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NONEXISTENCE OF MAXIMA FOR 
PERTURBATIONS OF SOME INEQUALITIES 

WITH CRITICAL GROWTH 

ALEXANDER R. PRUSS 

ABSTRACT. We study the question of nonexistence of extremal functions for pertur­
bations of some sharp inequalities such as those of Moser-Trudinger (1971) and Chang-
Marshall (1985). We shall show that for each critically sharp (in a sense that will be 
precisely defined) inequality of the form 

(1) s u p ^ O ( | / " W | ) ^ W < o o , 

where J is a collection of measurable functions on a finite measure space (/, /i) and O 
a nonnegative continuous function on [0, oo), we have a continuous *F on [0, oo) with 
0 < ¥ < 0>, but with 

(2) sup [V(\f(x)\)dn(x) 

not being attained even if the supremum in (1) is attained. We then apply our results 
to the Moser-Trudinger and Chang-Marshall inequalities. Our result is to be contrasted 
with the fact shown by Matheson and Pruss (1994) that if ¥(/) = o(<D(0) as t —• oo 
then the supremum in (2) is attained. In the present paper, we also give a converse to 
that fact. 

1. The general results. Fix a finite measure space (/, //). For a nonnegative O on 
[0, oo) and/ a measurable function on /, define 

A<J,{f) = J]1>(\f(x)\)dfi(x). 

Let J be a collection of measurable functions on (/, /x). We shall throughout assume 
that 0 £ 7 and that J is sequentially compact with respect to convergence in measure. 
Throughout when we refer to concepts such as compactness, semicontinuity or continuity 
with respect to convergence in measure we shall mean sequential compactness, sequen­
tial semicontinuity or sequential continuity, respectively, all with respect to convergence 
in measure. 

The research was partially supported by Professor J. J. F. Fournier's NSERC Grant #4822. A modified 
version of this paper forms a portion of the author's doctoral dissertation. 

Received by the editors November 11, 1994. 
AMS subject classification: Primary: 49J45, 28A20; secondary: 26A46, 30A10. 
Key words and phrases: nonexistence of extremals, lack of upper semicontinuity, nonlinear functional, 

convergence in measure, Moser-Trudinger inequality, Chang-Marshall inequality, Dirichlet space, Dirichlet 
integral, optimization problems. 

© Canadian Mathematical Society 1996. 

227 

https://doi.org/10.4153/CMB-1996-029-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1996-029-1


228 ALEXANDER R. PRUSS 

We say that an upper semicontinuous O is critical for ^F, provided: 
(i) Ao is upper semicontinuous on ^F\{0} with respect to convergence in measure, 

and 
(ii) Ao is not upper semicontinuous with respect to convergence in measure at 0 G 7. 
Condition (ii) says that there is a sequence offk G 7 converging to zero in measure, 

but with Ao(/it) converging to some number (possibly +oo) which strictly greater than 
0(0) = Ao(0). 

The following result then is of the same type as the work of Flores [6]. We write r o <3> 
for the composition of the functions T and O. 

THEOREM 1. Let O be continuous and nonnegative on [0, oo). Assume that O is 
critical for J'. Then there exists a nonnegative, convex, non-decreasing and infinitely 
differentiable function T on [0, oo) with T(y) < y for every y G [0, oo), linv^oo -y- = 1 
and support bounded away from zero, such that Aroo does not attain its supremum on 

7. 
Moreover, if 0(0) = 0 then we may require that there be a sequence of f G jF 

converging to zero in measure such that limsupj. Ao(/i) = sup^G j Aroo(/&)-

A proof will be given in Section 3. It is not known whether the assumption of continu­
ity of O can be weakened to upper semicontinuity. It is not hard to see that the continuity 
of a nonnegative O immediately implies the lower semicontinuity of Ao on all of ¥ by 
Fatou's Lemma. 

We say that Ao is bounded on jF if sup^^r Ao(/) < oo. If O is in addition critical for 
F̂ then we say that the inequality sup^G j Ao(/) < oo is critically sharp. Theorem 1 then 

says that if O is continuous then even if a critically sharp inequality supye j Ao(/) < oo 
attains its maximum, still we may perturb O by a bounded factor and lose the attainment 
of a maximum. 

