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Sign Changes of the Liouville
Function on Quadratics
Peter Borwein, Stephen K. K. Choi, and Himadri Ganguli

Abstract.
Let λ(n) denote the Liouville function. Complementary to the prime number theorem, Chowla

conjectured that

(∗)
∑
n≤x

λ( f (n)) = o(x)

for any polynomial f (x) with integer coefficients which is not of form bg(x)2.
When f (x) = x, (∗) is equivalent to the prime number theorem. Chowla’s conjecture has been

proved for linear functions, but for degree greater than 1, the conjecture seems to be extremely hard
and remains wide open. One can consider a weaker form of Chowla’s conjecture.

Conjecture 1 (Cassaigne et al.) If f (x) ∈ Z[x] and is not in the form of bg2(x) for some g(x) ∈ Z[x], then
λ( f (n)) changes sign infinitely often.

Clearly, Chowla’s conjecture implies Conjecture 1. Although weaker, Conjecture 1 is still wide open
for polynomials of degree > 1. In this article, we study Conjecture 1 for quadratic polynomials. One
of our main theorems is the following.

Theorem 1 Let f (x) = ax2 + bx + c with a > 0 and l be a positive integer such that al is not a perfect
square. If the equation f (n) = lm2 has one solution (n0,m0) ∈ Z2, then it has infinitely many positive
solutions (n,m) ∈ N2.

As a direct consequence of Theorem 1, we prove the following.

Theorem 2 Let f (x) = ax2 + bx + c with a ∈ N and b, c ∈ Z. Let

A0 =
[ |b| + (|D| + 1)/2

2a

]
+ 1.

Then either the binary sequence {λ( f (n))}∞n=A0
is a constant sequence or it changes sign infinitely often.

Some partial results of Conjecture 1 for quadratic polynomials are also proved using Theorem 1.

1 Introduction

Let λ(n) denote the Liouville function, i.e., λ(n) = (−1)Ω(n), where Ω(n) denotes
the number of prime factors of n counted with multiplicity. Alternatively, λ(n) is the
completely multiplicative function defined by λ(p) = −1 for each prime. Let ζ(s)
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denote the Riemann zeta function, defined for complex s with <(s) > 1 by

ζ(s) :=
∞∑

n=1

1

ns
=
∏
p

(
1− 1

ps

)−1
,

where the product is over all prime numbers p. Thus

(1.1)
ζ(2s)

ζ(s)
=
∏
p

(
1 +

1

ps

)−1
=
∏
p

(
1− λ(p)

ps

)−1
=

∞∑
n=1

λ(n)

ns
.

Let L(x) denote the average of the values of λ(n) up to x,

L(x) :=
∑

1≤n≤x

λ(n)

so that L(x) records the difference of the number of positive integers up to x with
an even number of prime factors (counted with multiplicity) and those with an odd
number. In 1919 Pólya [10] showed that the Riemann Hypothesis, i.e., that all non-
trivial zeros of ζ(s) are on the critical line <(s) = 1/2, will follow if L(x) does not
change sign for sufficiently large n. There is a vast literature about the study of sign
changes of L(x). In 1958, Haselgrove proved that L(x) changes sign infinitely often in
[4]. For more discussion about this problem, we refer the reader to [1].

It is well known that the prime number theorem is equivalent to

(1.2) L(x) =
∑
n≤x

λ(n) = o(x).

In fact, the prime number theorem is equivalent to that fact that ζ(s) 6= 0 on the
vertical line<(s) = 1; and this is equivalent to (1.2) in view of (1.1). Complementary
to the prime number theorem, Chowla [3] made the following conjecture.

Conjecture 1 (Chowla) Let f (x) ∈ Z[x] be any polynomial which is not of form
bg2(x) for some b 6= 0, g(x) ∈ Z[x]. Then

(1.3)
∑
n≤x

λ( f (n)) = o(x).

Clearly, Chowla’s conjecture is equivalent to the prime number theorem when
f (x) = x. For polynomials of degree> 1, Chowla’s conjecture seems to be extremely
hard and remains wide open. One can consider a weaker form of Chowla’s conjec-
ture.

Conjecture 2 (Cassaigne et al.) If f (x) ∈ Z[x] is not of form bg2(x), then λ( f (n))
changes sign infinitely often.
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Clearly, Chowla’s conjecture implies Conjecture 2. In fact, suppose it is not true,
i.e., there is n0 such that λ( f (n)) = ε for all n ≥ n0, where ε is either−1 or +1. Then
it follows that ∑

n≤x

λ( f (n)) = εx + O(1),

which contradicts (1.3).
Although it is weaker, Conjecture 2 is still wide open for polynomials of degree

greater than 1. In [2], Conjecture 2 was studied for special polynomials, and some
partial results were proved.

Theorem 1.1 (Cassaigne et al.) Let f (n) = (an + b1)(an + b2) · · · (an + bk), where
a, k ∈ N, b1, . . . , bk are distinct integers with b1 ≡ · · · ≡ bk (mod a). Then λ( f (n))
changes sign infinitely often.

