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Scaling relationships for constant-volume snow avalanches
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ABSTRACT. We present simple scaling relationships that allow us to predict the main dynamical
characteristics (height, length and velocity) of constant-volume snow avalanches with minimal input
data. In particular, we show that both avalanche height and length can be expressed as a function
only of the avalanche volume and the distance travelled by the front, independently of the specific
rheological parameters of the snow. These scaling relationships are derived from a large-time asymptotic
solution to the avalanche dynamic equations, corresponding to a balance between gravity and Voellmy
friction (the kinematic wave approximation). Numerical simulations of the complete hydraulic shallow-
flow equations confirm that this asymptotic solution, and the predicted scaling relationships, capture
the main avalanche characteristics, even for relatively small travel distances. Though derived under
restrictive assumptions, we argue that the scaling relationships described in this paper may constitute
useful tools for avalanche engineering and design of protective structures.

INTRODUCTION
When designing protective measures against snow ava-
lanches it is generally necessary to predict the dynamical
characteristics (height, length and velocity) of potential
events threatening the considered site. Typical examples
include the dimensioning of arrest dams against avalanches
of large return periods (Faug and others, 2004; Naaim-
Bouvet and others, 2004; Naaim and others, 2010) and the
establishment of hazard maps based on pressure thresholds.
Physically based numerical models for the propagation of
snow avalanches have made great advances in recent years,
and are now able to address such issues with remarkable ac-
curacy (Barbolini and others, 2000; Naaim and others, 2004;
Sovilla and others, 2007). However, these models generally
require extensive input data on topographical characteris-
tics, snow properties and avalanche-triggering conditions.
Moreover, computation times needed to test large numbers
of potential scenarios at high resolutions remain significant.
Hence, even though their use in practical applications will
certainly keep growing (Christen, 2007; Gruber and Bartelt,
2007; Eckert, 2009), at present these models are mainly
suited for resource-intensive studies on particularly sensitive
sites. When faster or cheaper answers are needed, simplified
versions exist (e.g. block models), but these are generally
based on non-physical parameter-calibration procedures
which render their outcomes subject to great uncertainties
(Salm, 1993; Ancey, 2006). There is thus a need for simple
yet physically well-founded tools, allowing engineers to
rapidly obtain relevant figures on dynamical characteristics
of potential avalanches in a context of data scarcity.
Snow avalanches, like most other geophysical gravity-

driven flows, are generally modelled using hydraulic-type
equations in the frame of the shallow-flow hypothesis (Savage
and Hutter, 1989; Iverson, 2005; Ancey, 2007; Williams and
others, 2008). This hypothesis allows vertical accelerations
(with respect to the basal surface of the flow) inside the
flowing layer to be neglected and, as a consequence, the
fluid pressure can be considered hydrostatic. Importantly, the
resulting set of equations has been shown to possess specific
symmetry properties, whose corollary is the existence, for
wide classes of problems, of asymptotic self-similar solutions
(Grundy and Rottmann, 1986; Gratton and Vigo, 1994;

Hogg and Pritchard, 2004; Ancey and others, 2007). In
this paper, we demonstrate how these particular solutions
can be exploited in order to derive simple expressions
for flow characteristics that may be of great value in
practical applications. More specifically, we construct a self-
similar solution for the propagation of snow avalanches
and show that, once this solution is valid, the height
and length of the flow obey simple scaling relationships
that only depend on the avalanche volume and travel
distance, and not on the snow rheological parameters.
Note that we limit our consideration to constant-volume
flows, thereby disregarding snow entrainment and deposition
during propagation. Though necessary to reduce the problem
to a model accessible for a theoretical study, this assumption
certainly restricts the applicability of our results. In particular,
the constructed self-similar solution is expected to be
valid only for small-scale avalanches (in which erosion
and deposition remain limited) and for large but mature
avalanches (in which erosion and deposition compensate).
Here, we also suppose that the inclination of the avalanche
path is constant. Generalizations of our results to situations
with variable slope are currently being developed.
In this paper we begin by recalling the hydraulic equations

used to model the propagation of constant-volume snow
avalanches and describe the strategy for their numerical
resolution. Then we present an analytic derivation of the
asymptotic self-similar solution of these equations, and focus
on some specific properties of this solution that have the
form of scaling relationships. We then assess the validity
of this asymptotic solution, and of the derived scaling
relationships, against numerical simulation results. Finally,
the limits implied by the various assumptions involved in
our approach are discussed, and potential applications for
avalanche engineering are emphasized.