Matheson and Pruss [8, Thm. 5] have shown that if O is any nonnegative measurable 
function with Ao bounded on ^F, then, for every upper semicontinuous *F with ¥(/) = 
o(O(0) as / - ^ oo, we have Ay upper semicontinuous with respect to convergence in 
measure on jF, and in particular attaining its maximum there. Theorem 1 shows that 
o (<!>(/)) cannot be replaced by 0(O(f)) in that result, even under the assumption that Q> 
attains its maximum on J. Matheson and Pruss's result can also be interpreted as saying 
that a critically sharp inequality supye j Ao(/) < oo cannot be improved by replacing O 
by some *F with <D(/) = o(*F(0) as t —• oo since supyç^ Ay(f) will then fail to be finite. 

We have the following partial converse to Matheson and Pruss's result. As before, J 
is a collection of measurable functions on a finite measure space (/, /i), with 0 G 7 and 
¥ being compact with respect to convergence in measure. 

THEOREM 2. Let <b be continuous and nonnegative, and suppose that Ao is con­
tinuous on f with respect to convergence in measure. Then there exists a nonnegative, 
convex and non-decreasingV G C°°[0, oo) with ^ —-> oo as y —•> oo and Aroo bounded 
on f • Moreover, we may require that —^- —> oo as y —> oo. 
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NONEXISTENCE OF MAXIMA 229 

A proof will be given in Section 3. As in the case of Theorem 1, it is not known 
whether the assumption of continuity can be weakened to upper semicontinuity. 

COROLLARY. Let O be continuous and nonnegative with 0>(t) —> oo as t —> oo 
and suppose that Ao is continuous on J with respect to convergence in measure. Then 
there is a continuous and nonnegative *F with 0(/) = oy¥(t)) as t —> oo and with Ay 
continuous on f with respect to convergence in measure, and, in particular, bounded 
there. Moreover, z/O is convex (respectively, non-decreasing, or convex non-decreasing), 
then *F can be taken to also be convex (respectively, non-decreasing, or convex non-
decreasing). 

PROOF OF COROLLARY. First assume that we do not need *F to be non-decreasing or 

convex. Let ¥(*) = 7r(0(/)) • O(r), where Y is as in Theorem 2. Then it follows that 

*¥(t) = o ( r(0(/)) ) as t —> oo, so that by [8, Thm. 5], it follows from the boundedness of 
Apoo that Avp is continuous on f with respect to convergence in measure. On the other 
hand, we also have 0(0 = o(^¥(tfj as / —* oo. 

Now, if we do want *F to be non-decreasing and/or convex, then choose T as in the 
"moreover" of Theorem 2. Let 

* > - J ^ - T * 
Since ^ —> oo as t —> oo, it follows from L'Hôpital's Rule that f (y) = o(T(y)) and 
that y = o(r(y)), both as y —> oo. Furthermore, if T is infinitely differentiable, then 
so is f, and if T is convex then so is f. Then the desired result follows upon setting 
¥ = f o <D, and applying [8, Thm. 5] as before in order to obtain the continuity of Ay on 
y with respect to convergence in measure. (Of course we also need to use the general 
fact that if F is non-decreasing and convex while G is convex, then F o G is convex.) • 

We also have the following result which is complementary to Theorem 1 but which 
will turn out to be much easier to prove. The proof is again given in Section 3. 

THEOREM 3. Let O be upper semicontinuous and suppose that A® is upper semicon-
tinuous on ̂ F\{0} with respect to convergence in measure. Furthermore, assume that Ao 
is bounded on J. Then there exists a compactly supported nonnegative F G C°°(0, oo) 
such that Ap+o attains its maximum over ?• 

2. Applications. 
2.1 Application to the Moser-Trudinger inequality. Moser [10] showed that if J is the 
collection of real-valued absolutely continuous functions/ on [0, oo) with/(0) = 0 and 

\2 

Cm1 'dt<\9 

then 

(3) sup f ° A*-* dt < oo. 
fe9:J0 
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230 ALEXANDER R. PRUSS 

This sharpened an inequality of Trudinger. Carleson and Chang [2] then showed that the 
supremum is actually achieved at some/ G jF. Letting (7, //) be [0, oo) with measure 
dfi(t) = e~*dt and setting 0(y) = er, we see that (3) is of the form 

supAo(/)<oo. 

As implicitly noted by Carleson and Chang [2, p. 117], f is compact with respect to 
uniform convergence on compact subsets of [0, oo), and in particular with respect to 
convergence in measure. (This can be seen from the fact that the collection of/' for 
/ G 7 is the unit ball of the Hilbert space L2[0, oo) and hence is weakly compact.) 

