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Abstract. We study the equidistribution of orbits of the form b
a1(n)
1 · · · bak(n)k � in a

nilmanifold X, where the sequences ai(n) arise from smooth functions of polynomial
growth belonging to a Hardy field. We show that under certain assumptions on the growth
rates of the functions a1, . . . , ak , these orbits are equidistributed on some subnilmanifold
of the space X. As an application of these results and in combination with the Host–Kra
structure theorem for measure-preserving systems, as well as some recent seminorm
estimates of the author for ergodic averages concerning Hardy field functions, we deduce a
norm convergence result for multiple ergodic averages. Our method mainly relies on an
equidistribution result of Green and Tao on finite segments of polynomial orbits on a
nilmanifold [The quantitative behaviour of polynomial orbits on nilmanifolds. Ann. of
Math. (2) 175 (2012), 465–540].
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1. Introduction and main results
1.1. History and main goals. In recent years, there has been an active interest in
determining the limiting behaviour of the multiple ergodic averages

1
N

N∑
n=1

f1(T
a1(n)x) · · · fk(T ak(n)x) (1)

for various sequences a1(n), . . . , ak(n) of integers, where T is an invertible measure-
preserving transformation acting on a probability space (X, X , μ) and f1, . . . , fk are
functions in L∞(μ). Through the breakthrough work of Furstenberg [8], which delivered
a new proof of Szemerédi’s theorem using tools from ergodic theory, it has been apparent
that the analysis of the averages in equation (1) has noteworthy applications to number

https://doi.org/10.1017/etds.2023.68 Published online by Cambridge University Press

http://dx.doi.org/10.1017/etds.2023.68
mailto:kon.tsinas@gmail.com
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/etds.2023.68&domain=pdf
https://doi.org/10.1017/etds.2023.68


1964 K. Tsinas

theory and combinatorics. In particular, we now have substantial generalizations of
Szemerédi’s theorem, some of which have not been demonstrated with approaches other
than the use of ergodic theory.

An integral tool in verifying convergence of the averages in equation (1) is the structure
theorem of Host and Kra [11], which in multiple cases reduces the above problem to study-
ing rotations on particular spaces with algebraic structure, which are called nilmanifolds
(see [12] for a full presentation of the theory). A nilmanifold is a homogeneous space
X = G/�, where G is a nilpotent Lie group and � is a discrete cocompact subgroup. The
study of nilmanifolds is essential due to its ties to ergodic theory mentioned above, as well
as the numerous applications to combinatorics and number theory.

In this article, our central problem is the study of the distribution of orbits in a
nilmanifold along sequences that arise from smooth functions with polynomial growth.
We suppose that our functions are elements of a Hardy field (for the definition of a Hardy
field, we direct the reader to §2). The benefit of working within a Hardy field is that certain
‘regularity’ properties of the derivatives of a function, which are vital in several parts of
our proofs, can be extrapolated from a simple growth condition on the initial function. For
instance, a condition like equation (P) below imposes multiple pleasant properties on the
derivatives of a function in H.

The field of logarithmico-exponential functions is the prototypical example of a Hardy
field. It is defined as the collection of functions formed by a finite combination of the
operations +, −, ·, ÷, exp, log and composition of functions acting on a real variable t
(which takes values on some half-line [x, +∞)) and real constants. The fact that it is a
Hardy field was established in [10]. Our results are most interesting for the Hardy field LE
and one can keep this particular case in mind throughout the article. In addition, we refer
the reader to Appendix B for the definition and properties of nilmanifolds, which appear
in the subsequent discussion and the main theorems.

Due to its connections to ergodic theory and combinatorics, the investigation of equidis-
tribution properties along Hardy sequences has been carried out several times throughout
the literature. First of all, we recall a fundamental result concerning the equidistribution of
Hardy sequences, which corresponds to the basic case when the underlying nilmanifold is
a finite-dimensional torus. In particular, we restate here [2, Theorem 1.3].

THEOREM A. (Boshernitzan) Let the function a ∈ H have polynomial growth. Then, the
sequence a(n) is equidistributed mod 1 if and only if

lim
t→+∞

|a(t)− p(t)|
log t

= +∞ for any polynomial p(t) ∈ Q[t]. (P)

Applying Weyl’s equidistribution theorem and the previous result, we can effortlessly
show that if the functions a1, . . . , ak have polynomial growth and each non-trivial
linear combination of them stays logarithmically away from real multiples of integer
polynomials, then the sequence (c1a1(n), . . . , ckak(n)) is equidistributed on Tk for all
non-zero real numbers c1, . . . , ck . Practically, Theorem A can be used to examine orbits on
Tk along the sequences a1(n), . . . , ak(n) on Tk , answering our problem in the case when
the nilmanifold X is any finite-dimensional torus (the abelian case). Another corollary
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of Theorem A is that if a(t) ∈ H stays logarithmically away from real multiples of
integer polynomials, then the sequence �a(n)� a is equidistributed on T for all irrational
a ∈ (0, 1). This phenomenon (namely, that equidistribution properties of a(n) yield
information for the equidistribution properties of �a(n)�) will be present throughout the
article, so the reader can view statements involving a(n) in place of �a(n)� as being
morally the same.

Suppose now that we are given a nilmanifold X = G/� (for the definitions of all terms
below, see Appendix B) and assume that the group G is connected and simply connected.
We are interested in the behaviour of the sequence

v(n) = (b
�a1(n)�
1 �, . . . , b�ak(n)�

k �), (2)

where b1, . . . , bk are elements of the group G and a1, . . . , ak are Hardy field functions.
Notice that this is a sequence on the product nilmanifold Xk . The most fundamental
equidistribution result is due to Leibman, who showed that if the functions a1, . . . ak
are integer polynomials, then we have equidistribution on a ‘subspace’ of X (called
a subnilmanifold), as long as we restrict the values of n to appropriate arithmetic
progressions.

More specifically, we present the following theorem [13, Theorem B], an application of
which (on the nilmanifold Xk) implies the claim in the previous paragraph.

THEOREM B. (Leibman) Let X = G/� be a nilmanifold and x ∈ X. Consider the
sequence

g(n) = b
p1(n)
1 · · · bpk(n)k (3)

in G, where b1, . . . , bk ∈ G and p1, . . . , pk are polynomials with integer coefficients.
Then, there exists Q ∈ N, a closed, connected and rational subgroup H of G and points
x0, . . . , xQ−1 ∈ X, such that for every r ∈ {0, . . . , Q− 1}, the sequence g(Qn+ r)x is
equidistributed on the subnilmanifold Hxr .

A noteworthy corollary of the previous theorem is that if F : X → C is a continuous
function, then the averages

1
N

N∑
n=1

F(g(n)x)

converge pointwise for all x ∈ X. This can be used in conjunction with the Host–Kra
structure theory (see Theorem E in §2) to infer that the averages in equation (1) converge
in norm, when the sequences a1(n), . . . , ak(n) are integer polynomial sequences. In
addition, we deduce (as a corollary of [13, Theorem C] in the same paper) that if G is
connected, the equidistribution of the sequence g(n)� is controlled by the projection of
g(n)� on the ‘abelianization’ G/[G, G]� of G/�, which is a finite-dimensional torus
called the horizontal torus of X.

A major improvement of the above theorem was established by Green and Tao in [9],
who characterized the behaviour of polynomial orbits on nilmanifolds in quantitative
language. (While their theorem was established under the stronger hypothesis that the
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underlying Lie group G is connected and simply connected, one can typically reduce to this
case in many applications.) This theorem has notable applications in number theory and
will be undoubtedly vital in this paper. Like Leibman’s theorem in [13] that we mentioned
above briefly, this theorem highlights the relation of the equidistribution properties of
a polynomial sequence (see Definition B.3) on a nilmanifold with its projection to the
horizontal torus. Since there are many technical terms that are required to state this
theorem, we have presented its statement in Appendix B along with a sample corollary
when the nilmanifold is a torus, as well as all of the required background on the quantitative
equidistribution theory on nilmanifolds.

Now, let us consider the more general case when the sequences a1(n), . . . , ak(n)
appearing in equation (2) are not just integer polynomials, but functions that belong to
a Hardy field H. In the case k = 1, Frantzikinakis established [4] that if the function a(t)
satisfies

lim
t→+∞

|a(t)− cp(t)|
log t

= +∞ for any polynomial p(t) ∈ Z[t],

then the sequence b�a1(n)�x is equidistributed on the orbit Y = {bnx : n ∈ N} of b for any
b ∈ G and x ∈ X. In the case of general k, he also established the following theorem in the
same paper.

THEOREM C. (Frantzikinakis [4, Theorem 1.3]) Let a1, . . . , ak be functions of polyno-
mial growth that belong to a Hardy field H, such that they have pairwise distinct growth
rates and satisfy

tki log t ≺ ai(t) ≺ tki+1 (4)

for some ki ∈ N. Then, for any nilmanifold X = G/� and b1, . . . , bk ∈ G, the sequence(
b

�a1(n)�
1 x1, . . . , b�ak(n)�

k xk

)
n∈N (5)

is equidistributed on (bn1x1)n∈N × · · · × (bnkxk)n∈N for all x1, . . . , xk ∈ X.

In the same paper, Frantzikinakis conjectured that if the linear combinations of the
functions a1, . . . , ak stay logarithmically away from real multiples of integer polynomials,
then the sequence in equation (5) is equidistributed on (bn1x1)n∈N × · · · × (bnkxk)n∈N.
More specifically, we have the following conjecture.

Conjecture 1. [4] Let a1, . . . , ak be functions in a Hardy field H with polynomial growth
and such that every non-trivial linear combination a(t) of them satisfies

lim
t→+∞

|a(t)− p(t)|
log t

= +∞ for any polynomial p(t) ∈ Z[t].

Then, for any nilmanifold X = G/�, bi ∈ G and xi ∈ X, the sequence(
b

�a1(n)�
1 x1, . . . , b�ak(n)�

k xk
)
n∈N

is equidistributed on (bn1x1)n∈N × · · · × (bnkxk)n∈N.
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Recently, Richter established the following equidistribution theorem. We present here a
special case of that result, where we assume that the underlying Lie group G is connected
and simply connected so that the elements bs are defined for any b ∈ G and s ∈ R (see
also the first paragraph of §B.2 for a more thorough explanation). We also define

∇ − span{a1, . . . , ak} = {c1a
(n1)
1 (t)+ · · · + cka

(nk)
k (t) : ci ∈ R, ni ∈ N ∪ {0}}.

THEOREM D. (Richter [17, Theorem B]) LetX = G/� be a nilmanifold with G connected
and simply connected, and let a1, . . . , ak be functions in a Hardy field H, such that for
any function a ∈ ∇ − span{a1, . . . , ak}, we have that

|a(t)− p(t)| 
 1 or |a(t)− p(t)| � log t

for any polynomial p(t) ∈ R[t]. Consider any commuting elements b1, . . . , bk ∈ G and
define the sequence

v(n) = b
a1(n)
1 · · · bak(n)k .

Then, there exists a closed, connected and rational subgroup H of G, and points
x0, . . . , xQ−1 in X, such that the sequence v(Qn+ r)� is equidistributed on the sub-
nilmanifold Hxr of X for all r ∈ {0, . . . , Q− 1}.

The hypothesis that b1, . . . , bk are commuting is harmless in problems regarding
the convergence of ergodic averages or in applications to combinatorics. Furthermore,
while in this setting we have the sequences ai(n) instead of �ai(n)� in the exponents, the
statement above actually implies an equidistribution theorem for the sequences �ai(n)�.
We remark that the results in [17] are generalized to equidistribution results with respect to
(weaker) averaging schemes other than Cesáro averages. Under those averaging schemes,
the assumptions on the functions a1, . . . , ak can be weakened significantly (however, our
results deal only with Cesáro averages). In the follow-up paper [1], Bergelson, Moreira
and Richter employed the above equidistribution results to obtain convergence results for
multiple ergodic averages and combinatorial applications for Hardy field sequences.

1.2. Main results. To state our results, we will assume that we have a fixed Hardy
field H, and the only extra hypothesis we require is that it includes the polynomial functions
(this is a very mild restriction). Removing this restriction may be possible, though this
would certainly complicate our arguments or the notation in the proofs. Unless noted
otherwise, our theorems below apply to any such Hardy field. An exception is made only
for Theorem 1.3 (we shall reiterate these assumptions in the main theorems).

For a given set of functions a1, . . . , ak in our Hardy field H, we use the notation

L(a1, . . . , ak) = {c1a1 + · · · + ckak : (c1, . . . , ck) ∈ Rk \ {0}} (6)

to refer to the collection of functions in H that are non-trivial linear combinations of the
functions a1(t), . . . , ak(t). The nilmanifolds (bRx) and (bNx) are defined in §B.2.

THEOREM 1.1. Let H be a Hardy field containing the polynomial functions. Let
a1, . . . , ak be functions in H that have polynomial growth. Assume that there exists
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an ε > 0 (the value of ε depends only on the initial collection {a1, . . . , ak}), such that
every function a ∈ L(a1, . . . , ak) satisfies

lim
t→+∞

|a(t)− p(t)|
tε

= +∞ for any polynomial p(t) ∈ Q[t]. (7)

(Equivalently, we could require that p(t) ∈ Z[t], because this is a condition on all the
linear combinations of the functions a1, . . . , ak .) Then, we have the following.
(i) For any collection of nilmanifolds Xi = Gi/�i , elements bi ∈ Gi and xi ∈ Xi , the

sequence

(b
�a1(n)�
1 x1, . . . , b�ak(n)�

k xk)

is equidistributed on the nilmanifold (bN1 x1)× · · · × (bNk xk).
(ii) For any collection of nilmanifolds Xi = Gi/�i such that the groups Gi are

connected, simply connected, elements bi ∈ Gi and xi ∈ Xi , the sequence

(b
a1(n)
1 x1, . . . , bak(n)k xk)

is equidistributed on the nilmanifold (bR1 x1)× · · · × (bRk xk).

Remark 1.
(a) The connectedness assumptions imposed on part (ii) of the previous theorem ensure

that all elements of the form bs where b ∈ G and s ∈ R are well defined (see also
Appendix B for the definition of the element bs for non-integer s).

(b) In regards to part (ii) of the previous theorem, we establish the more general state-
ment that if b1, . . . , bk commute, the sequence ba1(n)

1 · · · bak(n)k � is equidistributed

on the nilmanifold bR1 · · · bRk �. The fact that this is indeed a more general statement
can be seen by passing to the product nilmanifoldX1 × · · · ×Xk . A similar assertion
holds for Theorem 1.2 below and we provide more details on this deduction after
Proposition 4.1.

Observe that, in contrast to Theorem A, we have the term tε in the denominator, which is
just out of reach of the conjectured optimal term log t . As an example, using Theorem 1.1,
we can prove that for any elements b1, b2 ∈ G, the sequence (b

n log n
1 �, bn

3/2

2 �) is

equidistributed on the nilmanifold (bR1 �, bR2 �), assuming that G satisfies the appropriate
connectedness assumptions since we want these elements to be well defined.

If we have functions that are not linearly independent, then the above theorem fails,
as can be seen by noting that the sequence (n3/2, n1/2, n3/2 + n1/2) is not equidistributed
on T3. However, we can relax the linear independence condition in Theorem 1.1 and still
obtain a convergence result.