AVALANCHE-FLOW MODEL
Flow geometry
Let us consider a dense, dry snow avalanche flowing down
a path forming a constant angle, θ, with the horizontal
(Fig. 1). Flowing snow is regarded as a homogeneous and
incompressible fluid of density ρ. The flow is taken to be
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Fig. 1. Schematic representation of the avalanche configuration. The
dashed area represents the initial snow mass distribution. The point
x = 0 is defined as the upper limit of this initial distribution.

two-dimensional, with a local velocity, �v , lying in the plane
(x, y ) and independent of the cross-plane dimension: �v =
[vx (x, y , t ), vy (x, y , t ), 0] (where t is time). The avalanche is
triggered by the release of an initially immobile, rectangular
mass of snow of initial length L0 and initial height H0 (Fig. 1).
The area (or volume per unit width) of the avalanche, A =
H0L0, is assumed to remain constant during propagation.
Lastly, we also suppose that the characteristic dimensions of
the avalanche are such that the shallow-flow hypothesis and
hydraulic-type models can be used, i.e. H0/L0 � 1.

Depth-averaged equations
Within the framework of the assumptions listed above,
avalanche propagation can be modelled using the following
form of shallow-flow equations (e.g. Stoker, 1958):

∂h
∂t
+

∂hū
∂x

= 0, (1)

∂hū
∂t

+
∂hu2

∂x
+ gh cos θ

∂h
∂x

= gh sin θ − τb(ū, h)
ρ

. (2)

These two equations constitute the depth-integrated forms
of mass and momentum balance, respectively. They govern
the coupled evolutions of the flow height, h(x, t ), and
the downslope, depth-averaged velocity, ū(x, t ) = (1/h)∫ h
0 vx (x, y , t ) dy . In Equation (2), g = |�g | denotes gravity
acceleration and τb represents the basal shear stress exerted
by the bed on the flowing layer (Fig. 1).
The expression for basal shear stress, τb, as a function of the

variables h and ū, accounts for the rheology of the flowing
material. To describe dry and dense flowing snow, we use
the classical empirical Voellmy law (Voellmy, 1955; Ancey,
2006):

τb(ū,h) = μ0 ρgh cos θ +
ρg cos θ

ξ
ū2, (3)

where μ0 (dimensionless) and ξ (m s−2) are two frictional
coefficients that can be regarded as effective material
properties. According to this empirical law, τb is thus
expressed as the sum of a Coulomb friction contribution and
a hydraulic, Chézy-like resistance term. In the following we
will assume that μ0 < tan θ, in order for steady and uniform
flow regimes to exist.
Lastly, as typical in avalanche-propagation models, we

also assume that u2 = ū2. This amounts to considering
the vertical profile of downslope velocity, vx , to be uniform

inside the flow. Dropping the bar notation for the depth-
averaged velocity (u ≡ ū), Equations (1) and (2) can then be
rewritten as:

∂h
∂t
+

∂hu
∂x

= 0, (4)

∂u
∂t
+ u

∂u
∂x

+ g cos θ
∂h
∂x

= g cos θ (tan θ − μ0)

−g cos θ
ξ

u2

h
. (5)

These two equations constitute a closed differential system
for h and u. They must be supplemented by appropriate
boundary conditions; here we impose the condition that
velocity goes to zero at the upper end of the initial mass
distribution, i.e. at x = 0 (Fig. 1):

u(0, t ) = 0. (6)

This condition models the presence of an ‘impermeable’ wall
of static snow. At the opposite end, the height, h, goes to zero
at the avalanche front, x = xf (t ):

h
(
xf (t ), t

)
= 0. (7)

The position of the front, xf (t ), is determined by the constant-
volume condition: ∫ xf (t )

0
h(x, t ) dx = A. (8)

Numerical solution
The system of Equations (4) and (5) can be solved numerically
using what are now relatively standard methods. The first step
is to rewrite these equations under the conservative form:

∂W
∂t

+
∂f (W )
∂x

= G(W ), (9)

where W = [h, hu], f (W ) = [hu,hu2 + g cos θh2/2], and
G(W ) = [0, gh cos θ(tan θ − μ0) − g cos θu2/ξ]. Besides
continuous solutions, this system also admits discontinuous,
or shocked, solutions. Across discontinuities, the following
Rankine–Hugoniot relationship is verified: [[f (W )]] = σ[[W ]],
where σ is the speed of the discontinuity and [[·]] denotes the
difference upstream and downstream of it.
Let us then define a discretization of space and time with

dx and dt the corresponding space- and time-steps. Using
the notation r = dt/dx andWn

i =W (idx,ndt ), a numerical
scheme of the form

Wn+1
i =Wn

i − r
(
f ni+1/2 − f ni−1/2

)
(10)

is consistent with the homogeneous part of Equation (9)
if the numerical flux is written as f ni+1/2 = F (Wn

i ,W
n
i+1),

where the function F verifies F (W ,W ) = f (W ). Under this
condition, Lax (1957) and Godunov (1959) showed that it
is possible to build up expressions for the numerical flux
such that the resulting schemes (Equation (10)) are stable,
robust and properly treat discontinuities. The main drawback
of these schemes, however, is their lack of accuracy. To
overcome this limitation, several workers (e.g. Leroux, 1979;
Van Leer, 1979; LeVeque, 2002) improved the accuracy
of Godunov-type schemes by adding an anti-diffusion term
to the numerical flux. In order to preserve stability in the
neighbourhood of discontinuities, this anti-diffusion term has
to be limited (min–mod method). For the study presented
here, we developed a simplified Godunov solver following
such an approach, and adding the contribution of the
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second-member G(W ) to the numerical flux. Several tests
have been performed to control the stability, the accuracy
and the convergence towards physical solutions of the
developed numerical scheme.
Additionally, appropriate numerical boundary conditions

must be prescribed at the ends of the computational domain.
To solve the problem of avalanche propagation considered
here, we set a reflective boundary condition at x = 0, which
corresponds to an impermeable wall (numerical flux equal
to zero). The downstream boundary condition was set open
by considering null discharge and height gradients. However,
this downstream condition is placed sufficiently far away that
it is not reached by the flows computed here.

