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Abstract

We propose generating functions, RGFp(x), for the quotients of numerical semigroups which are related
to the Sylvester denumerant. Using MacMahon’s partition analysis, we can obtain RGFp(x) by extracting
the constant term of a rational function. We use RGFp(x) to give a system of generators for the quotient of
the numerical semigroup 〈a1, a2, a3〉 by p for a small positive integer p, and we characterise the generators
of 〈A〉/p for a general numerical semigroup A and any positive integer p.
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1. Introduction

Throughout this paper, Z, N and Z+ denote the set of all integers, nonnegative integers
and positive integers, respectively.

A subset S of N is a numerical semigroup if 0 ∈ S, N \ S is finite and S is closed
under the addition in N. Given a positive integer sequence A = (a1, a2, . . . , ak), if
gcd(A) = 1, then

〈A〉 = {x1a1 + x2a2 + · · · + xkak | k ≥ 2, xi ∈ N, 1 ≤ i ≤ k}

is a numerical semigroup (see [13]) and A is a system of generators of S = 〈A〉. If no
proper subset of A generates S, then we say that A is a minimal system of generators
of S. Sylvester [16] defined the denumerant d(a0; a1, a2, . . . , ak) as

d(a0; a1, a2, . . . , ak) = #{(x1, . . . , xk) | x1a1 + x2a2 + · · · + xkak = a0, xi ∈ N}.
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If gcd(A) = 1, then there exists a positive integer N such that d(a0; a1, . . . , ak) > 0 for
any integer a0 ≥ N (see, for example, [11, Theorem 1.0.1]). The greatest integer not
belonging to 〈A〉 is the Frobenius number of A defined by

F(A) = max{a0 ∈ Z+ | d(a0; a1, a2, . . . , ak) = 0}.

For more descriptions and results about numerical semigroups, see [4, 11, 13].
Suppose 〈A〉 is a numerical semigroup and p ∈ Z+. The quotient of 〈A〉 by p,

〈A〉
p
= {n ∈ N | pn ∈ 〈A〉} = {n | pn = x1a1 + x2a2 + · · · + xkak, xi ∈ N, 1 ≤ i ≤ k},

was introduced in [14]. It is easy to verify that 〈A〉/p is a numerical semigroup, that
〈A〉 ⊆ 〈A〉/p, and that 〈A〉/p = N if and only if p ∈ 〈A〉. For example, let p = 3 and
〈A〉 = 〈5, 6〉 = {0, 5, 6, 10, 11, 12, 15, 16, 17, 18, 20→}, where the symbol→ means that
all subsequent integers are included. Then 〈A〉/3 = {0, 2, 4→} = 〈2, 5〉.

Let a1, a2, p be pairwise relatively prime positive integers. Rosales [12] obtained
a system of generators for 〈a1, a2〉/2 and Rosales and Urbano-Blanco [15] gave
a characterisation of a system of generators for 〈a1, a2〉/p by means of modular
permutations and certain congruence equations. In [6], Cabanillas discussed the
minimal generators of 〈a1, a2〉/p. In [10], Moscariello also gave a characterisation of
the generating system of 〈A〉/p by defining a class of partitions. There are many open
problems related to 〈A〉/p (see, for example, [7]).

The representation generating function of 〈A〉/p is the generating function

RGFp(x) =
∑
n≥0

d(pn; a1, a2, . . . , ak)xn.

The function RGFp(x) is easily seen to be rational (see Section 2.1) and we can use
it to obtain a system of generators for 〈A〉/p. For example, let a1 and a2 be relatively
prime odd positive integers. Then

∑
n≥0

d(n; a1, a2)xn =
1

(1 − xa1 )(1 − xa2 )

and the representation generating function of 〈a1, a2〉/2 is determined by

RGF2(x2) =
1
2

( 1
(1 − xa1 )(1 − xa2 )

+
1

(1 − (−x)a1 )(1 − (−x)a2 )

)
=

1 + xa1+a2

(1 − x2a1 )(1 − x2a2 )
.

