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Abstract
Safe and socially compliant navigation in a crowded environment is essential for social robots. Numerous research
efforts have shown the advantages of deep reinforcement learning techniques in training efficient policies, while
most of them ignore fast-moving pedestrians in the crowd. In this paper, we present a novel design of safety mea-
sure, named Risk-Area, considering collision theory and motion characteristics of different robots and humans. The
geometry of Risk-Area is formed based on the real-time relative positions and velocities of the agents in the environ-
ment. Our approach perceives risk in the environment and encourages the robot to take safe and socially compliant
navigation behaviors. The proposed method is verified with three existing well-known deep reinforcement learning
models in densely populated environments. Experiment results demonstrate that our approach combined with the
reinforcement learning techniques can efficiently perceive risk in the environment and navigate the robot with high
safety in the crowds with fast-moving pedestrians.

1. Introduction
Over the last few decades, the application scenarios of mobile robots have gradually expanded from
isolated static space to social space shared with human beings, such as hospitals, shopping malls, and
canteens. In these crowd scenarios, humans frequently change their states, including moving direction,
speed, acceleration, etc., to avoid collisions with nearby humans and obstacles. While these behaviors
may appear random, they are in fact dynamic adjustments in response to the ever-changing environment
[1–4]. This dynamic nature of human behaviors makes robot navigation in a crowded environment more
complex than in an environment without humans and leads to the Freezing Robot Problem [5–7]. The
robot cannot find a feasible path and falls into an oscillating or stopping situation. In order to navigate
in dense crowds safely and socially compliantly, robots need to understand human behaviors and obey
their cooperative rules [8–11].

Previous work attempts to jointly plan feasible paths for all the agents [6,12] or predict the future tra-
jectories of the humans before planning [13–15]. However, these methods suffer from the stochasticity
of human behaviors and high computational cost in dense crowd scenarios. In recent years, deep rein-
forcement learning technologies have made significant progress in solving social navigation problems
[16–18]. These methods train computationally efficient policies that implicitly encode the interactions
and cooperations among agents. Despite the recent progress, navigation in the crowd with fast-moving
pedestrians is not well investigated. In real-world applications, pedestrians in sparse environments or
with emergency issues usually have random moving patterns in the crowd. As a result, the safety of
existing models remains a concern.
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Figure 1. Safe and socially compliant robot navigation in a crowded environment considering
Risk-Areas around each human based on real-time relative positions and velocities of agents.

We present a safety measure Risk-Area for safe robot navigation in densely populated environments
as briefly shown in Fig. 1. The main contributions of this article are summarized as follows.

1. We introduce a dynamic model and analysis of the collision process between robots and
pedestrians in-plane, providing a basis for assessing collision risk.

2. We incorporate human behavior and collision theory into the design of the Risk-Area, enhancing
the understanding and implementation of socially aware navigation strategies.

3. We conduct extensive experiments and evaluations of our approach and state-of-the-art method
in challenging simulation and real-world environments.

The rest of this paper is organized as follows. Section 2 provides the background and the problem
formulation of the robot navigation in the crowd scenarios. Section 3 provides details of the Risk-Area
design for the navigation problem. Section 4 presents the simulation and real-world experiment results.
We conclude this paper in Section 5.

2. Background
2.1. Related work
Traditional methods attempt to tackle the robot navigation problem in crowded environments through
well-engineered rules. A pioneer work develops social force model that defines attractive and repulsive
forces to describe human interactions and has been successfully applied in both simulation and real-
world environments [20–22]. Reciprocal velocity obstacles (RVO) [23] and optimal reciprocal collision
avoidance (ORCA) [24] are velocity-based breakthrough algorithms in multi-agent collision avoidance.
They consider joint collision avoidance under reciprocal assumptions to achieve collision-free navi-
gation. Interacting Gaussian process [25] uses individual Gaussian process to model the trajectory of
each agent and proposes an interaction potential term for interaction. Nevertheless, the above methods
rely heavily on handcrafted design of interaction model, thus having difficulty generalizing complex
human-robot interaction scenarios.