THEOREM 1.2. Let H be a Hardy field containing the polynomial functions. Let
a1, . . . , ak be functions in H that have polynomial growth. Assume that there exists
ε > 0, such that every function a ∈ L(a1, . . . , ak) satisfies either
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lim
t→+∞

|a(t)− p(t)|
tε

= +∞ for any polynomial p(t) ∈ Q[t] (8)

or

the limit lim
t→+∞ a(t) is a real number. (9)

Then, we have the following.
(i) For any collection of nilmanifolds Xi = Gi/�i , elements bi ∈ Gi , xi ∈ Xi and

continuous functions f1, . . . , fk with complex values, the averages

1
N

N∑
i=1

f1(b
�a1(n)�
1 x1) · · · fk(b�ak(n)�

k xk)

converge.
(ii) For any collection of nilmanifolds Xi = Gi/�i such that the groups Gi are

connected, simply connected, elements bi ∈ Gi , xi ∈ Xi and continuous functions
f1, . . . , fk with complex values, the averages

1
N

N∑
i=1

f1(b
a1(n)
1 x1) · · · fk(bak(n)k xk)

converge.

The main distinction between Theorems 1.1 and 1.2 is that in the second case, we allow
for linear dependencies between the functions a1(t), . . . , ak(t) (for example, we may
have the functions (t log t , t3/2, t3/2 + t log t)). We will use this theorem to deduce a
convergence result for multiple ergodic averages (Theorem 1.3 below).

Theorems 1.1 and 1.2 extend the equidistribution result of Theorem C from [4], where
the functions a1, . . . , ak were assumed to have different growth rates and satisfy the
growth condition in equation (4). However, our results are complementary to the results
in [17], in the sense that both Theorem 1.1 and Theorem D each cover collections of
functions that are not implied by the other one. The main difference between our results
and the results in the previous literature (in the case of general k) is that prior results
did not cover functions in the range t� ≺ a(t) 
 t� log t , where � is a positive integer.
Our method circumvents this restriction and can handle all families of functions of the
form

∑k
i=1 ci t

ai (log t)bi , where ai > 0 and bi , ci ∈ R (assuming, of course, that the
linear combinations of the involved functions satisfy either equation (8) or equation (9)).
However, our method has a drawback. As we stated, there are cases covered in the results
of [17] that do not follow from the arguments present in this paper. These examples concern
functions that grow slower than fractional powers t δ , such as the function logc t for c > 0
or the function exp(

√
log t). An example that is not covered by Theorem 1.2 is the pair of

functions (log2 t , t3/2). However, this last pair of functions can be covered by the results
in [17]. We shall discuss the techniques and limitations of our proof in depth below (§1.3).

Combining Theorem 1.2 and the results in [18] on characteristic factors, we get a mean
convergence result for multiple ergodic averages. Since the seminorm estimates for such
averages were established in [18] under particular assumptions on our Hardy field H, these
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have to be incorporated into our statement. We will not need to use these assumptions
anywhere else in this article, however.

THEOREM 1.3. Let H be a Hardy field that contains the field LE of logarithmico-
exponential functions and is closed under composition and compositional inversion of
functions (when defined). Furthermore, assume that the functions a1, . . . , ak ∈ H are as
in Theorem 1.2. Then, for any measure-preserving system (X, μ, T ) and any functions
f1, . . . , fk ∈ L∞(μ), the averages

1
N

N∑
n=1

T �a1(n)�f1 · · · T �ak(n)�fk (10)

converge in L2(μ).

An example of a Hardy field that satisfies the above property is the Hardy field of
Pfaffian functions (for the definition, see, for instance, [18, §2]).

It follows from the results in [18] that if the functions a1, . . . , ak are as in Theorem 1.1
(actually, the tε term can be replaced with the optimal term log t), then for any ergodic
measure-preserving system (X, μ, T ) and bounded functions f1, . . . , fk , the averages

1
N

N∑
i=1

f1(T
�a1(n)�x) · · · fk(T �ak(n)�x)

converge in the L2-sense to the product of the integrals
∫
f1 dμ · · · · · ∫

fk dμ. The
methods used in that article cannot work when there are linear dependencies between the
functions a1, . . . , ak (since they rely on the joint ergodicity results from [6]). Therefore,
to prove Theorem 1.3, we have to show that the Host–Kra factors are characteristic for
these averages, reduce the problem to nilmanifolds using the Host–Kra structure theorem
(see Theorem E in §2) and then tackle the problem of mean convergence in nilmanifolds.
The first part of the above argument follows from the results in [18] (see Proposition 4.3),
while Theorem 1.2 gives the stronger result of pointwise convergence when the system
(X, μ, T ) is a nilsystem. We comment here that the optimal restrictions on the functions
a1, . . . , ak in Theorem 1.3 are expected to be that the functions are good for convergence
when the system (X, μ, T ) is a rotation on some torus Td . A refuted conjecture of
Frantzikinakis appears in [5, Problem 22], although the statement needs to be changed
to the following (personal communication).

Conjecture 2. Let a1, . . . , ak be functions in LE (or any other Hardy field) such that for
all real numbers t1, . . . , tk ∈ [0, 1), the averages

1
N

N∑
n=1

e(t1 �a1(n)� + · · · + tk �ak(n)�) (11)

converge. Then, for any measure-preserving system (X, μ, T ) and functions f1, . . . , fk ∈
L∞(μ), the averages

1
N

N∑
n=1

T �a1(n)�f1 · · · T �ak(n)�fk (12)
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converge in L2(μ) and, if (X, μ, T ) is a nilsystem and the functions f1, . . . , fk are
continuous, then those averages converge pointwise everywhere.

Remark 2. It can be shown that the above condition on the exponentials of the involved
sequences is not sufficient if we replace the Hardy sequences with other, more general,
sequences. Indeed, [7, Theorem B] provides an example of a sequence a(n), such that for
a1(n) = a(n) and a2(n) = 2a(n), the averages

1
N

N∑
n=1

e(t1a1(n)+ t2a2(n))

converge for any t1, t2 ∈ [0, 1), but the ergodic averages

1
N

N∑
n=1

T a1(n)f1 · T a2(n)f2

do not converge in mean.

1.3. Short overview of the proof and additional remarks. The main idea of the proof
is that functions in H of polynomial growth can be approximated sufficiently well by
polynomials in short intervals. The equidistribution properties of polynomial sequences
in nilmanifolds, even on small intervals, are well understood from [9]. We use these
quantitative results of Green and Tao (see Theorem F in Appendix B) to show that
the averages over small intervals are ‘close’ to the integral of a continuous function in
our nilmanifold. This approach was used in [4] to show that (following the notation of
Theorem 1.1) the sequence ba(n) is equidistributed for all b ∈ G and any function a(n)
satisfying equation (P). In the case that we need to cover here, there are more technical
difficulties in the proof, since we have to find polynomial expansions for several functions
simultaneously, which also tend to be of increased complexity (for example, choosing
the length of the short intervals is fairly straightforward in the case of one function,
but not when someone deals with several functions in H). This idea of using a common
polynomial expansion was also used recently by the author to establish the corresponding
problem of finding characteristic factors for ergodic averages involving Hardy field iterates.
This approach is well suited to handle functions in the range tk ≺ a(t) ≺ tk log t , which
were previously not known in the literature. Some additional care needs to be taken to
separate polynomial functions and functions that we call ‘strongly non-polynomial’ (see
Definition 2.1). This is an elementary argument and is carried out in Lemma A.5 in
Appendix A. A similar ‘decomposition’ idea is present in [17, Lemma A.3] (also used
in [18]), but we cannot use the exact same decomposition here, because some information
on the linear combinations of our functions would be lost.

Our argument differs quite a bit from the methods used in [17], which relied on
applications of the van der Corput inequality as a means of complexity reduction and
qualitative equidistribution results on nilmanifolds. In simplistic terms, this replaces the
issue of studying equidistribution for a function a(t) ∈ H by the problem of studying
equidistribution properties for the derivatives a′, a′′, a′′′ and so on. This cannot be used
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to cover, for example, functions in the range t ≺ a(t) 
 t log t , because the derivative a′
must satisfy a′(t) 
 log t , which does not have good equidistribution properties even on
the 1-dimensional torus T. As we mentioned above, we can sidestep this situation, but our
argument also has limitations. More precisely, we do not cover functions that grow very
slowly (which we call sub-fractional functions). A sample of a ‘slow-growing’ function
that we cannot handle is the function logc t for c > 1 (for instance, the pair (log2 t , t log t)
is not covered by Theorem 1.1). The main reason is that when we pass to averages on small
intervals, these functions become approximately equal to a constant and our method of
using the Taylor expansion breaks down. That explains the existence of the function tε in
equation (8) instead of the term log t , which is speculated to be optimal.

In addition, we do not cover the case where some of the functions ai(t) are real
polynomials, because the reduction to a statement on connected simply connected Lie
groups becomes a lot more complicated. For example, consider a nilmanifold X = G/�

with G connected and simply connected and elements b1, b2 ∈ G that commute. It is
not clear how to describe sufficiently well the orbit of the sequence bn

3/2

1 bn
2

2 � on X.
Alternatively, invoking Leibman’s theorem on polynomial orbits (Theorem B), we can
describe the orbit {bn2

�}, while the nilmanifold bR1 � (which can be shown to be equal to
the closure of the orbit bn

3/2
� by Theorem C) can be expressed in a nice form by Ratner’s

theorem (see also Lemma B.1). However, we do not know how to accomplish this for their
product bn

3/2

1 bn
2

2 �. For example, we expect that this sequence equidistributes on some
subnilmanifold Y (possibly after restricting to an arithmetic progression), but we cannot
get any information on the underlying Lie group that defines Y, which is necessary when
applying Theorem F.

A simple argument reduces our problem to the case when the Lie group G is connected
and simply connected. Namely, we will prove Theorem 1.2 under the above connectedness
assumptions. We sketch this reduction in Appendix B (at the end of §B.1). Therefore, we
make the following convention:

For the rest of the article up until the Appendix, we make the assumption that
(�)all nilpotent Lie groups are always connected and simply connected.

1.4. Notational conventions. Throughout this article, we denote by N = {1, 2, . . .} the
set of natural numbers. We denote Td = Rd/Zd , e(t) = e2πit , while ‖x‖T = d(x, Z)
and {x} denote the distance of x from the nearest integer and the fractional part of x,
respectively. For an element x = (x1, . . . , xk) in Rk , we denote |x| = |x1| + · · · + |xk|.
Lastly, we denote by 1A the characteristic function of a set A.

For two sequences an, bn, we say that bn dominates an and write an ≺ bn or an = o(bn),
when an/bn goes to 0, as n → +∞. In addition, we write an 
 bn or an = O(bn), if there
exists a positive constant C such that |an| ≤ C|bn| for large enough n. When we want to
denote the dependence of this constant on some parameters h1, . . . , hk , we will use the
notation an = Oh1,...,hk (bn). We use identical notation for asymptotic relations between
functions on some real variable t, where we understand that these hold when we take
t → +∞.
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Finally, we use the symbol E to denote averages (over a range that will be implicit by
the corresponding subscripts each time). Throughout the rest of the article, we use the
letters p, q to denote polynomials and χ is used to denote a horizontal character. We will
use b1, b2, . . . , bk or u1, u2, . . . , uk , w1, . . . , wk in the proofs to denote elements of a
nilpotent Lie group G.

2. Background material
2.1. Measure-preserving systems and Host–Kra structure theorem. A measure-preserving
system is a quadruple (X, X , μ, T ), where (X, X , μ) is a Lebesgue probability space and
T is an invertible measure-preserving map, that is, μ(T −1(A)) = μ(A) for all A ∈ X . It is
called ergodic if all the T-invariant functions are constant. For the purposes of this article,
a factor of the system (X, X , μ, T ) is a T-invariant sub-σ -algebra of X . However, when
there is no confusion, we will omit the σ -algebra X from the quadruple (X, X , μ, T ).

Let (X, μ, T ) be a measure-preserving system and let f ∈ L∞(μ). We define the
Host–Kra uniformity seminorms inductively as follows:

|||f |||0,T =
∫
f dμ

and, for s ∈ N,

|||f |||2s+1

s+1,T = lim
H→∞ E

0≤h≤H |||f̄ · T hf |||2ss,T . (13)

In the ergodic case, the existence of these limits and the fact that these quantities are indeed
seminorms was established in [11]. In the same article, it was shown that these seminorms
give rise to a factor Zs−1(X) of X for every s ≥ 1, which is characterized by the following
relation:

f ⊥ L2(Zs−1(X)) ⇐⇒ |||f |||s,T = 0.

The significance of these factors hinges on the following remarkable structure theorem of
Host and Kra [11].

THEOREM E. (Host–Kra) Let (X, μ, T ) be an ergodic system. Then, the factor Zs(X) is
an inverse limit of s-step nilsystems.

The last property implies that there exist T-invariant sub-σ -algebras Zs(n), n ∈ N that
span Zs , such that the factor Zs(n) is isomorphic as a system to an s-step nilsystem.

2.2. Background on Hardy fields. Let B denote the set of germs at infinity of real-valued
functions defined on a half-line [x, +∞). Then, (B, +, ·) is a ring, and a sub-field H of B
that is closed under differentiation is called a Hardy field. We will say that a(n) is a Hardy
sequence if for n ∈ N large enough, we have a(n) = f (n) for a function f ∈ H.

Any two functions f , g ∈ H with g not identically zero are comparable, that is, the limit

lim
t→∞

f (t)

g(t)
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exists and thus it makes sense to compare their growth rates. In addition, every
non-constant function in H is eventually monotone and, therefore, has a constant sign
eventually. In Appendix A, we have collected some lemmas about growth rates of functions
in H, which will be used frequently throughout the proofs. The proofs of these lemmas
can be found in [18], so we shall omit most of them.

We define below some notions that will be used repeatedly throughout the remainder of
the paper.

Definition 2.1. Let a be a function in H.
(a) The function a has polynomial growth if there exists a positive integer k such that

f (t) 
 tk . The smallest positive integer k for which this holds will be called the
degree of a.

(b) The function a is called sub-linear if a(t) ≺ t .
(c) The function a is called sub-fractional if a(t) ≺ tε for all ε > 0.
(d) The function a is called strongly non-polynomial if, for any positive integer k, we

have that the functions a(t) and tk have distinct growth rates.

If a ∈ H has polynomial growth, we will also say that the corresponding sequence
a(n) has polynomial growth throughout the article. To understand the definition, consider
the functions a1(t) = t2/3, a2(t) = log2 t , a3(t) = t + t1/2 and a4(t) = exp(t). The first
two functions are sub-linear, but the functions a3, a4 are not. The function a2(t) is the
only sub-fractional function among the four functions (it grows slower than all fractional
powers), while the strongly non-polynomial functions are a1, a2 and a4 (note that a3 grows
like the polynomial p(t) = t). The function a4 does not have polynomial growth.

Remark 3. The definition of strongly non-polynomial presented here is slightly different
than the one given in [18]. The definition in that article was that we have the growth
relation tk ≺ a(t) ≺ tk+1 for k ∈ N, which imposes polynomial growth on our function.
In addition, our new definition also allows the inclusion of functions a(t) such that
limt→+∞ |a(t)| = 0, while the old one excludes these functions (we do this solely for
technical reasons).

3. Preparations for the proof
In this section, we will collect some lemmas and make some reductions, which will be
useful when we delve into the proof of Theorems 1.1 and 1.2 in the next section. In
addition, we provide a specific example, which illustrates the central ideas of the proof
of Theorem 1.2 and does not involve a lot of computations.