Therefore, 〈a1, a2〉/2 = 〈a1, a2, (a1 + a2)/2〉.
We use MacMahon’s partition analysis [9] to represent RGFp(x) as the constant

term of a rational function in a new variable λ. For small p ∈ Z+ and A = (a1, a2, a3)
with gcd(A) = 1, we can calculate RGFp(x) and obtain a system of generators of the
quotient of the numerical semigroup 〈A〉 by p. We give the results for p = 2 and 3 in
Table 1. We write ai = pki + ti, where 0 ≤ ti ≤ p − 1 and p, ki ∈ Z+ for 1 ≤ i ≤ 3.

We can extend this idea to give the following simple characterisations for 〈A〉/p.
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TABLE 1. A system of generators of 〈a1, a2, a3〉/p for p = 2, 3.

p t1 t2 t3 A system of generators of 〈a1, a2, a3〉/p

2 0 0 1 〈a1/2, a2/2, a3〉
2 0 1 1 〈a1/2, a2, a3, (a2 + a3)/2〉
2 1 1 1 〈a1, a2, a3, (a1 + a2)/2, (a1 + a3)/2, (a2 + a3)/2〉
3 0 0 1 〈a1/3, a2/3, a3〉
3 0 0 2 〈a1/3, a2/3, a3〉
3 0 1 1 〈a1/3, a2, a3, (2a3 + a2)/3, (2a2 + a3)/3〉
3 0 1 2 〈a1/3, a2, a3, (a2 + a3)/3〉
3 0 2 2 〈a1/3, a2, a3, (2a2 + a3)/3, (a2 + 2a3)/3〉
3 1 1 1 〈a1, a2, a3, (2a1 + a2)/3, (2a1 + a3)/3, (2a2 + a1)/3, (2a2 + a3)/3,

(2a3 + a1)/3, (2a3 + a2)/3, (a1 + a2 + a3)/3〉
3 1 1 2 〈a1, a2, a3, (a1 + a3)/3, (a2 + a3)/3, (2a1 + a2)/3, (2a2 + a1)/3〉
3 1 2 2 〈a1, a2, a3, (a1 + a2)/3, (a1 + a3)/3, (2a2 + a3)/3, (2a3 + a2)/3〉
3 2 2 2 〈a1, a2, a3, (2a1 + a2)/3, (2a1 + a3)/3, (2a2 + a1)/3, (2a2 + a3)/3,

(2a3 + a1)/3, (2a3 + a2)/3, (a1 + a2 + a3)/3〉

THEOREM 1.1. Suppose A = (a1, a2, . . . , an) = (pk1 + t1, pk2 + t2, . . . , pkn + tn) with
gcd(A) = 1, p ∈ Z+, ki ∈ N, 1 ≤ ti ≤ p − 1 for 1 ≤ i ≤ n and n ≥ 2. Let

Tp =

{
(x1, x2, . . . , xn) | 0 ≤ x1, x2, . . . , xn ≤ p − 1, p

∣∣∣∣∣
n∑

i=1

xiti (� 0)
}
.

Then a system of generators of the quotient of the numerical semigroup 〈A〉 by p is
given by

〈A〉
p
=

〈
a1, a2, . . . , an,

1
p

n∑
i=1

xiai

∣∣∣∣∣ (x1, x2, . . . , xn) ∈ Tp

〉
.

The paper is organised as follows. In Section 2, we introduce MacMahon’s partition
analysis and the constant term method following [17, 18]. We calculate RGFp(x) and
obtain a system of generators for 〈3k1 + 1, 3k2 + 2, 3k3 + 2〉/3 and 〈a, a + 1〉/(a − 1) to
illustrate how to use the method. In Section 3, we give the proof of Theorem 1.1.