Learning-based methods focus on training strategies from human interactions to obtaining appro-
priate behaviors. For example, imitation learning approaches learn policies directly from expert
demonstrations and map various inputs such as depth images, raw lidar data, and occupancy maps to
robot actions [26–28]. Inverse reinforcement learning captures human cooperation features from human
interactions via the maximum entropy method [29–31]. However, the outcomes of these methods are
closely relevant to the quality of demonstrations.
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Over the last few years, reinforcement learning has achieved great progress in solving real-time navi-
gation problems in crowded environments. Long et al. [32] present a decentralized multi-robot collision
avoidance algorithm, selecting actions directly from raw sensor data to achieve collision-free navigation.
Chen et al. [33] develop a value network that encodes the estimated time to the goal based on the joint
state of the agents. Subsequently, this work is extended by integrating social norms into reward functions
in ref. [34]. In order to overcome the limitation of fixed observation size, Everett et al. [35] adopt the long
short-term memory to encode agent states into a fixed-length vector. In ref. [36], attention mechanism
is proposed to perceive the importance of humans in the crowd by modeling human-robot and human-
human interactions, significantly improving the robots’ decision-making ability. Thereafter, Chen et al.
[37] utilize graph convolutional networks to extract the potential interaction features. The preceding
studies succeed in capturing the cooperations and interactions of human behaviors. Nevertheless, the
performance of the current models will degrade as the crowd complexity increases. Especially, most of
existing models are overly optimistic about the speed of the robot and pedestrians. In order to achieve
safe and comfortable navigation in social environments, the speed of mobile robots has to be signifi-
cantly slower than pedestrians [1,38–40]. To address the issue, Samsani et al. [19] predict the constrained
action space around the human based on the current human velocity and formulate Danger-Zones (DZ)
for the robot. However, this method does not fully consider the relative motion among the agents. In this
study, we design Risk-Areas around each human as safety measures according to collision theory and
the real-time relative movements.

2.2. Problem formulation
We consider a situation where a robot moves in a crowd of n humans and reaches its goal without
any collision. This task can be formulated as a sequential decision-making problem in a reinforcement
learning framework [33]. It is assumed that humans do not avoid or intentionally hinder the robot during
navigation. For each agent (human or robot), the position [px, py], velocity [vx, vy], and radius r are
observable to the others. The agent’s intended goal [gx, gy], preferred speed vpref , and heading angle θ

are only aware by itself. At every time step, the robot can observe its full state sr and the observable
state sho of other humans. The state of the robot is represented as sr = [px, py, vx, vy, r, gx, gy, vpref , θ ]. The
observable state of the i-th human is defined as si

ho
= [pi

x, pi
y, vi

x, vi
y, ri]. A robot-centric frame is employed

to make the state representation more universal, in which the origin is set at the current position of the
robot pr = [px, py], and the x-axis points to the goal position gr = [gx, gy]. After transformation, the states
sr and si

ho
can be rewritten as follows:

sr =
[
dg, vx, vy, r, vpref , θ

]
si

ho
= [pi

x, pi
y, vi

x, vi
y, ri, di, ri + r

]
,

(1)

where dg =
∥∥pr − gr

∥∥ indicates the distance from the robot pr to the goal gr, and di = ∥∥pr − pi
h

∥∥ denotes
the distance from the robot pr to the i-th human pi

h. The joint state of the system at time t for robot
navigation is defined as sjn

t = [srt, s1
hot, s2

hot, . . . , sn
hot].

