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Abstract. Let f : X — Y be amorphism of noetherian schemes, generically smooth and equidi-
mensionad of dimensiond, ¢ : X’ — X aclosed embedding suchthat f o+ : X' — Y isgenericaly
smooth and equidimensiona of dimension d’, and X', X and Y are excellent schemes without
embedded components. We exhibit a concrete morphism

) * d d'
RSX//X . detNXf/X ROy b W)y = Wxi/y,

which transforms the integral of X/Y into the integral of X'/Y . Here N'x:,x denotes the normal

sheaf of X'/ X and wf,l(/y resp. w;ﬁ,/y denotes the sheef of regular differential forms of X /Y resp.

X'/Y . Using generalized fractions we provide a canonical description of residual complexes and
residue pairs of Cohen—Macaulay varieties, and obtain a very explicit description of fundamental
classes and their traces.

M athematics Subject Classification (1991): 14F10.

Key words: adjunction formula, regular differential forms, relative duality, fundamental class.

Relative duality theory for morphisms of noetherian schemes was studied and
described by A. Grothendieck and R. Hartshorne (cf. [RD]). It settles the problem
of duality theory for quasi-coherent sheaves from atheoretical point of view. This
approach heavily relies on the theory of derived categories and constructs for a
morphism f: X — Y of noetherian schemes aright adjoint f' to Rf,. In a given
situation it isoften hard to apply thistheory sincethe objectsand mapsinvolved are
rather complicated to determine. Better suited for explicit applicationsisKleiman's
fairly elementary approach to construct a right adjoint f* to the functor R?f, (cf.
[KI]). Kleiman has studied f'(Oy-) in various special situations.

In[HK 2] resp.[HS] thefirst author and E. Kunz resp. P. Sastry have been ableto
identify the sheaf f'(Oy) with the sheaf wi%(/y of regular differential formsin case
X/Y isgenerically smooth and equidimensional of relative dimension d. Further,
the trace morphism tr; was described in terms of residues and local and global
integrals. In this paper we will continue this project. If f: X—Y is genericaly
smooth and equidimensional of dimension d, . : X'—X is a closed embedding
suchthat f o . is generically smooth and equidimensional of dimensiond’ and X',
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X andY are excellent noetherian schemeswithout embedded components, wewill
relate the duality theory of f o tothat of f and . explicitly. To be more precise,
we will exhibit a concrete morphism

ReSX//X: det NX’/X ®OX’ L*wgf/y — (A)f)l(//y

using the second fundamental exact sequence for universal differential modules
(cf. [KD], (4.17)). For varieties over perfect fields, the existence of this morphism
was proved by Lipman [Li1], Section 13. It is an isomorphism if X /Y is Cohen—
Macaulay. Here Ny, x+ denotes the normal sheaf of X'/X. It will be shown that
Resy/ x transformstheintegral of X/Y intotheintegral of X'/Y". Wewill proceed
by first studying the local situation and by proving an adjunction formula for the
residue symbol and the local integral of [HK1]. In particular we will show that the
local integral satisfiesthe residue axiom (R3) of [RD], p. 197. From the local case
we will derive the global adjunction theorem viathe residue theorem.

The adjunction morphism and its explicit description in terms of regular dif-
ferential forms plays a prominent role in Arakelov theory. S. Lang has used it
(implicitly) in his version of the residue theorem ([La], IV (4.1)) which is an
essential ingredient in his proof of the Arakelov adjunction formula ([L&], 1V
(5.3)). However it is also of great interest in case of varieties over a field & of
characteristic 0. El Zein ([EZ1], [EZ;]) has applied Grothendieck duality theory
and the residual complex of avariety to the construction of the fundamental class
of acycle. Using generalized fractions we will provide a canonical description of
residual complexes and residue pairs of Cohen-Macaulay varieties. Combining
this with the concrete realization of the adjunction morphism in terms of gener-
alized fractions we obtain a very explicit description of fundamental classes and
their traces.

In fact, we deal with a more general situation considering differential algebras
onY admissiblefor X/Y and X'/Y.

1. Residuesand Cousin complexes

In this section we providethe basi c facts about residues of regular differential forms
and the construction of Cousin complexes via generalized fractions needed in the
later sections.

First, we recall some definitions (cf. [KD], app.B and EGA 1V, Sect. 13) and
givetwo lemmas about equidimensional morphisms. Then weformulate asituation
when regular differential forms are defined and give a short description of them
using traces.

(1.1) DEFINITION. Let f: X — Y beamorphism of schemesand z € X.

A quasi-normalization of f at z isan equidimensional Y-morphismg: U — A%
of dimension 0. Here, U is an open neighborhood of = in X and d € N.

A quasi-normalization of X/Y isanequidimensional Y-morphismg: X — A%
of dimension 0.
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A systemof parametersof X /Y at z isasequenceof elementsty,. .., ¢t;0f Ox ,
whoseresidueclassesty, . .., t4 iN Ox z/mf(,)Ox . areasystemof parameters of
thisring.

(1.2) LEMMA. Let f : X — Y be an equidimensional morphism of schemes of
dimensiond, and x € X a closed point. Then:

(a) dim (’)Xz/mf OXz =d.

(b) If ()¢, isa system of parameters of X/Y at z, then there is an open
neighborhood U of € X such that there are sectlons si € Ox(U) with
(si)z = ti (1<i<d) andthe Y -morphismg : U — A{. induced by the sections
(si)L, isaquasi-normalization of X/Y at x.

Proof. (a) isobvious, and (b) isareformulation of [KW], (5.18) in the language
of schemes. O

(1.3) LEMMA. Let f: X — Y be a morphism of schemes, equidimensional
of dimension d, and let g : X — @Q = A{ be a quasi-normalization of X/Y,
and z € X with dim(’)x,x/mf(z) X,z = dlmOQg /mf OQ,g(a;)' Further, let
z € X.

Then the following holdstrue:

(& If X/Y is Cohen-Macaulay at z, then X/@ is Cohen—-Macaulay at z. If this
is the case, then O, is afinite free Oy, 4(.)-module.

(b) If X/Y isalocally completeintersection at z, then X/@Q isalocally complete
intersection at z.

(0) If X/Y islocally a complete ntersection at z, then the algebra O/ Og ()
is locally a complete intersection at all 8 € Spec @X,z whose image under
the canonical mor phism Spec @X,z — X of schemesis z.

(d) If X/Y is generically a complete intersection, then X /@ is generically a
completeintersection and the algebra @X,z / @Q,g(z) isfinite, equidimensional
of dimension 0 and generically a complete intersection.

Proof. We may assumethat X and Y are affine. Then (a) resp. (b) are special
casesof [KD], (B.27), resp. [KD], (C.23). If X/Y islocally acompleteintersection
at x, then by (b) X/Q is locally a complete intersection at z. Set R := Og(Q),
S = OX( ), m resp.p € SpecS the prime ideals corresponding to z resp. z,
R:=Rpagpand S := S,. By Zariski’s main theorem (cf. [KD], (B.16)), thereisa
finite subalgebra?’/ R of S/R such that Spec S — SpecT is an open immersion.
The algebra7’/ R islocally acompleteintersectionat p N 7'. Let € SpecS with
PNS = p. Wehaveacanonical ring morphlst®RT — S, and by [KD], (C. 18)
R®RT/R|slocallyacompletelntersecnonatmﬂ(R®RT) By [M2], (8.15) S is
alocalization of R ® T so that S/ R is locally acompleteintersection at 5. This
shows (c). If X/Y is generically a complete intersection, then (b) applied to the

https://doi.org/10.1023/A:1000141319604 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000141319604

90 REINHOLD HUBL AND GERHARD SEIBERT

maxi maIApoi nts of X showsthat X /@ is generically a complete intersection. The
agebraOx . /Oq 4.y isfinite. By (c), it is generically a complete intersection. 0

(1.4) LEMMA. Let R bea universally japanesering, and S an R-algebra which
is essentially of finite type, where 2 and S have no embedded primary components
and S islocal. Then the completion S of S has no embedded primary components.

Proof. We may assumew.l.0.g. S = R. Then the assertion follows from [Mat],
9.B and [Mat], Thm. 70. O

(1.5 LEMMA. Let f: X — Y beamorphism of schemes. Then the set
{r € X; X/Y isalocally complete intersection at = }

isopenin X.

Proof. By [EGA 1V, 11.1.1], the set of al points z € X such that f isflat at
isopenin X. Wemay assume X and Y to be affineand X /Y to beflat. Now the
assertion follows from the criterion [KD, C.5] for locally completeintersections. O

(1.6) Stuation. LetY beaschemewhichisuniversally japanese, and X aY -scheme
with structure morphism f: X — Y, which is equidimensional of dimension d
and generically a complete intersection. The schemes X and Y shall not have
embedded primary components. Further, let 2 beadifferential algebraonY which
is admissible for X/Y, i.e, €2 is an exterior coherent differential algebra on Y
such that Q! is alocally free Oy-module of constant rank, say r, and M x (Q%)
is a locally free M x-module of rank r + d, where Q% denotes the universal
X-extension of Q! in the sense of [KD], Section 4.

(1.7) Remark. Consider Situation (1.6). Then by [KW], (3.8) the sheaf of regular
differential forms w?(/y for X/Y with respect to (2 is defined. We write wx/y

instead of w} - if no confusion islikely.

