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Abstract Let G be a connected reductive algebraic group defined over an algebraically closed field k

of characteristic 0. We consider the commuting variety C(u) of the nilradical u of the Lie algebra b of
a Borel subgroup B of G. In case B acts on u with only a finite number of orbits, we verify that C(u)
is equidimensional and that the irreducible components are in correspondence with the distinguished
B-orbits in u. We observe that in general C(u) is not equidimensional, and determine the irreducible
components of C(u) in the minimal cases where there are infinitely many B-orbits in u.
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1. Introduction

Let G be a connected reductive algebraic group defined over an algebraically closed
field k of characteristic 0, and let g = Lie G be its Lie algebra. Richardson proved that
the commuting variety

C(g) = {(x, y) ∈ g × g | [x, y] = 0}

of g is irreducible (see [10]). This fact was generalized to positive good characteristic by
Levy in [8]. In [9], Premet showed that the commuting variety C(N ) = C(g) ∩ (N × N )
of the nilpotent cone N of g is equidimensional, where the irreducible components are
in correspondence with the distinguished nilpotent G-orbits in N ; this theorem was also
proved in good positive characteristic.

In this paper we consider the commuting variety of the Lie algebra of the unipotent
radical of a Borel subgroup of G. To explain this further we introduce some notation.
Let B be a Borel subgroup of G with unipotent radical U , and write b and u for the Lie
algebras of B and U , respectively. The commuting variety of u is

C(u) = {(x, y) ∈ u × u | [x, y] = 0}.
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For e ∈ u, we write cb(e) and cu(e) for the centralizer of e in b and u, respectively. We
define

C(e) = B · (e, cu(e)) ⊆ C(u)

to be the Zariski closure of the B-saturation of (e, cu(e)) in C(u); it is easy to see that
C(e) is irreducible and dim C(e) = dimB − dim cb(e) + dim cu(e). We say that e ∈ u

is distinguished provided that cb(e) = cu(e), and note that for e distinguished we have
dim C(e) = dimB.

Below, we have an analogue of Premet’s theorem from [9] for the case when B acts
on u with a finite number of orbits.

Theorem 1.1. Suppose that B acts on u with a finite number of orbits. Let e1, . . . , er

be representatives of the distinguished B-orbits in u. Then,

C(u) = C(e1) ∪ · · · ∪ C(er)

is the decomposition of the commuting variety C(u) into its irreducible components. In
particular, C(u) is equidimensional of dimension dim B.

The cases when B acts on u with a finite number of orbits are known, due to work by
Bürgstein and Hesselink [2] and Kashin [5]. This is the case precisely when the length �(u)
of the descending central series of u is at most 4. Thus, if g is simple, this is the case
precisely when g is of type A1, A2, A3, A4 or B2.

We also consider the cases where �(u) = 5, so, for g simple, g is of type A5, B3, C3, D4

or G2. In these minimal cases where there are infinitely many B-orbits in u, we describe
the irreducible components of C(u) in § 4. We note that, in these cases, C(u) is no longer
equidimensional. In fact, we observe that C(u) is never equidimensional when there are
infinitely many B-orbits in u (see Lemma 4.1). This demonstrates that the situation is
considerably more subtle in the infinite orbit case and there does not appear to be an
obvious parametrization of the irreducible components.

Our methods are also applicable to the case where u is the Lie algebra of the unipotent
radical of a parabolic subgroup P of G. There are examples of such situations where P

acts with finitely many orbits on u yet C(u) is not equidimensional (see Remark 3.1).
For simplicity, we assume that char k = 0 (or at least that char k is sufficiently large),

though, with additional work, it is strongly expected that the results remain true in good
characteristic.

Finally, we note that Keeton investigated irreducibility and normality of the commuting
variety C(b) of b in [6]. For instance, he gave, for g of given classical type A, B, C or D,
upper and lower bounds on the rank of g for the irreducibility (and normality) of C(b).

2. Generalities about commuting varieties

For this section, we work in the following setting. Let P be a connected algebraic group
over k, and let U be a normal subgroup of P ; we write p and u for the Lie algebras of P

and U , respectively. The group P acts on p and u via the adjoint action. For x ∈ p and
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any subgroup H of P , we denote the H-orbit of x in p by H ·x, the centralizer of x in H

by CH(x), and the centralizer of x in h = Lie H by ch(x).
Let P act diagonally on u × u. The commuting variety of u is the closed P -stable

subvariety of u × u, given by

C(u) = {(x, y) ∈ u × u | [x, y] = 0}.