ASYMPTOTIC SOLUTION
Kinematic wave approximation
Since we assume that tan θ > μ0, Equations (4) and (5)
admit steady uniform solutions corresponding to a balance
between gravity and basal friction. However, for the case of
finite-volume releases examined here, fully steady uniform
regimes cannot be achieved. It is, nevertheless, reasonable
to expect that for sufficiently large times, the dynamics of the
avalanche will be governed by this same balance between
gravity and friction. Hence, for sufficiently large times, we
assume that the momentum balance equation (5) reduces to
a simple relationship between velocity and height:

u2 = κh, (11)

where κ = ξ(tan θ − μ0). Note that this relationship is
equivalent to stating that the local Froude number, Fr =
u/

√
gh, of the flow is constant both in space and time:

Fr =
√

κ/g. (12)

Inserting Equation (11) into the mass-balance equation (4)
then yields a differential equation for h only, which has the
form of a non-linear kinematic wave equation (Lighthill and
Whitham, 1955):

∂h
∂t
+
3
2

√
κ h

∂h
∂x

= 0. (13)

To examine the validity of this kinematic wave approxi-
mation more precisely, let us establish the conditions under
which the inertia and pressure gradient terms on the left-
hand side of Equation (5), become negligible compared to
gravity and basal friction on the right-hand side. For any given
value of time, let H denote the characteristic height and U
the characteristic velocity of the avalanche. Inertia terms in
Equation (5) are then of the order of U2/xf , while pressure
gradient terms are of the order of g cos θH/xf . A sufficient
condition for Equation (5) to reduce to a balance between
gravity and friction is thus:

H
xf
� min

(
tan θ − μ0,

g cos θ
ξ

)
. (14)

Depending on the parameters θ, μ0 and ξ, and on the
initial values, H0 and L0, condition (14) may or may not be
satisfied at early times in the propagation. However, as time
proceeds, the front position, xf , will increase and, owing to
volume conservation (Hxf ∼ A), the avalanche height, H,
will decrease. Hence, regardless of the initial conditions,
for the constant-volume and constant-slope case considered
here, there necessarily exists a time above which condition

(14) will be satisfied. The kinematic wave equation (13) can
thus effectively be regarded as an asymptotic approximation
of the initial shallow-flow equations (4) and (5) for large
times.
Equation (13) being of first order in space, only one

boundary condition has now to be specified. According to
relationship (11), we note that condition (7) would imply that
the front velocity is zero, which is not physically admissible.
Hence, in the kinematic wave approximation, the condition
of null height at the avalanche front has to be relaxed. As
will be shown below, the front is actually represented by a
shock (i.e. a height discontinuity) in this approximation. We
thus only impose boundary condition (6) which, according
to (11), can now be rewritten in terms of flow height:

h(0, t ) = 0. (15)

Self-similar solution
We first rewrite the kinematic wave equation (13) in terms of
the following dimensionless variables: x̂ = x/L0, ĥ = h/H0
and t̂ = t

√
κH0/L0. We obtain:

∂ĥ
∂ t̂
+
3
2

√
ĥ

∂ĥ
∂x̂

= 0. (16)

Similarly, the boundary condition (15) becomes

ĥ(0, t̂ ) = 0, (17)

and the constant-volume condition (8) becomes∫ x̂f (̂t )

0
ĥ(x̂, t̂ )dx̂ = 1. (18)

We then note that the dimensionless wave equation (16)
is invariant under the following stretching groups:

x̂ → λ x̂ (19)

t̂ → λ1/δ t̂ (20)

ĥ → λ2(δ−1)/δ ĥ, (21)

with λ > 0 and δ > 0. As a consequence, we can seek
solutions presenting identical symmetry properties, that is
self-similar solutions of the form (e.g. Dresner, 1999):

ĥ(x̂, t̂ ) = t̂ 2(δ−1)P (ζ), (22)

with ζ = x̂ /̂tδ. Furthermore, assuming also that the similarity
variable at the front, ζf = x̂f (̂t )/̂t

δ , is constant (i.e. looking
for a solution in which the front position, x̂f (̂t ), is also
invariant under transformations (19) and (20)), the value of
the exponent δ is then imposed by the constant-volume
condition. Inserting Equation (22) into Equation (18) yields

t̂ 3δ−2
∫ ζf

0
P (ζ)dζ = 1, (23)

and thus, if ζ is a constant,

δ = 2/3. (24)