Let + € X beaclosed point and (¢;)L; asystem of parameters of X/Y at x.
By (1.2) thisinduces aquasi-normdizationg: U — @ := AY of X/Y at .

Set R = Oy()P OQgUandS_OXx

By (1.4), R, P and S have no embedded primary components, and by (1.3) the
algebra S /P isfinite, equidimensional of dimension O and generically a complete
intersection. R

We have P = R|[[T3,...,Ty4]], and by [KD], (12. 4) the universally finite
extension  of the d|fferent|al agebra Q) of R to P exists, and we have

Q=D Qp (Qf(l,))}?. In particular, Ol is a free P-module of rank r + d, and
if wg isabasisof ch(x) asan R-module, then wo dT3 . .. dT), isabasis of Q"¢ as
a P-module where wy is an element of (2 via the canonical map () — . By
[KD], (11.9) and [KD], (12.4) 25 = S ®5 s.
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Let K, L, K3 and Ly denote the full quotient rings of P, S, P and S. Then
K ® S = L1, L1 ® Qp = QLl and K1 Q@ Qx = QKl In partlcular Ql
is afree Lji-module of rank r + d. So, S/P together with the differential algebra
Q of P satisfies the conditions of [KW], (3.8) and [KW], (4.1). The module of
regular differential forms and the complementary module in the sense of [KW],
(Sections 3, 4) are defined for S / P with respect to Q).

The algebra L1/K; is a finite locally complete intersection. So by [KD],
(Sect. 16), we have atrace map

aLl/Kl: QLl — QKl
which induces an isomorphism of L;-modules

.t L1 ®L Mx (30), = Q7 Homy, (Ly, 0519)

(1.7.2)
wr— (s aLl/Kl(sw))

by [KD], (16.8). Via(1.7.1) the isomorphism Q;jld — Ky, wodTy...dT; — 1of
K;-modules induces an isomorphism

0 i Li®p Mx (), = Q) SsHomy, (L1, K1) (1.7.2)

By [KW], (Sect. 4), we have a commutative diagram of S-linear maps

S@swiit, ~ Hom(S, P)
can. can. (17.3)
L1 ®p Mx (QTX+d)x @ HomKl(Ll, Kl)

t1,e.5td

with bijective vertical maps.
The composition of the R-linear maps

r+d can. & r+d N
WXV - S ®s WXV ’ p(

f f(1)(0)wo
isindependent on the choice of wp. It will be denoted by
Rex/ve Ll, - ,td] e = D) (1.7.4)

and is called the residue map of X /Y with respect to Q2 at x for the system of
parameters (t1, ..., tq).
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Now we repeat the definition of Cousin complexes and the notion of relative
M -active sequences according to [Ke] asthey are relevant for the following.

(1.8) Remark.

(@ Let S bearing, D* C U,en S* a system of denominators of S, and M an
S-module. Fix p € N. For asequence f = (f1,...,f,) € D? := D" N SP
theset S(f) '=1{9 € S: (f1,---, fp,g9) € DPT} C S is multiplicatively
closed. Thefamily (Ms(f>/(f)M5(f>)f€Dp isadirected system of S-modules
where the morphisms are given by the transition determinants, and its colimit,
denoted by C%, (M), is called the p* Cousin module of M with respect to D*
(cf. [Keg], Sect. 2). Thereis acomplex, the augmented Cousin complex,

0 — M-C(M)-Leh(M)-Ls -

of S-moduleswhere e(m) = 2 and <[f1,r.n./.%fp]> = [fl,.f'f{;p,g

m € M and (f1,..., fp,g) € DPTL.

(b) Let S bearing, and M afinitely generated S-module. A sequence fy, ..., f, €
SP (p € N) is caled M-active if dimg, M, > j for al p € SuppgM with
(f1,...,fj) C pandforal 0<j<p. A sequence(fi,. .., fp) € SPisM-active
if and only if f; is M/(f1,..., fi_1)M-active for al 1<i<p. By A% (M)
we denote the set of all M-active sequences of length p. Then A (M) :=
Upen A% (M) isasystem of denominatorsof S in the senseof [Ke], Section 1.
Now, let S be local with maximal idea m and M # O. If we have d =
dimg M = dimg (M /pM)+dimg (M, ) forall p € Suppg M, thenasequence
(f1,..., fp) iInmisM-activeif and only if p<d andthereexist fy,11,..., f4 €
m such that M/(f1,..., fq)M hasfinite length. If M is a Cohen—-Macaulay
module over S, then asequenceinmis M-activeif and only if itis M-regular.

(c) Let (R, m) be alocal ring, S an R-algebra, and M a finitely generated S-
module. Then A5 r(M) = A%(M/mM) is asystem of denominators of S
in the sense of [Ke], Section 1 and consists of all sequencesthat are relatively
M -active with respect to S/ R (cf. [Ke], (2.10)).

} , where

(1.9) LEMMA.

(@) Let S bearing, N C S a multiplicatively closed subset, and M a finite
S-module. Then thereis a canonical isomorphism

]
) y f T/
Casony(M)N — Cug(ary)(Mn), PR f

of complexes of S-modules.
(b) Let (R, m) be a local ring, S an R-algebra such that SpecS — SpecR is
closed. Further, let M be a finite S-module which is a flat R-module and
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suchthat M /mM isa Cohen—Macaulay module over S. Then the augmented
Cousin complex
d d
0— M%CﬁS/R(M) (M)==Ch, any (M) == -
isexact.

Proof. (a) isclear astheimage of Ag(M) in Ag, (My) isacofinal subsystem
of denominators by the lemma about the avoidance of primeideals.

(b) Let f € A{%(M) (p € N) and p € Max S N SuppgM with (f)S C p.
Thenp N R = m and by (1.8) f isan M, /mM,-regular sequence. As M, is aflat
R-module, f is M,-regular by [Mat], (20.F), and the assumption follows by [Ke],
(2.8). i

(1.10) COROLLARY. Let X be a scheme, and F a coherent O x-module.

(a) By (1.8) for any open and affine U C X we have complexes
~ € ~ d ~ d
0— F(U) —>0910X(U>(F(U))(7:(U)) —>C}10X(U>(F(U))(7:(U)) —
of Or-modules which by (1.9) glue to a complex
0— F-C%X, A" (F), F)-5HCNX, A" (F), F)-% - (+)
of quasicoherent O x-modules.

(b) If F is a Cohen—Macaulay (resp.Gorenstein) sheaf, i.e., F, is a Cohen—
Macaulay (resp.Gorenstein) Ox -module for all z € X, then the above
complex (x) is a resolution (resp.a minimal injective resolution) of the O x -
module F.

Proof.
(8) isobvious. (b) The Cousin complex defines aresolution (resp. injective res-
olution) of F by [K€], (2.9) at all z € X. The minimality of the Cousin complex

follows by the definition of essential extensions. O

(1.11) Remark. The complex (x) in (1.10) is the Cousin complex of F with respect
to the sheaf A (F) of systems of denominators of locally F-active sequences, i.e.,

A(FU)) = {(f1,---, fp) € Ox(U); (fres---» fpa) € AD,  (Fa)
foradlz e U}
(p € N, U C X open) in the sense of [Ke], Section 4.
We are going to apply this mainly to the sheaf of regular differential forms.

Given situation (1.6) and a closed point z € X, set y = f(x). Let t,s €
A%, /0 (WY ) with (s) C (t) C my, and A atransition determinant from
X,z Y,y /Y,l’

stot.,i.e, A = det ()\Z]) with >\z'j € OX,z such that s; = ?:l Ajz'fjv (1<igd).

As X/Y isequidimensional of dimension d and as we have Suppng/‘{/ =X, we
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conclude from (1.8) that ¢ and s are relative systems of parametersfor X/Y at x,
hence the residue maps Resyy, [ ] and Resy,y, [ s | are defined, and a minor

modification of [HK], (2.4) (seeaso [Hily], (2.11)) showsthat for w € w4

X/Yx
w Aw
Resy/y .. ; = Resy/y,; e

From this we conclude

(1.12) THEOREM. In Stuation (1.6) for a closed point z € X, the residue maps
induce a morphism of Oy, r(,)-modules

ReSX Y. :Cd +d wr+d —>QT
/Y AOX,m/OY,f(w)(w;(/Y,z>( X/Y,z) f(x)

called theresidueof X/Y at .

(1.13) Remark. We consider Situation (1.6) with Y = Spec R where R isalocal
and completering, and X isaffine. Furthermore, let Z C X beaclosed subscheme
which isfinite over Y and whoseideal Z, can locally be generated by d elements
up to radical. Then therelative ng/‘;-active sequencescontainedin Zz inducein a
canonical way a system of denominators, and the above cal culations show that the
local residue symbol passesto the limit to define

. xyd r+d r
/X/Y’Z. HY(X i) = 0
called thelocal integral of X /Y with respect to Z (cf. aso [HK1], Sect. 4).