First of all, we present a lemma, which appears in [4, Lemma 3.3]. We will use this
lemma to reduce our problem of studying the long averages over an interval [1, N] (like
those appearing in Theorem 1.2) to averages in short intervals. Its proof is elementary and
so we omit it.

LEMMA 3.1. Let (a(n))n∈N be a bounded sequence of complex numbers. Assume that

lim
N→+∞ E

N≤n≤N+L(N)a(n) = α
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for some positive function L(t) with 1 ≺ L(t) ≺ t . Then, we also have

lim
N→+∞ E

1≤n≤Na(n) = α.

3.1. An example of convergence. Assume X = G/� is a nilmanifold with G connected
and simply connected. We will show that the averages

E
1≤n≤Nf (b

n3/2

1 x) · g(bn log n
2 x)

converge for any x ∈ X, where b1, b2 ∈ G.
Using Lemma 3.1, it suffices to show that the averages

E
N≤n≤N+L(N)f (b

n3/2

1 x) · g(bn log n
2 x)

converge, for some sub-linear function L(t). Passing to the nilmanifoldX ×X, we see that
our problem reduces to showing that the averages

E
N≤n≤N+L(N)F (b

n3/2

1 b
n log n
2 x)

converge for any nilmanifold X = G/�, commuting elements b1, b2 ∈ G and function
F ∈ C(X). (When we pass to the product X ×X, we have to study the actions of the
elements (b1, eG) and (eG, b2), which clearly commute.) Due to density, we can actually
pick F ∈ Lip(X). We provide more details for this deduction in the next section (after
Proposition 4.1).

Let X′ denote the subnilmanifold bR1 b
R

2 � of X. By Lemma B.1, this set is indeed a
subnilmanifold of X and has a representation asH/�, with H connected, simply connected
and containing all elements bs1 and bs2 for any s ∈ R. In this example, we will also assume

that X′ = bZ1 b
Z

2 �. In the main proof, we will use Lemma B.2 to reduce the general case of
the theorem to this one.

Using the Taylor expansion around the point N, we can write

(N + h)3/2 = N3/2 + 3
2
hN1/2 + 3h2

8N1/2 − h3

16N3/2 + 3h4

128ξ5/2
h

for some ξh ∈ [N , N + h]

for every 0 ≤ h ≤ L(N). If we choose L(t) to satisfy

t1/2 ≺ L(t) ≺ t5/8,

then the last term in the above expansion is smaller than oN(1), while the second to last
term is unbounded. Similarly, we can write

(N + h) log(N + h) = N log N + h(log N + 1)

+ h2

2N
− h3

6ψ2
h

for some ψh ∈ [N , N + h].

If we choose again L(t) to satisfy

t1/2 ≺ L(t) ≺ t2/3,
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we can show that the last term is oN(1), while the h2 term is unbounded. For instance, we
can choose L(t) = t3/5 and both growth conditions that we imposed will be satisfied.

Since the function F is continuous, we can disregard the highest order terms in the above
expansion since they are both oN(1). Our problem reduces to showing that the averages

E
0≤h≤L(N)F

(
b
N3/2+(3/2)hN1/2+(3h2/8N1/2)−(h3/16N3/2)
1 b

N log N+h(log N+1)+h2/2N
2 x

)
converge. For the sake of simplicity, we will show that the averages

E
0≤h≤L(N)F (b

h3/N3/2

1 b
h2/N
2 x)

converge, since both of these statements follow from the same arguments. For convenience,
we will also assume that x = �.

Let δ > 0. We consider the finite sequence

(v(h)�)0≤h≤L(N) = (b
h3/N3/2

1 b
h2/N
2 �)0≤h≤L(N)

and we show that if N is large enough, then it is δ-equidistributed on the subnilmanifold
X′ = bR1 b

R

2 � of X. It is apparent that v(n)� is a polynomial sequence in X′. We consider
the horizontal torus Z of X′, which is isomorphic to some Td (d ∈ N) and we also let π
denote the projection map from X′ to Z. If the given sequence is not δ-equidistributed (for
a fixed value of N), we can invoke Theorem F to find a positive constant M = M(X′, δ)
and a non-trivial horizontal character χN of modulus at most M and such that

‖χN(π(v(h)�))‖C∞[L(N)] ≤ M .

Suppose χN descends to the character

(t1, . . . , td ) → e(k1,Nt1 + · · · + kd,Ntd)

on Td , where k1,N , . . . , kd,N are integers. The fact that the modulus is bounded by M
implies that

|k1,N | + · · · + |kd,N | ≤ M .

Let us also write π(b1�) = (x1, . . . , xd) and π(b2�) = (y1, . . . , yd). Then, the last
inequality implies that∥∥∥∥e

(
h3

N3/2

d∑
i=1

ki,Nxi + h2

N

d∑
i=1

ki,Nyi

)∥∥∥∥
C∞[L(N)]

≤ M . (14)

Assume there are infinitely many N for which this holds. Since there are only finitely
many possible choices for the numbers k1,N , . . . , kd,N above, we conclude that there exists
a character χ such that ‖χ(π(a(h))�)‖C∞[L(N)] ≤ M holds for infinitely many N ∈ N.
Then, we rewrite equation (14) (ki are some integers independent of N) as∥∥∥∥e

(
h3

N3/2

d∑
i=1

kixi + h2

N

d∑
i=1

kiyi

)∥∥∥∥
C∞[L(N)]

≤ M ,

and this inequality holds for infinitely many N.
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The definition of the C∞[L(N)] norms implies that we have the relations

L(N)3
∥∥∥∥
∑d
i=1 kixi

N3/2

∥∥∥∥
T

≤ M

and

L(N)2
∥∥∥∥
∑d
i=1 kiyi

N

∥∥∥∥
T

≤ M

for infinitely many N. Due to our choice of the function L(N), these relations fail for N
sufficiently large unless

d∑
i=1

kixi ∈ Z and
d∑
i=1

kiyi ∈ Z.

This implies that χ ◦ π(b1�) = χ ◦ π(b2�) = 0 and, consequently, we must also have
χ ◦ π(bm1 bn2�) = 0 for any m, n ∈ Z. Since elements of this form are dense in bR1 b

R

2 � by
our initial hypothesis, we get that χ must be the trivial character, which is a contradiction.

In conclusion, we have established that the sequence (v(h)�)0≤h≤L(N) is

δ-equidistributed for large enough N on X′ = bR1 b
R

2 �. The result now follows by sending
δ → 0. We also notice that the limit of the averages is

∫
X′ F dmX′ .

Remark 4. We describe briefly here why we have to use the tε term in equation (8) instead
of the conjectured optimal term log t . Assuming we had the functions log2 t and t log t in
this example, then for any choice of the sub-linear function L(t) that would give a good
polynomial approximation for the function t log t , we would have

max
0≤h≤L(N)

| log2(N + h)− log2 N | = oN(1),

which suggests that the sequence log2 n is essentially constant in the small intervals
[N , N + L(N)]. If we proceed exactly as in the above argument, the best we can actually
show is that∣∣∣∣ E
N≤n≤N+L(N)F (b

log2 n
1 b

n log n
2 �)−

∫
Y2

F(b
log2 N
1 y) dmY2(y)

∣∣∣∣ ≤ δ‖F(blog2 N
1 ·)‖Lip(Y2)

for large enough N, where Y2 = bR2 � and F(b
log2 N
1 ·) denotes the function y →

F(b
log2 N
1 y) defined on the nilmanifold Y2. However, the Lipschitz norm above is of

the order log2 N‖F‖Lip(X), which diverges as N → +∞, so this bound cannot be useful
for any purposes.

Another approach would be to use the fact that the parameter M in Theorem F is
of the form δ−O(1), namely we have bounds that are polynomial in δ. Thus, one could
allow the parameter δ to vary with N. For instance, establishing a bound of the form

(log N)−(2+ε)‖F(blog2 N
1 ·)‖Lip(Y2) in place of the term δ‖F(blog2 N

1 ·)‖Lip(Y2) (namely,
showing that our sequence is (log N)−(2+ε)-equidistributed) on the right-hand side of the
above equation leads to a solution to the more general problem. (It would actually suffice
to obtain this statement for almost all N ∈ N in the sense of natural density.) However,
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any bound of this type is incorrect in general. Indeed, assume that the horizontal torus
of bR2 � was T2 and also let (b2,1, b2,2) ∈ T2 denote the image of the element b2� under
the projection map. Following the same approximations as the ones in the example, we

would like to show that the finite polynomial sequence bh
2/N

2 �, where 0 ≤ h ≤ L(N),
is (log N)−(2+ε)-equidistributed for almost all N ∈ N and for some suitable sub-linear
function L(t) satisfying only L(t) � t1/2. Then, an application of Theorem F implies that
if this assertion does not hold, then there exists a positive constant C and a horizontal
character χ of modulus at most logC N , such that

‖χ(bh2/N
2 �)‖C∞(L(N)) ≤ logC N .

Equivalently, there exist integers k1, k2 with |k1| + |k2| ≤ logC N such that

L2(N)

∥∥∥∥k1b2,1 + k2b2,2

N

∥∥∥∥
T

≤ logC N .

Thus, we would get a contradiction if we showed that

min
|k1|,|k2|≤logC N

|k1b2,1 + k2b2,2| ≥ N logC N
L2(N)

holds for N in a set of density 1. However, we note that bounds like the above depend
on the diophantine properties of the numbers b2,1, b2,2. Indeed, let us suppose that
α = b2,1/b2,2 ≤ 1. If we divide by b2,2, the last inequality can be rewritten as

min
|k1|,|k2|≤logC N

|k1α + k2| ≥ N logC N
|b2,2|L2(N)

.

For a fixed choice of k1, the absolute value is minimized by picking k2 to be the nearest
integer to −k1α. Thus, we would need to show that

min
|k1|≤logC N

‖k1α‖T ≥ N logC N
|b2,2|L2(N)

and we can find b2,1, b2,2 ∈ (0, 1) for which this inequality fails for all N in a set of positive
upper density. A simpler example that avoids the complicated function on the right-hand
side of the last equation is to show that we can find α ∈ (0, 1) for which the inequality
min|k|≤N‖kα‖T ≥ 2−n fails for all N ∈ N in a set of upper density 1. Indeed, we can
construct an α ∈ (0, 1) such that lim infn→+∞ 22n‖nα‖T = 0. Thus, there is a sequence
qn such that ‖qna‖T ≤ 2−2qn which implies that min|k|≤N‖kα‖T ≤ 2−2qn ≤ 2N for every
N with qn ≤ N ≤ 2qn . Thus, the set of N for which the above inequality fails has upper
density 1.

3.2. Removing the integer parts. In this part, we will establish a lemma that practically
implies that part (a) of Theorem 1.2 follows from part (b) of the same theorem. The fact
that part (a) of Theorem 1.1 follows from part (b) of the same theorem is precisely the
statement of [4, Lemma 5.1], which is proven using very similar arguments to the proof of
Lemma 3.2 below. If a collection of sequences of real numbers has the property that the
averages
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E
1≤n≤N f1(b

a1(n)
1 x1) · · · fk(bak(n)k xk) (15)

converge for all nilmanifolds Xi = Gi/�i , elements bi ∈ Gi , points xi ∈ Xi and contin-
uous functions fi defined on Xi , we will say that this collection is pointwise good for
nilsystems. The notation bai(n)i makes sense here due to the connectedness assumptions we
have imposed on the Lie groups Gi .

LEMMA 3.2. Let a1(n), . . . , ak(n) be sequences of real numbers that satisfy the following.
(a) The collection a1(n), . . . , ak(n) is pointwise good for nilsystems.
(b) For every 1 ≤ i ≤ k, we have that the sequence (ai(n)Z)n∈N satisfies one of the

following:
(1) it is equidistributed on T;
(2) it converges to some c = c(i) ∈ T different from 0;
(3) it converges to 0 and the sequence {ai(n)} − 1

2 has a constant sign eventually.
Then, the sequences �a1(n)� , . . . , �ak(n)� are pointwise good for nilsystems.

Remark 5. The number 1
2 in the third condition is arbitrary since we could have used any

number α ∈ (0, 1). We primarily use this condition in the following manner: suppose we
have a function f (t), which converges monotonically to some k ∈ Z as t → +∞. Then,
we clearly have ‖f (t)‖T → 0 and we also observe that the sequence {f (n)} does not
not oscillate between intervals of the form [0, ε] and [1 − ε, 1) (due to the monotonicity
assumption). Thus, the sequence {f (n)} − 1

2 will indeed have a constant sign (positive if f
increases to k and negative otherwise).

Proof. Let Xi = Gi/�i be nilmanifolds with Gi connected and simply connected and
bi ∈ Gi . Let f1, . . . , fk be continuous functions defined on X1, . . . , Xk , respectively.
Under the hypotheses of the lemma on the sequences a1(n), . . . , ak(n), we want to show
that the averages

E
1≤n≤N f1(b

�a1(n)�
1 x1) · · · fk(b�ak(n)�

k xk) (16)

converge for any choice of the xi ∈ Xi .
Fix some i ∈ {1, 2, . . . , k}. If the sequence ai(n) satisfies the second condition, namely

that ai(n)Z converges to cZ (c �= 0), then for n sufficiently large, we have

�ai(n)� = ai(n)− {c} + on(1).

This implies that b�ai (n)�
i = b

−{c}
i b

ai (n)+on(1)
i . Since the function fi is continuous, we can

disregard the contribution of the on(1) term, while the b−{c}
i term can be absorbed by the xi .

Therefore, we notice that in this case, we can remove the integer part for the sequence ai(n).
An entirely similar argument demonstrates that the same holds if ai(n) satisfies the third
condition.

To complete the proof, we will consider below the case that each of the sequences
ai(n)Z is equidistributed on T for convenience (namely, they all satisfy the first condition).
Since we can easily remove the integer parts for those sequences that satisfy the second
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or third condition as we did above, the argument below easily adapts to the general setting
with some changes in notation.

We rewrite the averages in equation (16) as

E
1≤n≤N

k∏
i=1

fi(b
−{ai (n)}
i b

ai (n)
i xi) = E

1≤n≤N

k∏
i=1

f̃i (ai(n)Z, bai(n)i xi),

where f̃i : T ×Xi → C is the function defined by the relation

f̃i (sZ, gx) = fi(b
−{s}
i gx).

Let vi(n) be the sequence (ai(n)Z, bai(n)i xi). By our hypothesis, for any continuous
functions f ′

i on X̃i = T ×Xi , the averages of
∏k
i=1 f

′
i (vi(n)) converge. However, note

that the functions f̃i that we are dealing with may have discontinuities when s becomes
close to an integer. Our goal is to approximate each f̃i by a continuous function and then
use the above observation.

Let ε > 0. For every 1 ≤ i ≤ k, we define a continuous function fi,ε that agrees
everywhere with f̃i on [ε, 1 − ε] ×Xi and such that fi,ε is bounded uniformly by 2‖f̃i‖∞.
Observe that∣∣∣∣ E

1≤n≤Nf̃i(vi(n))− E
1≤n≤Nfi,ε(vi(n))

∣∣∣∣ = 1
N

∣∣∣∣ ∑
1≤n≤N

ai (n)/∈[ε,1−ε]

(
f̃i (vi(n))− fi,ε(vi(n))

)∣∣∣∣

 ε‖f̃i‖∞ + oN(1), (17)

where the last bound follows from the triangle inequality and the fact that ai(n) is
equidistributed (mod 1), which indicates that the set {n ∈ N : ai(n) /∈ [ε, 1 − ε]} has
asymptotic density 2ε.