The most interesting property of similarity solutions, such
as Equation (22), besides generally being expressible under
a closed analytic form, is that, when existing, these solutions
constitute the large-time asymptotic form of all other
sufficiently regular solutions of the considered differential
equation. More precisely, in the case considered here, if
a similarity solution of Equation (16) that also satisfies
the boundary condition (17) can be found, then all other
solutions of Equation (16) satisfying this boundary condition
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will converge towards this similarity solution at large times,
independently of the initial conditions verified by these other
solutions (Grundy and Rottmann, 1985; Dresner, 1999). In
other words, this similarity solution would represent the
general solution of Equation (16) once the influence of the
initial conditions has vanished.
Inserting expression (22), with δ = 2/3, into the

kinematic wave equation (16), results in an ordinary first-
order differential equation for the function P :(

9
4

√
P − ζ

)
dP
dζ
− P = 0. (25)

Equation (25) can be integrated analytically using the
following change of variable: P = ζ2Z 2 (Gratton and Vigo,
1994; Ancey and others, 2007). We obtain an autonomous
differential equation for Z :

ζ
dZ
dζ

= Z
2− 3Z
3Z − 4/3, (26)

which readily integrates into:

(3Z − 2)−1/3
Z 2/3

= CZ ζ, (27)

where CZ ≥ 0 is an integration constant. Accordingly, the
original function P is thus given by the following implicit
expression:

3
2

√
P − CP

P
= ζ, (28)

where the integration constant CP has been redefined in a
straightforward manner.
Lastly, the boundary condition (17) becomes, in terms of

function P :

P (0) = 0. (29)

This condition implies that CP = 0 in Equation (28).
Hence the only solution of Equation (25) which also satisfies
boundary condition (29), assumes the following simple form:

P (ζ) =
(
2
3
ζ

)2
. (30)

This translates into the following expression for the non-
dimensional height ĥ:

ĥ(x̂, t̂ ) =
(
2
3
x̂
t̂

)2
. (31)

Properties of the asymptotic solution
Height and velocity profiles
Returning to dimensional quantities, the self-similar solution
(31) derived above can be written:

h(x, t ) =
1
κ

(
2
3
x
t

)2
. (32)

This expression is valid for 0 ≤ x ≤ xf (t ). Hence, according
to this solution, for any given value of time, t , the height
profile of the avalanche has a parabolic shape between x = 0
and the front.
The front position, xf (t ), is readily obtained from the

constant-volume condition (8):

xf (t ) =
3
2
(2κA)1/3 t 2/3. (33)

Accordingly, the front height, hf (t ) = h(xf (t ), t ), can be
written:

hf (t ) =
(
2A√
κt

)2/3
(34)

and also corresponds to the maximum height of the
avalanche. We notice that the avalanche front is represented
as a height discontinuity (shock) in this self-similar solution
(see also Figs 2 and 3).
The velocity profile, u(x, t ), derives directly from the

height profile (32), through the kinematic wave characteristic
relationship (11):

u(x, t ) =
2
3
x
t
. (35)

For a given value of t , the velocity profile thus displays a
simple linear shape. Lastly, the front velocity, uf , can be
expressed as:

uf (t ) =
(
2κA
t

)1/3
. (36)

It is worth noting that expression (32) was also derived
by Hunt (1984, 1994) as a solution to the kinematic wave
equation (13). He made use of the method of characteristics,
postulating an initial condition in which the fluid mass
is completely concentrated at point x = 0. The interest
of the alternative derivation presented here, based on the
notion of self-similarity, is that it demonstrates that this
particular solution constitutes the large-time asymptotic form
of all the solutions of Equation (13) that verify h(0, t ) = 0,
regardless of the initial condition. Moreover, as we argued
previously, the kinematic wave equation itself constitutes
a large-time approximation of the complete shallow-flow
equations describing the propagation of constant-volume
avalanches. The found solution ((32) and (33)) can thus be
considered as representative of the large-time behaviour of
all constant-volume avalanches of area A, independently of
the particular values of initial height and length, H0 and L0.
This solution will hereafter be referred to as the ‘asymptotic
solution’.
Lastly, although a trivial consequence of the kinematic

wave approximation, it is interesting that, unlike the primitive
shallow-flow equations (4) and (5), the derived asymptotic
solution depends on slope, θ, and on friction coefficients, μ0
and ξ, only through the lumped parameter κ = ξ(tan θ−μ0).
In other words, this means that the asymptotic solution is
completely parameterized by the Froude number Fr =

√
κ/g

(Equation (12)).

