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1. Introduction

The explicit description of divisorial contractions is a beautiful object in itself, and in
dimension three it is one of the most important remaining problems. The aim of this
paper is to continue the study of this, following my previous paper [KwkO1].

Let f:(Y D E) — (X > P) be a divisorial contraction in dimension three which
contracts its exceptional divisor E to a point P. The theorem in [KwkO1] is that
any such contraction to a smooth point P is obtained by a suitable weighted
blow-up. In the proof of this theorem, a numerical game for types of singularities
on Y and for dimensions of Oy/Ox(—iE)’s plays an essential role, and it also works
even if P is a Gorenstein singularity. In this paper, we treat the case where P is a
compound A; point, starting with this game, and prove the following theorem:

THEOREM 1.1 (= Theorem 2.5). Let Y be a Q-factorial normal variety of dimension
three with only terminal singularities, and let (Y D E) — (X 2 P) be an algebraic
germ of a divisorial contraction which contracts its exceptional divisor E to a compound
Ay point P. Then f is a weighted blow-up. More precisely, under a suitable analytic
identification P € X = 0 € (xy + 2> + w¥ = 0) C C*, f'is one of the following weighted
blow-ups:

(1) General case: [ is the weighted blow-up with its weights wt(x,y,z, w)
=(s,2t —s,t, 1), where s, t are coprime positive integers such that s < t < N/2.

(2) Exceptional case: N=3 and f is the weighted blow-up with its weights
wt(x, v, z,w) = (1,5, 3,2).
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Compound A; singularities are among the mildest of singularities, except for
smooth points, allowed for P and, so there are many ways of obtaining a natural
local description of X at P in our case. This makes it difficult to analyze divisorial
contractions to X because many contractions may possibly occur.

The hardest part of the theorem is found in the general case. Adding that there
exist infinitely many such weighted blow-ups from the choice of an analytic identifi-
cation Pe X~ o€ (xy+ 22 +wV =0) c C*, some difficulties arise in controlling
the value of N, which should be large compared to the discrepancy of f. For this,
we introduce a special surface P € S C X (Definition 6.5) and reduce the problem
to constructing a special surface of which the strict transform on Y has only rela-
tively mild singularities.

Y. Kawamata has produced a description in the case where P is a terminal quo-
tient singularity (([Kwm96]), and A. Corti has described the case where P is an ordin-
ary double point ([Co00, Theorem 3.10]), a special case of Theorem 1.1. He,
with M. Mella, has also treated the case where P is analytically isomorphic to
0 € (xy+2 +w=0) c C*([CMO00, Theorem 3.6]). Though every case of the above
admits only one or two divisorial contractions, respectively, in this paper we can
also see the essence of their proof, comparing discrepancies and using Shokurov’s
connectedness lemma.

Recently, a study of Mori fiber spaces using the Sarkisov program was made (for
example, [Co00], [CPR00] and [CMO00]), which requires a precise description of divi-
sorial contractions. I am convinced that Theorem 1.1 can be used to tackle Conjec-
ture 1.2 of [CMO00].

2. Statement of Theorem

We will work over the complex number field C. A variety means an irreducible,
reduced, separated scheme of finite type over Spec C. Though our objects are alge-
braic in themselves and we work in the algebraic category throughout the paper,
we often use analytic functions for convenience. This produces no problem when
adding higher terms to them if necessary to put them into algebraic functions.
Our argument does not depend on the local ring Oy p itself, but only on a quotient
Oy, p/m’}, by a sufficiently large multiple of the maximal ideal mp C Oy, p. We use
basic terminologies in [K92, Chapters 1, 2].

First we define a divisorial contraction. Here it means a morphism which may
emerge in the minimal model program.

DEFINITION 2.1 Let f:Y — X be a morphism with connected fibers between
normal varieties. We call f a divisorial contraction if it satisfies the following condi-

tions:

(1) Y is @-factorial with only terminal singularities.
(2) The exceptional locus of fis a prime divisor.
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(3) —Ky is f~ample.
(4) The relative Picard number of f'is one.

We recall the classification of terminal Gorenstein singularities in dimension three.

DEFINITION 2.2. Let P € X be an algebraic germ (resp. an analytic germ) of a
variety (resp. an analytic space) of dimension three. We call P a ¢DV (compound Du
Val) point if a general hyperplane section is normal and has a Du Val singularity at
P. The singularity P is said to be cA4,, ¢D,, cE, (compound A,, D,, E,) according to
the type of Du Val singularity on a general hyperplane section.

THEOREM 2.3 ([R83, Theorem 1.1]). Let P € X be an algebraic germ (resp. an
analytic germ) of a normal variety (resp. analytic space) of dimension three. Then P is
a terminal Gorenstein singularity if and only if P is an isolated cDV point.

Remark 2.4. (1) Let Pe X~ o0 e (f=0) c C* be a terminal Gorenstein singu-
larity in dimension three. We can divide such singularities by rank r of the Hessian
matrix of f at o.

— r=1.PiscD,, cEs, cE7, or cEg.

— r=2 Piscd, withn > 2.

— r=23. Pis cAj, but is not an ordinary double point.
— r=4. Pis an ordinary double point.

(2) If P is an isolated cA4; point, we have an analytic identification P € X =~ o0 €
(xy+22+wVN=0)C C* for some N > 2. This N depends only on P € X itself.

It is now time to state the theorem precisely.

THEOREM 2.5. Let Y be a Q-factorial normal variety of dimension three with only
terminal singularities, and let (Y D E) — (X > P) be an algebraic germ of a divi-
sorial contraction which contracts its exceptional divisor E to a compound A, point P.
Then f is a weighted blow-up. More precisely, under a suitable analytic identification
PeXx~oe(xy+22+wN=0)cC* fis one of the following weighted blow-ups.

(1) General case: f is the weighted blow-up with its weights wt(x,y,z, w)
= (5,2t —s,t,1), where s, t are coprime positive integers such that s <t < N/2.

(2) Exceptional case: N =3 and [ is the weighted blow-up with its weights
wt(x, y, z, w) = (1, 5, 3, 2).