The robot is deemed to adjust its velocity vrt promptly in light of the action instruction at. It is expected
to find an optimal policy π ∗ to maximize the expected reward:

π ∗(sjn
t )= argmaxat∈AR(sjn

t , at)+ γ �t·vpref·∫
sjn
t+�t

P(sjn
t , at, sjn

t+�t)V
∗(sjn

t+�t)dsjn
t+�t,

V∗(sjn
t )=

T∑
t∗=t

γ t∗·vpref Rt∗ (sjn
t∗ , π

∗(sjn
t∗ )),

(2)

where R(sjn
t , at) is the reward received at time t, A is the action space, γ ∈ (0, 1) is a discount factor, V∗

is the optimal value function, and P(sjn
t , at, sjn

t+�t) is the transition probability from time t to t+�t. The
preferred velocity vpref is used as a normalization term in the discount factor for numerical reasons.
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Algorithm 1. Deep V-learning
1: Input: demonstration training set D
2: Output: value network V
3: Initialize value network V with demonstration D
4: Initialize target value network V̂← V
5: Initialize experience replay memory E←D
6: for episode= 1, . . . , N do
7: Initialize random joint state sjn

0

8: repeat
9: With probability ε select random action at, otherwise at = arg max

at∈A
R(sjn

t , at)+ γ̄ V(sjn
t+�t),

where γ̄ = γ �t·vpref , sjn
t+�t =propagate(sjn

t , at)
10: Store transition (sjn

t , at, rt, sjn
t+�t) in E

11: Sample random minibatch of transitions (sjn
j , aj, rj, sjn

j+1) from E
12: Set TD target yj = rj + γ �t·vpref V̂(sjn

j+1)
13: Update value network V by gradient descent
14: until terminal state sjn

t = sjn
tend

or t≥ tmax

15: Update target network V̂← V
16: end for
17: return V

2.3. Training strategy of the value network

The training procedure of the value network is outlined in Algorithm 1. At first, the value network
model is trained with imitation learning using demonstration knowledge generated by ORCA (line 3-5)
and subsequently trained by temporal-difference (TD) learning method with standard experience replay
and fixed target network techniques (line 6-16) [41]. In line 9, the ε-greedy strategy is applied to select
actions. The next state sjn

t+�t is obtained by querying the true value from the environment to mitigate the
issue of system dynamics in training. During deployment, we use a simple linear model to predict the
motion of the agents in �t, which has shown good accuracy on small time scales [42].

To tackle the problem (2), the value network model needs to approximate the optimal value func-
tion V∗ to maximize the expected reward. The reward design is critical for achieving safe and socially
compliant robot navigation [43]. Previous work on this track has not fully considered the risk in densely
populated environments. In this paper, based on collision theory and real-time relative movements, we
present Risk-Areas around each human as a safety measure.

3. Methodology
We outline the central idea of the Risk-Area in this section. First, we examine the human behavior
and propose an impulse model of the human-robot collision. Then, we give the precise formulation
and geometry of Risk-Area and discuss how the Risk-Area guides the robot to navigate in a safe and
comfortable way.

3.1. Characteristic of the human and robot motion
Understanding the motions of both humans and robots is one of the bases of Risk-Area’s design.
Humans’ navigation manners are closely related to a series of parameters, such as age, mood, and weight.
According to previous work, the average walking speed of pedestrians is about 1.4 m/s [38], and in some
situations might go up to 2.5 m/s [40]. In comparison, robots navigate with human-provided strategies,
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Figure 2. Two typical navigation scenarios. (a) A low-risk situation where the robot and the pedestrian
move in the same direction. (b) A high-risk situation where the robot and the pedestrian move face
to face.

and the kinematic patterns of robots can be artificially determined. From the perspective of psychologi-
cal effect, the approaching speed of mobile robots exceeding 1 m/s causes obvious discomfort to humans
[1,39]. Moreover, the maximum speed of the common indoor mobile robots such as turtlebot2 [44] and
PR2 [45] is usually within 1 m/s. Due to the inertia, both robots and humans tend to stay in their orig-
inal motion and posing more threats in this direction. It is not enough to model the risk only with the
individual state. For example, in Fig. 2, the human state in (a) and (b) is the same while the collision
risk is quite different. Therefore, the design of the collision risk should give more consideration to the
relative movement of humans and robots.