If in Situation (1.6) Y = Speck for some field k, then by an easy calculation

Weget
+d +d\ _ +d
f*Cq(X,.A(w;(/Y),w;{/Y) - @ Cioxz( ;(-i/-oll/z)(w;(/Y,z)v
dimé;x =q , ,

for all ¢ € N. Thuswe conclude

(1.14) THEOREM. Given Stuation (1.6) with Y = Speck for some field &, the
local residue symbols induce a k-morphism

/. RN AWK W) - 9

called the (global) integral of X/Y".
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2. Theadjunction morphism for the sheaf of regular differential forms

In this section we will define the adjunction morphism for the sheaf of regular
differential forms. For this we fix the following situation:

(2.1) Stuation. Let f: X — Y be amorphism of noetherian schemes which is
equidimensional of dimension d and generically a complete intersection. Further,
let . : X' — X be aclosed immersion such that f' == fo. : X' — Y is
equidimensional of dimension d’ and generically a complete intersection. Assume
that Y isuniversally japanese, the schemes X, X’ and Y have no embedded primary
components, and the conormal sheaf Cxv/x =1 /T2 of X'/ X islocally generated
by n := d — d’ elementswhere 7 is the ideal sheaf defining the closed subscheme
X' of X. Let Q bean differential algebraon Y such that €2 is admissiblefor X/Y
and X'/Y . Letr betherank of Q1. Further, supposethat X /Y isalocally complete
intersection at = and Q}m isafree Ox ,-module for al maximal points z of X.

(2.2) LEMMA. In Stuation (2.1) the following holds true:

(i) The conormal sheaf Cx//x and thus the normal sheaf Ny x =
Homo ., (Cxr/x,Ox) of X'/ X arelocally free O x.-modules of rank n.
(i) The canonical sequence of O x:-modules (cf. [KD], (4.17))

0— Cyryx — t"Qx = Q% — 0
is exact and induces an exact sequence of locally free M x,-modules
0— Mx/(Cxryx) = Mxr (1*Q%) = My (%) = 0 (2.2.1)

of ranksn, r + dresp.r + d'.
(iii) The exact sequence (2.2.1) induces a canonical isomorphism

axryx My (det Ny ) @ Mo (1 Q) 5 Mo (37

of M x/-modules.
(iv) Thereisa canonical isomorphism

Mx(1"Qx) = My (Vwxyy)

of M x,-modules.

Proof. The statements are local in X and Y. Therefore, we may assume that
X and Y are &ffine such that Cy/x is generated as an O x/-module by n global
sections.

Set R := Oy(Y), S = Ox(X), S = Ox/(X'), I :=I(X) and Q =
Q(Y). Then S’ = S/I and I/1? is generated as an S’-module by n elements. By
assumption, for al minimal primedivisor p € Spec.S of I wehave S/R isalocally
completeintersection at p and (%), isafree S,-module of rank r + d. By [KW],
(3.9) and (3.6) we get (2s), = (ws/r),- By assumption, S" has no embedded
primary components. Therefore the full quotient ring L’ := Q(S’) of S’ has the

https://doi.org/10.1023/A:1000141319604 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000141319604

96 REINHOLD HUBL AND GERHARD SEIBERT

form L' = @, S,/1S,; where q € Spec S runs over all minimal prime divisors of
I,andhence L' ®5 Qs = L' @5 wg g and L' ® 5 QF isafree L'-module of rank
r + d. In particular, there is a canonical isomorphism

My ("Qx) = (L' @5 Qs)™ = (L' @5 wsyp)™ = Mxi (Vwx)y)

of Mx.-modules, and M x(:*Q%) isalocaly free M x:-module of rank r + d.
By assumption, L' ® ¢ Q%, isafree L'-module of rank  + d’ and by [KD], (4.17)
we have a canonical exact sequence of S’-modules

I/12-%8" @5 012501, - 0. (2.2.2)

Let M denotethekernel of the canonical map 5. Thenthereisacanonical surjection
I/I? - M. Thus, M isgenerated as an S’-modules by n elements, and thereis an
exact sequence of L'-modules

0—L'®syM— L'esQt — L' @ Q% — 0,

where L' ® g Q% resp. L' ®¢ Q%, are free L'-modules of rank r + d resp.r + d'.
Consequently, L' ® ¢ M isafree L’-module of rank n = r +d — (r + d'), and
as M is generated by n elements, M is a free S’-module of rank n. Since I/I?
is generated by n elements, the canonical surjection I/1% — M is bijective, and
hence « isinjective and (2.2.2) induces an exact sequence

0 L' @g I/P2H L 05 OL25 T @ QL — 0

of free L'-modules of ranks n, » +d and r + d'. Let f1,..., f, be abasis of
I/I? asan S'-module, and f;, ..., f* € Homg (I/I?,S") its dual basis. Further,
choosews, . . .,wr ¢ € L' ®5 QOF suchthat B (w1), .. ., Br (wrya) isabasisof
L' ®s Q% asan L'-module. Thenwi A -+ A wppgr A (L@ df1) A=+ A (L® dfy)
isan L'-basisof L' ®g Qg+d, and there is a unique isomorphism of L’-modules
(L' @5 det(Homg: (I/1%,8"))) ®gr (L' @5 Q)51 @9 QY (2.2.3)

whichmaps (1® (f{f A Af5)) @ (wiA- - Awppa) AN(AQAf1) A+ A(1®dfy,) tO
Br(w1) A+ A B (wrra). Thismap isindependent of the choiceof f1,..., f, €
I/I?andwy,. .., w0 € L'®g QL. The L'-linear map (2.2.3) correspondsto an
isomorphism

axryx s Mo (det Nyr/x) @ Mo (00 Q) 5 M ()
of M x/-modules. O

Now, we formulate and prove our first main result.

(2.3) THEOREM (Adjunction). In Stuation (2.1) thereis a unique morphism

. +d +d'
ReSX//X : det NX’/X ®(9X, L*w;(/y — w;(,/y
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of O x,-modules such that the diagram

det NVyr/x ®o,, iy T Wity
can.
My (det Nxi/x) ®o,, Mx (L*wg(";‘)i,)
Yid® can. cn
M (det Nyr/x) @0y, Mo (e Q) 0 M (033

commutes. It is called the adjunction morphismfor the sheaf of regular differential
forms of X'/ X with respect to 2.

Proof. The uniqueness of Resy-, - isobvious. Let a be defined by the commu-
tative diagram

Mx:(det Nyr/x) ® M (L*w;j/;) <~ det Ny y ® Qg

lid s can. a (2.3.1)

QXxr/x

M (det Nyrx) ® Mo (55 ) Mo ()

For the existence of Resy x it suffices to show Im(a) C whh 7’1/ The statement
islocal in X and Y, and we may assume X and Y to be affine. Because of the
local-global principleit is enough to show thisfor the stalksin the closed points of
X'

Let - € X' be aclosed point. We have Ox+ , = Ox 4 /Z,. Since Cxr/x 4 IS
generated as an Oy ,-module by n elements, Nakayama's lemma implies that
the ideal Z,, is generated by n = d — d’ elements. We see that there is a system
of parameters (¢;)¢_; of X/Y a x such that ¢ty 1, ...,t, generate the ideal Z,,
and the residue classes t; = t; + Z, € Oxr 4, (1 < @ < d') are a system of
parameters of X'/Y at x. Possibly after shrinking X, we may assume by (1.2)
that the systems of parameters (t;)%_, resp. (£;)%_, of X/Y resp. X'/Y at = define
guasi-normalizations

g: X > Qi=A¢ resp.g: X' — Q' = AL
of X/Y resp. X'/Y.
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SetR = OY,f(z)- P = OQ,g(a:)- P = OQ’,g’(:IJ)- S = OX,;B, S = OX/,Q; and
I:=7T, Let Ky, K}, L and L} thefull quotient ringsof P, P', 5 and S'. Further,
let wo € ) bean R-basisof 7.

Then by (1.7), we have P = R[[T%,...,Ty)]and P' = R'[[Ty,...,Ty]] and
isomorphisms

= wz?---,td: S Rs w;7©,$L>Homﬁ(§, ]3),

o= S @ w&ff;,x%Homlg,(g’, P
and

=0 o Ly ®yp MXI(QTde')wéHomKi( 1 K1)
of S-, resp. S'- resp. L;-modules.

By (2.2), Cy1/x,, isfreewith basis ty 41, ..., q Where ; = t; + I? € 1/I?,
(d'" < i < d). Therefore we have an isomorphism

aid’+17"'7id: S, ®S’ det NX’/X,aZl)SIJ 1 ® t_C*l’—l—l /\ st /\ t_C*l — 1

of §’—moduleswheret_§,+1, ..., 1; denotesthe dual basis of thebasisty 11, . .., 14
of I/I% Let J := (Ty4a,...,Ty)P. Then P = P/J and §' = S/J§S, and by
(1.7) Ly = K1 ®5, S". Themaps T and ¢, induce an isomorphism

Y = ’Ytui(,).u,td: §I ®S’ (det NX’/X ®0X’ L*w;;;(;')l'
—Homs(S, P)/JHom5 (S, P)
of S’-modules.

(2.4) LEMMA. Thediagramof S'-linear maps

S @ (det Nx/x ®o,, 1*wi)e —— Homy(S, P)/JHom(S, P)
be:=incl.Qag c|can.

Lg_ QL MX’ (QT‘Xtd/ )I

HomK:’L( gl_? KZ,I.)

is commutative.

We suppose, that (2.4) is proved, and finish the proof of (2.3).
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As the canonical map c from (2.4) factors through Homs, (5", P'), it follows
with (1.7) that Im(b,) C &' @ i}, and as §'/ 5" isfaithfully flat, thisimplies
the assertion. O

Proof of (2.4). The proof will be donein several steps.

Sep 1. Consequencesof (1.7).