Scaling relationships
The most remarkable properties of the found asymptotic
solution appear when expressing avalanche height as a
function of front position, xf . From Equations (34) and (33),
we find the following scaling relationship between front
height (or maximum height), hf , and xf :

hf = 3
A
xf
. (37)

Similarly, we can define the avalanche average height, 〈h〉,
with 〈·〉 = (1/xf )

∫ xf
0 (·) dx. We easily obtain

〈h〉 = 1
3

(
2A√
κt

)2/3
=
hf
3

(38)
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Fig. 2. Comparison between numerical results, asymptotic solution (AS) and offset solution (OF) for simulation s2 (see Table 1). (a) Flow
height, h, as a function of abscissa, x, for different values of time. (b) Depth-averaged velocity, u, as a function of abscissa, x, for different
values of time. (c) Front position, xf , as a function of time, t .

and, thus, the following scaling relationship:

〈h〉 = A
xf
. (39)

Note that the front position, xf , can also be viewed as the
distance travelled by the avalanche since its release. Hence,
relationships (37) and (39) imply that, when expressed as a
function of the avalanche travel distance, the maximum and
average heights of the flow only depend on the avalanche
area, A, and are independent of the parameter κ (and of
the Froude number, Fr). This constitutes a very strong result,
meaning that for an observer located at a given distance from
the release zone, the height of potential avalanches passing
the observer’s position only depends on the volume, and not
on the slope, θ, or on the snow friction coefficients, μ0 and ξ
(provided these avalanches match the asymptotic solution).
A similar property is found when looking at avalanche

length. Formally, the length of the asymptotic solution is
equal to the travel distance, xf , since h > 0 as soon as
x > 0. However, flow height becomes vanishingly small as
x → 0. For practical applications, we can thus introduce an
avalanche length, Lc, defined with respect to a given height
threshold, hc:

Lc = xf (t )− xc(t ), (40)

where the abscissa, xc(t ), is such that h(xc(t ), t ) = hc.
Typically, the threshold, hc, would be of the order of a
few snow-grain sizes, a height below which the concept
of an avalanche becomes meaningless. After straightforward

algebra, we obtain:

Lc = xf

(
1−

√
hcxf
3A

)
. (41)

Hence, we observe that when expressed as a function of the
travel distance, xf , this measure of avalanche length is also
only dependent on the area, A, and is independent of the
parameter κ.

NUMERICAL RESULTS
Simulation parameters
In order to check the validity of the asymptotic solution
and scaling relationships derived in the above section,
numerical solutions of the complete shallow-flow equations
(4) and (5) have been computed using the numerical scheme
described previously. We simulated the propagation of
constant-volume avalanches for different values of area,A, in
the range 100–1000m2. These areas correspond to volumes
varying between 2000 and 20 000m3 if one assumes, for
instance, an avalanche width of 20m. The desired area
values have been achieved by varying both the initial height,
H0, and the initial length, L0, of the avalanche (in the range 1–
10m and 50–250m, respectively), to assess the influence of
these two quantities. The snow friction coefficients were held
constant in all our simulations: μ0 = 0.25 and ξ = 750m s−2

(Ancey, 2006), and two slope values, θ = 20◦ and θ = 30◦,
were investigated. (Once the kinematic wave approximation
is valid, varying the slope is equivalent to varying the friction
coefficients, μ0 and ξ, since all are lumped into the single
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Fig. 3. Comparison between numerical results, asymptotic solution (AS) and offset solution (OF) for simulation s7 (see Table 1). (a) Flow
height, h, as a function of abscissa, x, for different values of time. (b) Depth-averaged velocity, u, as a function of abscissa, x, for different
values of time. (c) Front position, xf , as a function of time, t .

parameter κ. This is not true, however, for the early times
of the simulations where inertia terms also play a significant
role.)
In total, >40 simulations were performed. From these

we have selected eight representative simulation results to
discuss here. The corresponding parameters are given in
Table 1.

Convergence towards asymptotic solution
Time offset
Figures 2 and 3 present direct comparisons between
numerical results and the asymptotic solution for the two
slope angles. The first important observation is that numerical
results do effectively converge towards the predicted solution

Table 1. Parameters of the eight numerical simulations presented
here. The quantity t0 corresponds to the time offset needed to
adjust the asymptotic solution to numerical results (see text). It was
determined for each simulation by trial and error

Simulation L0 H0 A θ κ Fr t0
m m m2 ◦ ms−2 s

s1 115.5 1.73 200 30 245.5 5.0 2.0
s2 115.5 4.33 500 30 245.5 5.0 3.1
s3 115.5 6.93 800 30 245.5 5.0 3.9
s4 57.7 8.66 500 30 245.5 5.0 4.4
s5 230.9 2.17 500 30 245.5 5.0 2.2
s6 106.4 1.88 200 20 85.5 2.9 7.5
s7 106.4 4.70 500 20 85.5 2.9 12
s8 106.4 7.52 800 20 85.5 2.9 15

at large times. However, while the height and velocity
profiles rapidly acquire the characteristic shapes (parabolic
and linear, respectively) of the self-similar solution, the
convergence of the front position towards the predicted value
is relatively slow, particularly for θ = 20◦ (Fig. 3c). This
suggests that numerical results would converge much faster
towards a slightly modified form of the self-similar solution,
in which the time is offset by a constant value, t0 > 0:

h(x, t ) =
1
κ

(
2
3

x
t − t0

)2
, (42)

xf (t ) =
3
2
(2κA)1/3 (t − t0) 2/3. (43)