Furthermore, O is critical for f. For, if / —>/ in measure, then, choosing a further 
subsequence if necessary, we may assume tha t / converges t o / uniformly on compact 
subsets of [0, oo). Then, the work of Carleson and Chang [2, pp. 117—118] shows that 
limsup„ A®(fn) < Ao(/) if/ ^ 0. Hence Ao is upper semicontinuous on iF\{0} with 
respect to convergence in measure. 

On the other hand, A<D fails to be upper semicontinuous at 0 G jF. To prove this 
we look at Moser's broken line functions, proceeding much like in [10]. Let /3(t) = 
min(f, 1) and put fn(t) — y/n(3(t/n). Then clearly/ G 7 and 

r^,)-'dt= r/i»-'dt+r>->*> /v<<*+i. 
JO J0 Jn ~ JO 

Now, the right hand side converges to 2 as n —> oo. On the other hand, it is easy to verify 
that / —> 0 in measure and A<D(0) = 1 SO that A<p indeed fails to be upper semicontinuous 
at 0 G ?. 

Hence O(f) = e^ is critical for 7. The following result which was conjectured by 
McLeod and Peletier [9] then follows immediately from Theorem 1. 

THEOREM 4. There exists a convex, non-decreasing and smooth function T with 0 < 
T(y) < y for every y G [0, oo) and with lim^oo ^ = 1, such that the supremum 

(4) s u p / ° ° r ( / ( 0 > - ^ 
fefJo 

is not achieved over J. 

Of course it should be noted that (4) is finite. Theorem 4 shows that the existence of 
the extremal for Moser's inequality is in some way accidental, relying on non-asymptotic 
properties of the function e^. 

2.2 Application to the Chang-Marshall inequality. Let 23 be the collection of holomor-
phic functions/ on the unit disc D with/(0) = 0 and Dirichlet integral 

lfJD\f(x + iy)\2dxdy<L 

Let 0 ( 0 = et and let (/, /x) be the unit circle with normalized Lebesgue measure. 
Then, Chang and Marshall [3] proved that A^ is bounded on 35. See [7] for an alter­
nate potential-theoretic proof, and [5] for an interesting generalization and a stronger 
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inequality. It is not known whether A# achieves its supremum over 23, but it was con­
jectured by Andreev and Matheson [1] that it does, and in fact that it achieves it at the 
identity function. This last conjecture has been numerically verified by the author of the 
present paper for over 40 million quasi-random polynomials of degree 6. See also [4] 
and [8] for more information on the question. 

Cima and Matheson [4] have shown (see also [8, Cor. 3] for a generalization of this 
result) that Â> is weakly continuous on 23\{0}. Also, 35 is the unit ball of the Dirichlet 
space which is a Hilbert space. Then, as [8] notes, it follows trivially from [1, Lemma 3], 
which says that LP norms on the unit circle are weakly continuous on 23, that A<D is 
continuous on 23\{0} also with respect to the convergence in measure topology on the 
unit circle, and it also follows from [1, Lemma 3] that 23 is compact with respect to 
convergence in measure since it is weakly compact by Banach-Alaoglu. 

On the other hand, Cima and Matheson [4] have shown that A<D fails to be weakly 
upper semicontinuous at 0 € 33 (see also another proof given as a part of [8, Proof 
of Thm. 1]), and it follows that it is not weakly upper semicontinuous with respect to 
convergence in measure there. Hence O(f) = e? is critical for 23. Then, even though we 
do not know whether A$ achieves its maximum over 33, we do have the following result 
which follows from Theorems 1 and 3. 

THEOREM 5. There exist two C°°[0, oo) functions *¥\ and ¥2 such that for every 
t G [0, 00) we have 0 < *Fi(0 < e? < ^ ( 0 and Ay. is bounded on 33 for i = 1, 2, but 
Ay, does not achieve its supremum over 33 while Ay2 does achieve its maximum over 33. 
One may take *Fi to be convex and non-decreasing with lim -̂K» e *Fi (t) = 1. 

Alec Matheson has kindly communicated to the author that he and Joseph Cima had 
strongly suspected the truth of this result. 

3. Proofs. If/ and <f> are measurable on [0, 00), then write 

ll*lli>(«= jf M = j f l/Wtol dx. 

Then, the main step in the construction of *F for Theorem 1 is encapsulated in the fol­
lowing result. 