Remark 2.6. Consider an analytic germ of a c4; point 0 € (xy + 22 +w" =0) C
ct (N = 2) and blow-up this with weights as in Theorem 2.5. Then the exceptional
locus of this weighted blow-up is irreducible, and the weighted blown-up analytic
space has actually only terminal singularities.
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As in [KwkO01], in our argument we often identify prime divisors on different vari-
eties if they are the same as valuations.

NOTATION 2.7. Let X be a normal variety and let E be an algebraic valuation, that
is, a valuation of the function field of X which is obtained as an exceptional divisor of
some birational morphism /> Y — X from a normal variety Y. Let D be a Q-divisor
on X or D = uM, where u is a rational number and M is a linear system of finite
dimension on X which has no base points of codimension one.

(1) Let Z be a normal variety which is birational to X. D, denotes the strict trans-
form of D on Z.

(2) Ox(iE) (i € Z) denotes f,Oy(iE).

(3) Assume that Ky + D is Q-Cartier. ok, p(E) denotes the discrepancy of E with
respect to Ky + D, that is, Ky = f*(Kx + D) + ak,+p(E)E + (others).

(4) Assume that D is Q-Cartier. mp(E) denotes the multiplicity of E with respect to
D, that is, f*D = Dy + mp(E)E + (others).

3. Review of Singular Riemann—Roch Technique

In this section we review some of the numerical results in [KwkO01, § 4] obtained
by using the singular Riemann—-Roch formula. Let Y be a Q-factorial normal
variety of dimension three with only terminal singularities, and let f:(Y D E) —
(X > P) be an algebraic germ of a divisorial contraction which contracts its excep-
tional divisor E to a Gorenstein point P. We fix this situation throughout this
section.

Let Ky = f*Ky + aFE and let r be the global Gorenstein index of Y, that is, the
smallest positive integer such that rKy is Cartier. Because a and r are coprime by
[KwkO1, Lemma 4.3], we can take an integer e such that ae = 1 modulo r.

Let

1= {Q:typel(l, —l,bQ)}
o

be the set of fictitious singularities of Y, that is, terminal quotient singularities
obtained by flat deformations of non-Gorenstein singularities of Y. Then
(Oy,(Eg))g = (Oy,(eKy,))g, where (Yg, Ep) is the deformed pair near Q from
(Y, E). We note that by is coprime to rp and that e is also coprime to rp because
r divides ae — 1. Hence, vp = % is coprime to rp. Here ~ denotes the smallest
residue modulo rg, thatis, j = j — | j/ro|rg, where | | denotes the round down, that
is, |j] = max{k € Z|k <j}. Replacing by with rg — by if necessary, we may
assume that vy < rp/2. With this description, r is one if [ is empty, and otherwise
r is the lowest common multiple of {rg}yc;- We define J = {(rg, vg)}ge;- Moreover,
we set
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d(i) = dime Ox(E)/Ox((i — DE) (i € Z),
D(i)= Y d(—j) = dimc Ox/Ox(—iE) (i >0).

0<j<i

We note that d(i) =0 if i > 1, and that d(0) = 1.
PROPOSITION 3.1 ([KwkO1, Proposition 4.4]).

(1) rE® € Z.. ( )

Volro— 70
Q) aB =2- 3,20 =10 oo — 7o)
(3) D(i) =+ B; — By (0 < i< a), where B; = de,%.
(4) Ifa>2, then DQ2)=4— Yy v0 € {1,2,3,4}.

THEOREM 3.2 ([Kwk01, Theorem 4.5]). Assume that a = 2. Then according the
value of D(2), exactly one of the cases given in Table I holds.

Set ry =1, r, = r in the case III, and consider the cases II-b and III. In these cases
we have

=N;=i (0<i< min{r,a})
D) =N;>i (min{r,a} < i< min{r,, a})

~
> N;>1 (min{r, a} <i<a),

where N; is the number of elements in the set

Li={(s,0) € Z% yls+rit < i}.

4. First Step to Proof

In this section we take the first step to the proof of Theorem 2.5. We keep numerical
data in Section 3.

- Ky =/f"Kx +akE,

— r: the Gorenstein index,

— e an integer such that ae = 1 modulo r,

I={0 : type é(l, —1, bp)}: the set of fictitious singularities of Y,

Table 1.

Case D(2) J a

I I {(7.3)} or {(3.1),(5,2)} 2

II-a 2 {(r,2)} 2or4

1I-b 2 {(1‘1, 1)7 (1‘2, 1)} (r1 < rz) (I‘] + rz)/l‘1r2E3
1 3 {(r,1)} (1+r)/rE?

v 4 0 2

In this case fis the blow-up along a smooth point P.
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— vg = ebg (vg < ro/2),

- J= {(”Qa UQ)}Qela

— d(i) = dimg Ox(iE)/Ox((i — DE) (i € 2),
— D(i) = dimc Ox/Ox(—iE) (i=0).

Additionally, we define an integer N > 2 as
PeX~oe(xy+z2+w¥=0)C C*.

First we construct a tower of normal varieties.

CONSTRUCTION 4.1. We construct birational morphisms g;: X; — X;_; between
normal factorial varieties, closed subvarieties Z; C X;, and prime divisors F; on X;
inductively, and define positive integers 7, m, with the following procedure.

(1) Define Xy as X and Z; as P.
(2) (a) If Z;_y is a point, we define g; as the blow-up of X;_; along Z; ;.

(b) If Z;_; is a curve, we define b;: Blz,_, (X;-1) — X;—; as the blow-up of X;_;
along Z;_y, and define »;: X; — Blg_,(X;—1) as a resolution of singularities
near b;(Z,_y). Precisely, b'; is a proper morphism which is isomorphic over
BlZH(X,-,l)\b[l(Z,-,l), and X, is smooth near (b,-ob’i)fl(Z,‘,l). We note
that b’ is isomorphic at the generic point of the center of E on
BlzH (X,',l). We define g = bi o b/,'ZX,' — A/ifl-

(3) Define Z; as the center of E on X; with the reduced induced closed subscheme
structure, and F; as the only g;-exceptional prime divisor on X; which contains

Z,’.

(4) We stop this process when Z,, = F),. This process must terminate after finite steps
like [KwkO1, Construction 3.1] and thus we get the sequence X, — --- — Xj.

(5) We define m < n as the largest integer such that Z,,_; is a point.

