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Abstract

There is an old conjecture that every integer can be decomposed into four (positive or
negative) perfect cubes. More specifically one would like to know the asymptotic number of
solutions of

when a large bound N is placed on the parts TW,-. Using the circle method it is shown that the
number of such representations of n when N -> oo is asymptotically equal to C(«). N for a
certain positive constant C(n), provided that the contribution of the minor arcs can be neglected.

The dependence of C(«) on n is exhibited explicitly by expressing C(«) as an infinite product.
The formula is of heuristic value only since the minor arcs cannot be handled at present.

Subject classification {Amer. Math. Soc. (MOS) 1970): 10 J 10.

1. Introduction

Consider representations of integers n^O as a sum of signed rth powers of

non-negative integers

(1) n = ±mr
1±mr

2±...±mr
s.

What is the least value v(r) of s such that every n can be expressed in this form?

Obviously v(r) < G{r) +1 where G(r) is the smallest number of non-negative rth

powers into which all but a finite number of n > 0 can be decomposed. The existence

of v(r) itself is a much more elementary fact than the existence of G(r). E. M. Wright

(1934), who first obtained elementary estimates for v(r), called it an "easier"
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424 George Szekeres [2]

Waring's problem, presumably because of the greater ease with which n can be
expressed by perfect r-th powers when both signs are allowed.

In spite of being an "easier" Waring problem, the precise value of v(r) is not
known for any r>2. It is quite easy to show that v(2) = 3, but already v(3) is
something of a mystery; numbers of the form n = 9m+ 4 require at least four
cubes and five cubes suffice for any n (see Hardy and Wright, 1938, p. 327) so that
v(3) is either 4 or 5, but which of these two alternatives is true (notably for numbers
9m + 4) is still not known. It seems likely that four cubes suffice for all integers. A
similar situation prevails for decompositions into fourth powers (Hunter, 1941): ten
fourth powers always suffice and there are numbers which cannot be decomposed
into eight (signed) fourth powers, hence »(4) is either 9 or 10.

Practically all work on Wright's problem and on the much older four cubes
problem has been done through algebraic identities, for example, Richmond (1922),
Mordell (1936), Fuchs and Wright (1939), Schinzel and Sierpinski (1958). The
circle method which has been so effective in Waring's problem has not played an
appreciable role in Wright's problem. The reason for this is not hard to guess:
the complementary integral, or "minor arcs" in Hardy and Littlewood's
terminology, become rather unmanageable when s is as low as the estimated

Irrespective of the unruly behaviour of the minor arcs it is of some interest to
calculate the contribution of the major arcs to the number of solutions of

n = ±ml±ml±...±mr
s, (Xm^iV, i=\,...,s,

when s is near the suspected value of v(r) and in particular when r = 3, s = 4, since
this contribution is likely to determine the general character of the asymptotic
behaviour of the number of solutions. The principal purpose of this paper is to
carry out these calculations explicitly for the case of the four cubes problem,

The separation of the Farey arcs of the circle of integration into "major" and
"minor" arcs is of course a matter of convention, or convenience, and depends
on such things as the generating function employed and the circle along which one
wishes to integrate. With the selection of an obvious generating function, the unit
circle as the path of integration and an appropriate order for the Farey dissection,
we shall find that the contribution of the major arcs to the number of solutions of

(2) n = ml+ml+ni§+ml, -N<mt^N, 1 = 1,2,3,4,

when iV-> oo is asymptotically equal to C(n). N for a positive constant C(n) = J. S(n)
where / i s given by the integral (13) and S(n) is given by the expressions (28) and
(29). S(n) is in fact the singular series of Hardy and Littlewood for cubes and has
been previously determined by Barrucand (1960), but in a far less explicit form.
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[3] Four cubes problem 425

The present formulae are quite explicit; for instance when n = 1, the value of
C(l) is

0)
P=l (mod 6)

where the infinite product runs through all primes p= 1 (mod 6) and a is determined
from

4p = a2+21b\ as 1 (mod 3).