Combining equation (17) with a simple telescoping argument, we deduce that

lim sup
N→+∞

∣∣∣∣ E
1≤n≤N

k∏
i=1

f̃i (vi(n))− E
1≤n≤N

k∏
i=1

fi,ε(vi(n))

∣∣∣∣ 
 kε

k∏
i=1

‖f̃i‖∞.

Since the averages E
1≤n≤N

∏k
i=1 fi,ε(v(n)) converge as N → ∞ by our hypothesis (the

functions involved here are continuous), we infer that the averages

E
1≤n≤N

k∏
i=1

f̃i (vi(n))

form a Cauchy sequence and, therefore, converge. The conclusion follows.

Using the previous lemma, we can establish that the first part of Theorem 1.2 follows
from the second part. We postpone this until the next section, where we also prove the
second part of Theorem 1.2.

https://doi.org/10.1017/etds.2023.68 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.68


Pointwise convergence in nilmanifolds along smooth 1981

4. Proofs of main theorems
The main tool we are going to use in our proof is the quantitative Green–Tao theorem on
polynomial orbits (Theorem F). A technical obstruction in our proof is that among the
functions a1, . . . , ak in the statement of Theorem 1.2, we must separate the polynomial
functions from the strongly non-polynomial ones. We will accomplish this using an
elementary lemma (Lemma A.5) which is proven in the Appendix. We restate Theorem 1.2
here.

THEOREM 1.2. Let H be a Hardy field that contains the polynomial functions. Let
a1, . . . , ak be functions in H that have polynomial growth. Assume that there exists ε > 0,
such that every function a ∈ L(a1, . . . , ak) satisfies either

lim
t→+∞

|a(t)− p(t)|
tε

= +∞ for any polynomial p(t) ∈ Q[t],

or
the limit lim

t→+∞ a(t) is a real number.

Then, we have the following.
(i) For any collection of nilmanifolds Xi = Gi/�i , elements bi ∈ Gi , xi ∈ Xi and

continuous functions f1, . . . , fk with complex values, the averages

1
N

N∑
i=1

f1(b
�a1(n)�
1 x1) · · · fk(b�ak(n)�

k xk)

converge.
(ii) For any collection of nilmanifolds Xi = Gi/�i such that the groups Gi are

connected, simply connected, elements bi , ∈ Gi , xi ∈ Xi and continuous functions
f1, . . . , fk with complex values, the averages

1
N

N∑
i=1

f1(b
a1(n)
1 x1) · · · fk(bak(n)k xk)

converge.

First of all, we show that the first part follows from the second part. This is accomplished
by using Lemma 3.2. We remark again that in part (i), there are no connectedness
assumptions made on the groupsGi . Nonetheless, the convention equation (�) in §1 allows
us to consider only the case that the Lie groups Gi are connected and simply connected.
We implicitly work under this assumption in the proof below.

Proof of part (i) of Theorem 1.2, assuming part (ii). We will have to confirm that the
conditions of Lemma 3.2 are satisfied. Let a1, . . . , ak ∈ H be as in the statement of
Theorem 1.2. Condition (a) of Lemma 3.2 is satisfied by our hypothesis. Now, we verify
the second condition.

Fix some i ∈ {1, 2, . . . , k}. We consider three cases.
(i) Assume that the function ai(t) is such that |ai(t)− q(t)| � tε for all polynomials

q(t) with rational coefficients. Then, the sequence ai(n)Z is equidistributed on T

(satisfying condition (1)), due to Theorem A.
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(ii) Assume that the function ai(t) is such that limt→+∞ ai(t) = c /∈ Z. Then, the
sequence ai(n) satisfies condition (2) of Lemma 3.2.

(iii) Assume that neither of the above conditions is true. Since ai(t) must satisfy
equation (9), we deduce that ai(t) converges to some integer c. However, since ai(t)
converges to c monotonically (functions in H are eventually monotone), we deduce
that condition (3) of Lemma 3.2 is satisfied and we are done.

Now we switch our attention to the proof of part (ii). First, we will apply Lemma A.5
from Appendix A to replace the original functions a1, . . . , ak with a collection of func-
tions that are more manageable. This will enable us to separate the polynomial functions
from strongly non-polynomial ones. In addition, among the strongly non-polynomial func-
tions, we have to isolate those that are sub-fractional, because they behave differently when
we try to employ the Taylor expansion. This whole process will reduce Proposition 4.1
below to Lemma 4.2, which we will then proceed to establish.

Following all these reductions, we use the Taylor expansion to substitute the strongly
non-polynomial functions with polynomials in some small intervals. Now, this reduces the
original problem to a quantitative equidistribution problem of finite polynomial sequences
in a nilmanifold, although the coefficients of the polynomials vary depending on the
underlying short interval. Finally, in step 3, we use the quantitative equidistribution results
to show that averages of Lipschitz functions in the nilmanifold over these ‘variable’
polynomial sequences are very close to an integral over a subnilmanifold, which ultimately
allows us to evaluate the limit of the initial averages.

We make one final reduction: let a1, . . . , ak ∈ H be functions as in the statement of
Theorem 1.2. Passing to the product nilmanifold, we infer that our problem follows from
the following statement.

PROPOSITION 4.1. Let X = G/� be a nilmanifold, b1, . . . , bk ∈ G are commuting
elements and a1, . . . , ak ∈ H have polynomial growth. Assume that there exists ε > 0,
such that every function a ∈ L(a1, . . . , ak) satisfies either equation (8) or equation (9).
Then, for any x ∈ X and continuous function F : X → C, we have that the averages

E
1≤n≤NF(b

a1(n)
1 · · · bak(n)k x) (18)

converge.

Proof that Proposition 4.1 implies Theorem 1.2. We want to show that the averages

1
N

N∑
i=1

f1(b
a1(n)
1 x1) · · · fk(bak(n)k xk)

converge for all xi ∈ Xi , where the nilmanifolds Xi = Gi/�i , the elements bi and the
functions ai ∈ H are as in the statement of part (ii) of Theorem 1.2. We define the
continuous function F on the product nilmanifold X1 × · · · ×Xk by the relation

F(y1, . . . , yk) = f1(y1) · · · fk(yk).
We also denote by b̃i the element on G1 × · · · ×Gk , whose ith coordinate is equal to bi ,
while all of its other coordinates are equal to the respective identity element. Observe that
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the elements b̃1, . . . , b̃k are pairwise commuting. Finally, let us also denote by x the point
(x1, . . . , xk) on the product X1 × · · · ×Xk . Then, a simple computation implies that our
initial average is equal to

E
1≤n≤NF(b

a1(n)
1 · · · bak(n)k x)

and the claim now follows.

Now, we will reduce Proposition 4.1 to the following lemma.

LEMMA 4.2. Let G/� be a nilmanifold and suppose that u1, . . . , us are elements in G,
such that

uR1 . . . u
R
s � = uZ1 . . . u

Z
s �. (19)

In addition, assume that the nilmanifold X′ = uR1 . . . u
R
s � can be represented as G′/�′,

where G′ is connected, simply connected and contains all elements u1, . . . , us . Let s0, s
be positive integers and define the sequence v(n)

s0∏
i=1

u
pi(n)+xi (n)
i

s∏
i=s0+1

u
p̃i (n)+xi (n)
i , (20)

where:
(a) pi , p̃j are polynomials with real coefficients, such that every non-trivial linear

combination of the polynomials p̃s0+1, . . . , p̃s is not an integer polynomial;
(b) the functions xi are all strongly non-polynomial, the functions x1, . . . , xs0 are

not sub-fractional and have pairwise distinct growth rates and the functions
xs0+1, . . . , xs are sub-fractional.
Then, for any Lipschitz function F on X′ with Lipschitz norm at most 1, the averages

E
1≤n≤NF

( s0∏
i=1

u
pi(n)+xi (n)
i

s∏
i=s0+1

u
p̃i (n)+xi (n)
i �′

)

converge to the integral
∫
X′ F dmX′ .

While the statement may seem relatively convoluted at first, the sequence v(n) above
has a convenient form, so that the Taylor approximation can be used directly.

First of all, we prove that Lemma 4.2 implies Proposition 4.1. We will rely on
Lemma A.5 to make the required reductions on the Hardy field functions in the iterates
and we will also use Lemma B.2 to get the equality equation (19), where u1, . . . , us will
be some appropriate elements of the Lie group G (they will be products of powers of the
elements bi in Proposition 4.1).

Proof that Lemma 4.2 implies Proposition 4.1. Applying Lemma A.5, we can find a basis
f1, . . . , fs for the set L(a1, . . . , ak) of non-trivial linear combinations. The collection of
functions f1, . . . , fs can be written in the form (g1, . . . , gm, h1, . . . , h�) where gi , hi
are as in Lemma A.5. We will not use this specific property until a little further below, so
as to avoid cumbersome notation. Note that the fact that f1, . . . , fs form a basis indicates
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that the assumptions on the linear combinations of the a1, . . . , ak in the statement of
Proposition 4.1 are now transferred to the functions f1, . . . , fs .

If we write

ai(t) =
s∑
j=1

ci,j fj (t) (21)

for some real numbers ci,j , then we can rewrite the average in equation (18) as

E
1≤n≤NF(u

f1(n)
1 · · · ufs(n)s x) (22)

for some commuting elements u1, . . . , us ∈ G (here, the fact that the elements b1, . . . , bk
commute is required). We denote

v(n) = u
f1(n)
1 · · · ufs(n)s ,

which is a sequence in G. We want to establish that the averages of the sequence F(v(n)x)
converge for all x ∈ X and any continuous function F. If one of the functions f1, . . . , fm
is such that the limit limt→+∞ fi(t) is a real number (which can be the case when a linear
combination of the original functions satisfies equation (9)), we can invoke the continuity
of F to eliminate the corresponding term u

fi(n)
i in the product and replace it by a constant.

Hence, we may assume that all of the functions f1(t), . . . , fs(t) go to ±∞, as t → +∞.
Now we use the particular structure of the functions f1, . . . , fs . The statement

of Lemma A.5 implies that the collection of functions f1, . . . , fs has the form
(g1, . . . , gm, h1, . . . , h�) (clearly,m+ � = s) such that the functions gi can be written in
the form pi(t)+ xi(t), where the functions x1(t), . . . , xm(t) are strongly non-polynomial
and have pairwise distinct (and non-trivial) growth rates, while the functions hi can
be written in the form p̃i(t)+ yi(t), where yi(t) converges to 0. Here, pi and p̃i are
polynomials with real coefficients.

We may rearrange the functions fi so that fi = gi for all 1 ≤ i ≤ m and fj = hj−m for
each m+ 1 ≤ j ≤ s. Rewrite the sequence v(n) as

v(n) =
m∏
i=1

u
gi(n)
i ·

�∏
i=1

u
hi(n)
m+i =

m∏
i=1

u
pi(n)+xi (n)
i ·

�∏
i=1

w
p̃i(n)+yi (n)
i ,

where we use the notation wi for the element ui+m in the last equality. Without loss of
generality, assume that

x1(t) � x2(t) � · · · � xm(t) � 1.

First, we need to distinguish between the sub-fractional functions and the ‘fast’ growing
functions among the functions xi(t) (this will be important later when we use the
polynomial expansion). Thus, let 0 ≤ s0 ≤ m be a natural number such that xs0(t) � tε

for some ε > 0, while xs0+1 is a sub-fractional function. This also implies that all the
functions xi for i satisfying s0 + 1 ≤ i ≤ m are sub-fractional since we have arranged the
functions so that their growth rates are in descending order.
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Once again, we rewrite the sequence v(n) in the form

v(n) =
s0∏
i=1

u
pi(n)+xi (n)
i

m∏
i=s0+1

u
pi(n)+xi (n)
i

�∏
i=1

w
p̃i(n)+yi (n)
i .

Because the function F is continuous, we can discard the functions y1, . . . , y�, since they
all converge to zero. The hypotheses in equations (8) and (9) on the linear combinations
of the remaining functions in the exponents continue to hold. Indeed, this can be seen by
noting that equations (8) and (9) still hold when replacing one of the functions (say a1) by
a function of the form a1(t)+ e(t), with e(t) → 0. Consequently, we can redefine v(n) to
be the sequence

v(n) =
s0∏
i=1

u
pi(n)+xi (n)
i

m∏
i=s0+1

u
pi(n)+xi (n)
i

�∏
i=1

w
p̃i(n)
i .

We will now reduce our problem to the case that the polynomials p̃1(t), . . . , p̃�(t) are
linearly independent. Due to our hypothesis (namely equations (8),(9)), every non-trivial
linear combination of the functions p̃1(t), . . . , p̃�(t) must satisfy either equation (8) or
equation (9). Thus, every linear combination of the polynomials p̃1(t), . . . , p̃�(t) is not a
polynomial with integer coefficients unless it is the zero polynomial. If the second case is
true, there exist c1, . . . , c�−1 ∈ R such that

p̃� = c1p̃1 + · · · + c�−1p̃�−1.

Then, we have
�∏
i=1

w
p̃i(n)
i =

�−1∏
i=1

(wiw
ci
� )
p̃i (n).

If the polynomials p̃1, . . . , p̃�−1 are linearly independent, then we are done. Otherwise,
we proceed similarly to eliminate p̃�−1. After a finite number of steps, we will reach a
collection of linearly independent polynomials.

In view of the above, we are allowed to assume that p̃1, . . . , p̃� are linearly independent.
Now, we show that we can reduce to the case that the polynomials ps0+1, . . . , pm,
p̃1, . . . , p̃�. Indeed, the linear independence assumption on the polynomials p̃1, . . . , p̃�
implies that the polynomials ps0+1, . . . , pm, p̃1, . . . , p̃� are linearly independent. To see
how this works, observe that if there are real numbers ci , dj such that

m−s0∑
i=1

cips0+i +
�∑
i=1

dip
′
i = 0,

then the function
m−s0∑
i=1

ci(ps0+i + xs0+i )+
�∑
i=1

dip̃i =
m−s0∑
i=1

cixs0+i

is a sub-fractional function that does not converge to 0, since the functions xs0+i are
sub-fractional and have pairwise distinct growth rates. This contradicts our hypothesis
(specifically equation (8)) and our claim follows.
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In conclusion, we see that the sequence v(n) can be written in the form

s0∏
i=1

u
pi(n)+xi (n)
i

m∏
i=s0+1

u
pi(n)+xi (n)
i

�∏
i=1

w
p̃i(n)
i , (23)

where the functions xi are strongly non-polynomial with distinct growth rates, the
functions x1, . . . , xs0 are not sub-fractional, the functions xs0+1, . . . , xs are sub-fractional
and every non-trivial linear combination of the polynomials ps0+1, . . . , pm, p̃1, . . . , p̃�
is not an integer polynomial. We also recall that we have arranged the functions xi to be in
decreasing order with respect to their growth rates.

We can combine the last two factors of this product into one factor to simplify our
problem a bit more. More specifically, we can rewrite the sequence v(n) in the form
(we make some mild modifications in our notation here)

v(n) =
s0∏
i=1

u
pi(n)+xi (n)
i

s∏
i=s0+1

u
p̃i (n)+xi (n)
i , (24)

where s = m+ l, pi , p̃j are real polynomials, the functions xi are strongly non-polynomial
with distinct growth rates, x1, . . . , xs0 are not sub-fractional, xs0+1, . . . , xs are
sub-fractional and every non-trivial linear combination of the polynomials p̃i is not
an integer polynomial. Namely, our functions satisfy hypotheses (a) and (b) of Lemma 4.2.