(6) We define gj; (j < i) as the induced morphism from X; to X;.

Remark 4.2. Z; C F; (1 < i< n)is exactly one of the cases given in Table II.

Table 11.

Case i Z; Z, CF

P, 1<i<m point the vertex point € Qo(C P?)
Py a nonvertex point € Qp(C P?)
P a point € Q(C P?)

Py a point € P2

C i=m<n curve a curveC Qy(C P?)

Cy a curve C Q(c P?)

Cs a curve C P?

C’ m<i<n a curve C F;

S i=n surface the surface = F;
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Qo (resp. Q) in Table II denotes the cone (xy + z*> = 0) (resp. the smooth quadratic
(xy4+zw=0)) C P? with homogeneous coordinates x, ¥, Z, w.

Remark 4.3. We remark that Ox(—iE) = Ox(—iF,) for any i because E and F), are
the same as valuations.

From the next lemma, we have only to prove that F, equals, as valuations, the
only exceptional divisor obtained by a weighted blow-up of X emerging in
Theorem 2.5.

LEMMA 4.4 ((KwkOl, Lemma 3.4]). Let f;:Y; — X with i=1, 2 be projective
birational morphisms between normal varieties. Assume that E;, the exceptional locus
of fi, is an anti-fi-ample prime divisor for each i, and that E| and E, are the same as
valuations.

Second we evaluate various discrepancies and multiplicities.

NOTATION 4.5. (1) We define a positive integer / < m as the largest integer satis-
fying that / = 1 or that Z; ; is of type P;.
(2) For curves Z; (m < i < n), we define the degree d; of Z; as follows.

(a)In cases C; and C,, d; denotes the degree of Z; considered as a subvariety in
P? as in Remark 4.2.

(b)In case C3, d; denotes the degree of Z; considered as a subvariety in P? as in
Remark 4.2.

(c) In case C', d; denotes the degree of the finite morphism Z; — Z; ;.

NOTATION 4.6. Let M be a general f~very ample linear system of finite dimension
on Y. We define positive rational numbers y, ¢; by the following equations.

Ky + uM = f*(Kx + uMy),

gou(tMy) = uMy, + > ¢i(g},Fi) + (others).

I<i<n

Remark 4.7. (1) Because M is a general f-very ample linear system on Y, for any
algebraic valuation G we have ak,+.m,(G) = ok, (G).

(2) Putting G = F; in (4.7.1), we obtain
>0 (i<n)

i (F) = ) gme(F)=ax,(FY_ o _

I<j<i

since Y has only terminal singularities.

We give an evaluation for ¢;’s.
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PROPOSITION 4.8.

(1) 1> ¢y except the case n = 1.

2) cu > OKy, (Fy,) except the case n = 1.

(3) (a) If Z; is a point of type Py or Py, then ¢; = ciy1.
(b) If Z; is a point of type Py, then 2¢; = ciy .
(c) If Z; is a curve of type Cs or C', then ¢; = diciy .
(d) If Z; is a curve of type Cy, then 2¢; = diciy .

4) If Z; is of type P3 or Cy, then ¢; = 1.

Proof. (1) Putting i = 1 into Remark 4.7.2, we have 1 —¢; > 0.
(2) We use Remark 4.7. Because
Ky, + uMy,
= g,(Kx, , + uMx, ) + (ox, _ (Fi) — c)Fy + (others)
= g,(g0.,_1(Kx + uMy) + ok, (F,—1)F,—1 + (others))+
+ (ak,  (Fn) — cn)F, + (others)
= g0,(Kx + uMx)+
+ (o, (F) = ¢ + oy (Fu i, (F)Fy + (others),
we have
ag,  (Fn) — ¢n + ok, (Fu_1)mp, (Fy) = ok, (F,) = 0.
Hence
(F) = ox,(Fy_1)mp, (F,) > 0.

C” o O(K’\/n—l

(3a) We will prove (3) with the same idea. Let / be a general line on F; 2 Q, C P’
or =~ P? through Z;, and let / be its strict transform on X;y;. Then,

0 < (uMy,,, 'l/)x,+, = —¢i1(Fin1 'Z/)X,+, — ci(F; - l)x,. = —¢Cit1 + ¢

(3b) Let ¢ be a general conic on F; = Qy C P* through Z;, and let ¢ be its strict
transform on X;,;. Then,

0< (#MX,-H 'C/)XM = —¢ip1(Fiy1 'C/)XH] —ci(F; - C)X,- = —¢ip1 + 2¢;.

(3c) Let /be a general line on F; = P? in case C; and a general fiber of F; — Z;_
in case C/, and let /' be its strict transform on X;, ;. Then,

0< (NMX,H 'l/)x,»+l = —cip1(Fiy1 'Z/)X,+l —ci(F; - [)X,. = —diciy1 + ¢;.

(3d) Let ¢ be a general conic on F; = Q C P?, and let ¢ be its strict transform on
Xiy1. Then,

0 < (uMy,, -y, = —cir1(Fiy1 - )y, — ci(Fi- Oy, = —diciy1 + 2.
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(4) Our proof is a generalization of the proof of [Co00, Theorem 3.10] using Sho-
kurov’s connectedness lemma ([K792, Theorem 17.4]). Let H be a general hyper-
plane section on X through P, and let L be a general hyperplane section on X;_;
through Z;_; such that Z; € Ly, N F;, and that Ly, N F; consists of two lines /; + 5
on F; = Q C P?, which are fibers of two rulings of Q = P! x P'. Then

goi/(Kx + uMy + ok (Fi1)H) + g/ L

= Ky, + uMy, 4+ Ly, + 0F;_1x, + ¢;F; + (others),
where we omit the term ok, (Fi—1)H if i = 1. Because

(s (Kx+uMytorgy (Fro) H)+g: 1) (Fn)
= =My, (5 gy H+gr L (Fn)
< —mp(F) = -1,
we have
Z; € LLC(X;, go(Kx + uMy + ok, (Fio1)H) + g7 L),

where LLC denotes the locus of log canonical singularities for a log pair, that is, the
union of centers of all algebraic valuations with discrepancies < — 1. Moreover,

L)(,. N F; € LLC(X;, gzi(KX + /lMX + OCKy(Fi—l)H) +gfL)

Since Z; € Ly, N F; = [ + b, using the connectedness lemma for two small contrac-
tions in the analytic category contracting /;, /» respectively, we obtain

P' x P' =~ F, C LLC(X;, gi(Kx + uMy + ok, (F;-1)H) + g7 L),
that is, ¢; > 1. O

We have a refined restriction as a corollary of preceding results.