The agebras S/P and S’/ P’ are finite, equidimensional of dimension 0 and
generically locally complete intersections. Therings R, P, P', S and S’ have no
embedded primary components and are universally japanese. We have P! = P/ J,
JS = 1S and §' = §/JS. The agebras L1/K; and L}/K}, are finite locally
compl ete intersections, and we have

Ly =K ®}3\§ and L) =K;®;5 s
If N := 13\ U, p where p runs over al minimal prime divisors of ./, then
K:?_:ISN/JISN and L :§N/I§N:§N/J§N- (241)

The universally finite extensions 2, resp. ' of 4, to P, resp. P’ exist, and we
have ' = Q. The P- resp. P'-modules Q! resp. ('t are free of rank r + d resp.
r 4+ d'. We have

Q§:§®SQS and QLIZL]_@LQL resp.,
A:§,®SIQSI and QI&: €|_®L’QL’3

where L := Q(S) and L' := Q(S") are the full quotient rings of S and S’. Then
Qp, resp. Q arefree L1-resp. Lj-modules of rank r + d resp. r + d'. Themodule

of regular differential forms of § /P with respect to € resp. of 5’/ P' with respect
to ' in the sense of [KW], (Sect. 3) are defined. By [KW], (3.14) and [KW] (3.6)
in connection with [M1], (24.C) we have:
Sosufl, ~ (L i 8 el - W
Step 2. We prove that Sy /Py is a finite locally complete intersection, and
Q is aprojective Sy-module of rank r + d.

ThealgebraSN/PN isfinite. Letn € Max(SN) Thennn Py € Max(PN) and
thereforecontalnsJPN In particular, ISy = JSy C n.Hencenn Sisaminimal
prime divisor of 1.5 and consequently m := n N S isaminimal prime divisor of I.
SetP:=nnPandp:=nNR.ASS,/pS, resp. S, /pS, are equidimensional of
dimension d resp.d’, and m isaminimal prime divisor of I, we get

dim S, /pSm = dim(S, /pS,) — dim(S,/mS,) =d —d' =n.
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Anaogously, we see that dim(Py /pPy) = n. By assumption and (1.3), S/P isa

locally complete intersectiog at nN S and therefore Sy / Py islocally acomplete

intersection at n. Further, (ng o = (SN)w ®s,, 5 . By assumption, Q% isa
N

localy free S,,-module, necessarily of rank r + d, and hence (ng ). isalocaly
N

m

free (Sy).-module of rank r + d. The assertion follows by (1.5).

Sep 3. Now we show a commutative diagram of traces of differential algebras.
We have shown that there is a commutative diagram of ring morphisms

Kl . ( Kl) N a2 ISN a3 Ki

Ll B1 (Ll) N B2 §N B3 Lg_

wherethe vertical maps arefinite locally complete intersections which areinduced
by the canonical map P — S by base change. By [KD], (Sect. 16, Tr.3), thereis
an associated diagram of differential algebras

~ a1 ~ ap ~ a3 ~ e
QK Q(Kl)N QﬁN QKi - QKi

OL1/Ky (LN (KD)N T8N /Py TL4/Kq (2.4.9)
35 B1 P B2 P Bs & &
Qr, QL QgN QL,l B %

where the horizontal maps are the morphisms of differential algebras induced by
the horizontal maps in (2.4.3). The vertical maps are the traces corresponding to
the ring morphismsin (2.4.3) in the sense of [KD], (Sect. 16).

Sep 4. Proof of (2.4).

Letw e (wg/ﬁ)”d. By [KW], (3.10) Step 2 implies
05 =P = (R ) (245)
S~ Ysy by T \Wep/N 4.
and for theimage of w under the canonical map wg 5 S~2§N we also writew. By
Step 2 using rank arguments, we see that the canonical sequence (cf. [KD], (4.17))

0— ISN/I?Sy — ngN /mlgN — Qi,l -0
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is an exact sequence of free L} -modules of ranksn, r 4+ d and r + d'. Hence there
issomew; € Q?d' such that in Q74
N N

w=wi Adtg1 A... Adty; mod Iﬁgd = JQIH. (2.4.6)

N SN
We see from the construction of « (cf. (2.4.2)) that

be(ty g A+ Aty @ @) = Ba(wr), (2.4.7)
r—l—d
S/P°

Letse S,z = = ¢p(w)(s) € P, andlet 5 resp.z be the residue class of s resp. z
inS' = S/IS resp. P' = P/J. B B

By the definition of ¢ (cf. (1.7)) we havein Q™+ c Q71

where w denotes the residue class of w in w’"+d /Iw

zwo NATL A ... ATy = o1,/ (5W)

and hencein Q’“+d C Q’(“;f) using (2.4.4), (2.4.5) and (2.4.6) we have

2woNATY A ... ATy = O’(Ll)N/(Kl)N(Sw)

TSn /Py (sw)
swp Adtgiq A--- Adtg) mod JQ%er
N

TSn /Py (

UgN/ﬁN(Swl) ANAT g A--- ATy

Consequently, in Q’g ¢ we have the congruence

2wogNATL A - ATy = og S wl)

Sn /P (
modulo JQT+d +dTy Pjvd 1y -+deﬁgvd’*1. By (2.4.4) and the definition
of @ (cf. (1.7)), thisimplies the equation in Q’Ki
ZwoANATL A -+~ ANdTy = Oz3(O'§N/}3N (sw1))
= 0L /K] (s03(w1))
= @(f3(w1))(5)wo AATLA -+ ATy
Therefore, using the definition of -y, we get
(co)(tg i N Nig@w)(s) =z = 2(F3(w1))(5).

Now (2.4) follows from (2.4.7), the fact that all mapsin (2.4) are S-linear, and
(2.4.2). O
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(2.5) Remark. (Flat base change).

Given Situation (2.1) and a flat morphism g : Y7 — Y, there is commutative
diagram of morphisms of schemes

f1

X —2 X3 Y1

91 91 9

X — .x—1 .,y

with cartesian squares. Assume that €21 := ¢*Q has the structure of a differen-
tial algebra on Y; such that for open affine sets V C Y and V3 € ¢~ 1(V) the
canonical map (V) — Oy, (V1) ®oy.(v) (V) = Q1(V1) isamorphism of dif-
ferential algebras. If X7, X1 and Y1 have no embedded primary components and
Y1 isuniversaly japanese, then the morphism f1, the closed immersion ¢; and the
differential algebra 21 on Y; satisfy the conditions of situation (2.1) and there are
canonical isomorphisms

S >~ giw
X1/y1 — g1wWXx/Y,

of Ox,- resp. OXi-moduIes (cf. [KW], (3.13)). The diagram of morphisms of
OXi-moduIes

g{l* RESXI/X /
g1 (det Nyr/x @0y, ¢ (wiyy) ™) = g1 (Wi )y) ™

det N k0 21 r+d Reﬁxi/xl 921 r+d

Ky @0 AWRy) T —— s Wl yy)
commutes, where the vertical morphisms are induced by the isomorphisms from
(2.5.2).

Thefollowing proposition is sometimes useful to gain results on the adjunction
morphismasisillustrated by the next corollary and examples. It will also beapplied
to get the second main result about the adjunction morphism and the local residue

maps.

(2.6) PROPOSITION. In Stuation (2.1), let z € X’ beaclosed point and (¢;)%_,
a system of parameters of X/Y at x such that ¢ty 1, ...,t; generate the ideal
7, C Ox 4. Viathe Oy f(,-algebra morphism

P = Oy ullTy,..., Tyl = Oxe =S,  Tit;.
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S is a finite P-algebra and the residue classes ¢; of ¢; in Ox:, = Ox /7,
(1< i< d) areasystemof parametersfor X’/Y at x. If J denotes the ideal of
P generated by Ty 11, ..., Ty, then @X’,z = S/JS and we have the commutative
diagramof Ox: ,-linear maps

~

Oxe ® (det Ny/x @ 0wl ), Homp (S, P)/JHomp(S, P)

'Y:Jl(?...,td
id®(Resxr ) x ) c|can.
Oxrz ® Wiy w” Homp, ;(S/JS, P/ J)
1,eof

with bijective horizontal maps which are defined in the proof of (2.3).

(2.7) COROLLARY.
(i) Given Stuation (2.1) with n = 1, then the adjunction morphism Resy, x of
X'/ X with respect to Q2 isinjective.
(i) If z € X" in Stuation (2.1) isa closed point suchthat f: X — Y at z is
Cohen—-Macaulay, then the adjunction morphism Resy, x is bijective at z.
In particular, Resy,  is anisomorphismif X/Y is Cohen-Macaulay at all
points of X'.

Proof. Without loss of generality we may assume X and Y to be affine. Let
z € X' beaclosed point, and t1,...,tqs € Ox, asystem of parameters of X/Y
at z satisfying the assumptions of (2.6). With the notions of (2.6), we have

(Resx, x )« isinjective, resp. surjective, resp. bijectiveif and only if the canon-
ical map

c: Homp(S, P)/JHomp (S, P) — Homp,;(S/JS, P/J)

isinjective, resp. surjective, resp. bijective, since @X/,x/Olez isfaithfully flat. If
n = 1, then c is injective as Ty is a non-zerodivisor of P. If X/Y is Cohen—
Macaulay at x, then by (1.3) S is afinite free P-module and hence ¢ bijective. O

The statements of Corollary 1 becomewrong if we omit theassumption‘n = 1’
in (i) and if we don't assume X /Y to be Cohen—-Macaulay at = in (ii), as we can
see from the following examples.