Expressions (42) and (43) define another solution of
the kinematic wave equation (13), and also satisfy the
boundary and constant-volume conditions of our problem.
This new solutionwill, henceforth, be referred to as the ‘offset
solution’. As it should, this offset solution converges towards
the asymptotic, self-similar solution for t � t0. However,
while complete convergence of the simulated avalanches
towards the asymptotic solution generally requires several
hundreds of seconds, we observe in Figures 2 and 3 that the
offset solution, with an appropriate value of t0, constitutes
an excellent approximation to the numerical results as soon
as t ≥ 50 s, typically. ‘Best-fitting’ values of the time offset,
t0, were determined for all our simulations (Table 1).
The only notable discrepancy persisting between numer-

ical results and the best-fitting offset solution concerns the
shape of the avalanche front (Figs 2 and 3). The representa-
tion of the front as a shock in the theoretical solutions, which
is a consequence of the kinematic wave approximation, is
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Fig. 4. Convergence index, Icv, as a function of time, t , for the eight
simulations.

relatively crude. In fact, ‘real’ fronts computed numerically
with the full shallow-flow equations are steep but not
discontinuous. They have a finite length, which appears to
progressively decrease as time proceeds, and to be larger
for the smallest slope angle. As a consequence, the front
height generally tends to be overestimated by the offset
solution compared to the numerical results. Note that the
existence of smooth, blunted fronts in the simulations is not
due to artefactual numerical dissipation, but is representative
of the ‘true’ solution of shallow-flow equations. Physically,
the kinematic wave approximation ceases to be valid in this
region, and should be replaced by a balance between gravity,
friction and pressure gradients (Whitham, 1955; Hogg and
Pritchard, 2004).
The best-fitting values of the time offset, t0, appear to

be influenced by most simulation parameters, including
the initial height of the snow mass, H0 (Table 1). At
first sight, the introduction of this time offset could thus
seem to be merely an ad hoc recipe to match the
numerical results and the asymptotic solution. Physically,
close observation of our results suggests that t0 probably
corresponds to the time needed for the flow height at x =0
to vanish. However, further work would be needed to fully
characterize this parameter. Nevertheless, and regardless of
the precise origin of t0, it is important to remind ourselves
that the offset solution presents exactly the same shape
and, as a consequence, the same remarkable geometrical
properties, as the asymptotic solution. In particular, the
scaling relationships (37), (39) and (41) between avalanche
height or length and travel distance, remain valid for the
offset solution independently of t0. In that sense, the fact that
introducing a time offset is sufficient to render the theoretical
large-time solution compatible with numerical results even
for ‘intermediate’ times, constitutes an important result: it
implies that relationships (37), (39) and (41) are expected to
be relevant for real avalanches, even if these avalanches have
not fully converged towards the asymptotic solution.

Convergence index
Quantitatively, the convergence between numerical results
and the best-fitting offset solution can be characterized using

0 250 500 750 1000 1250 1500 1750 2000
xf (m)
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Fig. 5. (a) Convergence index, Icv, as a function of front position (or
avalanche travel distance), xf , for the eight simulations. (b) As (a) but
with xf normalized by

√A. The simulations, s1 to s8, are shown in
black, red, dashed and dotted, as in Figure 4.

the relationship:

Fm =
1
2

√
3κ
g
=
√
3
2
Fr, (44)

where Fm = 〈u〉/
√
g〈h〉 is the average Froude number

of the avalanche. Straightforward algebra shows that this
proportionality between Fm and the local Froude number,
Fr, holds for the asymptotic solution as well as for all offset
solutions, independently of the value of t0. The coefficient
(
√
3/2) can be regarded as a characteristic of the particular

shape of these solutions. We thus define the following
convergence index:

Icv = 1− 2√
3
Fm
Fr
= 1− 2Fm

√
g
3κ

. (45)

With the average Froude number, Fm, computed directly from
the numerical results, this index characterizes in a single
figure the convergence of both height and velocity profiles
towards the (best-fitting) offset solution. It tends to zero for
full convergence.
As shown in Figure 4, the index, Icv, undergoes a

rapid decrease at short times before reaching a slightly
negative minimum. It then progressively levels off to the null
asymptote. In detail, the minimum value as well as the time
needed to reach a given convergence level, depend in a non-
trivial manner on all the simulation parameters. However, we
note that for all the simulations we conducted (except for the
largest area at θ = 20◦), the minimum value reached by Icv
is above −0.1 (Fig. 4). Hence, convergence levels of 10% or
less in terms of Icv are generally reached before the minimum,
that is for relatively short times, smaller than 15–25 s.
Similar trends are observed when Icv is plotted as a

function of avalanche travel distance, xf , though with an
enhanced dispersion between the different curves (Fig. 5a).
Interestingly, we also notice that the small-xf evolutions
of Icv for the different simulations all appear to collapse
on a master curve, at least to a first approximation, when
the travel distance, xf , is scaled by

