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Open Problems from 2020 Vision for Dynamics
Conference in Będlewo

ADAM ABRAMS, JAIRO BOCHI, AND DANIJELA DAMJANOVIĆ

1.1 Introduction

This chapter contains a collection of open problems presented during the “2020
Vision for Dynamics” conference held in Będlewo in the fall of 2019. We have
collected open problems presented in the two scheduled problem sessions: those
discussed during the conference talks, and those contributed outside these events.
We are grateful to all contributors for taking part in the preparation of this chapter.
We thank Yakov Pesin for writing Section 1.2.15. We also thank Corinna Ulcigrai
for sharing with us her notes from one of the problem sessions.

1.2 Open Problems

1.2.1 Pierre Berger

Here are two kinds of interesting measures in the phase space for (non-uniformly)
hyperbolic dynamics:

l Measures of maximal entropy;
l Sinai–Ruelle–Bowen or, more generally, Gibbs measures.

The following interesting properties suffice to motivate their studies. In many con-
texts, the measure of maximal entropy is equidistributed on the hyperbolic periodic
points, while the Gibbs measure has its unstable dimension, which coincides with
one of its supports.

Are there similar measures in the parameter space?

For holomorphic families of dynamics of polynomial maps of C, the bifurcation
measure µbiff is the canonical counterpart of the maximal entropy measure: it is
equidistributed on the set of parameters for which all the critical points are strictly
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preperiodic, among other equidistribution properties; see [19, 44, 20] for a sur-
vey. Such a measure can be consistently defined for any properly embedded family
of polynomials. Interestingly, at the µbiff-a.e. parameter the dynamics satisfy the
Collet–Eckmann condition [25, 47].

Problem 1. When is it possible to define a counterpart of µbiff for the real family of
dynamics of the interval?

Let us also recall the following:

Problem 2. Find a counterpart of the bifurcation measure for surface mappings (with
similar equidistribution properties).

By a theorem of Makarov [37], the bifurcation measure for the quadratic family
has Hausdorff dimension 1 and its support is the Mandelbrot set. Nevertheless, by
Shishikura’s theorem [46], the Hausdorff dimension of the Mandelbrot set is 2.

Problem 3. Define a natural measure on the parameter space of the quadratic family
supported by the Mandelbrot set and with full Hausdorff dimension (= 2).

A solution of this problem would lead to a parametric counterpart of the
Gibbs measure. This might be helpful for studying the Lebesgue measure of the
Mandelbrot set (which is conjecturally 0 following Shishikura [46]).

1.2.2 Jairo Bochi

Problem 4. Is there a C∞ conservative (i.e., volume-preserving) Anosov diffeomorphism
of T3 with a 2-dimensional unstable manifold whose top Lyapunov exponent (with respect
to volume) is strictly bigger than the top Lyapunov exponent of the linear Anosov map in
the same homotopy class?

By a result of Brin, Burago, and Ivanov [7], the unstable bundle cannot admit a
dominated splitting.

Added in proof: The question was recently answered affirmatively by Carrasco
and Saghin [10].

1.2.3 Danijela Damjanović

The questions here aim at more precise understanding of what happens with sym-
metry groups under perturbations. Typically they should not be preserved, but can
one describe precisely what happens with symmetry groups after perturbation?
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For a smooth diffeomorphism f ∈ Diff∞(M) of a compact smooth manifold
M , let Z∞( f ) = {g ∈ Diff∞(M): g ◦ f = f ◦ g} denote the smooth central-
izer of f in Diff∞(M). Generically in C1 topology, it was conjectured by Smale
and proved by Bonatti, Crovoisier, and Wilkinson [6] that Z∞( f ) contains only
powers of f . However, for algebraic transformations, the (algebraic) centralizer
can be large. One class of such examples is ergodic automorphisms of nilman-
ifolds. Such automorphisms are necessarily partially hyperbolic since ergodicity
of a nilmanifold automorphism is given by ergodicity of the induced map of the
abelianization, and ergodic toral automorphisms are always partially hyperbolic.
Let f0 be such an ergodic (partially hyperbolic) automorphism of a nilmanifold.
Centralizers of such maps within the space of automorphisms can often be very
well understood by using algebraic methods, especially under extra conditions of
irreducibility, and predominantly these centralizers have rank greater than 2. In
particular, these automorphisms are very atypical in the sense of Smale.