(2.8) EXAMPLES. The following examples, which R. Waldi helped us to find,
show that in Situation (2.1), the adjunction morphism is neither surjective nor
injective in general:

Let k£ beaperfect field of characteristic char(k) # 5, and denote by A the Segre
product of k[Xo, X1, X2, X3, X4]/(X3 + X3 + X3 + X3 + X7) with k[Yp, Y1]
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over k. Then A is an integral affine k-algebra of dimension 5 with one and only
one singular point m € Spec 4, and we have depth A,, = 4 (cf. [SV], Chap. I,
(4.14)). There are f,g € m such that f,¢ form an A,,-regular sequence and the
rNngs A,/ fA, and A, /(f, g) A arenormal (cf. [F], (3.3)). By [EGA 1V], (6.13)
thereisan h € A\m such that therings A/ f A, and Ay, /(f, g) Ay, are normal.

Then the k-scheme X := Spec A}, the closed subscheme X' := Spec A,/ f Ay,
resp. X" := Spec A, /(f, g) Ay of X andthetrivial differential algebra®2? = Oy on
Y = Speck satisfy theassumptionsof Situation (2.1). By the smoothnesscriterion
[KD], (8.1), Qisadmissiblefor X/Y, X'/Y and X" /Y . Using (2.6), wewill show
that the adjunction morphism Resy., x resp.Resyn/x a = 1= mA;/(f, 9)An €
X" c X" isnot surjective resp. not injective.

Let S := A, and t1,...,t5 € S asystem of parameters of S with ¢4 = ¢
and t5 = f. Then S is an isolated singularity (cf. [Mat], (21.E)), and S and
P := k[[T1,...,Ts]] are complete, equidimensional rings of dimension 5, and S
isafinite P-algebraviathe k-algebramorphism P — S, T; + t;. If p € Spec S is
different from the maximal ideal and q := p N P, then S,/ P, is afinite algebra of
regular rings of the same dimensions. The Auslander—Buchsbaum formula shows
that S,/ P, and hence S,/ P, areflat algebras. Therefore, Sz, resp. S, are afinite
flat and henceprojective Pr- resp. Pr,-modules. Consequently, Exth(S, P)p, =0.

AsH; (S) = Hp (S) # 0, local duality implies Ext} (S, P) # 0 (cf. [HK4],
(3.5)) and so T5 is a zerodivisor on Ext}, (S, P). The long exact Ext-sequence of
P-modules

- = Homp(S, P) —— Homp (S, P/T5P)

— ExtL(S, P) —2» ExtL(S, P) — - -

showsthat « is not surjective, and consequently, (2.6) impliesthat (Resx/x ). iS
not surjective.
Set J = (T4, Ts) P. We have the canonical exact sequence

0 — Homp(S, P)/TsHomp (S, P) ==~ Homp, 7, (S/Ts, P/Ts) — C' — 0

of P/TsP-modules. Since C' # 0, Cp, = 0 and T4 is a non-zerodivisor on
P/TsP, we have Torf/T5P(P/J, C) # 0. Similarly, we see Torf/T5P(P/J,
Homp, 7, p(S/T5S, P/TsP) = 0. With (2.6) we get that (Resx~ x ). IS not injec-
tive.

Now, we show the compatibility of the adjunction morphism and the residue

map. To make precise what we mean, we need the following lemma about Cousin
complexes:
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(2.9) LEMMA. Let R be alocal ring, S an R-algebra, M a finitely generated
S-module, and I ¢ S anideal that is generated by a relative M -active sequence
with respectto S/R of lengthn € N. Set S’ := S/I and M’ := M/IM.

(a) Thereis a unique morphism

n
55’/S/R: CAS’/R(M,) (/\ Homsl(_[/[z,,s’) Rgr M’) — CAS/R(M)(M)[TL]

of complexes of S-modules with the following property: For an element

(b1, stuiprg) € AGETHM) with (t1,...,,)S = I, m € M and

©1,. .., n € Homg (I/1%, M') we have

WlA"'A@n®m/g]:(_1)pn[ sm/g ]7

519
tngly- s tngp

S'/S/R

ty- ooy toip

where s € S is a representative of det (goi(fj))lgz.,j@ € S'. Herem, resp.t;
aretheresidueclassesof m, resp.¢; inM/IM,resp. S/ISforn+1 < i < n+p
andinI/I%for 1 <i < n. (If (X°,d") isacomplex, then X" [n] denotes the
complexwith X [n]? = X"*? and d[n]? = (—1)"d"*? for n,p € Z.)

(b) If Risafield, I/1? afree S/I-module of rank n and M a Cohen—Macaulay
S-module, then 5:91/5/1?, IS injective and its image is the submodule

Proof. (a) is a straightforward computation using the universal properties of

exterior algebras, tensor products and colimits. In (b) (with the notation introduced
in the lemma) (%;)™_, is a basis of I/I?. We can assume that (;)?_, is its dual

basisand s = 1. Then [, "™/¢ . ] =0impliesm € (t1, .., tn1,) M, hence
s bntp

n
P1IN- N, ®M € (in-i-la s 7in+p) /\ HomS,(I/IZ’ S,) Bsr M

implying the injectivity of 5:9'/5/1{-
Clearly Im(d5: /) © ANNZ(C) 4y (M)). Assume now conversely that we
haveanelement [, ™% e AN (C7y ) (M)). As

fl) ) fn+P
Cin™) = @D Cilu,) ()
htar(p)=n+p

and as we may replace S by S/Anng(M), we reduce to the case that (S, m)
islocal and f1,..., fnyp is a system of parameters of S. We may assume that
t1,...,t, € maswell. Chooset,(1,...,th4p € minsuchaway that ty,...,t,1p
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is an active sequence, hence a system of parameters of S aswell. Choose p € N
suchthat (t7,...,t5,,) C (f1,. .., fatp). Then we may write

l m/g ]: m'/g ]
S fogp

...t
for asuitablen’ € M. By the assumption we havethat ¢; - m’ € (¢, ..., th

n+p

i ; n—l—p)M
foralli € {1,...,n}.Asty,...,t,, andany permutation thereof |sanM -regular
sequence, thisimplies that there existsan m1 € M such that

[ m'/g ]_[ mi/g ]
.t t1,th, ..ty

and inductively we proceed to see that there exists an element m € M with

[ m/g ]_l mlg ]
f1- s fup TR A P 7

and the latter generalized fraction is in the image of 551/5/1?, |

Now we are in aposition to relate the residues on X’ with the residueson X.

(2.10) THEOREM. Given Stuation. (2.1), let z € X' be a closed point. Set
R = Oy f(s), S '= Ox 4, and " := Oy .. Thenthe diagramof R-linear maps

C¥ ((Resyr /5 )e:S' /R ’
(( esX/X) / ) Cd( r4d S,/R)

O (det Nyrjx o @ Wi i S'/R)

WXy
dsr/s/R
Ui S/ R .
ReSx/ v,
) Qo

is commutative where in the first resp. middle row, the Cousin modules are formed
with repect to the system of denominators A, (*wiS,) = A% p(S') =

AS’/R(w;(t;iYI) resp. A;/R(S) AS/R(”E?/%/I) of S’ resp. S

Proof. We use the notations of the proof to (2.4). Set 7 1=t A... ATy @ ®.
Using (2.6) we get

(Resx/y.. © ds7/s/R) <[t1, i ])
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= ReSX/Y,x[tl,.‘.u. 4]

= @)(D)(0)w
= 02 (Resys/x)o(7)(D)(0) wo

...,tdr

— (Resy:/yq 0 O (ReSyr/x )2 S'/R)) <[t_1, " ]) .
This shows the assertion. O

Our result (2.10) impliesin particular residue formula (R3) of [RD], p. 197 for
the local integrals of [HK]. In fact, using [HK1], (2.7) we obtain

(2.11) COROLLARY. Inthe Stuation of (2.1) let Y = Spec R, X = Spec S and
X' = Spec S’ beaffineand assumethat X/Y and X'/Y aresmooth. Furthermore
assumethat S' = S/(tg 41, .- -, tq) for someregular sequencetyy1,...,tq 1IN S.
Letts,...,ty bearegular sequencein Ssuch that S’/ (t1,...,ty) isfiniteasan
R-module, and set Z = B (t1,...,ty) C X'. Thenfor eachw € Qgﬁ/y with image

o € 0%,y wehave

/ w / w-dtgiq---dig
X vz |ty te | Ix/viz t1,...,tg

(2.12) Remark. Residue axiom (R3) isthe only one of Hartshorne'sresidue axioms
which has not been shown previously for thelocal integral of [HK ]. Proving these
axiomswas one of Lipman’'s original goalsin this area.

There are similar formulas to express (2.10) in the general Situation of
(2.1), however they are not as explicit as in genera the canonical morphism
Mo (%) = Mo (Q449,) does not induce a surjection

* r+d r+d’
[/ (A)X/Y' _) wXI/Y.

3. Relative duality and adjunction

In this section we prove the theorem relating the relative duality theory of mor-
phisms f: X—Y and . : X'— X with the duality theory of f o . in the situation
described in the introduction. More precisely, we fix the following

(3.1) Stuation. Let X and Y be excellent noetherian schemes without embedded
components, let © be an exterior differential algebraon Y such that Q! is locally
freeof rank r and let f: X — Y be amorphism of finite type, Cohen-Macaulay,
equidimensional of relative dimension d and generically a complete intersection,
and such that M x (Q.) islocally free as an M x-module of rank r + d. Finaly
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let .: X'— X beaclosed immersion such that the compositiong:= fo.: X'—Y
isflat and equidimensional of relativedimensiond’. Setn :=d — d'.