We recall that the modality of U on u is defined to be

mod(U ; u) = max
i∈Z�0

(dim ui − i),

where ui = {x ∈ u | dim U · x = i}.
Our first lemma gives an expression for the dimension of C(u).

Lemma 2.1. We have that dim C(u) = dimU + mod(U ; u).

Proof. Consider C(u)i = C(u) ∩ (ui × u). Clearly, we have that dim C(u)i = dim ui +
(dimU − i) = dimU + (dim ui − i) and C(u) =

⋃
i∈Z�0

C(u)i. Therefore,

dim C(u) = max
i∈Z�0

{dim U + (dim ui − i)} = dimU + mod(U ; u).

�

For e ∈ u, we define
C(e) = P · (e, cu(e)) ⊆ C(u)

to be the Zariski closure of the P -saturation of (e, cu(e)) in C(u). It is easy to see that
C(e) is a closed irreducible P -stable subvariety of C(u) of dimension

dim C(e) = dimP · e + dim cu(e) = dimP − (dim cp(e) − dim cu(e)). (2.1)

We define an action of GL2(k) on u × u by(
α β

γ δ

)
· (x, y) = (αx + βy, γx + δy)

(see part (1) of the proof of [9, Proposition 2.1]). Since any pair of linear combinations
of two commuting elements from u gives again a pair of commuting elements from u, it
follows that GL2(k) acts on C(u) and, furthermore, since GL2(k) is connected, it must
stabilize each irreducible component of C(u). This proves the following lemma.

Lemma 2.2. The action of GL2(k) on C(u) preserves each irreducible component. In
particular, each irreducible component is invariant under the involution

σ : (x, y) �→ (y, x).
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For the remainder of this section, apart from Remark 2.10, we assume that there are
finitely many P -orbits in u, and we choose representatives e1, . . . , es of these orbits. We
then have that

C(u) = C(e1) ∪ · · · ∪ C(es).

In particular, each irreducible component of C(u) is of the form C(ei) for some i.
We proceed with some elementary lemmas. We recall that under our assumption that

P acts on u with finitely many orbits, there exists a unique dense open P -orbit in u.

Lemma 2.3.

(i) Let e, e′ ∈ u. If C(e) ⊆ C(e′), then P · e ⊆ P · e′.

(ii) If e ∈ u is in the dense open P -orbit, then C(e) is an irreducible component of C(u).

Proof. Let π1 : u × u → u be the projection onto the first factor. Since C(e) ⊆ C(e′),
we have that

P · e = π1(C(e)) ⊆ π1(C(e′)) = P · e′,

so (i) holds. Part (ii) follows from (i). �

The next lemma is used to show that certain C(e) are not irreducible components
of C(u).

Lemma 2.4. Let e ∈ u. If C(e) is an irreducible component of C(u), then cu(e) ⊆ P · e.

Proof. The argument of part (2) in the proof of [9, Proposition 2.1] also applies in our
case; we repeat it here for the convenience of the reader. The projection π1 : u×u → u onto
the first factor maps an irreducible component C(e) to P · e. Consequently, by Lemma 2.2,
we have that

cu(e) ⊆ (π1 ◦ σ)C(e) = P · e.

�

We define
d = min

e∈u
{dim cp(e) − dim cu(e)},

so we have dim C(u) = dimP − d, by (2.1). We say that e ∈ u is distinguished for P

if dim cp(e) − dim cu(e) = d. We assume that our representatives of the P -orbits in u

are chosen such that e1, . . . , er are the representatives of the distinguished orbits. The
following lemma is immediate; we record it for ease of reference.

Lemma 2.5. C(e1), . . . , C(er) are the irreducible components of C(u) of maximal
dimension.