Proof This is Corollary 2 in [2].

For certain quadratic polynomials, they proved the following theorem.

Theorem 1.2 (Cassaigne et al.) If f (n) = (n + a)(bn + c), where a, c ∈ Z, b ∈
N, ab 6= c, then λ( f (n)) changes sign infinitely often.

Proof This is Theorem 4 in [2].

Theorem 1.3 (Cassaigne et al.) Let a ∈ N, b, c ∈ Z, and write f (n) = an2 + bn + c,
D = b2 − 4ac. Assume that a, b, and c satisfy the following conditions:

(i) 2a | b,
(ii) D < 0,
(iii) there is a positive integer k with

λ
(
−D

4
k2 + 1

)
= −1.

Then λ( f (n)) changes sign infinitely often.

Proof This is Theorem 3 in [2].

In this article, we continue to study Conjecture 2 for the quadratic case. One of
our main results is Theorem 2.2 below. By Theorem 2.2, in order to show that the
sequence {λ( f (n))}∞n=1 changes sign infinitely often, we only need find one pair of
large integers n1 and n2 such that λ( f (n1)) 6= λ( f (n2)). This will make the conjecture
much easier to handle. Some partial results from Theorem 2.2 are also deduced in
the next section.

2 Main Results

Conjecture 2 for linear polynomials is easily settled by the following result.

Theorem 2.1 Let P := {n ∈ N : λ(n) = +1} and N := {n ∈ N : λ(n) = −1}.
Then neither P nor N can contain infinite arithmetic progression. In particular, λ(an+b)
changes sign infinitely often in n.
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Proof We claim that neither P nor N can contain any infinite arithmetic progression.
Otherwise, there are an n0 and l such that

(2.1) λ(n0 + lk) = λ(n0)

for k = 0, 1, 2, . . . . Pick a prime p which is of the form lm + 1. Now put k = mn0

and consider

λ(n0 + lk) = λ(n0 + lmn0) = λ(n0)λ(lm + 1) = λ(n0)λ(p) = −λ(n0).

This contradicts (2.1). Hence our claim is attained.

One of the main results in this paper is the following theorem.

Theorem 2.2 Let f (x) = ax2 + bx + c with a > 0 and let l be a positive integer such
that al is not a perfect square. If the equation f (n) = lm2 has a solution (n0,m0) ∈ Z2,
then it has infinitely many positive solutions (n,m) ∈ N2.

Proof Let D = b2− 4ac be the discriminant of f (x). Solving the quadratic equation

(2.2) an2 + bn + c = lm2,

for n, we get

n0 =
−b±

√
b2 − 4a(c − lm2

0)

2a
=
−b±

√
D + 4alm2

0

2a
.

It follows that D + 4alm2
0 = t2

0 for some integer t0. By choosing a suitable sign of t0,
we may assume

(2.3) t0 ≡ b (mod 2a), and n0 =
−b + t0

2a
∈ Z.

This leads us to consider the diophantine equation

(2.4) t2 = 4alm2 + D.

Suppose that (t0,m0) and (t,m) are solutions of (2.4). Then we have

t2 = 4alm2 + D and t2
0 = 4alm2

0 + D.

Subtracting the above two equations, we get

(t − t0)(t + t0) = l(m−m0)(4am + 4am0).

We now let s and r be

(2.5) r(m−m0) = 2as(t + t0) and 2as(4alm + 4alm0) = r(t − t0).
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By eliminating the terms t and m respectively in (2.5), we get

(r2 − 16a3ls2)m = r2m0 + 16a3ls2m0 + 4arst0,(2.6)

(r2 − 16a3ls2)t = r2t0 + 16a2ls2m0 + 16a3s2lt0.(2.7)

Note that by our assumption, 16a3l is not a perfect square. So the Pell equation,

(2.8) r2 − 16a3ls2 = 1,

always has infinitely many solutions (r, s) ∈ Z2. Furthermore, through (2.6) and
(2.7), each solution (r, s) of the Pell equation (2.8) gives integers m and t such that

m = r2m0 + 16a3ls2m0 + 4arst0,

t = r2t0 + 16a2lsrm0 + 16a3s2lt0.

One can easily verify that if (r, s) 6= (±1, 0), these m and t satisfy equations (2.5)
and hence satisfy equation (2.4). Note that r2 ≡ 1 (mod 2a) and r(m − m0) ≡ 0
(mod 2a). Hence we have m ≡ m0 (mod 2a) and t ≡ t0 (mod 2a) by (2.5). Since
there are infinitely many solutions (r, s) ∈ Z2 of the Pell equation (2.8) and these will
give infinitely many solutions (m, t) ∈ Z2 of the equation (2.5). In particular, there
are infinite many positive integers t such that t ≡ t0 (mod 2a) and that

n =
−b +

√
D + 4alm2

2a
=
−b + t

2a

is a positive integer by (2.3). Therefore, there are infinitely many positive solutions
(n,m) ∈ N2 of (2.2).