COROLLARY 4.9. (1) If a=1, then f is the usual blow-up of X along P.
(2) Assume that a = 2, that is, n = 2. Then,
(a) Case I never occurs.
(b) Neither case P3 nor case Cy occurs.
(c) Exactly one of cases P, and C| occurs.
(d) m<n.
(e) Vd;i=1.
® 2>2c2--22q=c1 = = > L

Proof. (1) This comes from Lemma 4.4.
(2a) Since @ = 2 in case I, we have n = 2 and

— Z, is a point of type P and N > 4, or
— Z, is a curve.
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In both cases, a general hyperplane section on X through P has multiplicity one
along F», which means that Oy(—2E) = Ox(—2F,) & mp. This is a contradiction.
(2b) Propositions 4.8.1, 4.8.3a, and 4.8.4 imply this.

(2¢) If neither case P, nor case C; occurs, then from Proposition 4.8 we have

1> 1 = < 1_[ di)cn > ( 1_[ di)“Kx”l(Fn)-

m < i<n m < i<n

This is a contradiction.

(2d-f) We obtain them by considering the following inequalities as in the proof

of (2¢)
2>2c = < 1_[ d,-)c,, > < 1_[ di)ocKX"_l(Fn).
m < i<n m < i<n
m < n comes from ok, (F,) =1 and 2c. O

Remark 4.10. Because Corollaries 4.9.2c and 2e, F; =2 Qpand N = 2]+ 1 if n > 2.
We define /; as the unique line on F; =2 Q, C p? containing Z;.

The problem is reduced to investigating cases I11-a, 11-b, and 111, which will be done
in the following sections. As the final part of this section, we give some information
for these remaining cases.

COROLLARY 4.11. (1) Z;1 € Fix,, N Fiyy.
RQa=n+m-—1
(3) (a) In cases 11-a and 11-b, Z; C F|} =2 Qy in P? and it is a point.
(b) In case 111, Z, C F; = Qy in P3 and it is a line.

Proof. (1) This is trivial since mp # Ox(—2E) = Ox(-2F,).

(2) This comes from 1 and Corollary 4.9.2c.

(3) F1 =2 Qy comes from a > 2 and Corollary 4.9.2b. We know the shape of
Z, C F; = Qq € P? from the equation below.

5 — D(2) = dimg Ox(—2E)/m>
= dim¢ Im[(v € mp|Z; C div(v)y,) — mp/m3]
= dime{v € T(P?, Ops(1)Jv = 0 or Z; < div(v)},

where the second equality comes from np # Ox(—2E). ]

5. Exceptional Case

In this section, we treat the exceptional case, which corresponds to case II-a, and our
aim is the following.
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PROPOSITION 5.1. Assume that f is of type 11-a. Then [ is a weighted blow-up of
exceptional type.

Throughout this section we assume that f'is of type II-a and struggle with Propo-
sition 5.1. We note that 1 < m < n by the assumption and Corollaries 4.9.2d and
4.11.3a, and that N > 3 by Remark 4.10.

First we restate the conclusion.

LEMMA 5.2. The following imply Proposition 5.1.

() (n,m,1)=(3,2,1).
(2) Z, is a curve which intersects the strict transform of ly on X,.

Proof. Though analytic functions seem to emerge in this proof, we stay in the
algebraic category by adding higher terms to them if necessary, as we have said in the
first paragraph in Section 2. First we prove a claim on an analytic description.

CLAIM 5.3. There exists an identification
PeX~oec(xy+22+wV=0cC’

satisfying the following conditions.

(1) Iy = F N div(y)y, Ndiv(z)y,.
(2) Z] = l() N diV(W)Xl.
3) Z,=FKnN diV(Z)XZ-

Proof. 1t is trivial that we can choose an identification satisfying 1. Then by 1,
Zy = lyndiv(w + tx) y, for some ¢ € C. Because xy + 2% + w" = xy’ + 22 + (w')" for
w =w+tx and y = y+ (w¥ — (w+ 1x)")/x, by replacing y, w with ', we may
assume (2) moreover. Then Z, = F, Ndiv(z + txz)X2 for some t € C by 5.2.2 and
Corollaries 4.9.2¢ and 4.11.1. Because xy+z24+wV =xy 4 (Z)>+w" for
7 =z 4 1x? and y) = y — 2txz — 2X3, by replacing y, z with ',z we may assume (3)
moreover. O

Second we prove that F3 equals, as valuations, an exceptional divisor obtained by
a weighted blow-up of X.

CLAIM 5.4. Under the identification in Claim 5.3, F5 equals, as valuations, an
exceptional divisor obtained by the weighted blow-up of X with its weights
wt(x,y,z,w) = (1,5,3,2).

Proof. First we remark that x, z/x,w/x € Oy, z generate local coordinates of X
at Zj, that y/x = —((z/x)* + x"2(w/x)"), and that F; equals, as valuations, the
exceptional divisor obtained by the weighted blow-up of X; with its weights
wt(x,z/x,w/x) = (1,2,1). Thus we obtain

https://doi.org/10.1023/A:1016334006624 Published online by Cambridge University Press


https://doi.org/10.1023/A:1016334006624

106 MASAYUKI KAWAKITA

(maiv(X)(F3), mdiy(V)(F3), maiv(2)(F3), maiv(w)(F3)) = (1, 5, 3, 2).

Since any v € Oy p has an expansion of a formal series v = v(x, z, w) + v2(¥, z, W),
it is sufficient to prove that for any i > 0,

v= Z Cpqrsxpyqzrws € OX(_(l + l)F3) (Cpqrs € (]:)
@.qr.9)€l;

implies v = 0, where
L ={(p,q,r 9 € Z4>0|p+5q+3r+2s: i, por g=0}

However, by replacing v with x/v for a sufficiently large j, we have only to show that
for any i > 0,

v=" Y X"z € Ox(—(i+ 1)F3) (¢pyr € O)
(p.g.r)eJi

implies v = 0, where J; = {(p, ¢, 1) € Z‘Lolp +3¢g+2r=1i}.