Problem 5 (Local centralizer classification). Let f0 be an ergodic (partially hyperbolic)
automorphism of a nilmanifold. Let f be a C1-small smooth perturbation of f0. Can we
give a finite list of possibilities for Z∞( f ) for every f in a small C1 neighborhood of f0 and
show that every possibility on this list actually happens?

If the centralizer Z∞( f ) for a perturbation f is (up to a finite index subgroup)
isomorphic to Zaff( f0), and Zaff( f0) is a group containing at least Z2, then we can
hope in some cases that Z∞( f ) being large can give some more information on f .
To make the question more precise, we may even assume that the action Z∞( f ) is
homotopic to the linear part of Zaff( f0).

Problem 6 (Local centralizer rigidity). Assume that Z∞( f ) is homotopic to the linear part
of Zaff( f0). For which f0 does this imply that f is C∞ conjugate to f0?

For some initial steps in these directions we refer the reader to [17] and ref-
erences therein, and [28]. One of the results proved in [17] is the following
dichotomy:

Theorem 1 ([17]). Let f0 be the time-1 map of the geodesic flow on a closed, negatively
curved, locally symmetric manifold. The centralizer Z∞( f0) is R. Let f be a C1, volume-
preserving perturbation of f0. Then Z∞( f ) is either virtually Z or it contains a smooth flow
and is virtually R.

Related to this, we ask the following:

Problem 7. Is it true that a sufficiently small perturbation of any volume-preserving
Anosov flow either has a virtually trivial centralizer, or embeds in a smooth flow?
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1.2.4 Manfred Denker

Problem 8. In cases where a normal conditional local limit theorem holds, prove conver-
gence of the local time of an integer-valued function to the local time of Brownian motion
(at least if the dynamics is Gibbs–Markov).

Background information can be extracted from [18], which may be seen as a first
attempt to describe local times in dynamical systems.

Problem 9. Can one formulate a suitable theory for the local time for real-valued functions
and in the case of flows?

A particular case in this problem is that of geodesic flows.

1.2.5 Bassam Fayad

The question of existence of a smooth, area-preserving diffeomorphism of the disc
that is mixing with zero (metric or topological) entropy was raised by Fayad and
Katok in [23].

Problem 10. Prove that a conservative (area-preserving) transitive diffeomorphism of the
disk with zero topological entropy is not mixing.

Problem 11. Does there exist a conservative diffeomorphism of the disk which has zero
topological entropy but positive metric entropy?

Problem 12. On interval maps, there exists a dichotomy: an interval map on [0, 1] that
fixes the boundary has growth that is either exponential or below n2. Is this true for zero-
entropy maps on surfaces?

The next question is about affine parabolic abelian actions.

Problem 13. Take two parabolic commuting affine maps of the torus: f = A + α and
g = B + β. Their linear parts A and B are given by commuting unipotent matrices in
SL(n,Z), and α and β are in Rn. Consider the Z2 action generated by f and g on the torus
Tn. When is such an action locally rigid? More precisely, do the local rigidity results on
commuting perturbations of rigid translations on the torus (which follow Moser’s result
[38] on the circle, such as [15], [49]) extend to some of these parabolic actions?

Progress has been made toward this problem under extra conditions on the linear
part of the action, namely when one of the action generators is a step 2 parabolic
map. Then a form of local rigidity is proved by Damjanović, Fayad, and Saprykina
in [16].
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1.2.6 Giovanni Forni

Problem 14 (Katok). Prove that there exists a Gδ dense set of polygons with weakly mixing
billiard flow. Prove that there exists a mixing polygon.

Kerckhoff, Masur, and Smillie [32] proved ergodicity for a Gδ dense set of poly-
gons. To prove mixing, one suggestion is to look at an arc of a circle around a point,
consider its orbit, and see whether the push-forward of circles equidistributes on
the surface. This has a fairly simple proof for the torus, but for other rational poly-
gons the argument does not work: when the surface has singularities, the arcs at
time T are expected to have length 1/T .

The result by Chaika and Hubert [12] shows that for almost all translation sur-
faces there is a sequence of times for which the circle equidistributes, but the
sequence depends on the point, so the result does not imply a (relative) weak mixing
result for the geodesic flow on the translation surface.

Recently, the first part of the problem (on weak mixing) has been solved in the
preprint [11].