Assume from now on that there exists a complementary subalgebra l of u in p and that
U is unipotent. Let h be an element of the centre z(l) of l such that p =

⊕
j∈Z�0

p(j; h),
where p(j; h) = {x ∈ p | [h, x] = jx} and p(1; h) 	= 0; we call such an h admissible. Note
that we have u ⊆

⊕
j∈Z�1

p(j; h). Since there are finitely many orbits of P in u, we see
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that there is a dense orbit of CP (h) in p(1; h) and we let e be a representative of this
orbit; we then say that e is linked to h. We define the irreducible P -stable subvariety

S(h, e) = P · (h, e) ⊆ p × u

of p×u. We write cp(h, e) = cp(h)∩ cp(e) for the simultaneous centralizer of h and e in p.
Given a closed subvariety X of an affine space V , we write K(X) for the cone of X

in V , as defined in [7, § II.4.2].
The following lemmas are analogues of results from [9, § 2]; the subsequent corollary

is key in what follows.

Lemma 2.6. Let h be admissible and let e be linked to h. Then,

K(S(h, e)) ⊆ C(u)

and K(S(h, e)) is equidimensional of dimension dim P − dim cp(h, e). In particular,
K(S(h, e)) lies in the union of some C(ei) for which dim C(ei) � dim P − dim cp(h, e).

Proof. We see that

S(h, e) ⊆ {(x, y) ∈ p × u | [x, y] = y}.

Therefore, by [7, § II.4.2, Theorem 2] and the definition of cones,

K(S(h, e)) ⊆ K({(x, y) ∈ p × u | [x, y] = y}) = {(x, y) ∈ p × u | [x, y] = 0}.

We have S(h, e) ⊆ (h + u) × u, and this implies that K(S(h, e)) ⊆ u × u. Hence,

K(S(h, e)) ⊆ (u × u) ∩ {(x, y) ∈ p × u | [x, y] = 0} = C(u).

By [7, § II.4.2, Theorem 2], we have that K(S(h, e)) is equidimensional. The final state-
ment follows easily from the fact that the irreducible components of C(u) are of the
form C(ei). �

Lemma 2.7. Let e ∈ u and suppose that there exists an admissible h̃ ∈ z(l) with
linked ẽ, such that [h̃, e] = e and [cu(e), h̃] = cu(e). Then, (cu(e), e) ⊆ K(S(h̃, ẽ)).

Proof. Let H = CP (h̃). The H-orbit of ẽ is dense in p(1; h̃), and (h̃, H · ẽ) ⊆ S(h̃, ẽ),
so we obtain (h̃, p(1; h̃)) ⊆ S(h̃, ẽ). Thus, (h̃, ke) ⊆ S(h̃, ẽ), because e ∈ p(1; h̃). Consider
the CU (e)-orbit CU (e) · h̃ in h̃ + cu(e). This is closed in h̃ + cu(e), because CU (e) is
unipotent. Since [cu(e), h̃] = cu(e), we obtain that CU (e) · h̃ = h̃ + cu(e). Hence,

CU (e) · (h̃, ke) = (h̃ + cu(e), ke) ⊆ S(h̃, ẽ).

Taking cones, we get K(h̃ + cu(e), ke) ⊆ K(S(h̃, ẽ)), by [7, § II4.2. Theorem 2]. From the
definition of cones we see that K(h̃ + cu(e), ke) = (cu(e), ke), and the lemma follows. �

Corollary 2.8. Let e ∈ u. Suppose that there exists an admissible h̃ ∈ z(l) such that
[h̃, e] = e, but e is not linked to h̃. Then, C(e) is not an irreducible component of C(u).
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Proof. If [cu(e), h̃] = cu(e), then we can apply Lemma 2.7 to deduce that (cu(e), e) ⊆
K(S(h̃, ẽ)), where ẽ is linked to h̃. Then, by Lemma 2.6 we have that K(S(h̃, ẽ)) is
contained in a union of C(ei) of dimension at least dimP −dim cp(h̃, ẽ). Since these C(ei)
are stable under P and σ (see Lemma 2.2), we see that C(e) is contained in their union.
We note that the conditions [h̃, e] = e and [cu(e), h̃] = cu(e) imply that

dim cp(e) − dim cu(e) � dim cp(h̃, e) > dim cp(h̃, ẽ),

so
dim C(e) = dimP − dim cp(e) + dim cu(e) < dim P − dim cp(h̃, ẽ).

Thus, C(e) is not an irreducible component of C(u).
If [cu(e), h̃] 	= cu(e), then cu(e)∩ p(0; h̃) 	= {0}. Therefore, cu(e) 	⊆ P · e ⊆

⊕
j�1p(j; h̃),

so C(e) is not an irreducible component of C(u), by Lemma 2.4. �

Corollary 2.8 yields the following strategy to determine the irreducible components
of C(u).

