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NOETHERIAN RINGS IN WHICH EVERY IDEAL 
IS A PRODUCT OF PRIMARY IDEALS 

BY 

D. D. ANDERSON 

The classical rings of number theory, Dedekind domains, are characterized 
by the property that every ideal is a product of prime ideals. More generally, a 
commutative ring JR with identity has the property that every ideal is a product 
of prime ideals if and only if JR is a finite direct sum of Dedekind domains and 
special principal ideal rings. These rings, called general Z.P.I. rings, are also 
characterized by the property that every (prime) ideal is finitely generated and 
locally principal. Some semblance of this factorization into prime ideals was 
restored by Emmy Noether who proved that every ideal in a Noetherian ring is 
a finite intersection of primary ideals. 

The purpose of this note is to characterize the Noetherian rings with the 
property that every ideal is a product of primary ideals. Our main result is that 
every ideal in a Noetherian ring R is a product of primary ideals if and only if 
every nonmaximal prime ideal of R is a multiplication ideal (i.e., locally 
principal). 

An ideal I is called a multiplication ideal if for every ideal / ç I, there exists 
an ideal K with J = KI. We need the following facts about multiplication ideals: 

(1) A multiplication ideal is locally principal [1, 760-761], 
(2) A finitely generated ideal is a multiplication ideal if and only if it is 

locally principal [1, Theorem 3], 
(3) A multiplication ideal I with rank I > 0 is finitely generated [2, Theorem 

3], 
(4) The product of multiplication ideals is a multiplication ideal [2, Corol­

lary]. 

LEMMA 1. Let Rbe a commutative ring with identity. Suppose that P is a prime 
ideal that is a multiplication ideal. If rank P > 0 , then {Pn}n=i is the set of 
P-primary ideals. If rank P = 0, then there is a least positive integer m with 
Pp = Op. In this case, {Pn}™=1 is the set of P-primary ideals. 

Proof. First suppose that rank P > 0 . Then P is finitely generated. Let Q be 
P-primary. Since P is finitely generated, Ps ^Q for some s. By passing to R/Ps, 
we see that it suffices to consider the case where rank P = 0. But then RP is a 
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special principal ideal ring. Let m be the least positive integer with P P = Op. 
Since PP, P | , . . . , P P are the only PP-primary ideals, P, P ( 2 ) , . . . , P ( m ) are the 
only P-primary ideals. For each i, 1 < î < m, P* c P ( 0 . Suppose that fc is the 
largest positive integer with P ( 0 ç Pk . Since P is a multiplication ideal, so is Pk. 
Hence we can write P(i) = CPk where C£P. (If P(i)^pk for all positive 
integers fc, then it is easily seen that i = m and P m = P(m).) But then Pk ç P ( i ) 

since P ( 0 is P-primary and hence pk=p«\ Thus Pg° - P j = Pp° = P P so that 
i = k. 

LEMMA 2. Suppose that an ideal I in a commutative ring R with identity has a 
normal decomposition involving only prime ideals that are either maximal or 
multiplication ideals. Then I is a product of primary ideals. 

Proof. Suppose that I = Qx n • • • D Qn is a normal decomposition where Qt 

is ^-primary with P l 5 . . . , Ps maximal ideals and P s + 1 , . . . , Pn multiplication 
ideals. Since the result is well-known if all the primes Pt are maximal, we may 
assume that s<n. By Lemma 1, we have Qt =P£ for some positive integer tt 

for i = s + 1 , . . . , n. We first show that Q s + 1 n • • • n Qn = PlTi H • • • n P ^ = 
P^+'x * * * Pnn- We note that there are no containment relations between the 
primes P s + 1 , . . . , Pn. For if Pi^Pj where s + l < î , j < n , then P; is finitely 
generated (for rank I>->0) and hence P x ç f l m - i ^ T [3, Theorem 2.2]. But 
then Pj'^PJ* which contradicts the assumption that I = Q 1 n - - - n Q n is a 
normal decomposition. Let J = P ^ j H • • • Pi P^. Now P^+j is a multiplication 
ideal and J^P ' s +i ; so we can write J = Cs+1Plsï\. Moreover, since Cs+1Pjs+\ = 
J c P ^ | and Pfc\ £ P s + 2 , we have Cs+1 c P<-2 since P^2

2 is Ps+2-primary. Since 
P^X\ is a multiplication ideal, C s+1 = CS + 2P^1 and hence J = Cs+2^+1^+2• 
Continuing in this manner, we have P[^\ Pi • • • HP^ = J = Q P ^ i • • • P ^ 
P ^ l • • • Ps\

+î. It follows that J = Pïl\ H • • • nPt» = Pt
s
s+\ • • • P'». Moreover, J 

being a product of multiplication ideals is a multiplication ideal. Since I^J, we 
have I = (I:J)J. But ( I : J ) = ( Q i n • • • n Q n : J) = ( Q 1 : J ) n • • • n ( Q n : J ) = 
( Q i : J ) n - - - n ( Q s : J ) since (Qi:J) = .R for s + l < i < n . Moreover, each 
(Qi : J) is either Pt -primary or JR for i = 1 , . . . , s. Delete the (Qt :J) that are 
equal to JR. Since the ideals P£ ( l < i < s ) are maximal, the Pt-primary ideals 
( Q : J) are comaximal and hence (Q1 : J) n • • • n (Qs : J) = (Q1 : / ) • • • (Qn : / ) . 
Thus I = (Q1:J) • - • (Qs : J)Pls+i • • • P^ is a product of primary ideals. 

LEMMA 3. Let P be a prime ideal and A an ideal with A^P. Suppose that I is 
an ideal with AP<^I^P and that I is a product of primary ideals. Then I is a 
multiple of P. In particular, if every ideal between P and AP is a product of 
primary ideals, then P/AP is a multiplication ideal in R/AP. 

Proof. Let I = Qx • - - Qn where Qt is ^-primary. Since P is prime, we have, 
say, Qi c P. Now PP 3 Q1 P 3 Jp ^ (AP)P = APPP = PP. Thus Q1 P = PP and since 
Q± is primary, we must have Qx — P. 
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THEOREM. For a Noetherian ring with identity, the following conditions are 
equivalent: 

(1) every ideal of R is a product of primary ideals, 
(2) every nonmaximal prime ideal of R is a multiplication ideal 

Proof. (1)=>(2). Let P be a nonmaximal prime ideal of R. We must show 
that P is a multiplication ideal. It suffices to show that P is locally principal. Let 
M be a maximal ideal of JR. If M=é P, then PM = RM. Thus we may suppose that 
M^P. Then by Lemma 3, PIMP is a multiplication ideal. Thus PM/MMPM is a 
principal ideal in RM/MMPM. By Nakayama's Lemma, PM is a principal ideal of 

RM-
(2)4>(1). Lemma 2. 

We end the paper by giving some examples of Noetherian rings in which 
every ideal is a product of primary ideals. Clearly this class of rings is closed 
under finite direct sums, homomorphic images, and rings of quotients. If we 
restrict ourselves to the local case, then by the main theorem of this paper 
these rings are characterized by the property that every nonmaximal prime 
ideal is principal. Local rings of this type may be put into three classes: (1) 
dim R = 0, (2) dim R — 1 and the minimal prime ideals are principal, and (3) 
dim R = 2 and R is a UFD. Homomorphic images of the third type can be used 
to provide examples of the second type. Outside the local case, two-
dimensional locally UFD's and their homomorphic images provide examples of 
Noetherian rings in which every ideal is a product of primary ideals. 
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