2. MacMahon’s partition analysis

In algebraic combinatorics, MacMahon’s partition analysis [9] is one of the tools for
solving counting problems connected to linear Diophantine equations and inequalities.
Such problems can be transformed into finding the constant term of an Elliott rational
function, that is, a rational function whose denominator is a product of binomials. This
process has been studied by Andrews et al. using computer algebra [1–3]. Algorithms
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have been developed, such as the Omega package [2], the Ell package [17] and the
CTEuclid package [18]. We will work with symbolic data.

We introduce some basic definitions and results from [17, 18]. We work in the field
K = Q((λ))((x)) of double Laurent series. In this field, every rational function has a
unique Laurent series expansion, so that the following definition makes sense.

DEFINITION 2.1 [17]. Suppose an element in K = Q((λ))((x)) is written as a formal
Laurent series

∑∞
i=−∞ aiλ

i in λ, where ai are elements in Q((x)). Then the constant term
operator CTλ acts by

CTλ
∞∑

i=−∞
aiλ

i = a0.

This definition is extended to CTΛ for a set of variables Λ = {λ1, λ2, . . . , λm} in [17].
Here we only need the case m = 1.

To work with rational functions in K, we need to clarify their series expansions.
A monomial M = xkλ� � 1 is said to be small, denoted M < 1, if k > 0 or if k = 0
and � > 0, and is said to be large, denoted M > 1, otherwise. The series expansion for
1/(1 −M) in K is

1
1 −M

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑
k≥0

Mk if M < 1;

1
−M(1 − 1/M)

= −
∑
k≥0

1
Mk+1 if M > 1.

To obtain the series expansion of an Elliott rational function E, we write E in its proper
form,

E =
L∏n

j=1(1 −Mj)
= L

n∏
j=1

(∑
k≥0

(Mj)k
)
,

where L is a Laurent polynomial and each monomial Mj is small. Note that the proper
form of E is not unique. For instance, 1/(1 − x) = (1 + x)/(1 − x2) are both proper
forms.

2.1. Extracting the constant term. Consider the RGFp(x) of a numerical semi-
group 〈A〉/p, where 〈A〉 = 〈a1, a2, . . . , ak〉, gcd(A) = 1 and p ∈ Z+. We introduce a new
variable λ to replace the linear constraint pn = c1a1 + c2a2 + · · · + ckak, so that

RGFp(x) =
∑
n≥0

d(pn; a1, a2, . . . , ak)xn

=
∑

n≥0,ci≥0

CTλ λc1a1+c2a2+···+ckak−pnxn

= CTλ
1

(1 − x/λp)(1 − λa1 )(1 − λa2 ) · · · (1 − λak )
. (2.1)
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In the third line, we used the sum of a geometric series and the linearity of the CT
operator. This gives a power series in x with the powers of λ ranging from −∞ to ∞.
Thus, we have represented RGFp(x) as the constant term of an Elliott rational function.
It follows that RGFp(x) is also an Elliott rational function, since by [17, Theorem 3.2],
the constant term of an Elliott rational function is still Elliott rational.

REMARK 2.2. By definition, the Frobenius number of 〈A〉/p is the greatest integer m
with RGF(m)

p (0) = 0, that is,

F
( 〈A〉

p

)
= max{n ∈ N | d(pn; a1, a2, . . . , ak) = 0} = max{m ∈ N | RGF(m)

p (0) = 0}.

To extract the constant term, we use partial fraction decompositions of univariate
rational functions, from which the constant term can be read off. To this end, we write

E =
L(λ)∏n

i=1(1 − uiλai )
, (2.2)

where L(λ) is a Laurent polynomial, the ui are free of λ and the ai are positive integers
for all i. Note that we might have uiλ

ai = x−1λ2 > 1, so that (2.2) is not a proper form.

PROPOSITION 2.3 [18]. Suppose that the partial fraction decomposition of E is
given by

E = P(λ) +
p(λ)
λk +

n∑
i=1

Ai(λ)
1 − uiλai

, (2.3)

where the ui are free of λ, P(λ), p(λ) and Ai(λ) are all polynomials, degp(λ) < k, and
deg Ai(λ) < ai for all i. Then

CTλ E = P(0) +
∑

uiλ
ai<1

Ai(0),

where the sum ranges over all i such that uiλ
ai is small in Q((λ))((x)).