Problem 15. Prove (polynomial) bounds on the decay of correlations for time-changes of
higher step nilflows.

Mixing with polynomial decay of correlations for smooth observables is known
only in a few cases. For results about rate of mixing, see Fayad [21] for Kochergin
flows, Forni–Ulcigrai [24] for time changes of horocycle flows, Forni–Kanigowski
[23] for Heisenberg nilflows, and Ravotti for surface locally Hamiltonian flows
with non-degenerate saddles (this case has logarithmic decay).

To get precise decay of correlations one needs an estimate for the shear, espe-
cially one needs lower bounds for ergodic integrals of the “roof” function, namely
the time-change function. Such estimates are hard to establish for higher-step
nilflows.

1.2.7 Anton Gorodetski

The following problem was popularized by logician Matt Foreman. The general
question is

Can one prove that the set of dynamical systems is impossible to classify?

More precisely:

Problem 16. Consider Diff∞(M) with dim M ≥ 2. Then

Diff∞(M)× Diff∞(M)
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is a complete metric space. Let E ⊆ Diff∞(M) × Diff∞(M) be the set of pairs of
diffeomorphisms that are topologically conjugate. Can you prove that E is not Borel?

If the answer is yes, then this would imply that Diff∞(M) is not classifi-
able, in the sense that there is no “countable” way to determine whether two
diffeomorphisms are conjugate; see [22] for details.

The next problem concerns the “geometry” of hyperbolicity in a space of dynam-
ical systems. The perception of the “size” of hyperbolicity has changed over the
decades; see the figure.

Let f : M → M be a smooth dynamical system (e.g., an irrational rotation of
the circle). Let At : M → SL(2,R) be a typical 1-parameter family of cocycles (the
blue curve in the following figure). Let

6 = {t : ( f , At) is not uniformly hyperbolic}

be the intersection of this curve with the set of (parameters of) non-hyperbolic
cocycles.

For any specific dynamical system one can ask the following question:

Problem 17. What is the structure of the set6 for a typical 1-parameter family of cocycles
over a given dynamical system? Does it have to be a finite number of intervals? A Cantor
set? A Cantorval? In particular, in the case of SL(2,R) cocycles over an irrational rotation
of the circle, is it true that typically the set 6 is either empty or a Cantor set of positive
measure?

The problem is motivated by spectral theory of ergodic discrete Schrödinger
operators, where the family of Schrödinger cocycles is parameterized by energy,
and due to Johnson’s theorem [31] the set 6 corresponds to the spectrum of
an operator. In the case of irrational rotation of the circle, the problem can be
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considered as a dynamical analog of the Ten Martini Problem in spectral theory
[3]. Also in that context, the case of C0 cocycles over a strictly ergodic dynamical
system (e.g., odometer) was studied in [1].

1.2.8 Colin Guillarmou

Let g0 be a fixed metric of negative curvature on M. Denote by C the set of free
homotopy classes. For c ∈ C, define marked length spectrum Lg : C → R+ that
maps c to the length of the shortest geodesic γ g

c in the class c.
Define Lg : C → R+ by

Lg(c) := Lg(c)/Lg0(c),

where c ∈ C.
Consider the map

8 : g ∈ C∞(M ; S2
+

T∗M) 7→ Lg ∈ L∞(C).

Problem 18. What can be said about the range of 8? Is the range a submanifold in some
appropriate sense?

1.2.9 Federico Rodriguez Hertz

Let X be a compact manifold (or a finite CW-complex, or any space that has a nice
finite-dimensional homology theory). Let T : X → X be a homeomorphism. We
say a matrix A ∈ GL(n,R) is quasi-unipotent if all eigenvalues have modulus one.

Problem 19. If T is minimal, is T∗ : Hk(X )→ Hk(X ) quasi-unipotent for all k?

Using results of Mañé , it is known that if T∗ is hyperbolic, then T is not minimal.
But if T∗ is partially hyperbolic only, this is unknown.

Note that the minimal positive entropy example of Herman does not help here,
because it is homotopic to the identity.

1.2.10 Steven Hurder

A Cantor action (X, G,8) is called stable if the chain
{

K̂` : ` ≥ 1
}

is bounded,
that is, if there exists `0 so that K̂` = K̂`+1 for ` ≥ `0. The action is called wild if
the chain

{
K̂` : ` ≥ 1

}
is unbounded.