3.2. Impulse model of the human-robot collision
The reward of the navigation system should reflect the aim of achieving safe and socially compliant robot
navigation [43]. Apart from the reaching target reward, the robot’s collision and other risky behaviors
should be punished. Previous methods in refs. [19] and [35] give every collision the same penalty without
considering the relative movement of the agents, which does not correspond with the actual situation
and influences the robot to judge the importance of different pedestrians. To address the issue, we take
collision theory [46] and the relative motion among agents into account and design Risk-Area. After
considering the mass and speed of common mobile robots and humans, the case of the robot colliding
with the human in-plane is mainly discussed in this paper. Some typical collision assumptions [47] are
made as follows:

Assumption 1. The duration of contact is enough short and the interaction forces are high.

Assumption 2. The effects of friction and other forces can be omitted.

Assumption 3. The masses of the human and the robot during the collision are constant.

The collision response contains the compression and expansion phases, as shown in Fig. 3. At the
beginning of the compression phase, the bodies of the robot and the human start contacting and have
a positive approaching speed va to compress each other. After compressing, the approaching speed va

becomes zero and the velocity of both the human and the robot in the direction of the line of impact is
the same. A period of expansion is followed during which the bodies of the human and the robot try to
regain their original shape. At the end of the expansion phase, the bodies of the human and the robot
separate with a negative approaching speed va. The collision response has the relationship as follows:⎡

⎢⎢⎣
mr mr

mh mh

mr mr

mh mh

⎤
⎥⎥⎦
[

vn vn vrnτ vhnτ

−vrn −vhn −vn −vn

]
=

⎡
⎢⎢⎣

I1

−I1

I2

−I2

⎤
⎥⎥⎦ ,

e= I2

I1

, I = I1 + I2,

(3)
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Figure 3. The collision response between the mobile robot and the human in-plane with mh�mr. The
robot collides with the human and then is bounced away.

where mr and mh are the masses of the robot and the human, vrn and vhn are the normal velocity of the
robot and the human at the beginning of the compression phase, vn is the normal velocity of the human
and the robot at the end of the compression phase, vrnτ and vhnτ are the normal velocity of the human
and the robot at the end of the expansion phase, I1 and I2 are the impulses in the compression phase and
expansion phase, and e is the coefficient of restitution with the range e ∈ [0, 1], which is related to the
materials. The impulse I in the collision can be represented as follows:

I = (1+ e)
mrmh(‖vrn − vhn‖)

mr +mh

. (4)

Formula (4) reveals that the collision impulse is proportional to the relative approaching speed
va = ‖vrn − vhn‖. From the perspective of reducing collision loss, the robot should avoid approaching
the humans fast.

3.3. Penalty formulation of the risk-area
Due to the influence of sensor accuracy, control error, and other factors, robots cause high collision risk
when they get too close to humans. Thus, we combined the position penalty Pp

t into the design of the
Risk-Area with the formulation as follows:

Pp
t (sjn

t , at)=

⎧⎪⎨
⎪⎩

0.1 if dm < 0,

0.1(1− dm
Dp

) else if dm < Dp,

0 otherwise,

(5)

where dm is the minimum separation distance between the robot and the human within a duration
[t−�t, t], and Dp is a threshold distance, which is set to 0.2 m.