Take any v=3}, s CpgrX’z/w" contained in Ox(—(i+ 1)F3). Then v=
> anes XTI (z/x)!(w/x)". Because F3 equals, as valuations, the exceptional
divisor obtained by the weighted blow-up of X| with its weights wt(x, z/x, w/x) =
(1,2, 1), it is enough to show that the weight of any monomial x?T9"(z/x)?(w/x)"
((p, q,r) € J;) with respect to its weights wt(x, z/x, w/x) = (1, 2, 1) equals i. But this
is trivial by a direct calculation (p+q+r)+2¢+r=p+3¢+2r=1i. O

Only the proof of N = 3 remains. Because of Lemma 4.4 and properties of toric
geometry, we have only to show the following claim.

CLAIM 5.5. Consider an analytic germ of a c¢A, point o € (xy + 22 +w" = 0) c C*
(N = 4) and blow-up this with its weights wt(x,y,z,w)=(1,5,3,2). Then the excep-
tional locus of this weighted blow-up is irreducible, and the weighted blown-up analytic
space is normal and has a nonterminal singularity.

Proof. Direct calculation shows that its exceptional locus is isomorphic to
(xy +2z2=0) Cc P(1,5,3,2) with weighted homogeneous coordinates x,y,z,w,
which is irreducible, and that all singularities on the obtained analytic space are one
terminal quotient singularity of type %(—1,3,2) and one nonterminal singularity
isomorphic to 0 € (xy +z2 + w¥ "6 =0) c C*/Z,(1,1,1,-1). ]

Now our problem is proving Lemma 5.2.1-2, which will be shown in Lemmas 5.8.1
and 5.9. We show all the possible cases.

LEMMA 5.6. a = 4, and the tower X, — --- — Xy is exactly one of the following.
() (m,m,1)=(@3,2,1), N>3,r=>5.
2) (mym,l)=(@4,2,2), N>5,r=>5.
3) mom,1)=(4,3,3), N=>7,r=1.
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Proof. Though a = 2 or 4 in case II-a, a = 2 is impossible because n > 3. Hence
a = 4. By Corollary 4.11.2, it is trivial that the values of n, m, [/ in (1)-(3) cover all the
possibilities for a =4 and 1 <m < n.
Now we calculate the value of r in each case using Proposition 3.1.3. Because
a=4 and J = {(r,2)} (r = 5), Proposition 3.1.3 implies that
D(3) =3+ max{0, 6 — r},
D(4) = 4 + max{0, 8 — r}.

Thus we have only to the next claim.

CLAIM 5.7. (1) In case 5.6.1, D(3) = 4.
(2) In case 5.6.2, D(3) = 4.
(3) In case 5.6.3, D(4) = 5.

Proof. We will express Ox(—iE)’s in each case under a suitable identification
PeX~oe (xy+22+wh=0)cC"
(1) As in Claim 5.3, we may assume that

lo = FiNdiv(y)y, Ndiv(z)y, and Z; =/l Ndiv(w)y,.
Then
Ox(~2E) = (7, 2, w) + m},
Ox(=3E) = (v, y) + (z, w)mp + mjp,
where v = t.z + t,w + t,2x*> for some t., ¢,,t,» € C such that ¢. or t, is nonzero.
This implies (1).
(2) We may assume that lp = F, N div(y)y, Ndiv(z)y,. Then
Ox(=2E) = (x,p,2) + m3,
Ox(=3E) = (v, 2) + ()mp + 11}
This implies (2).
(3) We may assume that lyp = F3 N div(y)y, N div(z)y,. Then
OX(_2E) = (X, ) Z) + TII%;,
Ox(=3E)=(x,y,2)+ m?p,
Ox(—4E) = (y, 2) + (x)mp + m5.
This implies (3). O

We exclude cases 5.6.2-3, which shows 5.2.1. Moreover, we determine the values of
¢;’s in case 5.6.1.

LEMMA 5.8. (1) Neither case 5.6.2 nor case 5.6.3 occurs.
(2) In case 5.6.1, c; =4/5, co =8/5, c3 = 8/5.
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Proof. We note that mg(F;) € %Z for any i. Using Remark 4.7.2, for any i we have

w (F) = Y ¢ = oy (F) = gk yan(Fy) = ok (Fy) — dmi(F)).
I1<j<i
Hence )°, _,,¢; = 4mg(F;) € }Z, and thus V¢; € $7.
But on the other hand, ¢;’s satisfy the relations in Remark 4.7.2 and Corollary
4.9.2f. Using them we know that there is no possibility for such ¢;’s in cases 5.6.2-
3, and that 5.8.2 is the only possibility in case 5.6.1. OJ

Now it is sufficient to deal with only case 5.6.1. Lemma. 5.2.2 comes from the fol-
lowing lemma, and therefore we finish the proof of Proposition 5.1. Let [, be the
strict transform of [y on X>.

LEMMA 5.9. (1) Let Mg, be the linear system on Fy = Qq obtained by the total pull-
back of My, with the inclusion map Fi— X . Then My, is a zero-dimensional linear sys-
tem consisting of some multiple of .

(2) Let Mg, be the linear system on F, = P? obtained by the total pull-back of M X
with the inclusion map Fr— X>. Then Mg, is a zero-dimensional linear system consist-
ing of some multiple of Z,.

Proof. (1) Let ¢ be the multiplicity of My, along /y, and let / be a general line on

Fi =2 QpC P*. Then,

6/2 = (CZO . Z)Fl < (:UMFI ' Z)Fl = _CI(FI ’ I)X' - 4/5
On the other hand,
—c/2 = (Clé) : lE))Fle < (.uMzYz ' 16))(2

= —a)(Fy - Iy, — c1(F1 - D)y,

=—cy+c =—4/5.
By these two inequalities, we obtain ¢ =38/5 and (cly 1)y, = (UMp, - [)p,. This
shows (1).

(2) Because Corollary 4.9.2¢ tells that Z, is a line on F, = P2, we know that 23
induces an isomorphism foy, & F, & P2, Let Mp,,, be the linear system on
Foy, = P? obtained by the total pull-back of M v, with the inclusion map
Fry,— X;. It is enough to prove that MFM3 = 0.