In the above situation, we will expressthe relation arising from abstract duality
theory in terms of differential forms. In particular in case . is aregular immersion
such that no component of X' is completely contained in the non-smooth locus of
f, it is given by the adjunction morphism constructed in (2.3). This will be very
useful in our description of traces on the level of residual complexes (cf. Sect. 4).

(3.2) LEMMA. Given Stuation (3.1), we have EXt??X(L*OX/,w;(—;E)l,) = 0 for
qg<n.

Proof. Astheassertionislocal in X and Y wemay assumethat Y = Spec R for
somelocal ring (R, m) and X = Spec S. By [Mat], (3.E) we aso may assume that
Riscomplete. Let X' = SpecT', T'= S/ andlet M € Max S withM N R =m
and2 C 9. By [HK 1], (4.10) wefind (possibly after shrinking .S asaneighborhood
of 91) elementsty, ..., tq € Msuchthat I = (44,...,1t,) satisfies

(i) 9 isthe only maximal ideal of S containing I.
(i) tgry1y ... tg €.
(iii) S/1 isfinite asan R-module.

Denoting by ~ I-adic completion and by — residue classes mod m we have a

local integral
/A C HY @S =
S/R,I S/R

(where &é IR denotesthe module of universally finite regular differential forms, cf.
[HK 1], Sect. 1) which induces by compatibility of H¢ with base change amap

. d(~r+d O
/E/ﬁj' G 4.
The Cohen—Macaulay property of S/R implies that the isomorphism

~d'+r 7 ~d+r q r
55/n /Iwg/R — Homg(S/1,87)

w — <8I—>f§/R,[|:S;§w]>
of [HK1], (3.3) commutes with passing to residue classes mod m, hence the local
duality isomorphism commutes with base change to induce an isomorphism
. ~r+d d or
o Homg(M, w§/R) — Homg(H7 (M), Q")
from which we concludeformally asin the proof of [HK 1], (3.5)(c) that theinduced
maps

eyl (N T d—i or
e Ext%(M,ngR) — Homg(H4~(M), ")
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are bijective for all S-modules M. Thus

Ext%(T,G)g/“;) = Homp(Hy *(T), Q") = Homp(H{, ¢ , (5),Q7) =0

l:""td’)

asq < n. By [AK3], (1.8) the canonical map

. +d 5] 7 o~d
B EXX(T, wijp) ®r R — Ext%(T,w%/R)

issurjective, and from the R-flatness of ngg and [AK?>], (1.9)(i) we conclude that

£ is bijective, hence the Nakayama lemma completes the proof of thelemma. O

In  Situation (3.1) the isomorphism f.Homo, (t:Oxr,_) =
gHomo, (1:O0xr,__)  (where F denotes the O y-module associated to an
1+Ox:-module F) of functors on the category Coh X of coherent O x-modules
induces by [RD], 1.(5.4) an isomorphism in the derived category

Rg. o R Homoy (t:Ox1,_)  — R(fxHomoy (t:Ox7,_)).

The associated spectral sequence degenerates sufficiently to yield an edge mor-
phism
0 RY g (Eatd, (Ox,wih$) ) = Eatf(1.0xr,wihe) = RS,

(where £zt ; denotes the right derived functors of f,Homo, cf. [KI]). In case f
is proper, this morphism, combined with the integral of [HK>] and [HS] definesa
local integral

. pd r+d
/X/Y,X’ : R%g, (E:L“t?QX(L*(’)X/,wXJ;Y) ) = Q"
and the isomorphism
¢ 9 =for) +iof (*)
can be expressed as follows:

(3.3) PROPOSITION. In Stuation (3.1)

(Ext%x(b*oxz,w;;‘é)N,/X/Y,X,> o (g!(QT),tg(QT)).
Proof. First recall that by [RD], I11.6 and 111.8
(' (G) = (RHomoy (£:0x,9))
For f and g we have by [Li,], (4.5.4) w;;‘f/ = f'Oy = H-%(f'Oy'). Furthermore

H"(l,!w;f/‘}i,) =&t (L*Oxf,w;f/‘}i,) " and H‘I(L!w;f/‘}i,) =0for ¢ < n by (3.2).
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As f is Cohen-Macaulay we know by [RD] V.(9.7) and [HS], main theorem

r+d o if o
Hq(f!QT): {wX/Y Ifq_d.
0 ifqg#d

Thus and by (3.2) the spectral sequence associated to the ¢, r of (x) degenerates
sufficiently to yield an isomorphism

Cyf g!QT A E:L‘t%X(L*OX/,w;;;()i/) -

Furthermore the trace Tr, induces a map
t: RY fo(u€atd, (1.Ox,wi4) ) — RS
making the following diagram commute

tg (Qr) QT‘

Rd,Q*(Q!Qr)

R g.(ci.f) fX/Y

Rd’f*(L*Ext?gX(b*oX’vwg;;y)N) L Rdf*w;;‘f/

where t, is induced by Tr, as in [Li2], (4.5.5). To complete the proof of the
proposition it remainsto show that ¢, = ¢.

Let w@‘f/[—d] — Z° be aresolution by injective quasi-coherent O x-modules.

Then Homoey (1:0x, L") " is a complex of injective, hence «,-acyclic Ox:-
modules. Thus

M*L!(wgf/‘é[—d]) = Homoy (1x:O0x1,Z1 )
and Tr, isthe canonical map

LHomo, (1:0x,T") E»Homox(b*(’)x/,l') =7
where +y is the obvious isomorphism (cf. [Li2], (4.6.1.1)), and where ‘ev’ is evalu-
ation at 1. Then the following diagram commutes

1
tHomo, (1:O0x1, L) X Homo, (1:O0xr, T

)

vialy~1 ev

HomoX(OX,I') & al
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By (3.2) we have in the derived category for the truncation functors of [Li5],
Section 1

< a(tHomoy (1.0x1,I7) ) = 1 ((Eat, (1:0xr, Wi ) [=d]) )
and similarly
T<—a(Homoy (1:0x1,T")) = Eaty, (1:0xr, W) [=d].
Applying thisand Rf, to the above diagram we obtain a commutative diagram
. ~ A1 "
RS, (€t (1.0x, T)[—d] ") 20wy, (Eatdy, (:Oxr, W) [=d))

vialy~1

Rf. Homo, (1:Ox1, L") R feev

R f.ev

Rf,Z

Rf. Homo, (Ox,T")
AsRf, Homoy (1:0x1,T") = fiHomoy (1:0x,T") andasRf, Homo, (Ox,T")

= f.Homo, (Ox,T"), by taking HO of the above diagram we obtain a commuta-
tive diagram

U ~ i -1 ’
RY fuu€ath, (uOxr, Wit ) = RY fu(Eath, (bOx,wS))

vialy~?1
Ext‘fc(OX/,w;;;‘é) viajev
can

via ev

Ea:t‘]ic((’)x, w;;;‘;l/) Rdf*w;;;‘;

Going around the top of this diagram gives the map ¢,, whereas going around the
bottom gives ¢, thus compl eting the proof of the proposition. O
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(3.4) Remark. We consider Situation (3.1) where.: X' — X isaregular immer-
sion. Then thereis anatural ‘fundamental local isomorphism’

Al Ea:t’éX(L*OX,w;f/‘}i,) = Homo,, (det Cxr/x, L*w;;;‘;l/)

(cf. [AK1], 1.(4.5)). Assumein addition that Y = Spec R for some complete local
ring R, and let z € X' be aclosed point. Then there exists an open neighborhood
U = SpecT of z € X" and t1,...,ty € T suchthat P = B(t1,...,tq) C X'
satisfies [HK1], (4.8) (by [HK1], (4.10)). After shrinking U as an open affine
neighborhood of z we may assumeU = Spec SN X' for someopen affineSpec S C
X,andtheideal I C S of U isgenerated by aquasi-regular sequencety 1, . .., tq.

Givenan element ¢ € HY (X’,Exth(L*(’)X,,w;j‘{/)) we may write

a

€ = lt”l i ] , n; € Ny, € Homg(det I/Iz,wg7g/1wg7}%).
1ty

By abuse of notation we denoteby «(dts 1A - - Adt,) apreimageof thedifferential

form a(dtg 1 A --- Adtg) € ngg/Ingg in ngg, andby t1,...,ty preimages

of t1,...,ty € T'in S, and we define

. Oé(dtd/+1 VANCIERIVAN dtd)
ReSP(g) = /X/Yp (ltnl tnd/ ¢ ¢ )
, 1o s by Starg1, 514

i.e., Resp isthe composition

HE (X' EX(T, w5 f) 2> HE (Hf (W)
€ d rid fX/Y,P r
— HYX, W) =5,

Wxry

where ¢ is the isomorphism arising from the Leray spectral sequence ([LSy],
Sect. 3). Then the following diagram commutes

HE (EX3(T, wif7)) HE (H} (@) —— HE(X,wi)

"Y“S/R S/R X/Y
can can
HY (X', Eatdy, (1.0xr,wi1T) ) 2 HY(X, Wi
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hence we conclude from [HS], residue theorem, that also the following diagram
commultes (‘ residue theorem’)

HE (X', Eatey, (1+O0xr, wX/Y

\ S

Let f: X—>Y and 1 : X'—»X satlsfy the assumptions (3.1), and assume in
addition that f is proper, that X’ has no embedded components and that the
compositiong = fo.: X' — Y satisfiess M x/(Qx) isfree of rank » 4 d’. Then
by [HS], main theorem, and the above thereis a canonical isomorphism

HY (X' ,Exto (1Oxr, wX";gl/))

. r+d n r+d \ "~
¢.wX,/Y—)c‘,'xtOX(L*OXr,wX/Y) ,

transforming [y y- into [y x,. Assume now that ¢ is a regular immersion and
that, whenever z € X is the generic point of an irreducible component of X',
then X /Y is smooth at +(z), i.e., no irreducible component of X' is completely
contained in the singular locus of f. Then we also have an obvious morphism

p=x"1o (Resﬂ,/x)_ : w;f,}iy — Exty, (1:Oxr, w;(%i/)

by (2.7) and the fundamental local isomorphism (cf. (3.4)).