According to the analysis in section III-B, the impulse of the collision is a linear function with respect
to the human-robot relative approaching speed. Besides, fast approaching speed also causes discomfort
to the human [39]. Therefore, the relative approaching speed of the robot and the pedestrian is applied as
the velocity penalty of the Risk-Area to reflect the risk in the environment. Let vht denote the velocity of
the human at time t. In practice, the relative approaching speed vat at time t can be calculated as follows:

vat = pht − prt∥∥pht − prt

∥∥ · (vrt − vht), (6)
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where prt and pht denote the position of the robot and human at time t. When the time scale �t is small
enough, we can assume the velocity of the robot and the human is constant. The form of the velocity
penalty Pv

t during the time period [t−�t, t] is defined as follows:

Pv
t (sjn

t , at)=
{

0.1·vat
vrmax+vhmax

if vat > 0 and dt < Dv,

0 otherwise,
(7)

where vrmax and vhmax are the maximum speed of the robot and the human, respectively, dt is the separation
distance between the robot and the human at time t, and Dv is a threshold distance with the form as
follows:

Dv = vat ·mv +Dp, (8)

where mv is an adjustable parameter related to the agents’ motion, which is set to 0.35 in this paper. The
Risk-Area penalty function is the sum of the velocity penalty and the position penalty in the following
form:

Pt(sjn
t , at)= Pp

t (sjn
t , at)+ Pv

t (sjn
t , at). (9)

When navigating in the crowd, the robot will calculate Risk-Areas of the neighbors and try to avoid
them. The penalty term of the reward function has been given in (9). Besides, the robot will be awarded
when reaching the goal within a limited time. The final reward function has the following form:

Rt(sjn
t , at)=

⎧⎪⎨
⎪⎩

1 if prt = gr,

−Pt(sjn
t , at) else if Risk-Area,

0 otherwise.

(10)

3.4. Geometry of the risk-area
Since the Risk-Area penalty function is composed of position penalty and velocity penalty, the geometry
of the Risk-Area is also divided into two parts: position Risk-Area and velocity Risk-Area. With the
center of the human as the pole and the moving direction of the pedestrian relative to the robot as the
polar coordinate axis, the polar coordinate system is established, as shown in Fig. 4(a). The geometry
of the position Risk-Area is a regular circle of radius rp = rh +Dp. The boundary point P= [ρ, θ ] of the
velocity Risk-Area needs to meet the conditions in (7) and has the formula as follows:

ρ =mv · ‖vhrt‖ · cos θ +Dp + rh,

− π

2
< θ <

π

2
, (11)

where vhrt = vht − vrt is the velocity of the human relative to the robot at time t, θ is the angle between
OP and the reference axis, and ρ is the boundary distance of velocity Risk-Area in the direction of θ .
Based on the penalty functions in (5) and (7), the contours of the Risk-Area are shown in Fig. 4(b).

Considering the flexible human motion ability and uncertainties in the environment, we do not narrow
the scope of the Risk-Area as the relative speed increases. Furthermore, the velocity Risk-Area leaves
a large penalty space in the direction of the pedestrian relative to the robot so that it is more likely to
receive a penalty when approaching the human fast. When the robot moves into a Risk-Area, it will get
punished. For example, in Fig. 4(c), Robot 1 is punished by position Risk-Area, Robot 2 and Robot 3
are not punished, and Robot 4 is punished by velocity Risk-Area. By introducing relative approaching
velocity, the Risk-Area is able to perceive risk in the environment and navigate the robot safely and
efficiently.

Proposition 3.1.Defining the direction of the Risk-Area as the unit vector n= vhrt
‖vhrt‖ , then the impulse of

the collision is always maximized in the direction of the Risk-Area.
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Figure 4. Given the relative velocity of the robot and the human, the geometric representation of the
Risk-Area. (a) Geometry of Risk-Area. (b) Contours of Risk-Area. (c) The punishment of the robots at
different positions.

Proof. Consider pr = [l, ϕ] ∈ SRA, ϕ 	= 0 with collision happen. According to (4), the impulse Ipr has the
following form:

Ipr = (1+ e)
mrmh ‖vhrt‖ cosϕ

mr +mh

= k ‖vhrt‖ cosϕ, (12)

where k is a positive constant. If the collision happens in the Risk-Area direction, the impulse is
In = k ‖vhrt‖> Ipr. This result implies that the direction of the Risk-Area indicates the maximum collision
loss. �
Proposition 3.2. In any direction of the velocity Risk-Area, the maximum boundary distance is
proportional to the impulse of the collision.