A monodromy action (X, G,8) is locally quasi-analytic (LQA) if there exists
ε > 0 so that, if U adapted and diamX(U) < ε, then for all clopen V ⊂ U we have

8(g)
∣∣
V = Id =⇒ 8(g)

∣∣
U = Id for all g ∈ GU ,

that is, the action of H8
U on U is topologically free.
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Problem 20. How to classify Cantor actions of a finitely generated nilpotent group G? Can
one use invariants of the associated cross-product C∗-algebra? Is a classification possible
in terms of the representations of G?

Problem 21. If an action is wild, when is the action non-LQA?

Problem 22. For which number fields and polynomials f is the action of the absolute
Galois group Galarith( f ), on the boundary of the tree of iterated solutions, non-LQA?

Problem 23. If G is a higher-rank lattice and the action is effective, must it be stable?

Problem 24. If G is a higher-rank lattice and the action is wild, must it be flat wild?

For more details on Cantor actions, we refer the reader to [29], [30].

1.2.11 Yulij Ilyashenko

Consider diffeomorphisms of a closed manifold. An attractor is “thick” if both the
attractor and its complement are of positive measure.

Problem 25 (Genericity of existence of thick attractors – simplified version). Is there an
open set in Diff (M) such that every f in this set has a thick attractor?

There is a theorem from the 1940s saying that in the space of diffeomorphisms
of a manifold with boundary there is an open set of diffeomorphisms that preserve
the boundary and these diffeomorphisms have thick attractors. So, genericity of
existence of thick attractors is established for manifolds with boundary.

There are at least three kinds of “attractors”:

1. The maximal attractor (or traditional attractor) for a map f : X → X is
∞⋂

n=0

f n(X ).

This idea of an attractor is not reasonable for some maps. For example, a map of
circle with one semi-stable (parabolic) fixed point could be considered to have
that point as an attractor, but not with this definition.

2. If X is a metric space, the Milnor attractor of f : X → X is the minimal closed
set with the property that

d( f nx, A)→ 0 for a.e. x.

The point of the definition is that A is the biggest global attractor.
3. There are also statistical attractors.
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Problem 26. Is the non-coincidence of different definitions of attractors generic? To what
extent is the situation of having one kind of attractor be strictly smaller than another
generic?

Recently, Ivan Shilin proved in [45] that non-coincidence of maximal and Milnor
attractor is topologically generic in some domain.

Problem 27. Is the coexistence of an infinite number of attracting periodic orbits “truly
prevalent”?

Newhouse showed coexistence of an infinite number of attracting periodic orbits
in some open set of diffeomorphisms. Pierre Berger found open sets of dynamics
where coexistence of an infinite number of attracting periodic orbits is typical in
the sense of Arnold. But this notion of typicality has some drawbacks: if you apply
it to Rn, then there are metrically typical subsets of Rn with zero measure. The
strongest notion of typicality is called prevalence and was introduced by Hunt,
Sauer, and Yorke [43].

1.2.12 Raphaël Krikorian

Problem 28. Take a twist real-analytic (Cω) symplectic diffeomorphism of an annulus
with htop( f ) = 0. Does it follow that (up to a finite quotient) f is the time-1 map of a
real-analytic flow (as in the figure)?

The following question is related to the problems stated in Section 17. Consider
quasi-periodic cocyles on Td

×SL(2,R) given by (x, y) 7→ (x+α, A(x)y). A cocycle
is non-uniformly hyperbolic (NUH) if it has nonzero Lyapunov exponents. A cocy-
cle is almost reducible if it cannot be conjugated to a constant but you can come
arbitrarily close:

(·, Bn) ◦ (α, A) ◦ (·, Bn)−1
→ (α, const).

A cocycle is stable if you cannot approximate it by NUH cocycles.

Problem 29. Does stable imply almost reducible?
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Next problem is asking about possible generalization of the Herman–Yoccoz
theorem to tori of any dimension.

Recall the Herman–Yoccoz theorem on T. Let f : T→T be orientation-
preserving and smooth diffeomorphism of the circle. We can define rotation
number ρ( f ). By Denjoy’s theorem, since f is at least C2, we know that, if
ρ( f ) is irrational, then f is topologically conjugate to rotation by ρ( f ). The
Herman–Yoccoz theorem says that if f is smooth and ρ( f ) is Diophantine, then
the conjugacy h is smooth.