Numerical evaluation of/ and the infinite product gives the value 17.3 for C(l).
Clearly this is far too low since already the trivial solutions

{m1)m2,m3,mi} = {O,\,m,-m}, l^m^N of 1 =

yield 24N—12 solutions. It should be noted, however, that if in (2) we restrict
the nii by M^|wi|<Ar where M is a fixed positive number, the major arcs supply
exactly the same asymptotic expression as when M = 0, and it is conceivable that
the asymptotic expression is correct when M = M(n) is a sufficiently large number
(perhaps tends slowly to oo with N).

It would be good to have experimental data on the number of cubic decompo-
sitions for a few low values of n and compare them with values obtained from the
asymptotic formula. A list of (approximate) computed values of C{n) for 1 < n < 10
is given at the end of the paper.

2. The major arcs

Let P(N; n) denote the number of solutions of (2). There is no loss in generality
if we assume that n > 0. Then

P(N; n)zn = (l + S (zm*+z-ma))\
o \ m-1 I

OO

»=—00

where of course the sum on the left is finite. Hence

P(N; n) = J-. (Yl + S
2m J\ m=i

the integral taken in the positive sense along any circle with centre 0. Because
of the presence of an equal number of positive and negative powers in the (rational)
generating function, the unit circle appears to be the most appropriate path of
integration.

For fixed n and large N consider therefore the integral

f1/ N

1 + S
Jo\ n=i

4

exp(-2Trint)dt.
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Dissect the interval of integration into Farey arcs Ihk of order N2+1/3 with centres
h/k, l^k^N2+1/s, l^h^K, (h,k)=l. The "major arcs" will be those with
k ^ K = N1/9. Thus we set

lZhZkZK
U,fc)=l

(4) P(N; n) = S f (l + £ Up^i^H- d)nA
U f c ) l

+ f ,

where F is the union of the complementary (minor) Farey arcs with centres h/k,
N1/9<k<N*+1/3. Note that if Ihyk = [(h/k)- Sv(h/k) + S2] then

(5) l i V - ^ < S , < ^ - ^ i=l,2

(see Hardy and Wright, 1938, p. 30).
What follows is well known. As a first step we replace

exp \2iri(l+ 0\ m3] +exp\-2m(^+ d\ nA

by

where Shyk is the cubic Gaussian sum

(6) 5A>fc= S
/•(modi)

We have for

(7) S e f ( J ) l

Now if k(s +1) < N then

e[^A:+^)3]-e[6/(^+v)3] = O(| 6\N2k) = O^"1'3)

by (5) and hence the expression in (7) is O(\ d\N2k). All O and o symbols refer
to N-> oo, with constants depending on n but not on k. Thus

J(^0)m
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and similarly
N \ (h

m=X L \*
Here

Four cubes problem

6>jm3j = ̂ Sh>k S e(~ 0m3) + O(| 6\N3+k).

427

| 6\N3+k = O(^

by (5) and by K= O(N1/9), hence by (4)

(8) P(N;n)= £ f fi^w, S co$(2n
l^h^k^K Jlhk\

K m=-N

xcos(2n!j-n\(l + 0(l))dO+ f .

To evaluate S^.JVcos(2TT^W3) we use Euler-Maclaurin in its simplest form:

S cos (2770m3) = f i Vc
m=-N J -N

Setting this into (8) and observing that

(namely O(//) when | 0|^A^-1/3, O(\ 0\-113) when | 0|>iV-1/3) we get

V ^ c o s (2770m3)+ O(iV2/3))4 = (I sJl'^cosVnOnVdJ

+ \ j
hence from (8) (with u = (m/N)3, <p = ON3)

P(N;n) = N S
ih,k=l)

C

Here 8iN
3>(l/K)N*'3>N1/3 by (5), hence 8^3->oo, i = 1,2, and

^2iy2/3Jl(l+HV3)3 " O(N*<HogN) =

Therefore

(9) P(N; n) = J. S(n). N+ R(N) + o(N),
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where

(10) J = 2.[-\ \ d<p[\ urwcos(2TT<pu)du\,
W Jo \Jo /

(11) ^ " ^ K f t l o c

and

(12) R(N)=ii( S
J r\m=-N

The sum in (11) is the singular series of Hardy and Littlewood; its absolute
convergence is well known from Waring's problem (Satz 319 in Landau, 1927,
p. 300). The convergence of the integral for J is obvious since