Proof. Consider point B= [lB, γ ] ∈ SvRA is on the boundary of the velocity Risk-Area. According to (4),
the impulse of the collision is IB = k ‖vhrt‖ cosγ . The boundary distance lB =mv ‖vhrt‖ cos γ +Dp + rh

satisfies the condition in (11). Then, lB can be represented by IB as lB = mv
k

IB + (Dp + rh), where mv
k

is
constant. This result reveals that the robot motion with the risk of high collision loss is preferentially
punished in the Risk-Area. �
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Proposition 3.3. Assuming the motion of the agent within a time interval �t can be approximated as
constant velocity and �t < mv, it is a sufficient condition for safe robot navigation that the robot does
not enter the Risk-Area at any control moment tk ∈ {t0, t1, . . . , tend}.
Proof. For any given control moment tk and any pedestrian i, the position of the robot satisfies
prtk

/∈ SRA. Therefore, the distance between the robot and pedestrian i fulfills the condition dtk > Dv ≥
Dp > 0, indicating that a collision does not occur at time tk.

For any time within the control interval ∀T ∈ (tk, tk+1), the following holds. When vatk ≤ 0, as shown
by Robot 3 in Fig. 4(c), we have dT ≥ dtk > 0, indicating the absence of a collision at time T . On the other
hand, when vatk > 0, as shown by Robot 2 in Fig. 4(c), with the progression of the approach motion, the
angle θ becomes larger or remains 0, and the approaching speed vaT = vhrT cos θ reaches its maximum
at tk within the interval (tk, tk+1). Then, the distance between the robot and pedestrian i at time T satisfies
dT ≥ dtk − vatk (T − tk) > vatk mv +Dp − vatk�t > 0, indicating the absence of a collision at time T . This
conclusion demonstrates that the Risk-Area ensures the safety of navigation. �
Proposition 3.4. In the Risk-Area, the gradient of the velocity penalty function with respect to the position
of the robot is always perpendicular to that of the position penalty function.

Proof. When the robot enters the Risk-Area without collision at time t, the position penalty Pp
t and

velocity penalty function Pv
t can be expressed by prt and pht as follows:

Pp
t = cp

(
1− 1

Dp

(∥∥pht − prt

∥∥− r− rh

))
, (13)

Pv
t = cv

(
pht − prt∥∥pht − prt

∥∥ · (vrt − vht)

)
, (14)

where cp and cv are positive constants. For each human, we assume that the position is static relative
to the world coordinate system so as to analyze the influence of the robot’s position change on the risk
penalty. Then, the partial derivative of Pp

t and Pv
t with respect to prt are as follows:

∇Pp
t =

cp(pht − prt)

Dp

∥∥pht − prt

∥∥ , (15)

∇Pv
t =

cv(vat − (vrt − vht))∥∥pht − prt

∥∥
= −cvvat⊥∥∥pht − prt

∥∥ , (16)

where vat⊥ denotes the component of velocity vrht perpendicular to vat. It is obvious that ∇Pp
t has the

same direction with vat. The derivative ∇Pp
t is perpendicular to ∇Pv

t . �
According to (2), the collision avoidance policy π ∗(sjn

t ) of the robot is inevitably affected by the
current reward Rt(sjn

t , at). The robot tends to move towards the direction of fast attenuation of punishment
to maximum the final reward. Formula (16) shows that the position penalty decays most quickly in the
direction of −∇Pp

t , which encourages the robot to move away from the human. However, the direction
of −∇Pp

t is deviating from the target in some cases as shown in Fig. 5. In comparison, the gradient
−∇Pv

t is perpendicular to that of the position penalty, which encourages the robot to bypass the human
effectively.

