,2 can be written as functions of x and Q2. Here F1,2 are called structure
functions.

The Q2 dependence of the structure functions can be calculated in quantum
chromodynamics. The starting point in the derivation is the time-ordered product
of two currents:

tμν ≡ i
∫

d4xeiq · x T
[
Jμ

em(x) J ν
em(0)

]
. (1.162)

The proton matrix element of tμν ,

Tμν = 〈p|tμν |p〉, (1.163)

can also be written in terms of structure functions,

Tμν = T1

(
−gμν + qμqν

q2

)
+ T2

p · q

(
pμ − p · q qμ

q2

)(
pν − p · q qν

q2

)
.

(1.164)

The analytic structure of T1,2 as a function of ω for fixed Q2 is shown in Fig. 1.10.
There are cuts in the physical region 1 ≤ |ω|. The discontinuity across the
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Re ω

Im ω

1− 1

Fig. 1.10. The analytic structure of Tμν in the complex ω plane. The discontinuity
across the cuts 1 ≤ |ω| ≤ ∞ is related to Wμν .

right-hand cut for T1,2 is F1,2,

Im T1,2(ω + iε, Q2) = 2π F1,2(ω, Q2). (1.165)

[The discontinuity across the left-hand cut gives the structure functions for deep
inelastic scattering off antiprotons.]

The key idea that permits the computation of Tμν in certain limiting cases is
the operator product expansion. Consider the time-ordered product of two local
operators separated in position by z:

T [Oa(z) Ob(0)] . (1.166)

For small z, the operators are at practically the same point. In this limit, the
operator product can be written as an expansion in local operators,

T [Oa(z) Ob(0)] =
∑

k

Cabk(z)Ok(0). (1.167)

The coefficient functions depend on the separation z. Low-momentum (com-
pared with 1/z) matrix elements of the left-hand side are completely equivalent
to matrix elements of the right-hand side. Thus one can replace the product
T [Oa(z)Ob(0)] in the computation of matrix elements by the expansion in
Eq. (1.167), where the coefficients Cabk(z) are independent of the matrix el-
ements, provided that the external states have momentum components that are
small compared with the inverse separation 1/z. In QCD, the coupling constant
is small at short distances because of asymptotic freedom. Thus the coefficient
functions can be computed in perturbation theory, since all nonperturbative ef-
fects occur at scales that are much larger than z, and do not affect the computation
of the coefficient functions.

The momentum space version of the operator product expansion is for the
product ∫

d4z eiq · zT [Oa(z) Ob(0)]. (1.168)
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In the limit that q → ∞, the Fourier transform in Eq. (1.168) forces z → 0, and
again the operator product can be expanded in terms of local operators with
coefficient functions that depend on q . For large q,∫

d4zeiq · zT [Oa(z) Ob(0)] =
∑

k

Cabk(q)Ok(0). (1.169)

This expansion is valid for all matrix elements, provided q is much larger than
the characteristic momentum in any of the external states.

We will use the Fourier transform version of the operator product expansion,
Eq. (1.169). The product of two electromagnetic currents in Eq. (1.162) can be
expanded in terms of a sum of local operators multiplied by coefficients that
are functions of q. This expansion will be valid for proton matrix elements,
Eq. (1.163), provided that q is much larger than the typical hadronic mass scale
�QCD. The local operators in the operator product expansion for QCD are quark
and gluon operators with arbitrary dimension d and spin n. An operator with
spin n and dimension d can be written as Oμ1···μn

d,n , where Od,n is symmetric and
traceless in μ1 · · · μn . The matrix element of Od,n in the spin-averaged proton
target is proportional to md−n−2

p S[pμ1 · · · pμn ]. S acts on a tensor to project
out the completely symmetric traceless component. The power of m p follows
from dimensional analysis, since a proton state with the conventional relativistic
normalization has dimension minus one. The coefficient functions in the operator
product expansion are functions only of q. Thus the free indices on the operator
O must be either μ, ν or be contracted with qα. Every index on O contracted
with qα produces a factor of p · q , which is of the order of Q2 in the deep inelastic
limit. An index μ or ν is contracted with the lepton momentum, and produces
a factor of p · k or p · k′, both of which are also of the order of Q2 in the deep
inelastic limit. In addition, since tμν has dimension two, the coefficient of O
must have dimension [mass]2−d in the operator product expansion. Thus, the
contribution of any operator O to the differential cross section is of the order of

Cμ1···μn Oμ1···μn
d,n → qμ1

Q
· · · qμn

Q
Q2−d 〈Oμ1···μn

d,n

〉
,

→ qμ1

Q
· · · qμn

Q
Q2−dmd−n−2

p pμ1 · · · pμn ,

→ (p · q)n

Qn
Q2−dmd−n−2

p ,

→ ωn
(

Q

m p

)2 + n − d

= ωn
(

Q

m p

)2 − t

, (1.170)

where the twist t is defined as

t = d − n = dimension − spin. (1.171)
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Table 1.2. Dimension, spin, and twist
for the basic objects
in the QCD Lagrangian