Let / be a general line on F, = P2, and let / be the strict transform of / on X5. Then

(UM, ,, 'l,)F% =—c3(F3- )y, —cx(F- Dy, = —c3+ 2 =0,

which shows that Mpm = (. ]

6. General Case

In this section we treat the remaining general case, which corresponds to Cases II-b
and III, and our aim is the following, which terminates the proof of Theorem 2.5.
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PROPOSITION 6.1. Assume that f'is of type II-b or III. Then f is a weighted blow-up
of general type.

Throughout this section, except for Definition 6.5 and Proposition 6.6, we assume
that f'is of type II-b or IIT and struggle with Proposition 6.1. We set (r;, ) = (1, r) in
case III in this section because we want to treat both cases II-b and III simulta-
neously.

First we restate the conclusion.

LEMMA 6.2. The following imply Proposition 6.1.

() I=m.

(2) N=2a.

(3) There exists an identification P € X = o0 € (xy+ 2z +wV =0) c C* satisfying
that z € Ox(—ak).

Proof. We use the same idea as that in the proof of Lemma 5.2. First we note that
a=n by (1) and Corollary 4.11.2. By (3) we have an identification P € X =0 €
(xy+z22+wV=0)C C* satisfying that z € Oyx(—nE). Moreover, by (1) we may
assume that

Zn = FuNdiv(y)y, Ndiv(z)y, C Fy 2 Qo C P°.
We have

(Miv) (Fn), Maivi) (F), Mdivon(Fp)) = (m, n, 1).

CLAIM 6.3. Under the above identification, F, equals, as valuations, an exceptional
divisor obtained by the weighted blow-up of X with its weights wt(x,y,z,w)
(m,2n —m,n, 1).

Proof. First we remark that z/w” we Oy, z generate local coordinates
of X,, at the generic point of Z,, that x/w"” € Oy  , that y/w" = —(x/ wn) !
((z/w™)* 4+ wN=2m) and that F, equals, as valuations, the exceptional divisor dom-
inating Z,, obtained by the weighted blow-up of X,, along Z,, with its weights
wt(z"/w,w) = (n — m, 1). Thus, we obtain

(Mdiveo (), Maivi) (), Mdivez) (En), Mdivony(F)) = (m, 2n —m, n, 1),

considering 6.2.2 also. Since any v € Oy p has an expansion of a formal series
v=vi(x, z, w) + v2(y, z, w), it is sufficient to prove that for any i > 0,

v= Z Cpqrsxpyqzr‘/vs € OX(_(l + 1)Fn) (Cpqrs € C)
@.qr.9)€l;

implies v = 0, where

I,-:{(p,q,r,s)eZ4>0|mp+(2n—m)q+nr+s=i, p or g =0}
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However, by replacing v with x/v for a sufficiently large j, we have only to show that
for any i = 0,

v=" Y X"z € Ox(—(i+ DF,) (¢pyr € 0)
(p.q.r)ed;
implies v = 0, where J; = {(p, ¢, 1) € 232 olmp +ng+r=1i}.
Take any v =}, . ,)es, CpgrX 29" contained in Ox(—(i + 1)F,). Then

v = Z Cpqr(x/wm)p(z/w’”)‘]w’”P‘qu-&-r.

(p.g.r)eJ;

We remark that x/w" € O)X(,",Zm . Because F), equals, as valuations, the exceptional
divisor dominating Z,, which is obtained by the weighted blow-up of X, along
Z,, with its weights wt(z/w", w) = (n — m, 1), it is enough to show that the weight
of any monomial (z/w™)Iw™Ptmatr ((p,q,r) € J;) with respect to its weights
wt(z/w", w) = (n—m, 1) equals i. But this is trivial by a direct calculation
m—myg+mp+mg+r)y=mp+ng+r=i O

There remains only proving that m, n are coprime. Because of Lemma 4.4 and the
properties of toric geometry, we have only to show the following claim:

CLAIM 6.4. Consider an analytic germ of a cA, point o € (xy + 22 +wV = 0) c C*
(N = 2n) and blow-up this with its weights wt(x,y,z,w) = (m,2n —m,n, 1), where
m, n are positive integers with m < n and are not coprime. Then the exceptional locus of
this weighted blow-up is irreducible, and the weighted blown-up analytic space is normal
and has a nonterminal singularity.

Proof. Direct calculation shows that its exceptional locus is isomorphic to
(xy+22=0) or (xy+z> +w? =0) C P(m,2n — m,n, 1) with weighted homogene-
ous coordinates x, y, z, w, which is irreducible, and that the obtained analytic space
is singular along the line (xy + z> = w = 0) C P(m,2n — m,n, 1). Normality is easy.

]

Our problem is proving 6.2.1-3. For this we introduce one definition, which also

makes sense in more general situation as in Section 3.

DEFINITION 6.5. An algebraic surface P € S C X is said to be special of type s,
where s is a positive integer, if it satisfies the following conditions.

(1) S is normal and has a Du Val singularity of type A, at P.
2) f*S=Sy+uaE.
A special surface has beautiful properties.
PROPOSITION 6.6. Let P € S C X be a special surface of type s, and let fs be the

induced morphism from Sy to S. Then Sy is normal and Ks, = fKs. Especially, the
minimal resolution of S factors through Sy.
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Proof. 1t is sufficient to show that Sy is normal and that Kg, = K, because
these imply the last part of the statement. We will prove them simultaneously.

Let v: :9; — Sy be the normalization of Sy. First we calculate the dualizing sheaf
ws, on Sy. Let Y? C Y be the Gorenstein locus of Y. We remark that Y\ Y’ is a finite
set. By the adjunction formula, we obtain that

Wsylyons, = 0v(Sy) ®0y Osylyens,
=f§(wx(S) oy Os)l Y°nSy =f§w5| Y°nSy-

On the other hand, we know that wg, is (S,), that Sy\(¥Y° N Sy) € Sy is of codimen-
sion greater than one, and that f5wg is invertible. Thus we obtain wg, = f{ws, and
our problem is reduced to only proving that v is isomorphism.
Second we calculate the dualizing sheaf @ on Sy. Grothendieck duality tells that
Sy
wg; = Homosy(v*OS:, ws,)

= Homoy, (v*(’); ,f5ws)
Y

= HOmOSY(V*OE“ ,05,)® OSN Vi ws,
Y Y

where the remark that wg is invertible induces the third equality.
Because S is canonical, the above equation shows that the conductor ideal sheaf
Homosy(v*OE, Os,) € OS~ has to equal OS~. Hence v is isomorphism. O
Y Y Y

We come back to cases II-b and III treated in this section. In our situation, the
type of any special surface must be higher.