4. Experiments and results
4.1. Simulation environment setup
The simulation environment is built on Python with the PyTorch library. Two existing methods, position-
based reward function [33] and DZ reward function [19], are implemented as baselines. First, we use
3 k episodes of ORCA demonstrations to preprocess the model with imitation learning. Then, the model
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Figure 5. A situation in which a robot is punished for being in a Risk-Area.

is trained 10 k episodes with the RL method. The RL parameters include a learning rate of 0.001 and a
discount factor γ of 0.9. All the agents in the simulation are assumed as circles with a diameter of 0.6
m. The minimum and maximum speed of pedestrians during crossovers is 0.5 m/s and 2.5 m/s [40, 48].
Still, after considering safety, we set the maximum speed of humans as 3 m/s in our experiments. To
fully evaluate the effectiveness of the proposed method, we look into two robot settings: holonomic
robot setting and non-holonomic robot setting, along with three distinct pedestrian crossing scenarios:
circle crossing scenario, square crossing scenario, and group crossing scenario. In the non-holonomic
robot setting, the robot’s action space is allowed in 16 directions evenly spaced between 0 to π

2
with five

exponentially spaced speeds between 0 to 1.0 m/s resulting in 80 actions. The humans in the simulation
navigate following ORCA policy. In the holonomic robot setting, the robot can move in 16 directions
evenly spaced between 0 to 2π with five exponentially spaced speeds between 0 to 1.0 m/s. In the circle
crossing scenario, the initial positions of the humans are on a circle of radius 6 m, and the goals of
the humans are set exactly opposite to the initial position. In the square crossing scenario, the initial
positions of humans are set along any pair of opposite sides of a square with a side length of 6 m,
while their destinations are generated randomly on the opposite side of the initial positions. In the group
crossing scenario, several static groups of 2-5 individuals are generated within the environment, while
the remaining pedestrians are generated to engage in circle crossing motion. In the first two crowd
scenarios, the number of humans is set to 5, while in the group crossing scenario, the number of humans
ranges from 5 to 10. In the square crossing scenario, the radius of humans is set between 0.3 m and 0.5
m, while in the other crossing scenarios, the radius of humans is uniformly set to 0.3 m. The robot in all
settings is set invisible to the human.

We employ 10 k sets of pedestrian trajectories generated by the ORCA as training data, similar to
refs. [19] and [36]. These datasets encompass detailed information, such as pedestrian positions, veloc-
ities, and target destinations, ensuring the effective learning and inference capabilities of our models.
Additionally, we subjected the robot to testing in 500 different scenarios. Performance measures include
Success Rate, Collision Rate, Navigation Time, Danger Frequency, and Minimum Separation Distance.
Success Rate (SR) is the ratio of the number of experiments that the robot reaches its goal to the number
of total experiments. Collision Rate (CR) is the ratio of the number of experiments that the robot collides
with humans to the number of total experiments. Navigation Time (NT) is the average time for the robot
to reach its goal. Danger Frequency (DF) is the ratio of the number of times that the robot gets too close
to the human (dm < 0.2m) to the total time of navigation. Minimum Separation Distance (MSD) is the
average minimum separation distance when the robot gets too close to the human.

4.2. Performance comparison with different RL methods
The safety of the navigation process is the most important in evaluating the navigation performance
of the robot in crowded environments. To test the performance of different reward functions, we select
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Table I. Navigation results of non-holonomic robot in three different crossing scenarios. The cell data
represent the experimental results in circle/square/group crossing settings, respectively.