LEMMA 1. Let Q be a subset ofLl[0, 00) containing the zero function, such that 
for each finite number T we have supgG^ \\g • l[o,7ilU°° < 00. Assume that for every 
sequence gn of elements ofQ, there exists a subsequencegnk which converges in measure 
to some g G Ll [0, 00) such that either g is almost everywhere null or else has ||g||Li > 
limsup£ Hg/iJI/,1. Suppose further that || • \\Li fails to be upper semicontinuous at 0 G Q 
with respect to convergence in measure. 

Then, there exists a nonnegative non-decreasing function </> < 1 on [0, 00) such that 
linijc-KX) <t>(x) = 1, with \\ • ||z,i(̂ ) not attaining its maximum on Ç. Furthermore, <f> may be 
taken to be in C°°[0, 00), with support bounded away from 0. Moreover if supge(? \\g\\i\ < 
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oo then we may also require that there be a sequence g* G Q such that gk —> 0 almost 
everywhere and \imsuipk\\gk\\Li = supgeç\\g\\Li{(f)). 

Assuming the lemma for now, we may proceed to prove Theorem 1. 

PROOF OF THEOREM 1. Without loss of generality assume that O(0) = 0. For/ G 7 
and t G [0, oo), let mf(t) = p{x : 0(|/*(JC)|) > t). Let Ç={mf:fe 7}- We shall apply 
the lemma to Q. Let us verify its conditions. Clearly, every element of Q is pointwise 
bounded by fi{I) < oo. Furthermore, for nif G Q we have 

IKIIz' =£°mj{t)dt = A*(f). 

Then, using the lack of upper semicontinuity of Ao at zero, we may choose a sequence 
fk € 7 such t h a t / —•> 0 in measure and limsup^ A^tt) > AG>(0) = 0. Passing to 
a subsequence if necessary, we may assume that/ . —> 0 almost everywhere. Then, 
limsupA:0([4|) = 0(0) = 0 almost everywhere, by the continuity of O. Hence, 
^(141) —* 0 almost everywhere, too, and hence also in measure. Thus, for every t > 0 
we have m/k(t) —> 0, and in particular rrifk —> 0 in measure while limsup^ ||/w/*(0||z.i = 
limsup^ Ao(/i) > 0, so that || • \\L\ fails to be upper semicontinuous at zero in Ç. 

Now, given any sequence m/n of elements of Q, we may choose a subsequence ntfn 

such that/^ converges in measure, using the compactness with respect to convergence 
in measure of 7. Choosing a further subsequence if necessary, we may assume/^ con­
verges almost everywhere. If the limit is almost everywhere zero then we are done. On the 
other hand, \ifnk —»/ where/ does not vanish almost everywhere then we first of all have 
lim* 0(\f„k |) = 0( | / | ) by continuity of O, and secondly, by the upper semicontinuity of 
A<D with respect to convergence in measure away from zero, we have lim sup^ Aq>(\f„k |) < 
A<j>(l/1). Then, since 0([/^ |) —• 0( | / | ) in measure, it follows that rrifn —» rrtf almost ev­
erywhere (in fact at all points of [0, oo) other than the at most countably many discon­
tinuities of mf), as can be easily verified. Also, ||m^||zi > limsup^ \\mfn \\Li. Hence, the 
conditions for the lemma are satisfied. 

Choose <j> as in Lemma 1. Let 

T(y) = f^(x)dx. 

It is easy to verify that ||/w/||z,i(0) = Aroo(/)- Then the Theorem follows from the con­
clusions of Lemma 1. For example, the convexity of Y follows from the fact that <j> is 
monotone non-decreasing. • 

LEMMA 2. Let Q be a subset ofLl[0, oo) containing the zero function, such that 
for each finite number T we have supgG^ \\g • l[o,r]||z,°° < oo. Assume that for every 
sequence gn of elements of Q, there exists a subsequence g„k which converges in measure 
to some g G L] [0, oo) such that either g is almost everywhere null or else has \\g\\i\ > 
limsup£ Hg/iJI/,1. Suppose further that || • \\L\ is uniformly bounded on all ofQ and upper 
semicontinuous with respect to convergence in measure atO G Q. 
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Then, there exists a nonnegative and non-decreasing function <j> > 1 on [0, oo) with 

lim^oo </>(*) = oo and || • \\^(<i>) bounded on Q. 

Theorem 2 then follows from Lemma 2 in the same way as Theorem 1 had followed 
from Lemma 1. We now proceed to prove our two lemmata. 