(3.5) THEOREM (Adjunction). In the above situation we have ¢ = .
Proof. It remains to show that ¢ satisfies the property uniquely determining ,
i.e., that the following diagram commutes

r+d’
R’ g*WX'/Y

RY g«(p) fx'/y
RYg.(Eatd, (1:0x,wKHT) ) Q" (+)
can
Jxpv
R fwd

To see this we may assume that Y = SpecR is affine, and after replacing R by
Q(R) we may also assume that dim Y = 0 and consists of a single point only.
Hencefor each z € X' we canfind an open affine neighborhood U = Spec S C X
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of z and anidea J = (f1,...,ty) C T = 1,Ox/(U) such that the assumptions
of [HK,] are satisfied. By ¢1,. .., ty we denote preimages of ¢1,...,¢y in S and
set J = (t1,...,ty). For each ring A, each ideal 24 C A and each A-module
M we have a canonical morphism Ext’, (A/2, M)— HE (M). Thus we have (with
K = I + J) acanonical morphism from the spectral sequence

Ext] (1), Exti(S/1,w5)1) = Exte™ (S/K, w1

to the spectral sequence
Hj(H](wgfR)) = H]j(wsfR)
implying that the following diagram commutes

Ext} (1/7,wph) —=— HY (X', i)

via|p via|p

can

HY (H} (W) ~—— Bxt}.(1/7, Bxt") —=— H* (X', Eat")

HY, (W)~ Ex(S/K, w2

BNy ’a

r+d
X, wiyy)
wherewewrite for short Ext” = Extg(S/I,wgJ/’g), Ext™ = Sxt%x(b*oxf,w;;‘{/)

and Ext’ = Ext), (..0x,w5), and where i, v and A are the canonical mor-
phisms arising from the various L eray spectral sequences.
Now let € Extd(T/7, wﬁf{). By the fundamental local isomorphism (cf.

[AK1], 1.(4.5)), n may be thought of asaT/.J-linear morphism

p

NT/T?) = wifte [Tt A A =@+ T Wil
for somew € (Qg )~ with image @ mod I (where N C S is the preimage of the
set of all nonzerodivisorsof 7'). Thuswe seethat theimage of i in HZ (w’"TJ/F% ) can
be described by the generalized fraction

w ’ !
e HE (wrhd).
[tl,...,td/] JT/R
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Using the fundamental local isomorphism twice, we see that the image of 7 by

Bty (77, ) Y% Extf. (/7 Exti(S/ I wif ) -2 HY (H} ()

isequal to the generalized fraction

tar+1,-- -5 td )

t1, ..., g

wherew* € wg'/i'g issome regular differential form of S/ R having the sameimage
in (ngd)N/I- (Qg+d)N asw-dtgq---dtg. As

w*
[ ] o
v [ta+1 -5t | =
Jtd

t1,...
t1, ... b ’

by [LSy], (3.3.1), theorem (2.10) implies that the following diagram commutes

H (@)

can fT/R,7

Ext} (T/7, wii) Q"

via|p

fS/R,I+J

H?+J(wg7}%)

Asthe canonical map

Q%) H?z}(w;(ﬁy) — H* (X,’w;;;ly)
z€X' closed

is surjective, we conclude from [HS], residue theorem, that (x*) commutes, com-
pleting the proof of (3.5). i

(3.6) Remark. Suppose in Situation (3.1) that X/Y and X'/Y are smooth, and
that @ = Oy sothatw , =%, andwd, , =%, . Then the adjunction map
 may beidentified with the obviousisomorphism

wgl(,/y — Homo,, (det Cxr/x L*wgl(/y)
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arising from the canonical short exact sequence
0— Cyryx — "0 = Q% — 0

of locally free O x,-modules.

4., Fundamental classes of subschemes

In this section we will apply the adjunction morphism to study morphisms of
residual complexes and subschemes of a given smooth variety over a field of
characteristic 0 and their fundamental classes. Most of the results in this section
arealready containedin[EZ,] andto someextendin[Li4], at least from atheoretical
point of view. The presentation given here might however help to clarify some of
the ideas in these papers. An dternative treatment of fundamental classesin terms
of adelic residuesisgiven by Yekutieli [Ye].

First recall that aresidual complex on anoetherian scheme X isacomplex K5 of
quasi-coherent injective O x -modules, bounded below with coherent conomology
sheaves, and such that there exists an isomorphism of O x-modules

DLk =D J(@),

neN zeX

where J(x) is a skyscraper sheaf on the closed set {z} whose underlying © X,z"
module is an Ox ,-injective hull of k(z). They are of particular interest as they
are representatives of (pointwise) dualizing complexes on X, but they are hard to
describe in general as injective hulls are unique only up to non-canonical isomor-
phism.

Suppose now that & isafield and that X isak-variety, i.e., areduced k-scheme
of finite type, which is Cohen-Macaulay and equidimensional of dimension d.
Furthermore assumethat 2 is an exterior differential algebraon Y = Spec k which
isadmissible for X/Y and let r := dim(Q1).

(4.1) PROPOSITION. In the above situation w?;gl, isa Gorenstein sheaf, and for
eachz € X we have

. 0 fori#dim Ox,
: r—+d y
dimy () Ex%x,w(k(x)’w;/ﬁw) - { 1 fori=dimOx,

Proof. As the assertion isloca in X we may assume that X = Spec R with
some (reduced and equidimensional) Cohen—Macaulay algebra R/ k. As ng/dyyz is
acanonical module for Ox , by [KW], (4.11) and [HeK], (5.12) for each z € X,
it is Gorenstein by [HeK], (6.10). Now let z € X beapointof X. If x = misa
closed point of X, andif weset S := R,, then by thelocal duality theorem [HK],

(3.4) we have
0 fori # dim Ox

EXt%(k(x) G)H_d) - Homk(Hgl_p(k(x))’ @) = { k(z) fori=dmOx, ’

"5k
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implying the claim in this case. For an arbitrary « = p € Spec R with height i < d
let

P=k[X1,...,X4] = R
be a noetherian normalization of R/k such that wehavep N P = (X3,..., X;).

Setting K' = k(Xi41,...,X,) and R := R ®yx,,,,. x,] K' we can apply the
aboveto

415+

f': X' :=SpecR' — SpecK' =Y’
and thepoint 2/ € X' correspondingto z. Asz’ € X' isclosed we obtain as above

0 for i # dim OX/,J;I

Exth, , ,(k )T =
OX’,z’( (.’E)7 (‘UX /Y x ) )) { k({E,) for: =dim OX’,Q:’

and the claim follows. O

Using the notation of Section 1 wewriteC, for the Cousin complex (with respect
to the system of denominators of active sequences) C* (X, A’ (ng/‘{/), ng/‘{/) of
wihs if no confusion is likely.

(4.2) COROLLARY. In the above situation C[d] is a residual complex on X.
Proof. By (1.10)(b) Cy is a minimal injective resolution of ng/dy, hence the
claim follows from (4.1). O

From now on supposethat k isaperfect field and that 2 = Oy. Then by (1.14)
the global integral

/ L T(X,Cy[d) — k
X/Y
is defined and we obtain

(4.3) THEOREM. Supposethat Y = Speck for a perfect field k& and that X/Y
isa proper Cohen-Macaulay variety. Then [ Iy induces for each complex F* of
guasi-coherent sheaves on X, bounded above, an isomorphism

R Homy (F",Cx[d]) — Homy (Rf. F", k)

in the derived category D" (X), i.e, (C;([d],fx/y) isaresiduepair in the sense of
[SaS]_]

Proof. By local duality ([HK1], (3.4)), by (4.2) and by [Sas;], thm. 2 it suffices
to show that [, ,,- is amorphism of complexes. In [Yey], A. Yekutieli has used
Beilinson’s theory of higher-dimensional adeles and the residues of Parshin and
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L omadzeto construct aresiduepair (K, trx/y ), andin[Huy], Section 2 the second
author has, for U = Spec R C X open and affine, constructed an isomorphism

Cx[d(U) = KX (U)

of complexes (see aso [SY]). These maps glue to give a globa isomorphism
Cx[d] — K5, mapping—uptoasign — [x/y tOtry,y, i.e, being compatible with
the local residues, thusimplying the theorem. O

(4.4) Remark. Incase X/k isprojective, E. Kunz [Ku] hasgiven adirect proof that
(Cxd], [x,y) isaresidue pair for X.