We can see that the proposition holds by direct series expansion:

Ai(λ)
1 − uiλai

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ai(λ)
1 − uiλai

CTλ−→ Ai(0) if uiλ
ai < 1;

Ai(λ)
−uiλai (1 − 1/uiλai )

=
λ−ai Ai(λ)

−ui(1 − 1/uiλai )
CTλ−→ 0 if uiλ

ai > 1.

For clarity, we have written the rational function in its proper form before applying the
operator CTλ.

THEOREM 2.4 [18]. Let E be as in (2.3). Then As(λ) is uniquely characterised by

As(λ) ≡ E · (1 − usλ
as ) mod 〈1 − usλ

as〉, degλAs < as, (2.4)

where 〈1 − usλ
as〉 denotes the ideal generated by 1 − usλ

as .
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To compute CTλ E for E as in (2.2) in K, we need to compute

As(0) := A1−usλas E = A1−(usλas )−1 E,

where As(λ) is characterised by (2.4). In this new notation, Proposition 2.3 reads

CTλ E = P(0) +
∑

i

χ(uiλ
ai < 1)A1−uiλ

ai E,

where χ(ε) = 1 if the proposition ε is true and χ(ε) = 0 if ε is false.

THEOREM 2.5 [18]. Let E be as in (2.2). If E is proper in λ, that is, the degree in the
numerator is less than the degree in the denominator, then

CTλ E =
n∑

i=1

χ(uiλ
ai < 1)A1−uiλ

ai E. (2.5)

If E|λ=0 = limλ→0 E exists, then

CTλ E = E|λ=0 −
n∑

i=1

χ(uiλ
ai > 1)A1−uiλ

ai E. (2.6)

Equation (2.6) is a kind of dual of (2.5). Because of these two formulae, it is
convenient to call the denominator factor 1 − uiλ

ai contributing if uiλ
ai is small and

dually contributing if uiλ
ai is large. We also write

CTλ
1

1 − usλas
E(1 − usλ

as ) = A1−usλas E = As(0).

For this notation, we allow as < 0. One can think that only the single underlined factor
of the denominator contributes when taking the constant term in λ.

LEMMA 2.6. If E given by (2.2) is proper in λ, that is, the degree in the numerator is
less than the degree in the denominator, and E|λ=0 = 0, then

n∑
s=1

A1−usλas E = 0.

2.2. Two examples. In this section, we obtain systems of generators for the numeri-
cal semigroups 〈3k1 + 1, 3k2 + 2, 3k3 + 2〉/3 and 〈a, a + 1〉/(a − 1) by calculating their
representation generating functions RGFp(x).

PROPOSITION 2.7. Let A = (a1, a2, a3) = (3k1 + 1, 3k2 + 2, 3k3 + 2), k1, k2, k3 ∈ N,
with gcd(A) = 1. A system of generators of 〈A〉/3 is given by

〈A〉
3
=

〈
a1, a2, a3,

a1 + a2

3
,

a1 + a3

3
,

2a2 + a3

3
,

2a3 + a2

3

〉
. (2.7)
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PROOF. The right-hand side of (2.7) is easily seen to be contained in the left-hand
side. To show that the left-hand side is contained in the right-hand side, we compute
as follows. By (2.1),

RGF3(x) = CTλ
1

(1 − x/λ3)(1 − λ3k1+1)(1 − λ3k2+2)(1 − λ3k3+2)

= CTλ
−1

(1 − x/λ3)(1 − λ3k1+1)(1 − λ3k2+2)(1 − λ3k3+2)
(by Theorem 2.5)

= CTλ
−1

(1 − x/λ3)(1 − xk1λ)(1 − xk2λ2)(1 − xk3λ2)
(by Theorem 2.4)