Parameter q Gμν Dμ

Dimension 3/2 2 1
Spin 1/2 1 1
Twist 1 1 0

The most important operators in the operator product expansion are those
with the lowest possible twist. Twist-two operators contribute a finite amount to
the structure functions in the deep inelastic limit, twist three contributions are
suppressed by m p/Q, and so on. The fundamental fields in QCD are quark and
gluon fields, so the gauge invariant operators in the operator product expansion
can be written in terms of quark fields q, the gluon field strength Gμν , and the
covariant derivative Dμ. Table 1.2 lists the basic objects, with their dimension
and twist. Any gauge invariant operator must contain at least two quark fields,
or two gluon field strength tensors. Thus the lowest possible twist is two. A
twist-two operator has either two q’s or two Gμν’s and an arbitrary number of
covariant derivatives. The indices of the covariant derivatives are not contracted,
because an operator such as D2 has twist two, whereas the traceless symmetric
part of Dα Dβ has twist zero.

The first step in doing an operator product expansion is to determine all the
linearly independent operators that can occur. We have just seen that the leading
operators are twist-two quark and gluon operators. We will simplify the analysis
by considering not the electromagnetic current but rather Jμ = q̄γμq for a single
quark flavor q. Results for the realistic case can be obtained by summing over
flavors weighted by the square of quark charges. The Lorentz structure of the
quark operators must be either q̄γ μq or q̄γ μγ5q in the limit that light quark
masses can be neglected, because the operator product Jμ J ν does not change
chirality. The conventional basis for twist-two quark operators is:

Oμ1···μn
q,V = 1

2

(
i

2

)n−1

S
{

q̄ γ μ1
↔
D

μ2 · · · ↔
D

μn

q
}

, (1.172)

Oμ1···μn
q,A = 1

2

(
i

2

)n−1

S
{

q̄ γ μ1
↔
D

μ2 · · · ↔
D

μn

γ5q
}

, (1.173)

where

Ā
↔
D

μ

B = Ā
→
DμB − Ā

←
DμB. (1.174)
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The operators Oμ1···μn
q,A have matrix elements proportional to the proton spin,

and so do not contribute to spin-averaged scattering. The tower of twist-two
gluon operators needed for scattering from unpolarized protons is

Oμ1···μn
g,V = −1

2

(
i

2

)n−2

S
{

Gμ1α
A

↔
D

μ2

. . .
↔
D

μn−1

G Aα
μn

}
. (1.175)

We will only compute the operator product expansion to lowest order in αs , so
the gluon operators do not occur.

The most general form for tμν consistent with current conservation and using
only twist-two operators is

tμν =
∞∑

n = 2,4,...

(
−gμν + qμqν

q2

)
2nqμ1 · · · qμn

(−q2)n

∑
j = q,g

2 C (1)
j,n Oμ1···μn

j,V

+
∞∑

n = 2,4,...

(
gμμ1 − qμqμ1

q2

)(
gνμ2 − qνqμ2

q2

)

× 2nqμ3 · · · qμn

(−q2)n−1

∑
j = q,g

2C (2)
j,n Oμ1···μn

j,V , (1.176)

where the unknown coefficients are C (1)
j,n and C (2)

j,n , and the factors of two and
signs have been chosen for later convenience.

The second step in doing an operator product expansion is to determine the
coefficients of the operators, C (1)

j,n and C (2)
j,n . The best way to do this is to evaluate

enough on-shell matrix elements to determine all the coefficients. Since we have
argued that the coefficients can be computed using any matrix elements, we
will evaluate the coefficients by taking matrix elements in on-shell quark and
gluon states. We will only illustrate the computation of the coefficients to lowest
nontrivial order, i.e., (αs)0, in this chapter.

A generic term in the operator product expansion can be written as

J J ∼ Cq Oq + Cg Og, (1.177)

where q and g refer to quark and gluon operators. Taking the matrix element of
both sides in a free quark state gives

〈q|J J |q〉 ∼ Cq〈q|Oq |q〉 + Cg〈q|Og|q〉. (1.178)

The electromagnetic current is a quark operator. Thus the left-hand side is of
the order of (αs)0. The matrix element 〈q|Oq |q〉 is also of the order of (αs)0,
whereas the matrix element 〈q|Og|q〉 is of the order of (αs)1 since there are at
least two gluons in Og, each of which contributes a factor of the QCD coupling
constant g to the matrix element. Thus, one can determine Cq to leading order by
taking the quark matrix element of both sides of the operator product expansion,
neglecting the gluon operators.
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q , ν q , μ

p , s p , s

p+q

q , ν q , μ

p , s p , s

p-q

Fig. 1.11. The lowest order diagrams contributing to the quark matrix element of the
product of two electromagnetic currents.