(4.5) Remark. Inthe general situation, P. Sastry [Sas;] has used Cousin-complexes
CY on smooth k-varieties X and local embeddings W < A7 to give a canonical
construction of residual complexes K- for the family of al k-schemes W of
finite type. In case of a Cohen—-Macaulay variety X, Sastry’s residual complex is
canonically isomorphic to the above. Whenever we talk of the residual complex of
anon-reduced k-scheme of finite type, we think of Sastry’s realization.

Assume now that we have a finite morphism f : X — W of reduced and
equidimensional Cohen-Macaulay k-varieties of dimension d resp. n. In this case
the above description of residual complexes allows an explicit description of the
trace

try: f.Cx[d] = Cyy[n]

of [RD], VI, Section 4 in the following cases (see also [EZ)]):

(i) Assumethat f mapsthe generic point of each of the irreducible components
of X to the generic point of an irreducible component of 1 (so that in particular
d = n). Then the trace o x/;> on the level of meromorphic differential forms (cf.
[KD], Sect. 16) exists, and it induces a map

Try: f.Cx[d] 2 CT (W, A" (Wi y ), w3 )[d] = Ciy[n]
which in terms of local sections can be described as follows
[ w/g ] [UX/W(W/Q)]
Tl’f = .
f17"'7fl fla"'afl

Obvioudly it isamorphism of complexes.

(i) Let f: X — W be a regular immersion, assume that no irreducible
component of X is completely contained in the singular locus of W and set h :=
n — d. By (2.9) we get for each p € N aunique map

0% CP(X, AT (Ox), det Ny @0 [*wiyy)

— crth(x, A (wg(/y)7 wsi(/y)
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and we define
Try: fuCx[d] — Ciy[n]

to be the composition Try = 0% yy © £.C° (X, A" (w/y), (Resyy x) 7). Note that
Tr; isamorphism of complexes, as 65 w is amorphism of complexes.

In the general situation assumethat f can befactoredas f: X-%57 w (at
least locally) with g asin (i) and h asin (ii). ThenwedefineTr := Trj,oh,Tr,. This
map is independent of the choice of the factorization by the adjunction formalism
of Section 3, and we obtain

(4.6) THEOREM. The morphism

Try: f.Cx[d] = Cyy[n]

isthe trace of Grothendieck duality theory (cf. [RD], VI, Sect. 4).

Proof. By the transitivity of traces and duality theory for finite and generically
flat morphismswe only need to consider the casethat f isaregularimmersion. First
we need to show that C[d] = f“Cy,[n] in the notation of [RD], VI, Section 4,
i.e., that we have a canonical isomorphism

Cxld] = Homo,, (f.Ox,Cyy[n]) = Anng, (Cyy [n])

(viewed as sheaves on X), where Zx denotes the idea of X in W, and then we
have to prove that viathisisomorphism Tr; can be viewed as the map ‘evaluation
al

evi: Homo,, (f-Ox,Ciy[n]) — Ciy[n].

From (2.3) and (2.9) we conclude that our Try identifies C%[d] canonically with
the submodule Homo,, (f.Ox,Cyy[n]) of Cjy[n], and inlocal termsit is now an
easy calculation to verify that viathis identification Tr; and evy coincide. O

(4.7) Remark. Assume now that f : X — W maps the generic points of the
irreducible components of X to smooth points of W and that X is genericaly flat
over its scheme-theoretic image. In this situation we can achieve afactorization as
desired at least generically:

After replacing X by its scheme-theoretic image in W we may assume that f
is aregular immersion. Then by the prime basis theorem (cf. [KW], (2.6)) there
existsan opensubset U C W of W, containing the generic points of all irreducible
componentsof X suchthat U N X — U isaregular immersion.

Ifinaddition W = A} and char(k) = 0, then the prime basistheorem globalizes
to show that there exists a reduced and equidimensional subscheme Z C W of
dimension dim(X) suchthat Z U X (in its reduced induced subscheme structure)
isagloba complete intersection in W (cf. [Web], (7.4)). In particular we can —in
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this situation — factor f: X — W globally as desired. If char(k) = p > Othisis
in general only possible after asuitable field extension k' /k (cf. [Web], (4.5)).

Traces are of great importance in connection with fundamental classes in the
senseof El Zein. For thislet usrecall the definition of the de Rham-residue complex
according to El Zein [EZ5], Section 3 and Yekutieli [Yey] first:

Assume from now on that char(k) = 0. Given a scheme X/Y of finite type
with residual complex (K, 6y ) we set

KR = ’HomoX(Q;(I;YJCg().

Denoting by ¥ := Dual(dy/y) the map on ICX induced by dx/y (i.e., the
differential operator dua to dy,y) and by 4 the morphism defined by 4%, the
partial derivativesof £ are given by

di= (—1PTAY KR — KM, 6= (—pretiy KR — KR

These definitions make ICX adouble complex, and by (Tot(lCE(" ), D) we denote
the associated simple complex. For a finite morphism f: W — X we let try :
f*lc;;,' — ICY be the trace map induced by the canonical morphism QX y
f*Q;V/Y and thetrace Try: f.K;,, — K of dudlity theory (cf. (4.6)). Thentr; is
amorphism of double complexes. We note that we follow Yekutieli’s conventions
[Yey], which differ from El Zein's [EZ;] by ashift in indicesand asign.

(4.8) Remark. Assumethat X /Y issmooth and equidimensional of dimension n.
Then K, = C[n], and the determinantal pairing on Q2% - defines a canonical
isomorphism of complexes

Homon (D, Kx) 2 € (X, A, ) + 1),
where A:‘( denotes the system of denominators of locally O x -active sequences.

Accordingto[EZ,], 111, for each k-scheme Z of finitetype, there existsaunique
fundamental classc; € K, (see aso [Lig], Sect. 3). In case of a reduced and
equidimensional variety Z of dimension d it is given by the canonical map

CdZ/Y: QdZ/Y - w%/y c MZ(QdZ/Y) = K3°

of [KW], Section 5. In fact in case Z/Y is smooth, ch/Y is the canonical map
from holomorphic to meromorphic differential forms, and for general reduced and
equidimensional Z/Y it satisfies the trace property of [EZ5], (3.1)(ii). Thus by the
unicity of fundamental classes we conclude that ¢, )y = ¢z

Suppose now that X /Y is smooth and equidimensional of dimension n. To
understand and study subschemes . : W — X it is important to know their
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fundamental classes ¢y and in particular their images tr,(cy) in ICX For this
we may assume that 1 is reduced and equidimensional, say of dimension d (cf.
[EZ7], (3.1)), and we set h := n — d. In this case tr,(cy7) only depends on a
suitable neighborhood of the generic points of the irreducible components of W
in X. Thus and by the prime basis theorem we may assume that X = SpecR is
affine, W = Spec R/I, and that I is generated by aregular sequence f1,. .., fj.
Then

tr,(cw): Q%/y = CM(X, Ay, Q% y)

isgivenbytr, (cy ) (w) = [“’Eﬁ%h |. Henceasanelement of Homo (Qg(/y, Cy)

=C"(X, anﬁl/) we have

(4.9) PROPOSITION. If X = Spec R isaffine and smooth over &, andif c: W —
X isaregular immersion, given by a regular sequence f1, . .., f, then

dfy---dfy
f17 (ERE) fh
Note that for (a not necessarily smooth) X and for each i € N we have

CZ(Xa A;O‘”?(/Y) = GB Cf‘lxﬁm(w?(/Y,x)
ht(z)=1

trL(CW) = [ ] € C.(Xv AX79RX731/)

(viewed as a direct sum of skyscraper sheaves on X)), inducing an isomorphism

Homoy (Qg(/chgb() = @ Homox,m (Qg(/Y,xvcillx,w (w?(/Y,a:))
ht(z)=h

and for each z € X suchthat X/Y issmooth at z we have

Homo, , (Qg(/y,a:a Oﬁx,w (Wi/y,e)) = CJ}LL\X,E (QI;(/Y,x)'

Thus any element a € K™ ¢ may be decomposed as a = (a)h(z)—p With

components o, € Homoy , (2% /y,» Cli . (W% /y-,.)), resp., for smooth points
of X/Y, witha, € C% (/) ,). Weget

(4.10) THEOREM. Let.: W — X beanimmersion from a reduced and equidi-
mensional k-variety W of dimension d into a reduced and equidimensional k-
variety X of dimension n, and assume that no irreducible component of W is
completely contained in the singular locus of X. Set h := n — d. Then near the
generic points of its irreducible components, W can be cut out by h sections
f1, .-, fn, and we have

dfi---dfs

trL(CW)a: = [fl o fh

] € Ol ()
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if 2 isthe generic point of an irreducible component of 1, and

tr, (Cw)x = 0,

otherwise, i.e,, if x ¢ X or if ht(z) # h.

Proof. Astr,(cy) only dependson an open neighbourhood of the generic points
of W in X, we may assume that X is smooth and that W is regularly embedded.
Now the theorem follows from (4.9). O

(4.11) Remark. For a smooth k-variety X, El Zein [EZ,] obtains similar formu-
las for the fundamental class of a subvariety, using the description of residual
complexesvialocal cohomology modules.

(4.12) Remark. Incase X/Y issmooth, the de Rham—residue double complex ICX
induces an injective resolution of the de Rham complex 5, /y» hence may be used
to calculate the de Rham cohomology of X. In this case the above description of
tr, gives a (for purposes of explicit calculation) very convenient representative of
the (usual) classof W in Hpg(X).
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