I u-2/3cos(2n<pu)du = cp~llz J V2/3coscos(27nO</p = 0(<p~1/3)
Jo Jo

when <p->oo. We would of course like to conclude from (9) that

P(N; n)~C(n).N = J.S(n).N

and this depends on whether the remainder term (RN) is o(N). There is no hope
that it should be generally so, as we have already mentioned in the introduction.
It could well be that it is o(N) if ££(=_# in the integrand of (12) is replaced by

where M is sufficiently large, perhaps tending to infinity with N such

3. Evaluation of C(n)

The evaluation of / causes no problem except a numerical one. From (10)

(13) /= \y*{^pz J V ^ C O S M ^ ) - 12.09,

the last value being obtained by numerical integration.
For S(n) we obtain

S(«)=S 2 cos
k=l h (mod k)

(h,k)=l

where Shl = 1 and

/ h \ l\ V
2TT-« - 5 W

\ K / \« /

Sh,k= S e(zA= S cos(27r^») fotk>\.

Let Gg)),Gi1),...,G('*-l) be the cosets of the subgroup G[o) of cubic residues in
the multiplicative group Gk of co-prime residues modular k. If rx is the number
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[7] Four cubes problem 429

of distinct prime factors p=\ (mod 6) of k then the number of cosets is

tk = 3ri i(9Xk, tk = 3r*+1 if9\k.

Note that each coset contains

(14) W) = 9{k)ltk

residues, <p(k) the Euler function. The value of Shik depends only on the coset Gk
Q

(or the corresponding element y of the quotient group Gk/G
l
k
0)) to which h belongs;

if hey = G{i)eGk/G
(
k°\ we write S^ or Sk

i] (whichever is more convenient) for
Shik. We also write

(15) T\y\n) = 2 cos(itj-n) = £ efcn) = i £

Then,S(«) = T^iA^l «) where .4(1; n = 1 and

(16) AQc;n)=

LEMMA 1. For (k^k^) = 1,

^ ( A ^ ; «) = A{kx; n)A(k2; n).

This is essentially Satz 282 in Landau (1927, p. 278); it follows without much
trouble from Landau's Satz 281. As a corollary we obtain as in Landau's Satz 284
(p. 279):

(17) «W=n^(/;»),

the product taken over all primes p. Henceforth p will always denote a prime.
We need not worry about the sum over A; it will be seen that it is finite for all p.

Formula (17) reduces the problem to the calculation of A(k; ri) when fc is a prime
power. For that we have to know S^ and r^'(«) when k = px. It will be convenient
to write

r<r'= S cos (2*4
hey \ K

for rjj7>(l); t l l e symbol assumes that yeGJCpK Suppose that (n,k) = 1; then

(18) Jj7>(n) = S cos (iTTyn) =
key \ k J

where yn denotes natural action of n on the coset y.
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LEMMA 2. Let k=p\ Then Ttf = 0 for \^2 and p?3, T{
3? = 0for X>3.

Furthermore

(J> = -1 far/>#1 (mod6), rW = KS£>-l) for p=\ (mod6)

PROOF. If p = 2 or />=5(mod 6) then ju.3 runs with /tt through all co-prime
residues k = px and the result is obvious. If p=\ (mod6) then /x3 runs exactly
three times through all residues of px congruent to a given (non-zero) cubic residue
mod/) and if A>2 then 2r=ro<modjj) e(hr/px) = 0 when ro^O (mod/?). The same is
true for/? = 3 when A>3. The statement concerning T(

9
i} can be verified directly.

We agree to number the cosets in G9/G
l
s
0) so that 2eGl

g
1), 4eGl

9
2K

Lemma 2 enables us to calculate Tty* for all k = px provided that 5 ^ ' is known
for/»= 1 (mod 6). We now calculate S^; whenever h and y appear in an equation
it will be assumed that hey.

LEMMA 3. IfX>3 andk=p\ k! =px~3 then

where on the right-hand side y denotes the coset in G^/G^ induced by y.

PROOF. Using Lemma 2,

/((mod*:) V^ / I*(modk) \K ] ip' (mod (k/p))
••—" (modj))

/(modfc') Vt

The lemma reduces the evaluation of S^ ' to the cases A = 1,2,3

LEMMA 4.

(i) S^> = 0, Sjr> = 2, 5|y> = 4.