LEMMA 6.7. Let P € S C X be a special surface of type s. Then s = ry +ry — 1.
Proof. First we give easy statements about a Du Val singularity of type 4;.

CLAIM 6.8. Let P € S be an algebraic germ (resp. an analytic germ) of a Du Val
singularity of type As (s = 1), let fs: (Sy D E) — (S > P) be a nonisomorphic partial
resolution factored through by the minimal resolution of S, and let C be a general
hyperplane section on S through P.

(1) C has its multiplicity one along every prime component of E, that is,
feC=Cs, +E.

(2) The set Cs, N E consists of two points, say Q1, Q2. These Q1, Q2 are Du Val sin-
gularities of types Ay, , As, with s1+ 52 < 5 (51,52 = 0). Here we define a Du Val
singularity of type Ay as a smooth point.

(3) Fori=1,2, the local intersection number (Cs, - E)g, o. equals 1/(s; + 1).

Proof. Letf: (T D F) — (S > P) be the minimal resolution of S, and let g: T — Sy
be the induced morphism. F= 3", _,_ F;is a chain of (—2)-curves F;’s. We order
the indices /’s so that they are compatible with the order of F;’s in this chain. It is
fundamental to see that f*C = Cy + F and that C7 intersects F exactly at a point,
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say Py, on Fi\F, and at a point, say P, on F,\F,_; transversally, where we omit \ F,
and \F,_; if s = 1. Let sy (resp. s2) be the smallest nonnegative integer such that Fj
(resp. F;_y,) is not contracted by g. Then Q; = g(P;) (i = 1,2) is a Du Val singularity
of type s;, and Cs, N E consists of Q1,0,. Because g*g(Fy+1) = (s1 + 1)71F1+
(others) (resp. g*g(F;_,,) = (s2+1)"'F, + (others)), we have (Cs, - E)g, 0, =1/
(s1 + 1) (resp. (Cs, - E)g, 0, = 1/(s2+ 1). O

We begin to prove Lemma 6.7. We keep the notation f5: Sy — S in Proposition
6.6. Let H be a general hyperplane section on X through P. Then
Pe C=H|gCS is also a general hyperplane section on S through P. Because
mp # Ox(—2E), we have f*H = Hy + E and f{C = Hylg, + Elg,. The support of
E|s, is exactly the exceptional locus of fs, and fs is factored through by the minimal
resolution of S by Proposition 6.6. Thus by Claim 6.8.1, we obtain that E|g, is
reduced and that Hyl|g, = Cs,, the strict transform of C on Sy.

We calculate the intersection number of Cs, and Elg, around fg'(P).

(Cs, - Els,)s, = (Hy - E-Sy)y
=(/"H—E)-E-(f*S—akE))y
=aE® = (1/r) +(1/r2),
where the last equality comes from Proposition 3.1.2.
By Claim 6.8.2, the set Cs, N Elg, consists of two points, say Q1, O, and thus

(Csy - Els,))sy.0, T (Csy - Els,)s,.0, = (1/11) + (1/12).
We may assume that

(Csy - Els,)sy.0, = (Csy - Els))sy.0,-
Considering the set 7 and Claim 6.8.3, we know that

(Csy - Els,)sy.0, = 1/r1 and  (Cs, - Elg))s, 0, = 1/12,

and that the local Gorenstein indices of Q, O, are ry, r,. Therefore by Claims 6.8.2-
3, we obtain that Q;,Q, are Du Val singularities of types A4, _i, 4,,—1 Wwith
(r=10)4+@0y—1)<s, thatis, ri +r, <s+ 1. O

Remark 6.9. The above proof tells that Y has exactly two non-Gorenstein singu-
larities in case II-b.

We obtain an upper-bound of the value of a.

LEMMA 6.10. r; +r; = 2a.

Proof. a(riryE*) = ri +ry by Theorem 3.2. Thus we have only to show that
a # r1 + ry because of Proposition 3.1.1. mg(Fy) € Z (resp. (1/r1)Z, (1/r2)Z) when
the center of F; on Y is not a non-Gorenstein point (resp. is the non-Gorenstein
point of index ry, is the non-Gorenstein point of index r;). Like the proof of Lemma
5.8, we obtain ¢| € aZ (resp. a/r1Z, a/r,Z). By this and Proposition 4.8.1 we have a
(resp. a/ry, a/ry) < 1, which implies that a # r| + r,. O
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Combining Lemmas 6.7 and 6.10, we obtain a corollary.

COROLLARY 6.11. Let P € S C X be a special surface of type s. Then s = 2a — 1.

Now we will prove 6.2.1-3 by constructing special surfaces.

LEMMA 6.12. There exists an identification P € X =~ 0 € (xy + 2> + w¥ = 0) c C*
a—1

satisfying that miy, (E) = 1 and that z + p(w) € Ox(—akE) for some p(w) € P
Cw' C C[w].

Proof. We express Ox(—iE)’s explicitly using the above claim. O

CLAIM 6.13. (1) Take an identification Pe X ~o € (xy+ 22 +wV =0) c C*
satisfing that mgiyw)(E) = 1. Then for 1 <i < min{ry,a},
Ox(—iE) = (x1, yi. zi) + (W)
Jor some xi=x+piw), yi=y+pw), zi=z+piw) (pi(w), pi(w), pi(w)e
@i Cw C Cw)).
(2) Assume r; < a.
(a) I}’l ]: x)‘]) yr1 or xr| - yr| - 22}’] g OX(_(’AI + I)E) + (ny"l)'
(b) In 1, assume that x, & Ox(—(r1 + 1)E)+ (W"). Under this situation, for
r<i<a,

Ox(—iE) = (iz)+ Y. (wh)
(.k)eV; > iJs

for some y; =y + p}(xr,, W), 2 = 2+ pi, w) (P} (s W), (s W) € BT,
Dy ier, Cxlwk C Clx,,, w]), where

Ji={(s,0) €Z% jlrs+t=i}.