Strategy 2.9.

(1) For each i = 1, . . . , s, check whether ei is distinguished. If so, then C(ei) is an
irreducible component, by Lemma 2.5.

(2) Determine all the admissible h ∈ z(l). For each i = 1, . . . , s, check whether ei is in
p(1, h) for some admissible h such that ei is not linked to h, so that C(ei) is not an
irreducible component of C(u), by Corollary 2.8.

(3) For the remaining i not dealt with in steps (1) and (2), use ad hoc methods to
determine whether C(ei) is an irreducible component or not.

Remark 2.10. Although we made the assumption that P acts on u with finitely many
orbits above, the theory still applies with suitable adaptations when the P -orbits can be
parametrized nicely, as explained below.

A family of representatives of P -orbits in u over an irreducible variety X is given by a
subset e(X) = {e(t) | t ∈ X} of u such that the map t �→ e(t) is an isomorphism from X

onto its image in u, and such that, for t, t′ ∈ X distinct, we have P · e(t) 	= P · e(t′) but
dim P · e(t) = dimP · e(t′).

Suppose that the P -orbits in u can be parametrized by a finite number of families
e1(X1), . . . , es(Xs). All of the above theory then has a suitable adaption, when we replace
the single orbits ei by the families ei(Xi). For example, we can define irreducible varieties
C(ei(Xi)), and the irreducible components of C(u) are of this form. For the notion of a
family e(X) being linked to an admissible h ∈ z(l), we require that [h, e(t)] = e(t),
for all t ∈ X, and P · e(X) to be dense in p(1; h), and the subsequent results have
similar adaptations. Therefore, with this assumption on the action of P on u, there is a
version of Strategy 2.9 to determine the irreducible components of C(u). We note that
this assumption does hold for the action of a Borel subgroup on the Lie algebra of its
unipotent radical, as explained in [3, § 2].
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3. The case of a finite number of B-orbits

This section is devoted to the proof of Theorem 1.1. So, in this section P = B is a
Borel subgroup of a simple algebraic group G, and U is the unipotent radical of B.
Furthermore, we assume that B acts on u with a finite number of orbits. As mentioned
in § 1, this means that G is of type An, for n � 4, or of type B2. We proceed on a case
by case basis using Strategy 2.9 to determine the irreducible components of C(u), and
observe that we obtain the description as given in Theorem 1.1.

In each case we give a list of representatives of the B-orbits in u. We calculated these
using an adaptation of the computer program explained in [3], which gives the same
representatives as in [2, Table 2] and as previously calculated in [5]. The notation used
for these representatives is as follows. We fix an enumeration {β1, . . . , βN} of the roots
of b with respect to a maximal torus T of B, and for each βi we fix a generator eβi

for
the corresponding root space. This enumeration of the roots is listed, where the roots are
given as vectors with respect to the simple roots as labelled in [1, Planches I–IX]. Each
of the representatives of the B-orbits in u is of the form

∑
i∈I eβi

, where I ⊆ {1, . . . , N},
and we represent this element as the coefficient vector with respect to the eβi .

We briefly explain the meaning of an admissible element h in the present setting. Such
an h belongs to a maximal toral subalgebra of b, and q =

⊕
j�0g(j; h) is a parabolic

subalgebra of g such that
⊕

j>0g(j; h) ⊆ b ⊆ q. So, in this case, Corollary 2.8 states that
if a representative e of a B-orbit in u lies in q(1; h) = g(1; h) for such a q, and e is not in
the dense CB(h)-orbit in q(1; h), then C(e) is not an irreducible component of C(u).

3.1. G is of type A1

There is just one root of b and there are two B-orbits in u: the regular and the zero
orbit. Here, u is abelian and C(u) = u × u is irreducible and equal to C(e) where e lies in
the regular orbit.

3.2. G is of type A2

The roots of b are given by

β1 : 10, β2 : 01, β3 : 11.

There are five B-orbits in u with representatives

e1 : 110, e2 : 100, e3 : 010, e4 : 001, e5 : 000.

Apart from e1, each of the ei lies in b(1; h) for some admissible h, for which ei is not
linked to h. Therefore, using Strategy 2.9, we get that C(u) = C(e1) is irreducible.