= CTλ
1

(1 − x/λ3)(1 − xk1λ)(1 − xk2λ2)(1 − xk3λ2)
(by Lemma 2.6)

=
1

(1 − x3k1+1)(1 − xk2−2k1 )(1 − xk3−2k1 )

+ CTλ
1

(1 − x/λ3)(1 − xk1λ)(1 − xk2λ2)(1 − xk3λ2)

+ CTλ
1

(1 − x/λ3)(1 − xk1λ)(1 − xk2λ2)(1 − xk3λ2)
. (2.8)

The second term of (2.8) is

CTλ
1

(1 − x/λ3)(1 − xk1λ)(1 − xk2λ2)(1 − xk3λ2)

= CTλ
1

(1 − xk2+1/λ)(1 − xk1λ)(1 − xk2λ2)(1 − xk3−k2 )
(by Theorem 2.4)

= CTλ
−λx−k2−1

(1 − λ/xk2+1)(1 − xk1λ)(1 − xk2λ2)(1 − xk3−k2 )

= CTλ
λx−k2−1

(1 − λ/xk2+1)(1 − xk1λ)(1 − xk2λ2)(1 − xk3−k2 )
(by Lemma 2.6)

=
1

(1 − xk1+k2+1)(1 − x3k2+2)(1 − xk3−k2 )
+

x−k1−k2−1

(1 − x−k1−k2−1)(1 − xk2−2k1 )(1 − xk3−k2 )
.

Similarly, the third term of (2.8) is

CTλ
1

(1 − xk3+1/λ)(1 − xk1λ)(1 − xk2−k3 )(1 − xk3λ2)
(by Theorem 2.4)

= CTλ
λx−k3−1

(1 − λ/xk3+1)(1 − xk1λ)(1 − xk2−k3 )(1 − xk3λ2)
(by Lemma 2.6)

=
1

(1 − xk1+k2+1)(1 − xk3−k2 )(1 − x3k3+2)
+

x−k1−k3−1

(1 − x−k1−k3−1)(1 − xk3−k2 )(1 − xk3−2k1 )
.

https://doi.org/10.1017/S0004972724000054 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972724000054


434 F. Liu [8]

Therefore, we obtain the representation generating function in the form

RGF3(x)

=
1 + (xk1+1 + xk2+k3+2)(xk2 + xk3 ) + x2k1+2(x2k2 + x2k3 ) + xk1+k2+k3 (xk1+2 + xk2+k3+3)

(1 − x3k1+1)(1 − x3k2+2)(1 − x3k3+2)

=
1 + x(a1+a2)/3 + x(a1+a3)/3 + x(2a2+a3)/3 + x(2a3+a2)/3 + x2(a1+a2)/3 + x2(a1+a3)/3 + x(2a1+a2+a3)/3 + x(a1+2a2+2a3)/3

(1 − xa1 )(1 − xa2 )(1 − xa3 )
.

Since 2a1 + a2 + a3 = (a1 + a2) + (a1 + a3) and a1 + 2a2 + 2a3 = (a1 + a2) + (2a3 +

a2), the power of each term in the series expansion of RGF3(x) is contained in the
right-hand side. This completes the proof. �

PROPOSITION 2.8. Let A = (a, a + 1), a ∈ Z+, a ≥ 3. A system of generators of
〈a, a + 1〉/(a − 1) is given by

〈a, a + 1〉
a − 1

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

〈a + 1
2

,
a + 3

2
, . . . , a − 1, a

〉
if a is odd;〈a

2
+ 1,

a
2
+ 2, . . . , a, a + 1

〉
if a is even.

PROOF. As in the previous proof, we only need to show that the left-hand side is
contained in the right-hand side. By (2.1),

RGFa−1(x) = CTλ
1

(1 − x/λp)(1 − λa)(1 − λa+1)

= CTλ
−1

(1 − x/λa−1)(1 − λa)(1 − λa+1)
(by Theorem 2.5)

= CTλ
−1

(1 − x/λa−1)(1 − xλ)(1 − xλ2)
(by Theorem 2.4)

= CTλ
1

(1 − x/λa−1)(1 − xλ)(1 − xλ2)
(by Lemma 2.6)

=
1

(1 − xa)(1 − x−1)
+ CTλ

1
(1 − x/λa−1)(1 − xλ)(1 − xλ2)

.