PROOF OF LEMMA 1. First suppose Q is not uniformly bounded in Lx norm. Let </> be 
a nonnegative non-decreasing C°°[0, oo) function whose support is bounded away from 
zero and which has </>(x) = 1 for all x > 1. Then let gk be a sequence of elements of Q 
with ||g*||£i —->• oo. Passing to a subsequence we can assume that for some g G Û [0, oo) 
we have gk —* g in measure. If g is almost everywhere null, then it is easy to see that 
the proof is complete since by the bounded convergence theorem (which is applicable 
because the {gk} are almost everywhere uniformly bounded on [0, 1] by the hypotheses 
ofthe Lemma) we have Jo1 \gk\ -> 0 so that \\gk\\v(<j>) > Ji°° \gk\ = \\gk\\v -Jo \gk\ and the 
right hand side tends to oo, so that ||g>||z,i(0) —» oo as desired. Choosing a subsequence if 
necessary, then, we may assume that gk —> 0 almost everywhere and the Lemma follows. 
On the other hand, ifg is not almost everywhere null then ||g||Li > limsup^ \\gk\\^ by our 
hypotheses. But, the right hand side is infinité, and this contradicts the fact that g G Ll. 

Now, assume that 
A^supHgl^i <oo . 

Let 

(5) A = sup limsupll/il^i, 
{&KÇ * 

where the supremum is to be understood as taken over all sequences {gk} in Q tending 
to zero in measure. Since || • \\L\ fails to be upper semicontinuous at 0 G Q with respect 
to convergence in measure, we have A > 0. Obviously, X <M. 

Replacing Q by {\g\ : g G Ç} if necessary, we may assume all functions in Q are 
nonnegative. Choose 0 < a < 1 such that aM < A. 

For g G Ç, let 

rf = mf{r>0:Jf*<«f,g), 
so that 

/•oo /-oo 

(6) Le
 s = a L g 

and 

r e roo roo roo 

Now define 

Qx = {g-Tg> X}. 
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Let 
roo 

Mx = sup / g. 
geçx

j0 

I claim that 

(8) limsupMx<A. 
x—*oo 

To show this, it suffices to prove that for any sequences Xk —•» oo and g£ G ^ such 
that JQ°gjt converges, we have lim* JQ° gk < A. Fix such sequences^ andg*. Passing to 
subsequences, if necessary, by our hypotheses we may assume that gk either converges 
to 0 in measure, or else it converges in measure to some nonzero g G Ll[0, oo) with 
\\g\\ii > limsup^ Hgtll/,1. If it converges to 0 in measure then limsup^ JQ° gk < A by 
définition of A. Otherwise note that since gk G ÇXk, we have ££ gk > ^H^tlL1- Let 
hk(x) — gk(x) • l{x>xk}- We n a v e hk —* 0 pointwise since x* —> oo. By Fatou's Lemma 
then, 

f roo 

But 

J0 (gk~hk) = Jo gk<J0 gt = (l-a)Halli>, 

where we have used the fact that gk £ ÇXk together with (7). Thus, 

l i m i n f O - a f c l l ^ l l g l L , . 
k 

But since a < 1, this contradicts the facts that ||g||/,i > limsup^ WgkWo and that g does 
not almost everywhere vanish. Hence, the case where gk does not converge to zero in 
measure is impossible, and the claim is proved. 

Now define 

™ = (ïT *H""g€ft\{0} Jo8 g 
1A inf 

I claim that ip(x) —> 1 as x —> oo. To prove this, consider the function 

A — at 
h(t) = 

(1 - a)t' 

which is easily seen to be decreasing for t G [0, M] since aM < A, and which satisfies 
h(X) = 1. By (6) and (7) we then have 

*>-(ïTi)(IA,&w»(f«))-
But for g £ Çj we have J£° g <MX so that by the monotonicity of A on [0, M] we have 

V W > T ^ ( > A A ( M X ) ) . 
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Now by (8) we have liminf^oo^CM:) > h(\) = 1 and hence lim^oo V *̂) = 1 as 
desired. 

Note that ^ is measurable as it is non-decreasing. It is easy to verify that ||g||z,i(^) < A 
for every g G Q. For, given g G Ç with \\g\\L\ ^ 0, we have 

r rTg roo rrg roo roo roo 

where we have used the monotonicity and choice of ij). The first inequality came from 
the facts that ip < 1 everywhere and that J^° g > 0 if \\g\\Li ^ 0. 

If we do not need <j> to be C°°[0, oo) or to have support bounded away from zero, then 
just let <j> = X/J. Otherwise, since ip is a non-decreasing function [0, oo) with limit 1, we 
may easily choose a non-decreasing C°°[0, oo) function <f> with support bounded away 
from 0 and with the properties that 0 < </> < \[) everywhere and that </>(x) —» 1 as x —> oo. 
We will then necessarily still have HgH/,̂ ) < A for each g G Q. 

