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A Markov Chain Model for the Evolution of Sex Ratio
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Abstract

A model in the form of a Markov chain is constructed to mimic variations in the human sex ratio. It is illustrated by simulation. The equi-
librium distribution is shown to be a simple modification of the binomial distribution. This enables an easy calculation of the variation in sex
ratio which could be expected in small populations.
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Cobb (1913) identifies three ways of defining the sex ratio: at con-
ception, at time of birth and at age of reproduction. He notes that in
England the second of these is about 0.509 and that there are more
women than men at reproductive age. Pollard (1969, p. 125) com-
ments that the first of these, the ‘primary’, is very difficult to esti-
mate and that little is known about it.

Figure 1 displays the sex ratio recorded for the Australian pop-
ulation during the period 1902−1965. It shows that there is a per-
sistent tendency for the number of newborn males to exceed the
number of females, giving support to the notion that natural selec-
tion influences the human sex ratio.

Vigor and Yule (1906) studied the variation in sex ratio of 632
registration districts in England and Wales for the period 1881
−1890. They compiled a two-way table with number of births on
one axis and sex ratio interval on the other. They show that number
of births and sex ratio (proportion of male newborns b) are not cor-
related but clearly dependent. Plotting the means of birth count by
sex ratio interval they exhibit a bell shaped curve of frequency with
mode just below b= 0.51, but some districts with small counts hav-
ing b< 0.5 and some clearly above 0.53. The results are typical of
those reported in countries with reliable birth registries.

Fisher (1958), using part of Geissler’s data on sex ratio in fam-
ilies, found evidence of a tendency on the part of some parents to
produce males or females. However, Lancaster (1950) concluded
that the data were unreliable.

Cavalli-Sforza and Bodmer (1971) contains a section on the sex
ratio (pp. 650−666) and another on natural selection and the sex
ratio (pp. 666−670). They identify reasons why the sex ratio could
deviate from the expected 1:1. These include meiotic drive, gametic
selection and differential mortality after fertilization.

Otto (2021) gives several models dealing with sex ratio determi-
nation in mammalians, in the course of which he cites many of the

main contributors to the theory, but omits Karlin and Lessard
(1986), which is a comprehensive survey of the field up to the time
of publication. Otto’s second model explores the fate of a mutant
that acts according to the combined number of mutants in the
parental pair. Like most models in the literature it is deterministic.

Shaw andMohler (1953) give a deterministic model of selection
for sex ratio that derives change over three generations. They con-
clude: ‘Whenever the primary sex ratio of a population is not 0.5,
selection favours sex ratio genes whose increase in frequency will
cause a shift closer to 0.5. When the population sex ratio is already
0.5 there is no selection for sex ratio genes no matter what the
direction or magnitude of their effects’ (p. 341). The experience
of human populations contradicts this conclusion.

Karlin and Lessard (1986) give a brief comment on the Shaw-
Mohler model (pp. 18−19). They note: ‘A proper stochastic diploid
population genetic model of sex ratio variation needs to be inves-
tigated’ (p. 290). The model given here is a step in that direction.

Hofbauer and Sigmund (1988, pp. 118−119) summarize the
Shaw-Mohler model. In their afterword they note: ‘Evolution is
an interplay of “chance and necessity”, but we have almost totally
neglected stochastic methods.’

Fisher (1930/1958, p. 145) concludes the chapter entitled ‘Sexual
Reproduction and Sexual Selection’ with the comment: ‘It is shown
that the action of Natural Selection will tend to equalize the parental
expenditure devoted to the production of the two sexes; at the same
time an understanding of the situations created by territory will
probably reveal more than one way in which sexual preference gives
an effective advantage in reproduction.’ In the same chapter there is
a short section on ‘Natural Selection and the sex ratio’, which con-
tains a remark of Darwin (1871/1981) who admits that the sex ratio
presents an ‘intricate problem’ (pp. 141−143). Fisher gives a verbal
explanation of the sex ratio, directing the reader to his concept of
‘reproductive value’. His suggestions agree with the findings of
Cobb (1913) noted above. The model of Shaw and Mohler (1953)
may be seen as a development of Fisher’s explanation.

However, Edwards (2000) pointed out that Fisher’s (1930/1958)
verbal discussion of sex ratio evolution probably followed Fisher’s
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knowledge of Düsing’s (1884, as cited in Edwards, 2000) analysis.
Fisher (1930/1958) may have assumed that experts in the field were
familiar with Düsing’s model. In this sense, Düsing anticipated Shaw
and Mohler (1953). Charnov (1993, p. 24) gives credit to Fisher
(1930) for the attention paid to sex ratio as a phenotypic trait, but
intensive research came 35 years later. A full account of these issues
is in Sections 1.5 and 1.6 of Seger and Stubblefield (2002).