3.3. G is of type A3

The roots of b are given by

β1 : 100, β2 : 010, β3 : 001, β4 : 110, β5 : 011, β6 : 111.
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There are 16 B-orbits in u with representatives

e1 : 111000, e2 : 110000, e3 : 101010, e4 : 101000,

e5 : 100010, e6 : 100000, e7 : 011000, e8 : 010001,

e9 : 010000, e10 : 001100, e11 : 001000, e12 : 000110,

e13 : 000100, e14 : 000010, e15 : 000001, e16 : 000000.

All of the ei except for e1, e3, e8 are in b(1; h) for some admissible h not linked to ei.
We see that e1 and e3 are distinguished, so C(e1) and C(e3) are irreducible components.
Below, we verify by direct calculation that C(e8) is not an irreducible component.

Consider the pairs of strictly upper triangular matrices (x(α, λ), y(α, λ, a, b, c)) for
α, λ ∈ k

×, a, b, c ∈ k, with entries above the diagonal given by⎛
⎜⎝λ 0 1

1 0
αλ

,

λa b c

a αb

αλa

⎞
⎟⎠ .

It is straightforward to check that (x(α, λ), y(α, λ, a, b, c)) ∈ C(u) and that x(α, λ) ∈ B·e1.
Therefore, (x(α, λ), y(α, λ, a, b, c)) ∈ C(e1) for all α, λ ∈ k

× and a, b, c ∈ k. Letting λ → 0,
we see that (x(α, 0), y(α, 0, a, b, c)) ∈ C(e1) for all α ∈ k

×. We have that x(α, 0) = e8 and
via a calculation we see that {y(α, 0, a, b, c) | α ∈ k

×, a, b, c ∈ k} is a dense subset of

cu(e8) =

⎧⎪⎨
⎪⎩

0 a b

c d

0

∣∣∣∣∣∣∣ a, b, c, d ∈ k

⎫⎪⎬
⎪⎭ .

Therefore, (e8, cu(e8)) ⊆ C(e1), and hence C(e8) ⊆ C(e1).
Putting this all together, we get that C(u) = C(e1) ∪ C(e3).

3.4. G is of type A4

The roots of b are given by

β1 : 1000, β2 : 0100, β3 : 0010, β4 : 0001, β5 : 1100,

β6 : 0110, β7 : 0011, β8 : 1110, β9 : 0111, β10 : 1111.

There are 61 B-orbits in u with representatives

e1 : 1111000000, e2 : 1110000000, e3 : 1101000000, e4 : 1100001000,

e5 : 1100001000, e6 : 1100000000, e7 : 1011010000, e8 : 1011000000,

e9 : 1010010010, e10 : 1010010000, e11 : 1010000010, e12 : 1010000000,

e13 : 1001010000, e14 : 1001000010, e15 : 1001000000, e16 : 1000011000,

e17 : 1000010000, e18 : 1000001010, e19 : 1000001000, e20 : 1000000010,

e21 : 1000000000, e22 : 0111000000, e23 : 0110000001, e24 : 0110000000,
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e25 : 0101000110, e26 : 0101000100, e27 : 0101000010, e28 : 0101000000,

e29 : 0100001100, e30 : 0100001000, e31 : 0100000100, e32 : 0100000001,

e33 : 0100000000, e34 : 0011100000, e35 : 0011000000, e36 : 0010100010,

e37 : 0010100000, e38 : 0010000010, e39 : 0010000001, e40 : 0010000000,

e41 : 0001110000, e42 : 0001100100, e43 : 0001100000, e44 : 0001010000,

e45 : 0001000100, e46 : 0001000000, e47 : 0000111000, e48 : 0000110000,

e49 : 0000101000, e50 : 0000100010, e51 : 0000100000, e52 : 0000011000,

e53 : 0000010001, e54 : 0000010000, e55 : 0000001100, e56 : 0000001000,

e57 : 0000000110, e58 : 0000000100, e59 : 0000000010, e60 : 0000000001,

e61 : 0000000000.

Except for e1, e3, e7, e9, e14, e23 and e25, we can check that each ei lies in b(1; h) for some
admissible h not linked to ei. The representatives e1, e3, e7, e9 and e25 are distinguished,
so the corresponding C(ei) are irreducible components of C(u). Below, we verify by direct
calculation that C(e23) and C(e14) are not irreducible components.