The computation of the second term depends on the parity of a. If a is odd, it is

CTλ
1

(1 − x(a+1)/2)(1 − xλ)(1 − xλ2)
=

1
(1 − x(a+1)/2)

(
1 − CTλ

1
(1 − xλ)(1 − xλ2)

)

=
1

(1 − x(a+1)/2)

(
1 − 1

1 − x−1

)
=

1
(1 − x)(1 − x(a+1)/2)

.

Thus, we obtain

RGFa−1(x) =
1 − x − xa + x(a+3)/2

(1 − x)(1 − xa)(1 − x(a+1)/2)
=

1 + x(a+3)/2 + x(a+5)/2 + · · · + xa−1

(1 − xa)(1 − x(a+1)/2)
.
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If instead a is even, the second term is

CTλ
1

(1 − xa/2/λ)(1 − xλ)(1 − xλ2)
= CTλ

−(λ/xa/2)
(1 − λ/xa/2)(1 − xλ)(1 − xλ2)

= CTλ
λ/xa/2

(1 − λ/xa/2)(1 − xλ)(1 − xλ2)

=
1

(1 − x(a+2)/2)(1 − xa+1)
+

x
(1 − x(a+2)/2)(1 − x)

.

Thus, we obtain

RGFa−1(x) =
−x

(1 − x)(1 − xa)
+

1
(1 − x(a+2)/2)(1 − xa+1)

+
x

(1 − x(a+2)/2)(1 − x)

=
1 + (x(a+2)/2 + xa+2)(1 + x + x2 + · · · + xa/2−2)

(1 − xa)(1 − xa+1)
.

The proposition then follows. �

Note that 〈a, a + 1〉/(a − 1) is a half-line numerical semigroup (see [5]). Therefore,
its Frobenius number is given by

F
( 〈a, a + 1〉

a − 1

)
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a − 1
2

if a is odd,

a
2

if a is even.

3. A system of generators of 〈A〉/p

Let A = (a1, a2) = (pk1 + t1, pk2 + t2), 0 ≤ ti ≤ p − 1, p, k1, k2 ∈ Z+ and gcd(A) = 1.
We can compute RGFp(x) for p = 2, 3, 4, 5 as in the proof of Proposition 2.7 and
obtain a system of generators of 〈a1, a2〉/p. The results agree with those in [15,
Proposition 17].

Similarly, for A = (a1, a2, a3), we can obtain RGFp(x) for p = 2, 3. The corre-
sponding systems of generators are given in Table 1. This table illustrates a pattern
summarised in Theorem 1.1. The theorem has a simple direct proof.

PROOF OF THEOREM 1.1. Let B := 〈a1, a2, . . . , an,
∑n

i=1 xiai/p | (x1, x2, . . . , xn) ∈ Tp〉.
This is well defined since (x1a1 + x2a2 + · · · + xnan)/p ∈ Z+ by definition of Tp. Let
A := 〈A〉/p. The containment A ⊇ B is obvious and we need to show that A ⊆ B.

If x ∈ A = 〈A〉/p, then xp = y1a1 + y2a2 + · · · + ynan for some y1, y2, . . . , yn ∈ N.
Each yi is uniquely written as yi = mi p + ri for some mi ≥ 0 and 0 ≤ ri ≤ p − 1. Then
we have x = m1a1 + m2a2 + · · · + mnan + (r1a1 + r2a2 + · · · + rnan)/p and we have
p | (r1a1 + r2a2 + · · · + rnan). By the definition of Tp, (r1a1 + r2a2 + · · · + rnan)/p is
either 0 or an element in {(x1a1 + x2a2 + · · · + xnan)/p | (x1, x2, . . . , xn) ∈ Tp}. In either
case, x ∈ B. Therefore, A ⊆ B. �
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COROLLARY 3.1. Suppose that A = (a1, a2, a3) = (pk1 + t1, pk2 + t2, pk3 + t3) with
p ∈ Z+, ki ∈ N and 1 ≤ ti ≤ p − 1 for 1 ≤ i ≤ 3. If gcd(A) = 1, then a system of
generators of the quotient of the numerical semigroup 〈A〉 by p is given by