√A (Fig. 5b). This
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Fig. 6. (a) Scaled average height, 〈h〉/√A, as a function of scaled
front position (or avalanche travel distance), xf/

√A, for the eight
simulations, and comparison with scaling relationship (39). (b) As
(a), in log–log coordinates.

indicates that convergence towards the offset solution seems
to be primarily controlled by a characteristic length equal to√A (and not L0 or H0). Typically, as shown in Figure 5b,
convergence levels of 10% in terms of index Icv are reached
for travel distances ∼10 to 15×√A.
Though desirable, a more detailed analysis of the control

parameters influencing the evolution of index Icv lies beyond
the scope of this study. Work on this is currently in progress.
In detail, the convergence of numerical results towards the
asymptotic solution is a complex process involving both
convergence of the full shallow-flow equations towards
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Fig. 7. (a) Scaled front height, hf/
√A, as a function of scaled

front position (or avalanche travel distance), xf/
√A, for the eight

simulations, and comparison with scaling relationship (37). (b) As
(a), in log–log coordinates.
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Fig. 8. (a) Avalanche length, Lc, as a function of front position (or
avalanche travel distance), xf , and comparison with relationship
(41). For the sake of clarity, only the cases A = 200 and 500m2 are
represented. Computations of Lc have been performed on the basis
of a height threshold, hc = 0.01m. (b) Avalanche length obtained
from numerical results as a function of analytic prediction, (Lc)AS,
for the eight simulations.

the kinematic wave approximation, and convergence of
the initial-value solution towards the large-time self-similar
solution. Regarding convergence towards the offset solution,
the situation is even more complex, due to the presence
of the parameter t0 whose origin, as already mentioned,
remains to be precisely established.

Scaling relationships
As shown in Figure 6, numerical results appear to be
in excellent agreement with the prediction of scaling
relationship (39), concerning the evolution of avalanche
average height, 〈h〉, as a function of travel distance. When
scaled average height, 〈h〉/√A, is plotted against scaled
front position, xf/

√A, the curves corresponding to the
different simulations are nearly indistinguishable and fully
agree with the theoretical prediction. Moreover, note that
good agreement between numerical results and the scaling
relationship is found even for small values of xf , i.e. even
before full convergence with the offset solution.
The agreement with the theoretical prediction is not as

good for the avalanche front height, or maximum height,
hf (Fig. 7). Typically, it is only after travel distances ∼40
to 60 × √A that the scaled curves of hf/

√A vs xf/
√A,

corresponding to the different simulations, collapse on
scaling relationship (37). These travel distances are larger
than those required to meet the 10% convergence criterion
in terms of Icv (10 to 15 ×

√A). Clearly, this behaviour is
due, at least partly, to the over-simplification of the front
representation in the kinematic wave approximation.
Finally, results concerning the avalanche length, Lc, are

shown in Figure 8. The agreement with the theoretical
relationship (41) is excellent, even for small values of travel
distance, xf . In particular, we find that Lc is effectively
independent of parameter κwhen plotted as a function of xf ,
but remains dependent on avalanche area, A. Notice also
that, with a reasonable value for the height threshold, hc
(hc = 0.01m in Fig. 8), the obtained values of avalanche
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Fig. 9. Numerical simulation of an avalanche propagating over an
abrupt slope break in its bed located at x = 2300m (θ = 30◦
upstream, θ = 20◦ downstream): flow height, h, as a function of
abscissa, x, for different values of time. Initial height and length of
the snow mass were, respectively, taken as H0 = 4.33m and L0 =
115.5m, thusA = 500m2. Values of snow friction coefficients are,
as previously, μ0 = 0.25 and ξ = 750m s−2.

length, Lc, globally remain very close to the total travel
distance, xf . However, as expected, the difference between
Lc and xf increases as xf increases.

DISCUSSION AND CONCLUSIONS
The results presented in this paper show that, regardless of
the initial conditions, the propagation of constant-volume
avalanches is rapidly and well captured by a simple
approximate solution corresponding to a dynamical balance
between gravity and basal friction (the kinematic wave
approximation). Although further work is needed to fully
characterize the convergence process, for all the performed
simulations, good agreement between the numerical results
and the approximate solution is observed as soon as the
distance travelled by the front is >10 to 15×√A, typically.
Hence, convergence towards the approximate solution is
faster for small-scale than for large-scale avalanches. In
general, however, this approximate solution involves an
adjustable parameter, namely the time offset, t0, whose value
remains dependent on the initial conditions and is difficult to
calibrate a priori. For large times, all approximate solutions
then tend towards a generic self-similar form independent
of t0 and the initial conditions, but this typically occurs
for travel distances of >100 × √A that are irrelevant for
realistic snow avalanches (Figs 2 and 3). Direct use of the
approximate solution in practical applications thus appears
limited, due to the presence of the time offset, t0.
Importantly, however, some remarkable properties of the

approximate solution are independent of t0. In particular,
we show that when expressed as a function of the distance
travelled by the front, the maximum height, the average
height and the length of the avalanche obey simple scaling
relationships that are a function only of the avalanche
area, A. Numerical results confirm the validity of these
scaling relationships. In particular, theoretical predictions
for the average height, 〈h〉, and for the length, Lc, are in
excellent agreement with the simulations, and this even
for small travel distances. Concerning the front height, hf ,
larger travel distances ∼40 to 60×√A are required for full
agreement with theoretical predictions. However, note that
even in this case, the derived scaling relationship provides
a reasonable approximation of hf , typically within 30%, for
travel distances ∼20×√A (Fig. 7).
We thus argue that the obtained scaling relationships