As mentioned previously, we work in a theory with a single quark flavor
with charge one. The quark matrix element of the left-hand side of the operator
product expansion, Eq. (1.169), is given by the Feynman graphs in Fig. 1.11,

Mμν = i ū(p, s) γ μi
/p + /q

(p + q)2
γ ν u(p, s) + i ū(p, s) γ νi

/p − /q

(p − q)2
γ μu(p, s).

(1.179)

Note that there is an overall factor of i because we are computing i times the
time-ordered product in Eq. (1.162). The crossed diagram (second term) can be
obtained by the replacement μ ↔ ν, q →−q from the direct diagram (first term),
so we concentrate on simplifying the first term. Expanding the denominator gives

(p+q)2 = 2p ·q+q2 = q2
(

1 + 2p · q

q2

)
= q2 (1 − ω) , (1.180)

since p2 = 0 for an on-shell massless quark. The numerator can be simplified
using the γ matrix identity in Eq. (1.119):

ū(p, s)γ μ(/p + /q)γ νu(p, s) = ū(p, s)[(p + q)μγ ν + (p + q)νγ μ

−gμν(/p + /q) + iεμναλ(p + q)αγλγ5]u(p, s).

(1.181)

For an on-shell massless quark,

/p u(p, s) = 0, ū(p, s) γλ u(p, s) = 2pλ, ū(p, s) γλγ5 u(p, s) = 2h pλ,

(1.182)

where h is the quark helicity. Thus the /p and εμναλ pαγλγ5 terms both give zero.
For spin-averaged matrix elements the sum over helicities gives zero and so we
neglect the part of Mμν proportional to h. Combining the various terms and
using

(1 − ω)−1 =
∞∑

n=0

ωn (1.183)

https://doi.org/10.1017/9781009402125.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402125.002


40 Review

gives

Mμν = − 2

q2

∞∑
n = 0

ωn[(p + q)μ pν + (p + q)ν pμ − gμν p · q]. (1.184)

To complete the operator product expansion, we need the free quark matrix
element of the right-hand side of the operator product. The matrix element of
the quark operators of Eq. (1.172) in a free quark state with momentum p is

〈q (p)|Oμ1···μn
q,V |q (p)〉 = S[pμ1 · · · pμn ] = pμ1 · · · pμn , (1.185)

since p2 = 0. The factors of i and 2 in Eqs. (1.172) and (1.173) were chosen so
that no such factors appear in the matrix elements.

We determine the coefficient functions for the spin-independent terms in the
operator product expansion. Including the crossed diagram, the spin-independent
terms on the left-hand side of the operator product are

Mμν = − 2

q2

∞∑
n=0

ωn[(p + q)μ pν + (p + q)ν pμ − gμν p · q]

+ (μ ↔ ν, q → − q, ω → − ω) , (1.186)

since ω is odd in q. The crossed diagram causes half the terms to cancel, so that
the matrix element is

Mμν = − 4

q2

∞∑
n = 0,2,4

ωn2pμ pν − 4

q2

∞∑
n = 1,3,5

ωn(qμ pν + qν pμ − gμν p · q)

= − 8

q2

∞∑
n = 0,2,4

2n (p · q)n

(−q2)n

(
pμ − p · qqμ

q2

)(
pν − p · qqν

q2

)

− 4

q2

∞∑
n = 1,3,5

2n (p · q)n+1

(−q2)n

(
−gμν + qμqν

q2

)
. (1.187)

Equation (1.187) can be rewritten in the form

Mμν = − 8

q2

∞∑
n = 0,2,4

2nqμ3 · · · qμn+2

(−q2)n

×
(

gμμ1 − qμqμ1

q2

)(
gνμ2 − qνqμ2

q2

)
pμ1 · · · pμn+2

− 4

q2

∞∑
n = 1,3,5

2nqμ1 · · · qμn+1

(−q2)n

(
−gμν + qμqν

q2

)
pμ1 · · · pμn + 1, (1.188)

which separates the q and p dependence.
The coefficient functions in the operator product depend only on q, and the

matrix elements depend only on p. We have separated the operator product into
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pieces which depend only on q and only on p. By comparing with Eq. (1.185),
we can write Eq. (1.188) as