We have ⎛
⎜⎜⎜⎝

1 0 0 0
αλ λ 1

0 0
1

,

a c e f

αλa λa a + e

0 α−1(a − b)
b

⎞
⎟⎟⎟⎠ ∈ C(e3)

for all α, λ ∈ k
× and a, b, c, e, f ∈ k, and

cu(e14) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a c e f

0 0 a + e

0 d

b

∣∣∣∣∣∣∣∣∣
a, b, c, d, e, f ∈ k

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

Letting λ → 0, we see that C(e14) ⊆ C(e3).
Similarly, we have ⎛

⎜⎜⎜⎝
λ 0 0 1

1 0 0
1 0

αλ

,

λa λb c e

a b αc

a λαb

λαa

⎞
⎟⎟⎟⎠ ∈ C(e1)

for all α, λ ∈ k
× and a, b, c, e ∈ k, and

cu(e23) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 0 c e

a b d

a 0
0

∣∣∣∣∣∣∣∣∣
a, b, c, d, e ∈ k

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

Letting λ → 0, we see that C(e23) ⊆ C(e1).
Combining the above, the decomposition of C(u) into irreducible components is given

by C(u) = C(e1) ∪ C(e3) ∪ C(e7) ∪ C(e9) ∪ C(e25).
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3.5. G is of type B2

The roots of b are given by

β1 : 10, β2 : 01, β3 : 11, β4 : 12.

There are seven B-orbits in u, with representatives

e1 : 1100, e2 : 1001, e3 : 1000, e4 : 0100,

e5 : 0010, e6 : 0001, e7 : 0000.

The two orbit representatives e1 and e2 are distinguished. Each of the other orbit repre-
sentatives ei lies in b(1; h) for some h that is not linked to ei. So, using Strategy 2.9, we
have that C(u) = C(e1) ∪ C(e2).

Remark 3.1. All of the material in § 2 is valid when P is a parabolic subgroup of a
reductive algebraic group G and U is the unipotent radical of P . We note, however, that
in contrast to Theorem 1.1, C(u) is not equidimensional in general when there are finitely
many P -orbits in u. In fact, the difference in the dimensions of irreducible components
can be arbitrarily large, as shown in the example below.

Let m � 2 be an integer and let P be the parabolic subgroup of GLm+2(k), which is
the stabilizer of a flag of subspaces k ⊆ k

2 ⊆ k
m+2 in k

m+2. Then, P admits only a finite
number of orbits on the Lie algebra of its unipotent radical u (see [4]). However, one can
calculate that C(u) has two irreducible components of dimensions 4m + 1 and 3m + 2.

4. The case of an infinite number of B-orbits

We continue using the notation from the last section, but we remove the assumption
that B acts on u with a finite number of orbits. We also use the notation for families of
B-orbits e(X) in u, as explained in Remark 2.10.

We begin by observing that the analogue of Theorem 1.1 does not hold when there are
infinitely many B-orbits in u.

Lemma 4.1. Suppose that B acts on u with an infinite number of orbits. Then C(u) is
not equidimensional.

Proof. Let e ∈ u be in the regular nilpotent orbit. By Lemma 2.3 (ii), we then have
that C(e) is an irreducible component of C(u) of dimension dimB.

Let G be one of the minimal cases where B acts on u with an infinite number of orbits.
We can then see from the calculations below that there is a family of B-orbits e(X)
parametrized by some irreducible variety X of positive dimension such that cb(e(t)) =
cu(e(t)) for all t ∈ X; in fact, we can take X = k

×. For any G we can find a Levi
subgroup H of G containing T , which is one of the groups for the minimal infinite cases.
Let eH(X) be a family of B ∩ H-orbits as above. Then define e(X) to be the sum of
eH(X) and the simple root vectors eα with eα 	∈ h. It is then straightforward to check
that the elements of e(X) are pairwise in different B-orbits (if they were in the same
B-orbit, then they would have to be in the same B ∩ H-orbit) and cb(e(t)) = cu(e(t))
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for all t ∈ X. Thus, there is a family of B-orbits e(X) parametrized by some irreducible
variety X of positive dimension such that cb(e(t)) = cu(e(t)) for all t ∈ X.