The model given here makes no assumption about how natural
selection determines the sex ratio, but males and females contribute
equally to conception and sex (gender) is determined by which of
two gametes is provided by themale. It permits conception to depart
from 1:1 ratio of males to females. The model is stochastic, using
Markov chain theory, in contrast to most of those constructed to
study the sex ratio, which are deterministic. It starts from a formu-
lation set out by Iosifescu (1980), among others. It uses an idea intro-
duced byMoran (1958) for potential change in a population when a
single individual drops out. The stationary state of theMarkov chain
reveals the variance of the sex ratio, which is of use for interpreting
the variation in sex ratio for small populations.

Markov chain model

Variations in the sex ratio are studied by assuming that the pop-
ulation has a constant number N of individuals and that the states
are defined by the number of males 1, 2, : : : , (N-1) so that at any
time there is at least one individual of each sex. An individual is
selected at random for reproduction and death at each unit of time
and is replaced by one individual. The probability that the offspring
is male is p, the probability that the offspring is female is 1 – p.
(Chromosome Y is transmitted from the male with probability
p, X with probability 1 – p.)

If only onemale is left at a reproduction-death event, a female is
selected to reproduce and die, so p11 = 1-p, is the probability that
the offspring is female, and the number of males stays at 1. If the

offspring is male, the number of males increases by 1 (to 2). The
probability of this is p12 = p. If only one female is left at a repro-
duction-death event, a male is chosen to reproduce and die. The
number of males then stays the same (at N-1) with probability
pN-1,N- 1 = p or decreases by 1 (to N-2) with probability pN-1,N-2
= 1-p.

The transition matrix, exemplified in Figure 2, and adapted to
suit the model, has the following properties: the states range from 1
to N – 1 and refer to the number of males in the population:

for i to i – 1: qi = i(1 – p)/N. For i to iþ 1: pi = (N- i)p/N. These for
i= 2, : : : , N - 2. At the ‘ends’ r1= 1 – p, p1 = p, r{N – 1} = p,
q{N – 1}= 1 - p.

If the number of males at reproduction-death event is i, a male
is chosen to die with probability i/N and a female with probability
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Fig. 1. The sex ratio at birth in the Australian population for the
years 1902−65, derived from the table compiled by G. N. Pollard
(1969).

_____________________________________________________

i\j 1           2     3      4 5            6         7

________________________________________________  

1 24 40 0           0          0            0          0

2 6 28   30 0          0            0         0

3 0          9 30 25 0            0          0

4 0       0       12 32         20 0          0

5   0           0     0        15        34 15 0

6 0           0          0           0        18 36       10

7 0           0         0            0      0          24 40

______________________________________________________

Fig. 2. Transition matrix related to sex ratio for population with N = 8 individuals and
p= 5/8 (elements to be divided by 64).

22 Alan E. Stark and Eugene Seneta

https://doi.org/10.1017/thg.2023.9 Published online by Cambridge University Press

https://doi.org/10.1017/thg.2023.9


(N – i)/N. Combined with the transmission of chromosome X or Y
as described, this gives the transition probabilities above.
The non-zero elements in the first and last rows are explained by
the need to have at least one of each sex alive at all times. The sta-
tionary/limiting distribution fπðiÞg is given by:

xðN; pÞπð1Þ ¼ B1ðN; pÞ; xðN; pÞπðjÞ ¼ N
N � 1

BjðN; pÞ; j
¼ 2; ...;N � 2; xðN; pÞπðN � 1Þ ¼ BN�1ðN; pÞ

where BjðN; pÞ ¼ N
j

� �
pjð1� pÞN�j; j ¼ 1; 2; . . .N � 2;N � 1.
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Fig. 3. Stationary distribution for N= 36 and p = .525.
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Fig. 4. Simulation of changes in male counts for case N = 36 and
p = .525.
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The norming constant is given by

xðN; pÞ ¼ B1ðN; pÞ þ N
N � 1

Xj¼N�2

j¼2

BjðN; pÞ þ BN�1ðN; pÞ.

The derivation is given in our Appendix below.
The case p= 1/2 reduces to : qi = i/(2N), i = 2 : : : , (N − 2); pi =

(N − i)/(2N), i= 2, : : : (N −2); all other elements are zero.
The relevant truncated binomial distribution is then conven-

iently expressed using a normalizing constant
KðNÞ ¼ f2N � 4g=fN � 1g, giving terms

KðNÞπðiÞ ¼ 1; when i ¼ 1;N � 1; ¼ N
ið Þ=fN � 1g;

when i ¼ 2; . . . ; ðN � 2Þ.
The transition matrix when N= 8 and p= 5/8 is given in

Figure 2. The stationary state probabilities when N= 8 and
p = ½ are π ¼ ð1; 4; 8; 10; 8; 4; 1Þ=36; for states 1, 2, : : : , 7.

The stationary state is a truncated and weighted binomial dis-
tribution (lacking state zero and state N) with number of ‘trials’ N
and probability of ‘success’ p.An indication of the effect on the sta-
tionary distribution of varying p from ½ to 0.525 is a shift of the
modal probability from 18 to 19.