The following question concerns generalization of the Herman–Yoccoz theorem
to f : Td

→ Td with d ≥ 2.

Problem 30. Suppose f ∈ Diff ∞0 (Td) is homotopic to the identity and is conjugate to a
translation Tα by vector α via a homeomorphism h. If α is Diophantine, is h necessarily
smooth?

A local result is that this is true if | f − Tα| < ε(α). The semi-local version would
be to have ε not depending on α, but this is not known.

1.2.13 François Ledrappier

Let M be a Banach manifold, f : M→M be a diffeomorphism, and let µ be an
invariant probability measure with compact support. Assume that

∫
log+ ‖Dxf ‖

dµ(x) is finite. Then, by the subadditive ergodic theorem,

1

n
log ‖Dxf

n
‖ → some λ µ-almost everywhere.

Problem 31 (Katok, 1987). Does λ = 0 imply hµ( f ) = 0?

When f : M → M is a C1-diffeomorphism of a compact Riemannian manifold
and µ is an f-invariant probability measure on M , the Ruelle inequality gives an
upper bound on entropy hµ( f ) in terms of Lyapunov exponents, which in particular
implies that the answer to the preceding question is yes in this case.

When M is finite-dimensional but non-compact, F. Riquelme in [42] gave an
example where f is a diffeomorphism of M and µ is a finite f -invariant measure
such that λ = 0, but hµ( f ) > 0; this example satisfies the integrability condition,
but the support of µ is non-compact.

P. Thieullen in his PhD thesis [48] showed an estimate on entropy which implies
that the answer to this question is yes in the case of Banach manifolds, under extra
compactness assumptions (when the quasi-compactness exponent is negative).
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1.2.14 Mariusz Lemańczyk

Problem 32 (Katok, 2004 or earlier). Is it true that the von Neumann flows have finite
multiplicity?

A von Neumann flow is a special flow over a rotation in which the roof function
has finitely many discontinuities and the sum of jumps is not equal to zero. These
von Neumann flows are now known to have a variation of Ratner’s property.

Let {Tt}t∈R be a flow with Ratner’s property. The essential centralizer of such a
flow is defined as C(Tt)/{Tt}t∈R, where C(Tt) is the total centralizer in the space of
all automorphisms of the given measure space.

Problem 33. What is the essential centralizer of a flow with Ratner’s property? Is it always
finite? (Lemańczyk and Kanigowski [33] proved it is at most countable.)

It is expected that the essential centralizer of flows with Ratner’s property is not
always finite.

Remark: Unipotent flows in SL(2) have Ratner’s property, but in SL(3) they do
not, essentially because their homogeneous centralizer is a group larger than the
flow itself. They do have the generalized shearing property, namely that the fastest
relative motion is along the same direction as the centralizer of the flow.

1.2.15 Yakov Pesin

I state and discuss here two long-standing open problems in smooth ergodic theory
related to genericity of diffeomorphisms with nonzero Lyapunov exponents. They
first appeared in [39] and were also mentioned in [4, 14, 40].

Let M be a compact, smooth Riemannian manifold without boundary and f a
volume-preserving diffeomorphism of M . Recall that given a point x ∈ M and a
tangent vector v ∈ TxM , the Lyapunov exponent χf (x, v) at x in the direction of v is
given by

χf (x, v) := lim
n→∞

1

n
log ‖df n

x v‖, x ∈ M , v ∈ TxM .

Denote by µ the Riemannian volume on M and by Diff r(M ,µ) the space of all
Cr volume-preserving diffeomorphisms on M . We say that a diffeomorphism g ∈
Diff r(M ,µ) has nonzero Lyapunov exponents on a set A = A(g) ⊂ M of positive
(respectively full) volume if

1. µ(A) > 0 (respectively, µ(A) = 1);
2. for µ-almost every x ∈ A (with respect to volume) and every v ∈ TM one has
χg(x, v) 6= 0;

3. there are v1, v2 ∈ TxM such that χg(x, v1) < 0 and χg(x, v2) > 0.
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Problem 34. Let f be a C2 volume-preserving diffeomorphism of M. Assume that f has
nonzero Lyapunov exponents on a set of full volume. Then there exists a neighborhood
U ⊂ Diff 2(M ,µ) of f and a Gδ subset B ⊂ U such that every g ∈ B has nonzero Lyapunov
exponents on a set A = A(g) ⊂ M of positive volume.