It is worth mentioning that one should not expect Theorem 2.2 to be true for poly-
nomials of higher degree, because they may only have finitely many integer solutions
by Siegel’s theorem on integral points in [12].

In view of Theorem 2.2, to determine that the conjecture is true for a given quad-
ratic polynomial f (x), we only need to find one pair of positive integers n1 and n2

such that λ( f (n1)) 6= λ( f (n2)). This gives us the following theorem.

Theorem 2.3 Let f (x) = ax2 + bx + c with a ∈ N and b, c ∈ Z. Let

A0 =
[ |b| + (|D| + 1)/2

2a

]
+ 1.

Then the binary sequence {λ( f (n))}∞n=A0
is either a constant sequence or it changes sign

infinitely often.

Proof Suppose {λ( f (n))}∞n=A0
is not a constant sequence. Then there are positive

integers n1 6= n2 ≥ A0 such that λ( f (n1)) 6= λ( f (n2)). Hence there are positive
integers l1, l2 and m1,m2 such that

λ(l1) = +1, and λ(l2) = −1,
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with
f (n1) = l1m2

1, and f (n2) = l2m2
2.

We claim that al1 and al2 are not perfect squares. If al j = N2 is a perfect square, then
the diophantine equation t2 = D + 4al jm2 has only finitely many solutions (t,m). In
fact, since (t j − 2Nm j)(t j + 2Nm j) = D, there is a d 6= 0 such that t j + 2Nm j = D/d
and t j − 2Nm j = d. It follows that 2t j = D/d + d. Thus,

|t j | ≤
1

2

( |D|
|d|

+ |d|
)
≤ |D| + 1

2
.

Since f (n j) = l jm2
j ,

n j =
∣∣∣ −b±

√
D + 4al jm j

2a

∣∣∣ ≤ |b| + |t j |
2a

≤ |b| + (|D| + 1)/2

2a
< A0.

This contradicts n j ≥ A0. Therefore from Theorem 2.2, there are infinitely many
n1 and n2 such that λ( f (n1)) 6= λ( f (n2)), and hence λ( f (n)) changes sign infinitely
often.

As we remarked above, one should not expect Theorem 2.3 to be true for polyno-
mials of higher degree.

We prove some partial results of special quadratic polynomials.

Theorem 2.4 Let f (n) = n2 + bn + c with b, c ∈ Z . Suppose there exists a positive
integer n0 ≥ A0 (with a = 1) such that λ( f (n0)) = −1. Then λ( f (n)) changes sign
infinitely often.

Proof We observe the identity f (n) f (n + 1) = f ( f (n) + n), which can be verified
directly. Hence we have

(2.9) λ( f (n))λ( f (n + 1)) = λ( f ( f (n) + n)).

If {λ( f (n))}∞n=1 is a constant sequence, then it follows from (2.9) that

λ( f (n)) = +1, for all n = 1, 2, . . . .

Therefore if there is n0 ≥ A0 such that λ( f (n0)) = −1, then by Theorem 2.3,
{λ( f (n))}∞n=1 changes sign infinitely often.

The proof of Theorem 2.2 shows that the solvability of the diophantine equation

(2.10) X2 − 4alY 2 = D

is critical in solving the problem. In general, there is no simple criterion to determine
the solvability of equation (2.10) except if we know the central norm of the continued
fraction of the irrational number

√
al. For more discussion in this area, we refer the

reader to [6–9]. The following theorem deals with a special case of D for which we
can solve equation (2.10).
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Theorem 2.5 Let f (x) = px2 +bx+c with prime number p. Suppose the discriminant
D = b2 − 4pc is a non-zero perfect square. Then λ( f (n)) changes sign infinitely often.

Proof We first choose positive integers l1 and l2 such that pl1 and pl2 are not perfect
squares and λ(l1) 6= λ(l2). So the Pell equations

(2.11) X2 − 4p l jY
2 = 1, j = 1, 2

have infinitely many positive solutions (X,Y ). Let D = q2 with q ≥ 1. Then any
positive solution (X,Y ) of (2.11) gives a positive solution (qX, qY ) of

X2 − 4p l jY
2 = D.

We can choose X large enough so that −b + qX > 0. On the other hand, we have
X2 ≡ 1 (mod p) by (2.11) and q2 ≡ b2 (mod p) because D = b2 − 4pc. Therefore
(qX)2 ≡ b2 (mod p). Since p is a prime, either (i) qX ≡ b (mod p) or (ii) qX ≡ −b
(mod p). We define

n =
−b± qX

2p

where the sign ± is determined according to cases (i) or (ii) so that n is a positive
integer. Therefore (n, qX) is a positive solution of the equations f (n) = l jm2. Then
our theorem follows readily from Theorem 2.2.
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