To establish our assertion, it suffices to show that the sequence v(n)x (where v(n) is
as in equation (24)) is equidistributed on the nilmanifold X′ = uR1 · · · uRs x for any x ∈ X.
We will prove this in the case x = � since the general case follows from this using the
change of base point trick that we discuss in Appendix B (see §B.1.2). In addition, we can
invoke Lemma B.2 to find a real number s0, such that X′ = (u

s0
1 )

Z . . . (u
s0
s )

Z�. Replacing
the functions pi(t)+ xi(t) (1 ≤ i ≤ s0) by the functions (pi(t)+ xi(t))/s0 and p̃i(t)+
xi(t) (s0 + 1 ≤ i ≤ s) by (p̃i(t)+ xi(t))/s0 (the assumptions on the linear combinations
of the functions remain unaffected), we can reduce our problem to the case that X′ =
uZ1 . . . u

Z
s �.

We want to show that for any continuous function F fromX′ = G′/�′ (G′ is connected,
simply connected and �′ is a uniform subgroup), the averages

E
1≤n≤NF(v(n)�

′)

converge to the integral
∫
X′ F dmX′ . Since Lipschitz functions are dense in the space

C(X′), we may assume that F is Lipschitz continuous. In addition, we may assume after
rescaling that ‖F‖Lip(X′) ≤ 1. Now, our claim follows immediately from Lemma 4.2.

In the following part, we will prove Lemma 4.2. We divide the proof into two steps.
During step 1, we will approximate the functions x1, . . . , xs by polynomials in a suitable
short interval. Our goal is to reach an average over a short interval of the form [N , N +
L(N)] of a sequence of the form F(g(n)x), where F is Lipschitz and g(n) is a polynomial
sequence on the nilmanifoldX′ (the polynomial sequence will vary with the parameter N).
This will be ensured by Proposition A.4. In step 2, we will use Theorem F to deduce that
these averages are close to the integral of F for large values of N.
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All the reductions above allow us to write v(n) in a form that will be appropriate
for the application of the quantitative equidistribution theorem (after we perform the
Taylor expansion). When we apply the Taylor expansion in the first step, the functions
xs0+1, . . . , xs will become approximately constant and thus the desired equidistribution
will be mainly ‘affected’ by the polynomials p̃s0+1, . . . , p̃s . However, the functions
x1, . . . , xs0 will play a meaningful role in the equidistribution of our sequence. In
particular, the presence of the functions x1, . . . , xs0 will imply ‘closeness’ of our averages
to the integral of the Lipschitz function F, unless the projections of the elements
u1, . . . , us0 on the horizontal torus are zero. In this second case, condition (a) on
the polynomials completes the proof. Lastly, the ‘linear independence’ condition of the
polynomials p̃s0+1, . . . , p̃s guarantees that the projection of the sequence v(n) on X′

will be equidistributed on the entire nilmanifold uR1 · · · uRs �, since otherwise, we would
need to pass to some subnilmanifold to guarantee equidistribution (and to an appropriate
arithmetic progression).

Proof of Lemma 4.2. Step 1. Approximating by polynomials. Let L(t) be a sub-linear
function with limt→+∞ L(t) = +∞ that we will determine later. It suffices to show that
the sequence of the averages

E
N≤n≤N+L(N)F (v(n)�

′) (25)

converges to
∫
X′ F dmX′ , since the conclusion would follow from Lemma 3.1. Reordering

if necessary, we assume again that

x1(t) � · · · � xs0(t).

Let r be a very large natural number compared to the degrees of the polynomials pi , p̃j
and the degrees of the functions xi(t). If r is sufficiently large, we have that x(r)i (t) = ot (1)
for all i ∈ {1, . . . , s0}. Assuming again that r is sufficiently large, then for any function
L(t) that satisfies

(x
(r)
i (t))−1/r ≺ L(t) ≺ t1−ε′

for some ε′ > 0 and all i ∈ 1, . . . , s0, we have that for each i ∈ {1, . . . , s0}, there is a
unique natural number ki ≥ r so that the sub-class S(xi , ki) contains the function L(t)
(this follows from Proposition A.3). The fact that the function L(t) belongs to S(xi , ki)
indicates that we have the relations

(x
(ki )
i (t))−1/ki ≺ L(t) ≺ (x

(ki+1)
i (t))−1/(ki+1). (26)

We can guarantee that the numbers ki are also very large compared to the degrees of the
polynomials pj , p̃j ′ by enlarging the number r in the beginning. (For example, assuming
that ki is at least 10 times as large as the maximal degree appearing among the polynomials
pi , p̃j and 10 times as large as the number s of all existing polynomials would suffice for
our arguments.)

We use the Taylor expansion for the functions x1(t), . . . , xs0(t) to write

xi(N + h) = xi(N)+ · · · + x
ki
i (N)h

k

ki!
+ oN(1) = qi,N(h)+ oN(1) (27)
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for 0 ≤ h ≤ L(N) (for the explanation of the oN(1) term, see the discussion after
Proposition A.2). If, however, we have i > s0 (namely, in the case where the function
xi is sub-fractional), then

max
0≤h≤L(N)

|xi(N + h)− xi(N)| = oN(1). (28)

In addition, we denote pi,N(h) = pi(N + h) and similarly p̃i,N(h) = p̃i(N + h) for every
admissible value of i. Thus, we rewrite the expression in equation (25) as

E
0≤h≤L(N)F (wN

s0∏
i=1

u
qi,N(h)+pi,N(h)
i

s∏
i=s0+1

u
p̃i,N(h)
i �′), (29)

where we discarded the oN(1) terms, because F is continuous. Here,wN = ∏s
i=s0+1 u

xi(N)
i

but the explicit form of this term will not concern us, since we will only require
that the element wN belongs to the underlying group G′ defining the nilmanifold
X′ = uR1 · · · uRs �.

In conclusion, we have reduced our problem to showing that given the nilmanifold
X′ = uR1 · · · uRs � (which is also equal to uZ1 · · · uZs �), the averages in equation (29)
converge. Here, the polynomials qi,N are defined in equation (27) (they are essentially
the Taylor polynomials of the Hardy field functions xi), while the polynomials pi,N , p̃j ,N

were defined by the relations pi,N = pi(N + h) and p̃j ,N = p̃j (N + h), where the pi , p̃j
are polynomials with real coefficients. We also recall that the polynomials p̃i are such
that every non-trivial linear combination of them is not an integer polynomial. Under
all these assumptions, we will show that the polynomial sequence (restricted to the
range 0 ≤ h ≤ L(N)) inside the function F is δ-equidistributed for N sufficiently large
in the following step. We remark that the growth conditions in equation (26) imposed on
the function L(t) will also play a crucial role in this.

Step 2. Using the quantitative equidistribution theorem. Let Z ∼= Td be the horizontal
torus of the nilmanifold X′ = uR1 · · · uRs � and let π : X′ → Z denote the projection map.
Let δ > 0 be sufficiently small (in the sense that Theorem F is applicable). We assert that
the finite polynomial sequence( s0∏

i=1

u
qi,N(h)+pi,N(h)
i

s∏
i=s0+1

u
p̃i,N(h)
i �′

)
0≤h≤L(N)

(30)

is δ-equidistributed on the nilmanifold X′ for N sufficiently large. If the claim does not
hold for a natural number N, then by Theorem F, there exists a real number M > 0 and a
non-trivial horizontal character χN of modulus ≤ M such that∥∥∥∥χN ◦ π

( s0∏
i=1

u
qi,N (h)+pi,N(h)
i

s∏
i=s0+1

u
p̃i,N (h)
i �′

)∥∥∥∥
C∞[L(N)]

≤ M . (31)

(The constant M depends only on δ, the nilmanifold X′ as well as the degrees of the
polynomials qi , pi , which are all fixed in our arguments. The central property we need
is that it is independent of the variable N.) Thus, if our prior assertion fails, then the above
relation would hold for infinitely many N ∈ N.
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Our first goal is to eliminate the dependence of the characters χN on the variable N.
Note that the function χN ◦ π is a character on Td of modulus ≤ M and, thus, has the
form

(t1, . . . , td ) → e(k1,Nt1 + · · · + kd,Ntd)

for ki,N ∈ Z with |k1,N | + · · · + |kd,N | ≤ M . We also write π(ui) = (ui,1, . . . , ui,d)
for the projections of the elements ui on the horizontal torus. Then, a straightforward
computation allows us to rewrite equation (31) as∥∥∥∥e

( s0∑
i=1

(qi,N(h)+ pi,N(h))(k1,Nui,1 + · · · + kd,Nui,d)

+
s∑

i=s0+1

(p̃i,N(h))(k1,Nui,1 + · · · + kd,Nui,d)

)∥∥∥∥
C∞[L(N)]

≤ M . (32)

Since there are only finitely many choices for the numbers k1,N , . . . , kd,N , we have that
if our claim fails, there are k1, . . . , kd ∈ Z, so that the inequality∥∥∥∥e

( s0∑
i=1

(qi,N(h)+ pi,N(h))(k1ui,1 + · · · + kdui,d)

+
s∑

i=s0+1

(p̃i,N(h))(k1ui,1 + · · · + kdui,d)

)∥∥∥∥
C∞[L(N)]

≤ M (33)

holds for infinitely many N ∈ N. We will also denote the horizontal character correspond-
ing to the d-tuplet (k1, . . . , kd) by χ . Thus, we have eliminated the dependence of the
character χ on N.

Denote ũi = k1ui,1 + · · · + kdui,d . We will show that the above hypotheses imply that
all the numbers ũi equal 0. Thus, suppose that this is not valid and we will reach a
contradiction. We consider two cases.

Case 1. First, suppose that all of the numbers ũi with 1 ≤ i ≤ s0 are zero, which implies
that the first summand in equation (33) vanishes. Naturally, equation (33) is simplified to∥∥∥∥e

( s∑
i=s0+1

p̃i,N(h)ũi

)∥∥∥∥
C∞[L(N)]

≤ M . (34)

We recall here that we had defined p̃i,N(h) = p̃i(N + h). Let Q(t) = ∑s
i=s0+1 ũi p̃i (t).

This is a linear combination of the polynomials p̃i(t). However, this linear combination
is not a polynomial in Q[t] due to our assumptions on the polynomials p̃i(n), unless, of
course, all the coefficients ũi (for s0 + 1 ≤ i ≤ s) in this combination are zero, which we
have supposed to not be the case. Thus, Q(t) has at least one irrational coefficient (except
the constant term) and is equidistributed on T. The relation in equation (34) implies that
‖e(Q(N + h))‖C∞[L(N)] ≤ M for infinitely many N. It is not difficult to see by calculating
the coefficients in Q(N + h) that this fails for N large enough.

Case 2. Suppose now that at least one of the numbers ũi with 1 ≤ i ≤ s0 is non-zero.
Furthermore, assume l is a positive integer that is larger than the degrees of the polynomials
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pi,N(h), p̃j ,N(h) (for all admissible values of the indices i, j ) as well as the degrees of the
functions xi , but l is also smaller than all the numbers ki . Recall that we have picked ki
to be very large in relation to the degrees of the polynomials pi , p̃j and degrees of the
functions xi in the beginning, thus we can find ‘many’ such numbers l. The fact that l
is larger than the degrees of the functions xi combined with Proposition A.1 implies that
x
(l)
i (t) → 0, as t → +∞.

For a number l as above, the coefficient of the term hl in the polynomial appearing in
equation (33) is equal to

1
l!

s0∑
i=1

x
(l)
i (N)ũi

and, thus, it does not depend on the polynomials pi , p̃j . Using the definition of the
smoothness norms, equation (33) implies that

L(N)l
∥∥∥∥ 1
l!

s0∑
i=1

x
(l)
i (N)ũi

∥∥∥∥
T

≤ M

for infinitely many N ∈ N. The last inequality becomes

L(N)l
∣∣∣∣
s0∑
i=1

x
(l)
i (N)ũi

∣∣∣∣ ≤ l! M

for large enough N, because all functions xli (t) go to 0. However, the Hardy field function
inside the absolute value above has the same growth rate as the function x(l)1 (t), since the
functions x1, . . . , xs0 are strongly non-polynomial and have distinct growth rates (recall
that x1 has the largest growth rate among the xi), unless, of course, ũ1 = 0. If the latter
does not hold, we get ∣∣∣∣x(l)1 (N)̃u1

∣∣∣∣ ≤ C

L(N)l

for infinitely many N and some constant C, which contradicts equation (26). Thus, we even-
tually deduce that ũ1 = k1u1,1 + · · · + kdu1,d = 0. Repeating the same argument, we get
inductively that ũi = k1ui,1 + · · · + kdui,d=0 for all 1 ≤ i ≤ s0, which is a contradiction.

To summarize, we have shown that if the sequence in equation (30) is not
δ-equidistributed for all large enough N, then all the numbers ũi = k1ui,1 + · · · + kdui,d

are zero. Equivalently, we have χ ◦ π(ui) = 0 for all 1 ≤ i ≤ s. This implies that the
character χ is the trivial character on X′. Indeed, the character χ annihilates all elements
u
n1
1 · · · unss �, where n1, . . . , ns ∈ Z and by density of those elements on X′ (recall our

assumption that X′ is also equal to the nilmanifold uZ1 · · · uZs �), χ is zero everywhere.
This is a contradiction (the horizontal characters appearing when we applied Theorem F
are assumed to be non-trivial).

In conclusion, we have that the finite polynomial sequence in equation (30) is
δ-equidistributed for N sufficiently large. Thus, we conclude that the averages in equation
(25) are δ‖F(wN ·)‖Lip(X′) = δ‖F‖Lip(X′) close to the quantity

∫
X′ F(wNx) dmX′(x).

https://doi.org/10.1017/etds.2023.68 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.68


Pointwise convergence in nilmanifolds along smooth 1991

The action of wN on X′ preserves the Haar measure of X′, so we get that the last integral
is equal to

∫
X′ F(x) dmX′(x). Taking δ → 0, we finish the proof.

Proof of Theorem 1.1. As we explained in the previous section (before the statement of
Lemma 3.2), the first part follows from the second part (see also [4, Lemma 5.1]) and, in
turn, this second part follows using similar arguments as in the proof of Theorem 1.2. We
only highlight the main differences here. All the disparities appear in the part where we
reduce Proposition 4.1 to Lemma 4.2.

(a) In equation (22), all the functions f1, . . . , fs satisfy equation (8) (there are no
functions among the fi that satisfy limt→+∞ |fi(t)| < ∞). We also have k = s.

(b) We do not have to make the reduction to the case where the polynomials p̃1, . . . , p̃�
are linearly independent. There cannot be a non-trivial linear combination of them that is
zero, because that would violate equation (8).

(c) The limit of the averages is again
∫
X′ F(x) dmX′(x), where X′ = uR1 · · · uRs � by

Lemma 4.2. We would like to show that the limit is equal to
∫
X′′ Fdm′′

X, where X′′ is the

nilmanifold bR1 · · · bRk �. Recall that each ui is equal to bci,11 · · · bci,kk (by equation (21))
and the numbers ci,j form an invertible k × k matrix (due to the linear independence

assumption on the original functions a1, . . . , ak). Thus, we can also write bi = ∏k
j=1 u

c′i,j
i

for some numbers c′i,j (here, we also use that the elements bi are pairwise commuting).
Combining the above, we have that bR1 · · · bRk = uR1 · · · uRk and thus the closures of their
projections on G/� define the same subnilmanifold.