Problem 35. Let f be a C2 volume-preserving diffeomorphism of M (possibly with some
zero Lyapunov exponents on a set of positive or even full volume). Then arbitrarily close to
f in Diff 2(M ,µ) there is a diffeomorphism g, which has nonzero Lyapunov exponents on a
set A = A(g) ⊂ M of positive volume.

Remark 1. The requirement that the map f is of class C2 can be relaxed by assum-
ing that f is of class C1+α, namely it is of class C1 and the differential dfx is Hölder
continuous in x. It is, however, crucial that f is not simply of class C1 due to the
following two results:

1. On any compact surface there is a dense Gδ subset U ⊂ Diff 1(M ,µ) such
that any f ∈ U is either (1) Anosov (and is ergodic) or (2) has zero Lyapunov
exponents on a set of full volume; see [5].

2. On any compact manifold there is a dense Gδ subset U ⊂ Diff 1(M ,µ) such that
any f ∈ U is either (1) non-uniformly hyperbolic (and is ergodic; in particular,
f has nonzero Lyapunov exponents on a set of full volume) or (2) has zero
Lyapunov exponent; see [27] for the case dim M = 3 and [2] for the general
case.

Remark 2. In Problem 1, while the map f is assumed to have nonzero Lyapunov
exponents on a set of full volume, one should expect its small perturbations to
have nonzero Lyapunov exponents only on a set of positive (not necessarily full)
volume. This is due to a phenomenon known as essential coexistence; see [14].
More precisely, a map f is said to exhibit an essential coexistence of regular and
chaotic behavior if

1. M can be split into two invariant disjoint Borel subsets A and B of positive
volume – the chaotic and regular regions for f ;

2. for almost every x ∈ A and every v ∈ TxM the Lyapunov exponent χf (x, v) 6= 0;
3. for every x ∈ B and every v ∈ TxM the Lyapunov exponent χf (x, v) = 0;
4. f |A is ergodic.

The entropy formula gives that htop( f |A) > 0 and the Margulis–Ruelle inequality
implies that htop( f |B) = 0.

Essential coexistence is said to be of type I if the set A is dense in M and of type
II otherwise. In the former case the regular and chaotic regions for f cannot be
topologically separated. The essential coexistence phenomenon is an obstruction
to having nonzero Lyapunov exponents on a set of full volume.
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The concept of essential coexistence of type I was inspired by the work of
Cheng–Sun [13], Herman [26], Xia [50], and Yoccoz [51], who have shown
that on any manifold M and for any sufficiently large r one has what can be
regarded as a discrete version of the classical KAM theory phenomenon in the
volume-preserving category – there are open sets of volume-preserving Cr dif-
feomorphisms of M all of which possess positive volume sets of codimension-1
invariant tori; on each such torus the diffeomorphism is C1 conjugate to a Dio-
phantine translation; all Lyapunov exponents are zero at every point in any invariant
torus. The set of invariant tori is nowhere dense and has positive volume.

Examples of essential coexistence of type II can be found in works of Przytycki
[41] and of Liverani [34], where they constructed surface diffeomorphisms with
nonzero Lyapunov exponents such that some of their arbitrary small perturbations
have elliptic islands.

1.2.16 E. Arthur Robinson, Jr.

The flow corresponding to the substitution {a → abbb, b → a}, suspended by
its left Perron–Frobenius eigenvector, has purely singular diffraction spectrum. We
can think of this as a tiling (or set of tilings) of the real line by intervals whose
lengths are 1 and the Perron–Frobenius eigenvalue.

Problem 36. Does this flow actually have purely singular dynamical spectrum? (Is the
measure of maximal spectral type singular to Lebesgue?) What about the spectrum of the
discrete substitution {a→ abbb, b→ a} itself?

Note that the measure of maximal spectral type is continuous (except for the sin-
gle atom corresponding to constant functions) because the flow is weakly mixing.
However, it cannot be purely absolutely continuous (because no substitution with
finite local complexity can be strongly mixing).

Showing that the dynamical spectrum equals the diffraction spectrum would
amount to showing that a function supported on a set near the tile endpoints of
the tiles has maximal spectral type.

Remark: This problem has now essentially been solved by Bufetov and
Solomyak; see [8]. See also [9], which deals with the case of discrete substi-
tutions.