We then have that dim C(e(X)) = dimB + dimX. Thus, there must be an irreducible
component of C(u) of dimension strictly larger than dimB. �

We move on to describe the irreducible components of C(u) for the cases where g is of
type A5, B3, C3, D4 and G2. These are the minimal cases in which there is an infinite
number of B-orbits in u. We have determined the irreducible components using the
adaptation of Strategy 2.9, as discussed in Remark 2.10. The calculations are very similar
in spirit to those discussed in § 3, so we omit the details. We use a parametrization of
orbits given by the programme from [3]; most of this information can also be extracted
from [2].

From the descriptions given below, we see that the structure of C(u) is already rather
complicated, and there does not appear to be a nice way to parametrize the irreducible
components already in these minimal infinite cases. We have investigated the possibility
of doing this in terms of a suitable notion of distinguished families of B-orbits in u.
However, the natural candidates do not give the irreducible components as desired.

4.1. G is of type A5

The roots of b are given by

β1 : 10000, β2 : 01000, β3 : 00100, β4 : 00010, β5 : 00001,

β6 : 11000, β7 : 01100, β8 : 00110, β9 : 00011, β10 : 11100,

β11 : 01110, β12 : 00111, β13 : 11110, β14 : 01111, β15 : 11111.

The B-orbits in u are given by a one-dimensional family e29(k×), given by t �→
1010101010t0000, and 274 other orbits. We have that C(e29(k×)) is an irreducible com-
ponent of dimension 21 and there are 12 irreducible components of dimension 20 given
by C(ei), where ei is one of the following:

e1 : 111110000000000, e3 : 111010001000000, e7 : 110110010000000,

e8 : 110110000001000, e10 : 110100010001000, e23 : 101110100000000,

e25 : 101100100000010, e53 : 100100000011010, e94 : 011010001000100,

e103 : 010110010100000, e107 : 010100010101000, e119 : 010010000101100.

4.2. G is of type B3

The roots of b are given by

β1 : 100, β2 : 010, β3 : 001, β4 : 110, β5 : 011,

β6 : 111, β7 : 012, β8 : 112, β9 : 122.

The B-orbits in u are given by a one-dimensional family e12(k×), given by t �→ 0100011t0,
and 34 other orbits. We have that C(e12(k×)) is an irreducible component of dimension 13
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and there are four irreducible components of dimension 12 given by C(ei), where ei is
one of the following:

e1 : 111000000, e2 : 110000100, e4 : 101010000, e5 : 101000001.

4.3. G is of type C3

The roots of b are given by

β1 : 100, β2 : 010, β3 : 001, β4 : 110, β5 : 011,

β6 : 111, β7 : 021, β8 : 121, β9 : 221.

The B-orbits in u are given by a one-dimensional family e4(k×), given by t �→ 101010t00,
and 34 other orbits. We have that C(e4(k×)) is an irreducible component of dimension 13
and there are three irreducible components of dimension 12 given by C(ei), where ei is
one of the following:

e1 : 111000000, e2 : 110000100, e12 : 011000001.

4.4. G is of type D4

The roots of b are given by

β1 : 1000, β2 : 0100, β3 : 0010, β4 : 0001, β5 : 1100, β6 : 0110,

β7 : 0101, β8 : 1110, β9 : 1101, β10 : 0111, β11 : 1111, β12 : 1211.

The B-orbits in u are given by two one-dimensional families e8(k×), given by t �→
101101t00000, and e37(k×), given by t �→ 0100000111t0, and 98 other orbits. We have
that C(e8(k×)) and C(e37(k×)) are irreducible components of dimension 17 and there
are four irreducible components of dimension 16 given by C(ei), where ei is one of the
following:

e1 : 111100000000, e2 : 111000000100,

e4 : 110100000100, e31 : 011100001000.

4.5. G is of type G2

The roots of b are given by

β1 : 10, β2 : 01, β3 : 11, β4 : 21, β5 : 31, β6 : 32.

The B-orbits in u are given by a one-dimensional family e4(k×), given by t �→ 0101t0,
and 11 other orbits. We have that C(e4(k×)) is an irreducible component of dimension 9
and there are two irreducible components of dimension 8 given by C(ei), where ei is one
of the following:

e1 : 110000, e2 : 100001.
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