Mμν = − 8

q2

∞∑
n = 0,2,4

2nqμ3 · · · qμn+2

(−q2)n

×
(

gμμ1 − qμqμ1

q2

)(
gνμ2 − qνqμ2

q2

)
〈p|Oq,V μ1···μn+2 |p〉

− 4

q2

∞∑
n = 1,3,5

2nqμ1 · · · qμn+1

(−q2)n

(
−gμν + qμqν

q2

)
〈p|Oq,V μ1···μn+1 |p〉

(1.189)

so that

tμν = 2
∞∑

n = 2,4,6

2nqμ3 · · · qμn

(−q2)n−1

(
gμμ1 − qμqμ1

q2

)(
gνμ2 − qνqμ2

q2

)
Oq,V μ1···μn

+ 2
∞∑

n = 2,4,6

2nqμ1 · · · qμn

(−q2)n

(
−gμν + qμqν

q2

)
Oq,V μ1···μn . (1.190)

This is the operator product expansion for the spin-independent part of tμν , i.e.,
the part involving only vector operators. Only vector operators with n even occur
in the operator product expansion, because tμν is even under charge conjugation.

Comparing with the most general form for the operator product in Eq. (1.176),
we see that at lowest order in αs the coefficients C (1,2)

q,n = 1. Considering a gluon
matrix element gives Cg,n = 0 at lowest order in αs . At higher orders in αs the
coefficient functions and the operator matrix elements depend on a subtraction
point μ. Since the physical quantity tμν is independent of the arbitrary choice of
subtraction point, a renormalization group equation similar to that for coefficients
in the weak nonleptonic decay Hamiltonian in Eq. (1.132) can be derived for
the coefficients C (1,2)

j,n . At μ = Q there are no large logarithms in the coefficients

C (1,2)
j,n . Therefore, we have that

C (1,2)
q,n [1, αs(Q)] = 1 + O[αs(Q)],

C (1,2)
g,n [1, αs(Q)] = 0 + O[αs(Q)].

(1.191)

However, at μ = Q there are large logarithms of Q/�QCD in the nucleon matrix
element of the twist-two operators. It is convenient to use the renormalization
group equations that the C (1,2)

j,n satisfy and the initial conditions in Eqs. (1.191) to
move the Q dependence from the matrix elements into the coefficients by scaling
the subtraction point down to a value μ � Q. It is this calculable Q dependence
that results in the dependence of the structure functions T1,2 and hence F1,2 on Q,
without which they would just be functions of x . So quantum chromodynamics
predicts a calculable logarithmic dependence of the structure functions F1,2 on Q,
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Fig. 1.12. The proton structure function F2(x, Q2), measured in deep inelastic muon
scattering by the NMC Collaboration [M. Arneodo et al., Phys. Lett. 364B (1995) 107].
The data is shown as a function of Q2 for different values of x . For clarity, the plots for
different x values are offset by one unit vertically, so that what is plotted is F2 + Nx ,
where Nx is an integer equal to 1 for x = 0.5, 2 for x = 0.35, etc.

which has been verified experimentally. The fact that this dependence is weak at
large Q is a consequence of asymptotic freedom. In free field theory the structure
functions F1,2 are independent of Q, which is called scaling. The logarithmic
Q dependence is usually called a scaling violation. Some experimental data
showing the approximate scaling of F2 are shown in Fig. 1.12.

1.9 Problems

1. Consider an SU(5) gauge theory with a scalar field � that transforms in the adjoint represen-
tation

� → U�U †, U ∈ SU(5).

Suppose � gets the vacuum expectation value

〈�〉 = v

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 −3 0

0 0 0 0 −3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(a) What is the unbroken subgroup H of SU(5)?
(b) What are the H quantum numbers of the massive SU(5) gauge bosons?
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2. If there are N generations of quarks and leptons, show that the CKM matrix contains (N −1)2

real parameters.

3. Calculate the vertex renormalization constant Ze given in Eq. (1.62).

4. Calculate to order g2 the renormalization matrix Zi j defined in Eq. (1.127) for the operators
O1 and O2 defined in Eq. (1.125). Use it to deduce the anomalous dimension matrix in
Eq. (1.135).

5. Calculate the cross section σ (π+π− → π+π−) at center of mass energy E to leading order
in the chiral perturbation theory expansion.

6. In chiral perturbation theory, any Feynman diagram contributing to π–π scattering has L
loops, nk insertions of vertices of order pk , and Nπ internal pion lines. The resulting amplitude
is of order pD , where

D = (powers of p in numerator) − (powers of p in denominator).

Using the identity L = Nπ − ∑
k nk + 1, derive Eq. (1.110) for D.

7. Calculate the decay amplitude for K − → π0eν̄e at leading order in chiral perturbation theory.

8. (a) Calculate the semileptonic free quark decay rate �(b → ceν̄e).
(b) Using the renormalization group improved effective Hamiltonian in Eq. (1.124), calculate

the nonleptonic free quark decay rate �(b → cdū).

Neglect all masses except those of the b and c quarks.
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