The stationary distribution for the case N= 36 and p= 0.525 is
displayed in Figure 3, to show visually the nature of the resulting
asymmetry in moving from p = ½, and to make the important
point that, even in a population with few members, the range of
the number of males is concentrated about the expected number,
that is that extreme numbers rarely occur.

The outcome of a simulation of the model for N= 36 and
p = .525 is displayed in Figure 4.
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Appendix A

Iosifescu (1980, pp. 67−68, p. 129) considers a Markov chain with
transition matrix given in Figure A1. This describes a physical
model of random walk type, which incorporates as a special case
the celebrated Ehrenfest model for exchange of heat between iso-
lated bodies, which addresses reversibility in statistical mechanics.
We adapt a variation and generalization of the Ehrenfest model to
explore variation over time of the sex ratio. The stationary state
probability distribution fπðiÞg in the general model given by
Figure A1 is calculated from

πð0Þ ¼ 1

1þPl
i¼1

ðp0...pi�1Þ=ðq1...qiÞ;
(1)

πðiÞ ¼ ðp0...pi�1Þ=ðq1...qiÞ
1þPl

i¼1
ðp0...pi�1Þ=ðq1...qiÞ

. (2)

Stationary Distribution 1
Markov chain with state space {1, 2, : : : ,N – 1} (for the number

of males present at a reproductive event). For i= 2, : : : ., N – 2:

i → iþ 1 with probability pi ¼ N�i
N

� �
p;

i → i – 1 with probability qi ¼ ið1�pÞ
N ;

and p11= 1 – p, p12= p, pN-1,N-1= p, pN-1,N-2= 1 - p. The ri’s are not
needed for the calculation of the limiting/stationary distribution.

Fig. A1. Markov chain transition matrix constructed by Iosifescu (1968, p. 68).
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Stationary Distribution 2. Iosifescu form
Change states from 1,2 : : :N – 1 to 0,1, : : : , N – 2, so l = N – 2.

Then p0 = p, qN-2= 1 – p, while

pi ¼ p 1� iþ 1
N

� �
¼ p

N
ðN � i� 1Þ; i ¼ 1; 2; ...;N � 3;

qi ¼ ð1� pÞ iþ 1
N

� �
; i ¼ 1; 2; ...;N � 3.

Then, using (2), with its denominator labelled as K(N,p), we
have K(N,p)π(0)= 1, K(N,p)π(1) = p0

q1
¼ pN

ð1�pÞ2 ; while for i> 1

K N; pð Þπ ið Þ ¼ p0...pi�1

q1...qi
;

¼ p0
q1

pðN � 2Þ=N ...pðN � iÞ=N
ð1� pÞ3=N ...ð1� pÞðiþ 1Þ=N

¼ p
1� p

� �
i NðN � 2ÞðN � 3Þ...ðN � iÞ

2...ðiþ 1Þ

¼ p
1� p

� �
i NðN � 1ÞðN � 2ÞðN � 3Þ...ðN � iÞ

ðN � 1Þ2...ðiþ 1Þ

Thus

KðN; pÞπðiÞ ¼ 1; i ¼ 0;

¼ p
1� p

� �
i 1
N � 1

ðNiþ1Þ; i ¼ 1; 2; . . . ;N � 3;

¼ p
1� p

� �
N�2

; i ¼ N � 2

.

Stationary Distribution 3
Returning to state space {1,2, : : : , N – 1}, put j = iþ 1 in π(i),

i= 0,1, : : : , N – 2 above to get
π*(j) = π(j – 1), j= 1,2, : : : , N – 1, so that
K(N,p)π*(j)= 1, j= 1;

¼ p
1� p

� �
j�1 1

N � 1
N
j

� �
; j ¼ 2; ...;N � 2;

¼ p
1� p

� �
N�2

; j ¼ N � 1.

Notice that for j= 2, : : : , N – 2 we may write

1
ðN � 1Þpð1� pÞN�1

N
j

� �
pjð1� pÞN�j; j ¼ 2; ...;N � 2; (3)

so the distribution may be regarded as a truncated and rescaled
Binomial. This may be expressed more clearly, as follows.

Stationary Distribution 4,

Put xðN; pÞ ¼ Npð1� pÞN�1KðN; pÞ.
Then fπðiÞg; i ¼ 1; 2; . . . ;N � 2;N � 1 is given by

xðN; pÞπð1Þ ¼ B1ðN; pÞ; xðN; pÞπðjÞ ¼ N
N � 1

BjðN; pÞ;

j ¼ 2; ...;N � 2; xðN; pÞπðN � 1Þ ¼ BN�1ðN; pÞ

where BjðN; pÞ ¼ N
j

� �
pjð1� pÞN�j; j ¼ 1; 2; . . . ;N � 2;N � 1.

Consequently

xðN; pÞ ¼ B1ðN; pÞ þ N
N � 1

Xj¼N�2

j¼2

BjðN; pÞ þ BN�1ðN; pÞ.
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