4.1. Proof of Theorem 1.3. Finally, we provide a proof of Theorem 1.3. We use the
following proposition from [18]. Although it will not be used in the proof, we have to
assume below that the Hardy field H that we work with is closed under composition and
compositional inversion of functions, since the following proposition was proven under
this assumption.

PROPOSITION 4.3. [18, Proposition 3.1] Let H be a Hardy field that contains the field LE
of logarithmico-exponential functions and is closed under composition and compositional
inversion of functions (when defined). Assume that the functions a1, . . . , ak ∈ H have
polynomial growth and suppose that the following two conditions hold:
(i) the functions a1, . . . , ak dominate the logarithmic function log t;

(ii) the pairwise differences ai − aj dominate the logarithmic function log t for any
i �= j .

Then, there exists a positive integer s, such that for any measure-preserving system
(X, μ, T ), functions f1 ∈ L∞(μ) and f2,N , . . . , fk,N ∈ L∞(μ), all bounded by 1, with
f1 ⊥ Zs(X), the expression

sup
|cn|≤1

‖ E
1≤n≤N cn T

�a1(n)�f1 · T �a2(n)�f2,N · · · T �ak(n)�fk,N‖L2(μ) (35)

converges to 0, as N → +∞.

https://doi.org/10.1017/etds.2023.68 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.68


1992 K. Tsinas

Proof of Theorem 1.3. Using a standard ergodic decomposition argument, we may assume
that the system (X, μ, T ) is ergodic. We can also rescale the functions fi ∈ L∞(μ) so that
they are 1-bounded. Our first objective is to apply Proposition 4.3 to reduce the problem to
the case where the system X is a nilsystem. If the functions a1, . . . , ak are such that the
conditions of Proposition 4.3 are satisfied, then this can be done instantly. If this does not
hold, we have to perform a series of reductions to be able to apply Proposition 4.3. We do
this in two steps.

(a) First, assume there exists one function among the ai (say a1 for simplicity), which
has growth rate smaller than or equal to log t . Then, using equations (8) and (9), we deduce
that a1 converges monotonically to some real number c and the integer part of a1(n)

becomes a constant. Thus, the asymptotic behaviour of the averages in equation (10) is
the same if we substitute the term T �a1(n)�f1 with the term T �c�f1. Consequently, we only
need to show that the averages

E
1≤n≤NT

�a2(n)�f2 · · · T �ak(n)�fk

converge in norm. Repeating the same argument, we eliminate all functions ai that grow
slower than log t .

(b) Due to the reduction in the previous step, we have a sub-collection of the original
functions, so that all functions in this new set dominate log t . We will denote this collection
by a1, . . . , ak again, and our task is to show that the averages

E
1≤n≤NT

�a1(n)�f1 · · · T �ak(n)�fk

converge in mean (for all systems). Our next objective is to eliminate pairs of functions,
whose difference grows slower than log t so that we can ultimately apply Proposition 4.3.

Assume that two of the functions (say a1, a2) are such that their difference is dominated
by log t . We observe that the function a1(t) goes to ±∞ as t → +∞, since it dominates
log t . In that case, the function a1(t) satisfies equation (8) and by Theorem A, the sequence
a1(n) is equidistributed (mod 1). Observe that since a1 − a2 must satisfy equation (9),
we must have a2(t) = a1(t)+ c + x(t), where the function x(t) ∈ H converges to 0
monotonically and c is a real number. Thus, for t ∈ R sufficiently large, we have

�a2(t)� = �a1(t)+ x(t)+ c� = �a1(t)� + �c� + ε(t), (36)

where ε(t) ∈ {0, ±1, ±2} and the value of ε(t) depends on whether the inequalities

{a1(t)+ c} + {x(t)} ≤ 1

and

{a1(t)} + {c} ≤ 1

hold or not, as well as whether x(t) is eventually positive or negative.
Define Az = {t ∈ R, ε(t) = z} for z ∈ {0, ±1, ±2}. Then, we see that our multiple

averages are equal to the sum∑
z∈{0,±1,±2}

E
1≤n≤N1Az(n) T

�a1(n)�(f1 · T �c�+zf2) · T �a3(n)�f3 · · · T �ak(n)�fk .
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For a fixed z, we want to show that the corresponding average converges. For n ∈ N large
enough, we will approximate the sequence 1Az(n) by sequences of the form F({a1(n)}),
where F is a continuous function.

We establish this for z = 0 (the other cases follow similarly). Assume that x(t)
decreases to 0 (the other case) is similar, which means that x(t) is eventually positive
and also {x(t)} = x(t) for t sufficiently large. In addition, we can also assume that c is
positive. Observe that for t ∈ A0, we have

�a2(t)� = �a1(t)� + �c�
by the definition of A0. This is equivalent to the inequalities

{a1(t)+ c} + {x(t)} ≤ 1,

{a1(t)} + {c} ≤ 1,

which can be condensed into

{a1(t)} + {x(t)} ≤ 1 − {c}, (37)

since we assumed for simplicity that x(t) is eventually positive. To summarize, we have
shown that

n ∈ A0 ⇐⇒ {a1(n)} + {x(n)} ≤ 1 − {c}. (38)

Let ε > 0 be a small number. Since we have that the function x(t) decreases to 0, we
have that {x(t)} < ε for t large enough. Consider the set

Aε = {n ∈ N : {a1(n)} ≤ 1 − {c} − ε}.
Then, for sufficiently large values of n, we observe that if n ∈ Aε, then the inequality

{a1(t)} + {x(t)} ≤ 1 − {c}
holds as well. Namely, Aε ⊆ A0. Let us denote Bε = [0, 1 − c − ε] for convenience and
observe that

1Aε(n) = 1Bε ({a1(n)}).
Now we approximate the function 1Bε by a continuous function in the uniform norm, where
1Bε is considered a function on the torus T in the natural way. We can define a continuous
function on T, such that Fε agrees with 1Bε on the set

[ε, 1 − {c} − 2ε] ∪ [1 − {c}, 1 − ε]

and such that ‖Fε − 1Bε‖∞ ≤ 2. (In the case that c is an integer, we make natural
modifications to this set. For example, one could define the function Fε so that it agrees
with 1Bε on [ε, 1 − 2ε]. Basically, we only require the function Fε to agree with 1Bε on a
set of measure 1 −O(ε) for our argument to work.) We suppose that ε is small enough so
that these intervals are well defined. Observe that 1Bε is equal to 1 on the first interval of
this union and equal to 0 on the second interval.

Observe that

A0 \ Aε = {n ∈ N : 1 − {c} − ε < {a1(n)} ≤ 1 − {c} − {x(n)}}
⊆ {n ∈ N : {a1(n)} ∈ [1 − {c} − ε, 1 − {c}]}.
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Since the function a1(t) is equidistributed modulo 1, we conclude that the set A0 \ Aε has
upper density at most ε. Therefore, we have∥∥ E

1≤n≤N1A0(n) T
�a1(n)�(f1 · T �c�f2) · T �a3(n)�f3 · · · T �ak(n)�fk

− E
1≤n≤N1Bε ({a1(n)}) T �a1(n)�(f1 · T �c�f2) · T �a3(n)�f3 · · · T �ak(n)�fk

∥∥
L2(μ)

≤ E
1≤n≤N 1A0\Aε(n)‖1Aε − 1Aε\A0‖∞ ≤ 2ε + oN(1), (39)

where we used the fact that 1Aε(n) = 1Bε ({a1(n)}) for all n ∈ N, the trivial bound for the
values of n ∈ A0 \ Aε and the fact that the set A0 \ Aε has upper density at most ε.

We do a similar comparison for the averages weighted by Fε({a1(n)}) and 1Bε ({a1(n)}).
To be more specific, we reiterate that the functions 1Bε and Fε agree on the set

[ε, 1 − {c} − 2ε] ∪ [1 − {c}, 1 − ε].

Accordingly, we have 1Bε ({a1(n)}) = Fε({a1(n)}), unless

{a1(n)} ∈ [0, ε) ∪ (1 − {c} − 2ε, 1 − {c}) ∪ (1 − ε, 1).

Let Cε denote the set of n ∈ N for which {a1(n)} belongs to this union. This union has
measure 4ε, which implies that the upper density of Cε is at most 4ε (since a1(n) is
equidistributed modulo 1). Hence, we infer that∥∥ E

1≤n≤NFε({a1(n)}) T �a1(n)�(f1 · T �c�f2) · T �a3(n)�f3 · · · T �ak(n)�fk

− E
1≤n≤N1Bε ({a1(n)}) T �a1(n)�(f1 · T �c�f2) · T �a3(n)�f3 · · · T �ak(n)�fk

∥∥
L2(μ)

≤ E
1≤n≤N 1Cε (n)‖Fε − 1Bε‖∞ ≤ 8ε + oN(1), (40)

where we used the fact that 1Bε ({a1(n)}) = Fε({a1(n)}) for all n on the complement of Cε,
the trivial bound for the values of n ∈ Cε and the fact that Cε has upper density at most 4ε.

Combining equations (39) and (40), we deduce that∥∥ E
1≤n≤N1A0(n) T

�a1(n)�(f1 · T �c�f2) · T �a3(n)�f3 · · · T �ak(n)�fk

− E
1≤n≤NFε({a1(n)}) T �a1(n)�(f1 · T �c�f2) · T �a3(n)�f3 · · · T �ak(n)�fk

∥∥
L2(μ)

≤ 10ε + oN(1). (41)

Taking ε → 0, we deduce that it is sufficient to verify that the averages

E
1≤n≤NF({a1(n)}) T �a1(n)�(f1 · T �c�f2) · · · T �ak(n)�fk

converge for any continuous function F on T. This would imply that the averages

E
1≤n≤N1A0(n) T

�a1(n)�(f1 · T �c�f2) · · · T �ak(n)�fk

converge in norm.
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After approximating F by trigonometric polynomials (in the uniform norm), it suffices
to show that the averages

E
1≤n≤Ne(l1a1(n)) T

�a1(n)�(f1 · T �c�f2) · · · T �ak(n)�fk

converge in norm for any l1 ∈ Z. Note that the function a2(t) has vanished and its role has
been replaced by the sequence e(l1a1(n)).

We repeat this process until we eliminate all pairs of functions, whose difference grows
slower than log t , where at each step, our averages are multiplied by a sequence of the
form e(liai(n)) (li ∈ Z). After finitely many iterations, our problem eventually reduces
to the following: let a1, . . . , ak satisfy equation (8) or equation (9) and let b1, . . . , bm
be a subset of {a1, . . . , ak}, so that the functions b1, . . . , bm satisfy the hypotheses of
Proposition 4.3. Then, for any integers l1, . . . lk , the averages

E
1≤n≤Ne(l1a1(n)+ · · · + lkak(n)) T

�b1(n)�f1 · · · T �bm(n)�fm

converge in L2(μ) for all functions f1, . . . , fm ∈ L∞(μ).
Now we can apply Proposition 4.3 and use a standard telescopic argument to show that

the limiting behaviour of the above averages does not change if we replace the functions fi
by their projections to the factor Zs(X) (the number s is the one given by Proposition 4.3).
However, by Theorem E, the factors Zs(X) are inverse limits of s-step nilsystems. Thus,
by another standard limiting argument, we may reduce to the case that the space X is a
nilmanifold and μ is its Haar measure, while the transformation T is the action (by left
multiplication) of an element g on X. Finally, we can approximate the functions fi by
continuous functions and reduce our problem to the following.

If X = G/� is a nilmanifold with g ∈ G and the functions a1, . . . , ak , b1, . . . ,
bm ∈ H are as above, then for any continuous functions f1, . . . , fm, the averages

E
1≤n≤Ne(l1a1(n)+ · · · + lkak(n)) f1(g

�b1(n)�x) · · · fk(g�bm(n)�x)

converge in mean.
We show that these averages converge pointwise for every x ∈ X. We recall that the

functions b1, . . . , bm belong to the set {a1, . . . , ak} (this is the only thing that we will
need to use for the rest of the proof).

First of all, it suffices to show that the averages

E
1≤n≤Ne(l1a1(n)+ · · · + lkak(n)) f1(g

b1(n)x) · · · fk(gbm(n)x)

converge pointwise, where X = G/� is such that G is connected, simply connected
nilpotent Lie group (basically, we can remove the integer parts appearing in the iterates).
This follows by standard modifications in the proof of Lemma 3.2 (the fact that we have
the coefficients e(l1a1(n)+ · · · + lkak(n)) in the final expression does not affect the
argument), so we omit the details.

Now, observe that we can write the above averages in the form

E
1≤n≤NF0(g

l1a1(n)+···+lkak(n)
0 x̃) F1(g̃

b1(n)x̃) · · · Fk(g̃bm(n)x̃),
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where g0 = (1T, eG) and g̃ = (1T, g) act on the product nilmanifold T ×X, the point x̃ is
just (Z, x) and the functions Fi are defined by

F0(yZ, a�) = e(y) and Fi(yZ, a�) = fi(a�) for i ≥ 1.

These are continuous functions on T ×X. The functions l1a1(t)+ · · · + lkak(t),
b1(t), . . . , bm(t) satisfy the hypotheses of Theorem 1.2 (since the functions a1, . . . , ak
do) and the result follows.

Acknowledgements. I would like to thank my PhD advisor Nikos Frantzikinakis for
many helpful discussions. I would also like to thank the anonymous referee for pointing
out corrections in the previous versions of the paper and for several additional valuable
suggestions that improved the overall presentation of the article. The author was supported
by the Research Grant ELIDEK HFRI-FM17-1684 and ELIDEK-Fellowship number 5367
(3rd Call for HFRI Ph.D. Fellowships) during the preparation of this article.

A. Appendix. Hardy field functions in short intervals
A.1. Growth rates of Hardy field functions. All of the results presented below were
proven in [18] and thus we omit their proofs. We refer the reader to the example in §3,
where we establish Theorem 1.2 in the case where we have two simple functions. In that
example, we do not need any special lemmas to show that we can find a common Taylor
expansion, because we can perform the calculations by hand. However, in the proofs
of Theorems 1.1 and 1.2, we need to show that we can always do the same common
polynomial expansion for general functions.

The first two propositions are some elementary facts concerning the growth rates of
derivatives of functions in a Hardy field.

PROPOSITION A.1. [18, Proposition A.1] Let f ∈ H have polynomial growth. Then, for
any natural number k, we have

f (k)(t) 
 f (t)

tk
.

In addition, if tδ ≺ f (t) for some δ > 0, we have

f ′(t) ∼ f (t)

t
.

The above proposition establishes that if we have a function in H that has polynomial
growth, then its derivatives of large enough order will be functions that converge to 0. The
next lemma implies that a particular growth relation holds between consecutive derivatives
(of large enough order).

PROPOSITION A.2. [18, Proposition A.2] Let f ∈ H be strongly non-polynomial with
f (t) � log t . Then, for k sufficiently large, we have

1 ≺ |f (k)(t)|−1/k ≺ |f (k+1)(t)|−1/(k+1) ≺ t .
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Let us demonstrate how this proposition is used to get a polynomial expansion in short
intervals for a single function. Let a ∈ H be a strongly non-polynomial function that
satisfies the growth condition a(t) � log t . Let k be a positive integer that is large enough
so that we can apply the two preceding propositions. We argue that we can find a function
L(t) (not necessarily in H) such that

|a(k)(t)|−1/k ≺ L(t) ≺ |a(k+1)(t)|−1/(k+1). (A.1)

For instance, the geometric mean of the functions |a(k)(t)|−1/k and |a(k+1)(t)|−1/(k+1) is
a suitable choice for our purposes.