Problem 37. Is the Conway–Radin pinwheel tiling strongly mixing or not? It is easily
shown to be weakly mixing. Is it topologically mixing?
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Problem 38. Is there a general approach to prove a primitive Hilbert cube substitution is
uniquely ergodic?

Problem 39. Is there some kind of Markov partition for a geodesic flow on a compact
surface of constant negative curvature that will make the horocycle flow into an infinite
local complexity tiling substitution? Can this be done for Anosov flows in general?

Note that in the case of finite local complexity tiling substitutions, there is always
a Markov partition hiding in the background, often for an Anosov diffeomorphism,
but in general for a “Smale space” in the terminology of Putnam. For example,
Penrose tilings come from looking at a Markov partition for a hyperbolic auto-
morphism of T4 restricted to its 2-dimensional stable manifold. Conversely, every
Smale space gives rise to a tiling substitution (at least if we allow for disconnected
tiles).

We know that in case d> 2 Markov partitions for hyperbolic toral automor-
phisms “usually” have fractal boundaries. (The Penrose case mentioned earlier
avoids this because it is essentially a product of two 2-dimensional automor-
phisms.)

Problem 40. When does a hyperbolic toral automorphism have a Markov partition with
connected partition elements? When does the resulting tiling have finite local complexity?

1.2.17 Klaus Schmidt

The questions raised here are related to homoclinic points for abelian actions. We
begin by looking at a few examples.

Example 1. The matrix
(

0 1
1 1

)
induces a map f on T2. The eigenlines of the matrix

induce two f -invariant foliations with dense leaves on the torus. Each point x where
these leaves intersect gives lim|n|→∞ f nx = 0 but will deviate significantly from 0
for many values of n.

Now suppose we have another hyperbolic toral automorphism g that com-
mutes with f . Then f and g generate a Z2 action α on the torus. Given a n =
(n1, n2) ∈ Z2, consider αn

= f n1gn2 ∈Aut(T2). We say that x is a homoclinic point if
lim‖n‖→∞ αnx = 0.

If a Z2 action by automorphisms of the torus is higher-rank, there are no nonzero
homoclinic points. Also, higher-rank actions have zero action-entropy.

Example 2. Ledrappier’s example: the shift-invariant subspace X ⊂ (Z/2Z)(Z2)

given by

X =
{

(xk,`) : xk,` + xk+1,` + xk,`+1 ≡ 0 mod 2 for all k, `
}

.
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There are no homoclinic points for the multi-dimensional shift σ on X (the n-th
coordinate of σm(x) is defined as xm+n).

Example 3. If we replace the alphabet Z/2Z with the circle T = R/Z, but keep
the same rule, we get a large space for X . (If we fix one row we can uniquely fill
in one half of the plane.) This action has actually positive entropy; see [35] for the
entropy calculation. Also, this action has interesting homoclinic points. Moreover,
it also has so-called “summable homoclinic points” (SHP), meaning here that the
conference to 0 happens at a reasonable speed (not exponential decay but in `1).
See [36] for existence of SHP.

Example 4. We can also consider the following generalizations of Ledrappier’s
example. Let

Xf = ker
(

f (σ )
)
,

where, for example, f (σ ) = Id+σ (1,0)
+σ (0,1) for f = 1+z1+z2. For the following

Laurent polynomials, we have

1+ z1 + z2 has SHP,

3− z1 − z−1
1 − z2 − z−1

2 does not have homoclinic points, no SHP,

4− z1 − z−1
1 − z2 − z−1

2 does have homoclinic points, has SHP,

5− z1 − z−1
1 − z2 − z−1

2 does have homoclinic points.

The existence of SHP is the measure of degree of non-expansiveness of the shift
on Xf . The shift is expansive if and only if f is a Laurent polynomial seen as an
element of `1(Z2) is invertible.

Expansiveness is equivalent to

U( f ) =
{

c ∈ T2 : f (c) = 0
}

being non-empty. The existence of SHP is equivalent to dim U( f ) ≤ d − 2.
Why should we be interested in the existence of SHP? Firstly, there are examples

where the existence of SHP is the only way of proving certain dynamical properties,
for example, a very strong version of specification. Also, the existence of SHP
implies positive entropy.

Problem 41. How can we prove properties such as the ones just mentioned, without using
summable homoclinic points?
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