Proof. (1) We will construct x;,y;, z; inductively starting with x; =x, y; =y,
z1 = z. Assume that we have constructed x;, y;, z; (1 < i < min{r;, a}). There exists a
surjective map A;,

2i (Cxiy i z0) + W) J(p(xi, yi, zi) + (W)
—> Ox(—iE)/Ox(—(i+ 1)E).

By i < min{ry, a} and Theorem 3.2, d(—i) = D(i + 1) — D(i) = 1. Since mgiyw)(E) = 1,
we know that w' generates Oy(—iE)/Ox(—(i+ 1)E), and that x;+ t.w/,
yi+ W', zi+ t.w' € Ker4; for some fty,1,, 1. € C. Hence, it is enough to put
Xipl = X+ LW, yig1 = Yi+ LW,z =z + LW

(2a) As in the above proof, using x,,, ¥, z,, in 1, we have a surjective map 4,,,

;Lrl : ((xrl s Vs Z”l) + (er ))/(mP(xrl s Vs Zrl) + (Wrﬁ_l))
—> Ox(=1E)/Ox(—(r1 + DE).

https://doi.org/10.1023/A:1016334006624 Published online by Cambridge University Press


https://doi.org/10.1023/A:1016334006624

114 MASAYUKI KAWAKITA
Dividing by (w"), we have another surjective map 4,,,

Zr‘ : (X,‘] » Vs Zny )/111]2()(” » Vrps Zrl)
—>> Ox(—r E)/(Ox(—(r; + DE) + (w™)).

By Theorem 3.2 and mg,(W)(E) =1, dimc Ox(—r E)/Ox(—(r1 + DE+ (W")) =
d(—r;) — 1 = 1. Hence dim¢ Ker 4;, = 3 — 1 = 2, which shows (2a).

(2b) We will prove (2b) as in the proof of (1), constructing y;, z; inductively start-
ing with y,, z,, in 1. Assume that we have constructed y;, z; (r; < i < a). There exists
a surjective map 4,

/1[: ((yi’ Zi) + Z (xj’llwk))/(nlp(yi, Zi) =+ Z (XJ’;IW/C )

(.k)eUs > iJs (k) eUs > i1 Js
—»> Ox(—iE)/Ox(—(i + 1)E).

We know that x,, w" generate Ox(—r1E)/Ox(—(r1 + 1)E) because of the proof of
(2a). Thus any nonzero element in P 4/, (Cxilwk c Clx,,, w], which always decom-
poses into a product of w'~ " and ;-] linear combinations of x,,, w", has exactly its
multiplicity i along E. On the other hand, by Theorem 3.2 and Lemma 6.10, we have
d(—i) = N;11 — N;, which is the number of elements in J;. Thus {xf.lwk}(j_k)e J, generate
Ox(—iE)/Ox(—(i+ 1)E), and that y; + ], z; + t; € Ker ; for some ¢, ; € @, e,
Cx w* C C[x,,, w]. Hence, it is enough to put yi,y =y, + ], 241 = z; + . O

We will construct an identification in Lemma 6.12 using Claim 6.13. It is easy to
see that we can take an identification in 6.13.1. Lemma 6.12 is trivial if a < r; by
Claim 6.13.1. If r; <a, by Claim 6.13.2a and an equation xy+z>+wV =
(x —y =22+ (v + 2)> + w", we may assume that Xy, &€ Ox(—(r1 + 1)E) in the con-
struction of x;,, y,,, z, in 6.13.1. Then by Claim 6.13.2b, we obtain that

Za = 2+ p(x + p;, (W), w) € Ox(—ak).

We express z, as

a—1
zq =z + p(w) + q(x, w)x(p(w) € @ Cw' c C[w], g(x, w) € C[x, w]).

i=1

Thus, it is sufficient to replace y, z with
VY =y = 2q(x, w)z — q(x, w)2x, 7 = z + q(x, w)x

because xy + 22 + wV = xy' + (2/)* + wh. m

Corollary 6.11, Lemma 6.12, and the following lemma induce 6.2.1-3, which ter-
minates the proof of Proposition 6.1 and therefore also the proof of Theorem 2.5
completely.
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LEMMA 6.14. (1) Under the identification P € X =~ 0 € (xy +z2 + w¥ =0) c C* in
Lemma 6.12, assume N < 2a or p(w) # 0. Then there exists a special surface of type s
with s < 2a — 1.
(2) Under the identification Pe X =0 € (xy +z> +wV =0) C C* in Lemma 6.12,
assume N = 2a, p(w) = 0, and | < m. Then there exists a special surface of type 2a — 3.
Proof. (1) Take a surface P € S = div(z + p(w) + ew?) for a general ¢ € C. Then
PeS=oe (xy+ (p(w)+ew*)? +wVN = 0) c C°, which is a Du Val singularity of
type Ay, where

s = min{2a, a + ord p(w), ord (p(w)* + w")} — 1.

Here ord g(w) = sup{i € Z > o|w' divides g(w)} € Z ~ U {+oc0}. We remark that
s <2a—11f N < 2a or p(w) # 0. Because z + p(w) € Ox(—akFE) and mg;,(w)(E) = 1,
the multiplicity of S along FE equals a. Thus P € S C X is special of type s.

(2) We may assume that ly = F; N div(y)y, N div(z)y,. Since [ < m, Z; is a point on /
except the vertex point of F; =2 Qy. Thus Z; = Iy N div(tx + wl)X[ for some 1 € C. We
note that ix+w' € Ox(—(/+ 1)Fi1) € Ox(—(/+ 1)E) because Z; € div(rx +w')y .
Take a surface P e S = div(z + w*~!(tx + w') + cw?) for a general ¢ € C. Then
PeS=~oe(xy+ w1 x+w)+ew?)? +wh =0)c C’, which is a Du Val
singularity of type As,_3. Because z e Oy(—aE), tx+w' e Ox(—(/+ 1)E), and
Mmdivow)(E) = 1, the multiplicity of S along E equals a. Thus P € § C X is special of
type 2a — 3. [
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