(Equations (37), (39) and (41)) can constitute useful tools

for experts and engineers. Specifically, these relationships
provide simple analytical predictions of the characteristic
height and length of avalanches at a given location along
the path, with the only required input data being the volume
and distance from the release zone. Precise knowledge of
the snow friction properties, which can be difficult to assess
in practical situations, is not necessary. For instance, it is
possible to take advantage of these scaling relationships
to directly compare the characteristic dimensions of two
different avalanches released in the same zone, but of
different areas (or volumes per unit width), A1 and A2. From
(37) and (39) we obtain:

(hf )1
(hf )2

=
〈h〉1
〈h〉2 =

A1
A2 . (46)

An analogous, though more complex, expression can be
derived from Equation (41) for the ratio of lengths, Lc. Of
course, in practical applications, the exact figures derived
from these scaling relationships need to be treated with
caution, due to the various hypotheses involved in their
derivation (see below). However, their use can represent
a valuable first approach, allowing reasonable orders of
magnitude to be obtained rapidly and easily, prior to
employing more sophisticated models. An example of the
application of relationship (46) for the design of a protection
structure, is presented by Naaim and others (2010).
Among the hypotheses involved in the derivation of

the asymptotic solution presented in this paper, two may
appear particularly restrictive; namely, the constant slope
and the constant volume. To investigate the influence of
the constant-slope assumption, we performed preliminary
numerical simulations involving an abrupt slope reduction
in the avalanche path (Fig. 9), leaving the other simulation
parameters the same as for the constant-slope simulations.
We observe that once the front has passed the slope break,
the avalanche body can be viewed as constituted of two
distinct parts, one on the high-slope zone and one on the
low-slope zone, with mass progressively transiting from the
upstream to the downstream part. Interestingly, the flow
height in each of these two parts exhibits the characteristic
parabolic shape of the self-similar solution, and could be
well represented by variants of Equation (32) with varying
areas and proper time and space offsets. The transition zone
between the two parabolic branches is relatively narrow.
This preliminary result suggests that the approximate solution
and the scaling relationships presented in this paper, could
probably be generalized, with only minor refinements, to
situations of variable slope (at least in the, not infrequent,
cases where the avalanche path can be described as a
succession of constant-slope sections). Such developments
are currently in progress.
The assumption of constant volume appears to be more

restrictive. As a first approximation, this assumption is
interesting, allowing us to identify characteristic behaviours
that are due solely to avalanche dynamics and rheology.
However, it is well known that, depending on flow charac-
teristics and snow properties, snow erosion and deposition
processes may induce significant variations of avalanche
volume along the propagation and, as a consequence,
may also strongly influence avalanche dynamics (Naaim
and others, 2003; Sovilla and others, 2006). Hence, the
results presented in this paper should be regarded as
relevant essentially for relatively small-scale avalanches, for
which erosion and deposition phenomena remain limited,
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and probably not for very large catastrophic events. Our
results might also hold for mature, even possibly large,
avalanches in which the erosion and deposition fluxes
globally compensate. From a more general perspective, no
evident generalization of the analytic solution derived in this
paper (Equation (32)) is expected for the case of variable-
volume avalanches. Nevertheless, shallow-flow equations
have been shown to admit self-similar solutions in a wide
variety of problems, including gravity currents with variable
influx (Gratton and Vigo, 1994; Ancey and others, 2007).
It is thus likely that, for some particular forms of erosion
and deposition fluxes, the large-time behaviour of variable-
volume avalanches can also be described by specific self-
similar solutions. Here again, further work is needed.
Finally, we note that a relatively straightforward improve-

ment to our model would be to refine the front description
by dropping the kinematic wave approximation in this zone.
This would lead to matching an ‘inner’ solution governed by
a balance between gravity, friction and pressure gradients,
valid only in the front zone, to the ‘outer’ self-similar solution
derived above, which is valid in the whole body (Whitham,
1955; Hunt, 1984). Such a refinement would allow the
blunted fronts observed in the numerical simulations to be
accounted for, and would certainly reduce the travel distance
required to obtain good agreement between theoretical
predictions and numerical results concerning the front height
(Fig. 7). This, however, would be at the expense of simplicity,
and the resulting relationship between front height and travel
distance would lose one of the main features of Equation (37)
– its independence of slope and friction parameters.
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