We shall now show that 

(9) sup \\g\\L^ = A. 

To do this, fix e > 0. By définition of A, let gk be a sequence in Ç with gk —* 0 in 
measure and ||g*||£i —> A. Choose T sufficiently large that <j)(x) > 1 — e for x > T. Since 
gk —» 0 in measure and, by our hypotheses, the gk • l[o,r] are uniformly bounded in L°°, 
the bounded convergence theorem tells us that Jjf gk —» 0 as k —» oo. Since Hĝ ll̂ i —> A, 
we may choose K sufficiently large that J£° gk > A — e for k > K. Then, for k > K we 
have 

HalL-w > f a * > 0 - £ ) f a > 0 - eXA - <0. 
Hence liminfyt Hg^H^) > (1 — £)(A — e) for every e > 0, and so we see that in­
deed liminffc Hg^li^) > A and (9) follows from this and the already proved inequality 

HgHi'M < A v a l i d f o r every g G Ç. 
The last sentence of the statement of the Lemma now follows upon taking a subse­

quence of the above gk which converges almost everywhere to zero. Thus, the Lemma 
is proved. • 

PROOF OF LEMMA 2. As in the proof of Lemma 1, we may assume without loss of 
generality that all functions of Q are nonnegative. Let 

roo 

M = s u p / g. 

By assumption this will be finite. Let 
roo 

Ux = sup / g. 

I claim that Ux —* 0 as JC —» oo. For, fix any 0 < a < 1, and define 

r« = i n f { r > 0 : f g < a f g } . 
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Let Ç" — {g G Ç : r^ > x}. Exactly as in the proof of Lemma 1, we may show that if 

/•oo 

K = sup / g, 

then AC —-> 0 as x —> oo. (For, in the present case À as defined by (5) will be zero, by 
the assumption of upper semicontinuity with respect to convergence in measure to zero.) 
Now, fix e > 0 and choose 0 < a < 1 such that aM < e. Assume that x is sufficiently 
large that AC < e. Then, for such x and g G Ç, we have S%°g < SQ°g < AC < £ 
providing g G G£. On the other hand, if g ^ G£ then T£ < x, so that £ ° g < fê g = 
oc J™ g < ocM < e. Hence, in either case £° g < e, and so Ux —> 0 as desired. 

Choose a sequence of finite nonnegative numbers x* —» oo with the property that 
^ < 2~k. Then set 

# t ) = Card{£ G Z+ : xk < x}. 

This is a non-decreasing nonnegative function on [0, oo), and we have ip(x) —-> oo as 
x —̂  oo. Furthermore, if g G £7 then it is easy to verify that 

k=\ Jxk k=\ k=\ "*k k=l 

by choice of x^. In fact, we also have || • ||z,i(i+ )̂ bounded on Q since we had assumed that 
|| • ||z,i is bounded on Ç. Now, we may easily choose a non-decreasing function </> G C°°[0, 
oo) with the property that 1 < </>(x) < 1 + I/J(X) and </>(x) —• oo as x —* oo. The Lemma 
then follows. • 

PROOF OF THEOREM 3. If all functions in $ are zero almost everywhere, then we are 
done. Otherwise, fix/) £ 7 which is not almost everywhere null. Let Af = sup^G^ A®(f). 
Choose a compactly supported F G C°°(0, oo) such that Ar+<&(fo) > M. Now, Ar+o = 
Ap+A(D- By the bounded convergence theorem, Ar is continuous on all of f with respect 
to convergence in measure, so that Ar+o is upper semicontinuous eveiywhere on jF\{0}. 
Now, choose a sequence/, G J- such that 

(10) lim Ar+(t>(fn) = supAr+oC/). 

Then, the upper semicontinuity of Ar+<& away from zero implies that there exists a max­
imum if there is a subsequence of the f„ which converges in measure to some nonzero 
function of ^. Hence, by the compactness property of jF, in order to obtain a contradic­
tion we may assume that / —» 0 in measure. But since A r is continuous on ^F, it follows 
that Ar(fn) —> T(0) = 0. Hence the left side of (10) cannot exceed M. Thus, it follows 
that Ar+<t>(f) < M for each/ G 7. But this cannot be true for / = f0 because of our 
choice of T. Hence, we see tha t / cannot tend to zero in measure and we are done. • 
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