(ii) ^r> = 0, Sfr* = 3(1 +2cos|7rA), 5<?> = 9.

(iv) / / / ; = 1 (mod 6) then S$ = p, Sg = />
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PROOF. The results (i) and (ii) are immediate. The results (iii) and (iv) follow
from Lemma 2, noting that for A = 1,2

/i=0 (mod p) \P I /is® (mod p)

Of course in cases (i) and (iii) there is a single coset y = Gjj?' = Gk.

The only remaining case is SW when/>= 1 (mod 6).

LEMMA 5. Ifp= 1 (mod 6) ^e« G^/G^01 has three cosets and the values S{0), S™, S
ofSW are roots of the cubic equation

(19) S3 = 3pS+ap

where a is uniquely determined from

(20) : 4/> = a2+272>2, as 1 (mod 3).

For proof see Hasse (1964, p. 488). The equation for S9
0), 5£1}, Sl

9
2) corresponding

to (19) is 5 3 = 95 2—81. Later (in Lemma 8) we shall agree on a standard numbering
for the S™ (hence for the cosets G^>).

We are now in a position to compute A(k; n) for k =p\ A>0. Let

(21) '

and consider first a prime p for which v(p) = 0.

LEMMA 6. Let (3,n) = 1. Then

A(9; n) = 7/9 ifn= ± 1 (mod9)

(22) =1/9 i /ns±2(mod9)

= -8/9 i / « s + 4 (mod 9).

All other A(3X; n), A>0 are zero.

PROOF. The last statement follows directly from Definition (16) and Lemmas 2
and 4. To prove (22), let

TT , - 2n H . „ 4j7 . . _ 877
[ 7 0 = l + 2 c o s — , 17X =

be the roots of the equation

(23) W
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432 George Szekeres [10]

Then by (16) and Lemmas 2 and 4

i=0

A(9; 2) = £ (Wi-V+U{(U 2 ~l ) + U*(U0-1)),

A(9; 4) = idU&Uz-1) + U{{U0~\) + U\(Ux-l)\

and the formulae in (22) follow by straightforward calculation, making use of
equation (23).

LEMMA 7. Let p= 1 (mod 6), (p,n) = 1. Then

A(p;n) = ±(5a-6) ifnsG™

(24) =-^(12+5a-276) tfneG™

where a,b are determined from (20) with the proviso b>0, and the numbering of
the cosets (j^'.G^21 is according to Lemma 8 below. A{px; n) = 0forp=l (mod6),
A> 1 and for p = 2 or p=5 (mod 6), \> 1.

Again the last statements follow directly from (16) and Lemmas 2 and 4; only
the case of A(p; n), p= 1 (mod6) needs elaboration. Suppose that in some way
we have already fixed the numbering of the cosets. By (16) and Lemmas 2 and 4,
if »S0, Sn, #2 are the roots of equation (19) then

A(p;n) = —

Expressing S* from (19) and using the first two of the relations

(25)

one can verify immediately that i£i(S?—S$) = p\5a—6) which proves the first
formula (24). The last two expressions of (24) are proved similarly, by means of
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[11] Four cubes problem 433

LEMMA 8. IfG™, G™ are suitably numbered then

(26) 5JS1+5?S,+5|S'0 = i^(276-3a) withb>0.

The left-hand side of (26) is not a symmetric expression of the St, yet it is a
rational integer. To see this, set

Vx = SI Sx+Sf S2+S* So> F2 = S%St+S> So+$1 Si-

Then by (19), (20) and (25), V1+Vi = -3ap and

VXV% = 9a2pi-27p3 = lp%9ai-27b2)

from which the statement of the lemma follows.
Suppose next that p is a prime divisor of n, that is, v(p)>0 in (21), and let

0<A<v(/0- Then by definition (15) T$\n) for the k = px is equal to the number
of elements in y e Gk/G$\ that is,

T\r\n) = i/>(px) = (p-l)j?A-1 ifp = 2orp=5 (mod6)

= tip- I V " 1 if />= 1 (mod 6)
(27)

= 2 if A: = 3

= 2x3*-2 if A: = 3A, A> 1

by (14). Hence we obtain from (16), (19), (25), (27) and Lemmas 3, 4 and 5, by
lengthy but trivial calculation:

LEMMA 9. Let px \ n, A > 0. Then
(i) for p = 2 or p=5 (mod 6)

,*(/>*; w) = 0 J/A = 3 J - 2

= (p-l)p-a+s) ifX = 3s;

(ii) for p= 1 (mod 6)

i/ A = 3 ^ -

(iu) for p = 3

A(3x;n) = 0 if\ = 3s-2

= 10x3-<1+s) if\ = 3s-

= 2x3-<1+s) ifX = 3s,s^
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434 George Szekeres [12]

Finally suppose that A> v = v(p)>0 and let n = p"n', (n',p) — 1. Then

hence by Lemma 2 the only non-vanishing T£A(/I) are

(«) = -p" ifp = 2orp=5 (mod 6)

= - 3 " - 1 if p = 3,

r$.2(n) = 3-'-1(S^»'>-3).

Using these expressions, we obtain from (16), (25) and Lemmas 3, 4 and 5:

LEMMA 10. Let v = v(p)>0 be the exponent in (21) and set n =pvn'. Then
(i) for p = 2 or p= 5 (mod 6)

ifv=3r-2

= 0 ifv = 3r;
(ii) forp=\ (mod6)

^ (p^ 1 ; «) = -^-f+2) ifv = 3r-2

= _p-<r+n j / v = 3 f_i

= p-*A(p;n') ifv = 3r

where A(p; n') is given by (24) in Lemma 7;

!; n) = - 5 x 3-<r+v ifv = 3r-2

= 0 ifv = 3r;

A(3"+2; n) = 0 J/V = 3r -2 or 3r-1

where ^4(9; n') w given by (22) i» Lemma 6. y4// o(/ier y4(/>A; n) with \>v
are zero.
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Collecting all results from Lemmas 6, 7, 9 and 10 we obtain for the factors
Fp(ri) = Ti\A{px; n) which appear in the product (17):

(i) If p = 2 or p= 5 (mod 6) then

(28.1)

(ii) Ifpsl (mod 6) then

Fp(n) = (l +l+^j (l ~p) for v(p) = 3r-1 or 3r-2, r^ 1

(28.2) = 1 + ( | + 1 ) (l - l j +-^ij(5«-6) for v(^) = 3r5 n/p""eG«>

for v(p) = 3r, nl^eGfj = 1,2.
(iii) If/? = 3 then

= 3 -^rn for v(p)

(28.3) = 3 ~ 3 ^ 2 forK

= 3 - ^ 2 f o r K/7) = 3r> n/yr= ± 2 ( m o d 9>

= 3 - ^ T 2 forvO») = 3r, n/33l-S + 4 (mod9).

We have now all the required factors in (17) and the calculations can be
summarized as follows:

THEOREM. Letn= Upp
Hp). Then

(29) S(n)
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where the Fp(n) are given by equations (28.1), (28.2) and (28.3) with a = a(p),
b = b(p) in (28.2) determined from

2, a s 1 (mod3), b>0

and the GlJ\ j = 1,2 numbered according to Lemma 8.

In particular if {p, n) — 1 then

Fp(ri) = 1 for p = 2 or />= 5 (mod 6),

Fp(w) = l + J . (5a-6) for />= 1 (mod6), n e G«»

= l-^-5(12 + 5a+(- iy .27i) for/?=l (mod6), neGlJ\j= 1,2,
2pz

F3(«) = 16/9 for n = ± 1 (mod 9)

= 10/9 for n s ±2 (mod9)

= 1/9 forns+4(mod9).

If n = 1 then n e Gj,0) for all p= 1 (mod 6) and we obtain formula (3) mentioned
in the introduction.

The infinite product in the theorem converges to a positive value since | a \ < 1 *Jp,
b < (2/3 /̂3) Jp and each Fp(n) in (28) is positive. The comparatively low value of
F3(ri) when n= ±4 (mod9) makes it qualitatively understandable why numbers
of the form 9m + 4 are the most difficult to decompose into four cubes.

We list the computed values of C(n) for the first ten values of n:

n 1 2 3 4 5 6 7 8 9 1 0

C(«) 17.3 11.1 2.6 0.7 1.0 4.9 28.1 23.8 28.5 8.8
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