We will examine the function a in intervals of the form [N , N + L(N)] and approxi-
mate it by a polynomial, which will vary with N. Observe that if 0 ≤ h ≤ L(N), then we
have

a(N + h) = a(N)+ · · · + hka(k)(N)

k!
+ hk+1a(k+1)(ξh,N)

(k + 1)!

for some ξh,N ∈ [N , N + h]. Using the largeness of k, Proposition A.2 implies that
|a(k+1)(t)| → 0 monotonically (the monotonicity follows from the fact that the function
a(k+1)(t) belongs to H). Then, for N sufficiently large,∣∣∣∣hk+1a(k+1)(ξh,N)

(k + 1)!

∣∣∣∣ ≤
∣∣∣∣L(N)k+1a(k+1)(N)

(k + 1)!

∣∣∣∣ ≺ 1,

because of equation (A.1). Furthermore, we have that∣∣∣∣L(N)ka(k)(N + L(N))

k!

∣∣∣∣ → +∞.

Indeed, since L(t) is a sub-linear function by Proposition A.2, we infer that the two
functions a(k)(t + L(t)) and a(k)(t) have the same growth rate and thus we only need
to prove that ∣∣∣∣L(N)ka(k)(N)k!

∣∣∣∣ → +∞. (A.2)

This follows similarly as above. To summarize, we have

a(N + h) = a(N)+ · · · + hka(k)(N)

k!
+ oN(1) for 0 ≤ h ≤ L(N). (A.3)

Therefore, functions that satisfy equation (A.1) have the following distinctive property:
the sequence a(n), when restricted to the intervals [N , N + L(N)] as above, is asymp-
totically equal to a polynomial sequence (that depends on N) of degree exactly k. This
motivates us to study the properties of functions that satisfy equation (A.1). The main goal
is to accomplish the same for several functions a1, . . . , am in a Hardy field H. This is
relatively straightforward to do by hand in explicit examples, like the one in §3. In the
more abstract setting, if we manage to show that we can find a function L(t), so that
equation (A.1) is satisfied for all functions a1, . . . , am (the integer k is allowed to be
different for each function), then we will establish that a polynomial expansion like the one
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in equation (A.3) holds for all the functions a1, . . . , am simultaneously. We will introduce
some notions shortly that will assist us in this endeavour.

A.2. The sub-classes S(a, k). Let a ∈ H be a strongly non-polynomial function such
that a(t) � tδ , for some δ > 0 (namely, we exclude sub-fractional functions). For k ∈ N

sufficiently large (we only require that a(k)(t) → 0), we define the subclass S(a, k) of H as

S(a, k) = {g : g(t) ≺ t and |a(k)(t)|−1/k � g(t) ≺ |a(k+1)(t)|−1/(k+1)},
where the notation g(t) � f (t) signifies that the limit limt→∞ |f (t)/g(t)| is non-zero.
The purpose of the classes S(a, k) is to characterize the growth relation in equation (A.1).
We will use the following lemma.

LEMMA A.3. [18, Lemma A.3] Let a ∈ H be a strongly non-polynomial function with
a(t) � tδ , for some δ > 0.

(i) The class S(a, k) is non-empty for k sufficiently large.
(ii) For any 0 < c < 1 sufficiently close to 1, there exists k0 ∈ N (depending on c), such

that the function t → tc belongs to S(a, k0).
(iii) The class S(a, k) does not contain all functions of the form t → tc for c sufficiently

close to 1.

A naive way to think of the sub-classes is like a sequence of disjoint intervals on a line
(with no gaps between consecutive intervals). Property (ii) in the above lemma implies
that each function of the form tc for c close to 1 belongs to a unique S(a, k). We can
demonstrate that this actually holds if the fractional power tc is replaced by any function
g satisfying a growth condition of the form tc1 ≺ g(t) ≺ tc2 , where c1 must be sufficiently
close to 1.

PROPOSITION A.4. Let a1, . . . , ak be strongly non-polynomial functions in H of polyno-
mial growth, such that all the functions ai dominate some fractional power t δ for some
δ > 0. There exists 0 < C < 1 depending only on the functions a1, . . . , ak , such that if
the function L(t) satisfies

tC ≺ L(t) ≺ t1−ε

for some ε > 0, then there exist positive integers ki (that depend on L(t)), such that L(t) ∈
S(ai , ki) for every i ∈ {1, . . . , k}. In addition, for any positive real number M, there exists
a constant A = A(M , a1, . . . , ak) ∈ (0, 1), such that if

tA ≺ L(t) ≺ t1−ε

for some ε > 0, then we have ki > M for every i ∈ {1, . . . , k}.
Proof. It is apparent that we only need to establish the assertion in the case k = 1 (namely,
when we have only one function). Therefore, we fix a strongly non-polynomial function a
that is not sub-fractional and recall that by Lemma A.3, there exists a constant C < 1
depending only on a(t), such that every function of the form tc with c > C belongs to the
class S(a, nc) for some natural number nc. Now, assume that the function L(t) satisfies

tC ≺ L(t) ≺ tc1 (A.4)
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for some C < c1 < 1. Then, because both tC and tc1 belong to the sub-classes S(a, nC)
and S(a, nc1), respectively, for some nC , nc1 ∈ N, we get that L(t) belongs to S(a, n3) for
some integer n3 that satisfies nC ≤ n3 ≤ nc1 .

Now we establish the second part. Let M be a fixed real number and consider a fractional
power tc2 with C < c2 < 1, so that tc2 belongs to S(a, nc2) for some c2 > M . Such a
fractional power exists, which is evident by combining the second and third statements of
Lemma A.3. Thus, if L(t) satisfies

tc2 ≺ L(t) ≺ t1−ε

for some ε > 0, we have that L(t) ∈ S(a, k′) (by the first part) for a positive integer k′ with
k′ ≥ nc2 > M . The claim follows.

The first part of Proposition A.4 implies that if we are given functions a1, . . . , ak
that satisfy the hypotheses, then we can find a sub-linear function L(t), such that L(t) ∈
S(ai , ki). This asserts that the function ai will be approximated by a polynomial of degree
ki in short intervals of the form [N , N + L(N)] for every i ∈ {1, . . . , k}. Furthermore,
the second part establishes that we can make the degrees ki of the Taylor polynomials
arbitrarily large, as long as we take the function L(t) to grow ‘sufficiently fast’ (faster than
some appropriate power tC with C < 1).

The sub-classes S(a, k)were defined for functions that are not sub-fractional. The above
argument does not extend to these latter functions. As an example, let us fix a number δ
with 0 < δ < 1 and a sub-fractional function a ∈ H. If we consider the function L(t) = t δ

and try to repeat the same approximations to obtain an analogue of equation (A.3), we run
into an issue. Clearly, it is easy to see that

max
0≤h≤L(N)

|a(N + h)− a(N)| = oN(1),

using the mean value theorem. Thus, the sequence a(n), when it is restricted to the interval
[N , N + L(N)], is oN(1) close to the value a(N), which signifies that it is approximately
equal to a constant on this interval (or equivalently, all polynomial expansions we get
are of degree 0). This could be circumvented if we considered sub-linear functions L(t)
that grow faster than all the powers t δ , 0 < δ < 1, such as the function t/ log t . If we
do this however, the growth condition in equation (A.1) can never hold for functions
that are not sub-fractional (in simple terms, there can be no polynomial approximation
of finite degree). (Concerning the problem of finding characteristic factors for ergodic
averages involving Hardy field iterates, there was a workaround for this issue in [18] using
a double-averaging trick. Unfortunately, the same argument breaks down in the setting of
pointwise convergence on nilmanifolds. See also Remark 4.) We omit the specific details
of this deduction.

A.3. Decomposing Hardy field functions. We consider a Hardy field H that contains the
polynomials and let a be a function in H. We partition H into equivalence classes by the
relation f ∼ g, which is equivalent to saying that the limit of f (t)/g(t) as t → +∞ is a
non-zero real number. In simple terms, f , g are in the same equivalence class if and only
if they have the same growth rate. We put the zero function in its own equivalence class.
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We will define the strongly non-polynomial growth rate of a function a ∈ H as follows.
(i) If a is a strongly non-polynomial function (recall the definition in §2), we define it to

be the equivalence class of a.
(ii) If a is not strongly non-polynomial, then it can be written in the form p(t)+ x(t),

where p(t) is a polynomial and x(t) is a strongly non-polynomial function (or the zero
function) with x(t) ≺ p(t). Observe that x(t) is a function in H, since our Hardy field
contains the polynomials. We define the strongly non-polynomial growth rate of a as the
equivalence class of the function x ∈ H.

The strongly non-polynomial growth rate is defined for any function a ∈ H. It is well
defined, in the following sense: consider a function a ∈ H like in case (ii) above, which
has two different representations as p1(t)+ x1(t) and p2(t)+ x2(t), where p1, p2 are
polynomials, x1, x2 are strongly non-polynomial, and x1(t) ≺ p1(t) and x2(t) ≺ p2(t).
Then, we must have x1(t) ∼ x2(t). An example where such distinct representations may
exist is the function a(t) = t2 + t + t3/2. We can choose p1(t) = t2, x1(t) = t3/2 + t and
p2(t) = t2 + t , x2(t) = t3/2. While x1 �= x2, these two functions have the same growth
rate.

A simple observation is that if a function a ∈ H is written in the form p(t)+ x(t),
where p is polynomial and x is strongly non-polynomial, then the functions a and x have
the same strongly non-polynomial growth rate (one could alternatively use this remark to
present another equivalent definition of the strongly non-polynomial growth rate).

Finally, we also say that a ∈ H has trivial growth rate if limt→+∞ a(t) = 0. Recall that
we also included these functions when we defined the strongly non-polynomial functions.
We will now prove the following lemma.

LEMMA A.5. Let H be a Hardy field that contains the polynomials and let a1, . . . ,
ak ∈ H be arbitrary functions. Then, the set L(a1, . . . , ak) of non-trivial linear combi-
nations has a basis (g1, . . . , gm, h1, . . . , h�), where m, � are non-negative integers, such
that the functions h1, . . . , h� have the form pi(t)+ ot (1), where pi is a real polynomial
for every 1 ≤ i ≤ � and g1, . . . , gm have distinct and non-trivial strongly non-polynomial
growth rates.

Proof. We can restrict our attention to the case that the functions a1, . . . , ak are linearly
independent (otherwise, we pass to a maximal subset of these functions whose elements
are linearly independent). We induct on k. For k = 1, we have nothing to prove. Assume the
claim holds for all integers smaller than k. All functions considered below are implicitly
assumed to belong to H.

We may write each of the functions a1, . . . , ak in the form pi(t)+ xi(t), where pi
are real polynomials and xi(t) are strongly non-polynomial functions (either one of the
functions pi , xi may also be identically zero). After reordering, we may assume that

x1(t) � x2(t) � · · · � xk(t).

Now, we define the number l ∈ {0, 1, . . . , k} to be the smallest natural number for which
all functions xl+1(t), xl+2(t) and so on have limit zero (as t → +∞). If none of the xi
have limits going to 0, then we just set � = k.
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We consider two cases.
(i) If the functions x1, . . . , xl have distinct growth rates, then we are done. In this case,

the functions gj appearing in the statement are the functions pi(t)+ xi(t) for 1 ≤ i ≤ l,
while the role of the functions hj is performed by the functions pi(t)+ xi(t) for i > l

(observe that for i > l, we have that xi(t) have trivial growth rate due to the definition
of l). The strongly non-polynomial growth rates of the former set of functions are equal to
the growth rates of the functions x1, . . . , xl , which are pairwise distinct.

(ii) Assume now two of the functions among x1, . . . , xl have the same growth rate. In
particular, let k0 be the smallest integer such that xk0 ∼ xk0+1 (obviously k0 < l) and let
r ≥ 1 be the largest integer such that

xk0 ∼ xk0+1 ∼ · · · ∼ xk0+r .

For k0 + 1 ≤ i ≤ k0 + r , we can write xi(t) = xk0(t)+ yi(t), where yi(t) ≺ xi(t). Using
this, we can write ak0(t) = pk0(t)+ xk0(t) and

ai(t) = (pk0(t)+ xk0(t))+ (pi(t)− pk0(t)+ yi(t)) for k0 + 1 ≤ i ≤ k0 + r .

Now we apply the induction hypothesis on the collection of functions

{pk0+1(t)− pk0(t)+ yk0+1(t), . . . , pk0+r (t)− pk0(t)+ yk0+r (t),
pk0+r+1(t)+ xk0+r+1(t), . . . , pk(t)+ xk(t)}.

This gives a basis (g1, . . . , gm, u1, . . . , u�) for this set of functions, with the properties
outlined in the statement. We add the functions p1(t)+ x1(t), . . . , pk0(t)+ xk0(t) to the
functions g1, . . . , gm and add the functions pi(t)+ xi(t), l < i ≤ k, to the collection
u1, . . . , u�. (Recall that xi(t) goes to 0 for l < i ≤ k.) In this way, we construct a basis
for the original collection a1, . . . , ak with the asserted properties (if the functions that we
have constructed are not linearly independent, then we can just pass to a subset of these
functions that will form a basis). Indeed, we only have to check that the functions

p1(t)+ x1(t), . . . , pk0(t)+ xk0(t), g1(t), . . . , gm(t)

have distinct strongly non-polynomial growth rates. This follows by noting that the
strongly non-polynomial growth rates of the functions g1, . . . , gm cannot be larger than
the growth rates of the functions yi , which all grow strictly slower than xk0 . Thus, the
function pk0(t)+ xk0(t) has a bigger strongly non-polynomial growth rate than all of
the functions g1, . . . , gm. Furthermore, the strongly non-polynomial growth rate of the
function pi(t)+ xi(t) (1 ≤ i ≤ k0) is the same as xi(t), and these are all pairwise distinct
by the definition of k0. The claim follows.

Remark A.6.
(i) Note that we do not require that the functions a1, . . . , ak have polynomial growth in

the above lemma.
(ii) A very simple example that illustrates the above decomposition is the follow-

ing: assume that we have the functions a1(t) = t2 + t3/2, a2(t) = t3/2, a3(t) =
2t3/2 + t2 and a4(t) = t3/2 + t log t + t3. These four functions are clearly linearly
dependent. The above lemma provides the basis (g1, g2, h1), where g1(t) = t3/2,
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g2(t) = t log t + t3 and h1(t) = t2. The main property (which will be important
in the proof of Theorem 1.2) is that the functions g1, g2 have distinct strongly
non-polynomial growth rates (t3/2, t log t , respectively), even though g2 grows like
t3 (i.e. a polynomial).

B. Appendix. Nilmanifolds and quantitative equidistribution theory
B.1. Background on nilmanifolds. A large portion of the material concerning nilman-
ifolds (excluding the quantitative equidistribution results) can be found in [12, Part 3],
where there is a focus on the ergodic theoretic point of view. For a more general
presentation of the theory of nilpotent Lie groups, see also [3].

Let G be a topological group. A subgroup H of a topological group G is called discrete
if there is a cover of H by open sets of G, such that each of these open sets contains exactly
one element of H. It is called co-compact if the quotient topology makes G/H a compact
space. We call a subgroup with both of the above properties uniform and we will use the
letters � or � to denote such subgroups.