〈A〉
p
=

〈
a1, a2, a3,

1
p

(x1a1 + x2a2 + x3a3)
∣∣∣∣∣ (x1, x2, x3) ∈ Tp

〉
,

where

Tp = {(x1, x2, x3) | 0 ≤ x1, x2, x3 ≤ p − 1, p | (t1x1 + t2x2 + t3x3)(� 0)}.

We observe that Theorem 1.1 can be strengthened in the following sense. Suppose
that A = (a1, . . . , ae, ae+1, . . . , an), p | ai for 1 ≤ i ≤ e and p � aj for e + 1 ≤ j ≤ n. Then

〈A〉
p
=

〈a1

p
,

a2

p
, . . . ,

ae

p
,Lp

〉
, (3.1)

where Lp is a system of generators of 〈ae+1, . . . , an〉/p. We only explain why the
left-hand side is contained in the right-hand side because the other containment
is trivial. For any x ∈ 〈A〉/p, there exists xp = y1a1 + y2a2 + · · · + ynan for some
y1, y2, . . . , yn ∈ N and

x = y1
a1

p
+ · · · + ye

ae

p
+

1
p

(ye+1ae+1 + · · · + ynan).

Therefore, x ∈ 〈a1/p, a2/p, . . . , ae/p,Lp〉.

REMARK 3.2. Theorem 1.1 only gives a system of generators of 〈A〉/p, rather than a
minimal system of generators. A minimal system of generators of 〈a1, a2〉/p is given
in [6].

Combining (3.1) and Theorem 1.1, we reobtain the following result.

COROLLARY 3.3 [15, Corollary 18]. Let a1, a2, k1, k2 ∈ Z+ and gcd(a1, a2) = 1. Then

〈a1, a2〉
2

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

〈a1

2
, a2

〉
if a1 = 2k1, a2 = 2k2 + 1,〈

a1, a2,
a1 + a2

2

〉
if a1 = 2k1 + 1, a2 = 2k2 + 1.

Another consequence of Theorem 1.1 is the following result.

COROLLARY 3.4 [15, Corollary 19]. Let a1, a2, k1, k2 ∈ Z+ and gcd(a1, a2) = 1.
If a1 = 3k1 + 1, a2 = 3k2 + 1, or a1 = 3k1 + 2, a2 = 3k2 + 2, then

〈a1, a2〉
3

=

〈
a1, a2,

2a1 + a2

3
,

2a2 + a1

3

〉
.

If a1 = 3k1 + 1, a2 = 3k2 + 2, then

〈a1, a2〉
3

=

〈
a1, a2,

a1 + a2

3

〉
.
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PROOF. If (t1, t2) = (1, 1) or (t1, t2) = (2, 2), then Tp = {(1, 2), (2, 1)}. If (t1, t2) = (1, 2),
then Tp = {(1, 1), (2, 2)}. This completes the proof. �

4. Future work

Let s ∈ N, A = (a1, a2, . . . , ak) and gcd(A) = 1. Komatsu [8] introduced the
s-numerical semigroup defined by 〈A; s〉 = {n ∈ N | d(n; a1, a2, . . . , ak) ≥ s + 1} ∪ {0}
and considered its Frobenius number, called the s-Frobenius number Fs(A) of A.
In other words, Fs(A) is the largest number N satisfying d(N; a1, . . . , ak) ≤ s. These
concepts reduce to the classical one when s = 0. It would be of interest to see if our
methods can be used to compute these more general Frobenius numbers.
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