Let G be a k-step nilpotent Lie group and � be a uniform subgroup. The space X =
G/� is called a k-step nilmanifold.

Let b be any element in G. Then, b acts on G by left multiplication. LetmX be the image
of the Haar measure of G on X under the natural projection map. Then, mX is invariant
under the action of the element b (and therefore the action of G). If we set T (g�) = (bg)�,
then the transformation T is called a nilrotation, and (X, mX, T ) is called a nilsystem. If
the transformation T is ergodic, we say that b acts ergodically on the nilmanifold X. It can
be proven that b acts ergodically on X if and only if the sequence (bnx)n∈N is dense on X
for all x ∈ X (see, for instance, [12, Ch. 11]).

Let xn be a sequence of elements on X = G/�. We say that xn is equidistributed on
X = G/� if and only if for every continuous function F : X → C, we have

lim
N→+∞ E

1≤n≤NF(xn) =
∫
X

FdmX,

where mX is the (normalized) Haar measure of X.
A rational subgroup H is a subgroup of G such that H · eX is a closed subset of X =

G/�, where eX is the identity element of X. Equivalently, H� is a closed subset of the
space G. This also implies that H must be closed in G (see [12, Ch. 10, Lemma 14]). A
subnilmanifold of X is a set Y ⊂ X of the form H · x, where x is an element of X and H is
a rational subgroup of G.

B.1.1. Horizontal torus and characters. Assume X = G/� is a k-step nilmanifold
with G connected and simply connected and consider the subgroup G2 = [G, G]. The
nilmanifold Z = G/(G2�) is called the horizontal torus of X. We observe that Z is a
connected, compact Abelian Lie group, and thus isomorphic to some torus Td . For a
b ∈ G, it can be shown that the nilrotation induced by b is ergodic if and only if the induced
action of b on Z is ergodic [15, Theorem 3] (see also the theorem in [13, §2.17]).

A horizontal character χ is a continuous group morphism χ : G → C, such that
χ(gγ ) = χ(g) for all γ ∈ �. We observe that χ also annihilatesG2 and therefore descends
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to the horizontal torus Z. Thus, under the natural projection map π , χ becomes a character
on some torus Td . We will often use the notation χ ◦ π when working in the horizontal
torus, while we reserve the letter χ to denote the same character in the original group G.

B.1.2. Change of base point. For every b ∈ G, we have that the sequence bn� is
equidistributed in the set {bn� : n ∈ Z}. Therefore, if g is any other element in G, we have
that the sequence bng� is equidistributed in the nilmanifold g{(g−1bg)n�, n ∈ N}. This
follows by noting that bng = g(g−1bg)n. An analogous relation holds for the elements
of the set (bsg)s∈R, which we define below. This trick, which is called the change of base
point trick, can be used when we want to show that some sequence v(n)x is equidistributed
(on some specific nilmanifold depending on x) to change the base point x to �.

B.1.3. Reduction to connected–simply connected Lie groups. Let G be a k-step nilpotent
Lie group and let � be a uniform subgroup of G. Then, the space X = G/� is called a
k-step nilmanifold. The space X may have several representations of the form G/� (with
possible variance in the degree of nilpotency). Let G◦ be the connected component of eG
in G. If we assume that G/G◦ is finitely generated (without loss of generality, we can
assume that in this article, because our results deal with the action of G on finitely many
elements of X), then by passing to the universal cover G̃ of G, it can be shown that X has a
representation G̃/�̃ where now the underlying group G̃ is simply connected. In addition,
we can argue as in [13, §1.11] to deduce that X can be embedded as a subnilmanifold in
some nilmanifold G′/�′, where G′ is a connected and simply connected nilpotent Lie
group and every translation on X has a representation in X′ = G′/�′. This means that
for any x ∈ X, b1, . . . bk ∈ G and continuous function F : X → C, we can find x ′ ∈ X′,
b′

1, . . . , b′
k ∈ G′ and F ′ : X′ → C, such that F(bn1

1 · · · bnkk x) = F ′((b′
1)
n1 · · · (b′

k)
nkx)

for all n1, . . . , nk ∈ Z.

B.2. Nilorbits and Ratner’s theorem. Let G be a connected and simply connected Lie
group. It is well known that the exponential map exp from the Lie algebra of G to G
is a diffeomorphism. In particular, it is a bijection between G and its Lie algebra g. For
b ∈ G and t ∈ R, we can then define the element bt as the unique element of G satisfying
bt = exp(tX), where exp(X) = b. As a corollary of Ratner’s theorem [16], we get the
following lemma.

LEMMA B.1. Let G/� be a nilmanifold with G connected and simply connected. For any
elements b1, . . . , bk ∈ �, we have that the set

bR1 · · · bRk � = {bt11 · · · btkk � : t1, . . . , tk ∈ R}
is a subnilmanifold of X with a representation H/� for some closed, connected and
rational subgroup H of G that contains the elements bs1, . . . , bsk for all s ∈ R and � is
a uniform subgroup of H.

We call the set {bt� : t ∈ R} the nilorbit of the element b. We will analogously denote
by bZ� the set {bn� : n ∈ Z} and bN� = {bn� : n ∈ N}.

We establish the following lemma, which will be necessary for our proofs.
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LEMMA B.2. Let X = G/� be a nilmanifold and let b1, . . . , bk ∈ � be any pairwise
commuting elements. Then, there exists a real number t such that

bR1 · · · bRk � = {bn1t
1 · · · bnktk � : n1, . . . , nk ∈ Z}.

Proof. We want to find some t ∈ R so that the sequence

φt (n1, . . . , nk) = b
n1t
1 · · · bnktk

is equidistributed on the nilmanifold Y = bR1 · · · bRk �. By Lemma B.1, Y has a rep-
resentation as H/�, where H is connected, simply connected and rational. Observe
that φt naturally induces a Zk action on Y by (φt (n1, . . . , nk), h�) → b

n1t
1 · · · bnktk h�.

It is sufficient to show that this Zk-action is ergodic on Y, since this implies that
Y = {φt (n)y, n ∈ Zk} for all y ∈ Y . However, using the results in [13] (specifically,
Theorem 2.17), the above action is ergodic if and only if it is ergodic on the horizontal
torus Z of Y, which is homeomorphic to some torus Td . Equivalently, if we denote by
(bi,1, . . . , bi,d) the projection of the point bi� on Z, then we need to check whether the
sequence

(t (n1bi,1 + · · · + nkbk,1), . . . , t (n1b1,d + · · · + nkbk,d))

is dense on Td . It suffices to choose t so that 1/t is rationally independent of any integer
combination of the coordinates bi,j . This completes the proof.

B.3. Polynomial sequences on nilmanifolds. We provide the general definition of
polynomial sequences with respect to some filtration.

Definition B.3. A filtration G• of degree d on a nilpotent Lie group G is a sequence of
closed connected subgroups

G = G(0) = G(1) ⊇ G(2) ⊇ · · · ⊇ G(d) ⊇ G(d+1) = eG,

such that [G(i), G(j)] ⊆ G(i+j) for all i, j ≥ 0. The filtration is called rational if all groups
G(i) appearing in the above sequence are rational subgroups of G. A polynomial sequence
on G with respect to the above filtration is a sequence g(n) such that, for all positive
integers h1, . . . , hk , we have that the sequence ∂h1 · · · ∂hkg takes values in G(k), for all
k ∈ N, where ∂h denotes the ‘differencing operator’ that maps the sequence (g(n))n∈N to
the sequence (g(n+ h)(g(n))−1)n∈N.

An example of a filtration is the lower central series of the group G. For the purposes of
this article, we will only need to consider polynomial sequences of the form

v(n) = b
p1(n)
1 · · · bpk(n)k , (B.5)

where bi ∈ G for all 1 ≤ i ≤ k and pi are real polynomials. Note that the terms bpi(n)i

are well defined, due to our connectedness assumptions. To see that this is indeed a
polynomial sequence with our initial definition, we construct a specific filtration on G.
We assume that G is k-step nilpotent and we also denote the maximum degree among the
polynomials pi as d. We consider the filtration (of degree dk) G• = (G(i))0≤i≤dk , where
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G(i) = G�i/d�+1 and Gj are the commutator subgroups of G. This is a rational filtration
because all commutator subgroups of G are rational (see [12, Ch. 10, Proposition 22] for
the proof). Then, the sequence v(n) in equation (B.5) is a polynomial sequence with respect
to this filtration. We direct the reader to the discussion after [9, Corollary 6.8], where these
last observations were made originally. We will also call the projected sequence v(n)� on
X = G/� a polynomial sequence on X.

B.4. Quantitative equidistribution. Assume that p(t) is a polynomial. Then, p(n) can
be expressed uniquely in the form

p(n) =
d∑
i=0

ain
i

for some real numbers ai and d ∈ N. For N ∈ N, we define the smoothness norm

‖e(p(n))‖C∞[N] = max
1≤i≤d

(Ni‖ai‖R/Z). (B.6)

(The definition of the smoothness norms is a bit different in [9]. There, the authors write
the polynomials in the form p(n) = ∑d

i=0 ai
(
n
i

)
and define the smoothness norm using

the same definition as equation (B.6) (the coefficients ai are different). However, these
definitions give two equivalent norms and, thus, all theorems can be stated for both norms,
up to changes in the absolute constants.)

A filtration on a Lie group G gives rise to a basis on its Lie algebra B, which is called
a Mal’cev basis [14]. Mal’cev bases play an essential role in the theory of quantitative
equidistribution on nilmanifolds. First, we give the following definition.

Definition B.4. Let X = G/� be a k-step nilmanifold with a rational filtration G• =
(G(i))i≥0. Define m = dim(G) and mi = dim(G(i)). A basis (ξ1, . . . , ξm) of the asso-
ciated Lie algebra g over R is called a Mal’cev basis adapted to G•, if the following
conditions are met.
(i) For each 0 ≤ j ≤ m− 1, hj = span(ξh+1, . . . , ξm) is a Lie algebra ideal on g and

thus Hj = exp(hj ) is a normal Lie subgroup of G.
(ii) For every 0 ≤ i ≤ k, we have G(i) = Hm−mi .
(iii) Each b ∈ G can be uniquely written in the form exp(t1ξ1) · · · exp(tmξm) for ti ∈ R.
(iv) The subgroup � consists precisely of those elements which, when written in the

above form, have all ti ∈ Z.

Suppose that the element b is written in the form exp(t1ξ1) · · · exp(tmξm). The map
ψ : G → Rm defined by ψ(b) = (t1, . . . , tm) is a diffeomorphism from G to Rm. The
numbers (t1, . . . , tm) are called the coordinates of g with respect to the associated Mal’cev
basis. If we consider the Euclidean metric on Rm, we can construct a Riemannian metric
dG on G, whose value at the origin is equal to the Euclidean metric of Rm at the
origin (of Rm) composed with the inverse map ψ−1. This metric is invariant under right
translations and induces a metric dX on X = G/� defined by the relation:

dX(g�, h�) = inf{dG(b, b′), bg−1 ∈ �, b′h−1 ∈ �}.
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The metric used in [9] is slightly different than the one we consider here, but as the authors
remark, these metrics are equivalent and all theorems hold as well by changing the absolute
constants.

The sequence (g(n)�)1≤n≤N is said to be δ-equidistributed on the nilmanifold
X = G/� if and only if for any Lipschitz function F : X → C, we have that∣∣∣∣ E

1≤n≤NF(g(n)�)−
∫
X

FdμX

∣∣∣∣ ≤ δ‖F‖Lip(X),

where

‖F‖Lip(X) = ‖F‖∞ + sup
x,y∈X, x �=y

|F(x)− F(y)|
dX(x, y)

.

We now fix a k-step nilmanifold X = G/�, as well as a positive integer d. We equip it
with the rational filtration G• of degree dk that we defined above (after Definition B.3),
as well as a Mal’cev basis adapted to this filtration and the corresponding coordinate map
ψ : G → Rm (m is the dimension of G). Observe that under this filtration, we have that
G(d+1) = G2 and property (ii) in Definition B.4 implies that G2 = Hm−md+1 . Thus, the
Mal’cev basis induces an isometric identification of the horizontal torus Z = G/G2� with
the torus Tm−md+1 equipped with the standard metric.

Let π : X → Z denote the projection map and let χ be a horizontal character on G.
Consider an element b ∈ G with coordinates (t1, . . . , tm). Then, by properties (iii) and

(iv) in Definition B.4, we have that there is some
→
� = (�1, . . . , �m−md+1) ∈ Zm−md+1

such that

χ ◦ π(b) = �1t1 + · · · + �m−md+1 tm−md+1 .

Thus, we get a character on the torus Tm−md+1 (written here with additive notation). We
can then define the modulus ‖χ‖ of the character χ to be equal to

‖→
� ‖ = |�1| + · · · + |�m−md+1 |. (B.7)

If v(n) is the polynomial sequence in equation (B.5) (recall that it is a polynomial sequence
with respect to the filtrationG•), then the sequence χ ◦ π(v(n)�) is a polynomial sequence
on the horizontal torus Z ∼= Tm−md+1 . Indeed, if we denote ψ(bi) = (ti,1, . . . , ti,m), then
a simple calculation shows that

χ(π(v(n)�)) = χ(π(b
p1(n)
1 · · · · · bpk(n)k ))

= p1(n)(�1t1,1 + · · · + �m−md+1 t1,m−md+1)

+ · · · + pk(n)(�1tk,1 + · · · + �m−md+1 tk,m−md+1),

which makes the fact that χ(π(v(n)�)) is a polynomial sequence more evident.
The primary tool that we shall use is the following theorem of Green and Tao which

describes the orbits of polynomial sequences in finite intervals. We present it in the case of
our filtrationG•, although the statement holds for any rational filtration. Some quantitative
information (specifically relating to the concepts of quantitative rationality of Mal’cev
bases) has been suppressed, since in our applications, the nilmanifold will be fixed and the
above condition on the Mal’cev bases is guaranteed if we take δ small enough.
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THEOREM F. [9, Theorem 2.9] Let d be a non-negative integer, X = G/� be a nilman-
ifold with G connected and simply connected, and we equip the nilmanifold X with the
Mal’cev basis adapted to the dk filtration G• as above. Assume δ is a sufficiently small
(depending only on X, d) parameter. Then, there exist a positive constant C = C(X, d)
with the following property: for every N ∈ N, if (v(n))n∈N is a polynomial sequence with
respect to G• such that the finite sequence (v(n)�)1≤n≤N is not δ-equidistributed, then
for some non-trivial horizontal character χ (that depends on N and the sequence v(n)) of
modulus ‖χ‖ ≤ δ−C , we have

‖χ(π(v(n)�))‖C∞(N) ≤ δ−C ,

where π denotes the projection map from X to its horizontal torus.

To get a sense of how this theorem works, let us consider an application on a polynomial
sequence on T. Let d be a positive integer and δ > 0 a small real number. Then, there exists
a constant C that depends only on d, such that for any polynomial

p(t) = adx
d + · · · + a1t + a0

of degree d, we have either that ∣∣ E
1≤n≤N e(p(n))

∣∣ < δ

or there exists an integer q with |q| ≤ δ−C , such that

Nk‖qak‖T ≤ δ−C

for every 1 ≤ k ≤ d . Thus, either the exponential sums of the polynomial sequence p(n)
are small or the non-constant coefficients ak satisfy a ‘major-arc’ condition (they are
‘close’ to a rational with denominator bounded by δ−C). Observe that the constant C does
not depend on the length of the interval N.
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