Method SR DF MSD CR NT
CADRL 0.78/0.71/0.80 0.38/0.35/0.28 0.09/0.08/0.11 0.22/0.28/0.20 12.80/12.50/12.31
CADRL-DZ 0.82/0.73/0.78 0.18/0.22/0.21 0.07/0.12/0.10 0.16/0.24/0.11 14.36/14.20/14.09
CADRL-RA 0.88/0.85/0.90 0.12/0.12/0.08 0.14/0.15/0.17 0.11/0.15/0.07 13.04/12.84/12.59

LSTM_RL 0.74/0.57/0.63 0.25/0.32/0.31 0.10/0.07/0.05 0.25/0.37/0.23 14.90/14.11/15.72
LSTM_RL-DZ 0.76/0.66/0.71 0.25/0.27/0.14 0.06/0.08/0.11 0.24/0.34/0.16 14.14/13.82/16.74
LSTM_RL-RA 0.82/0.73/0.80 0.15/0.14/0.08 0.15/0.15/0.19 0.17/0.26/0.08 13.95/13.63/13.85
SARL 0.90/0.81/0.83 0.16/0.22/0.21 0.09/0.07/0.04 0.10/0.16/0.09 14.81/14.70/16.60
SARL-DZ 0.94/0.88/0.85 0.07/0.11/0.03 0.11/0.07/0.08 0.05/0.09/0.06 14.55/14.14/15.13
SARL-RA 0.97/0.93/0.92 0.04/0.06/0.01 0.14/0.15/0.15 0.03/0.05/0.04 14.00/13.49/13.52

three existing well-known deep reinforcement learning methods, including collision avoidance with deep
reinforcement learning (CADRL) [33], long short-term memory with reinforcement learning
(LSTM_RL) [35], and social attention with reinforcement learning (SARL) [36] as the base training
models. All the reinforcement learning models are trained with four different reward functions: position-
based reward function, DZ reward function, RVO reward function, and RA reward function proposed in
this paper. To facilitate a comprehensive comparison of the model performance, we also test the ORCA
algorithm in the experiment. However, it should be noted that the original ORCA is designed for holo-
nomic robots. In this paper, we conduct the ORCA experiment within the holonomic robot setting to
maintain consistency with its original scope.

The experiment results of the non-holonomic robot are listed in Table I. The bold data indicate the
best results. In the three reinforcement learning models, SARL performs best in both safety and task
accomplishment by introducing the attention mechanism and aggregating multi-agent information. From
the perspective of reward functions, the models trained with the position-based reward function show
poor safety and task accomplish capability because the velocity between the robot and the human is
neglected. As a result of taking pedestrian actions into account, the DZ method achieves a better safety
performance than the position-based reward function in terms of danger frequency and collision rates.
Compared with the previous methods, the Risk-Area incorporates the relative motion of agents into the
design of the Risk-Area, and the models combined with the proposed reward function achieve superior
performance in terms of safety and task accomplishments. In particular, SARL-RA achieves the best
performance of all methods. The collision rate and the danger frequency are the lowest, and the success
rate and minimum separation distance are significantly improved compared with that of the previous
methods. Moreover, the navigation time listed in the table shows the model trained by the proposed
reward function navigates the robot in an efficient way. The experimental results obtained from three
different crowd settings are similar, and our method consistently achieves better results in both task
accomplishment and safety metrics.

The navigation performance in the holonomic robot setting is shown in Table II. Due to the fact that
the robots in the environment are set invisible to pedestrians, the ORCA algorithm violates the reciprocal
assumption, resulting in poor navigation performance. The success rate and safety metrics in various sce-
narios are lower than those of reinforcement learning methods. The reinforcement learning model SARL
still outperforms CADRL and LSTM_RL in both security and task accomplishment. Furthermore, all
the three deep reinforcement learning models trained with the proposed reward function have better per-
formance. In the three different crowd scenarios, the average success rate of CADRL-RA is 12.3% and
9.0% higher than that of CADRL and CADRL-DZ, respectively. Moreover, the average minimum sepa-
ration distance and collision rate of CADRL-RA are improved compared to that of the previous reward
functions. For LSTM_RL, the model trained with the proposed reward function also achieves higher
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Table II. Navigation results of holonomic robot in three different crossing scenarios. The cell data
represent the experimental results in circle/square/group crossing settings, respectively.

Method SR DF MSD CR NT
ORCA 0.77/0.65/0.78 0.57/0.54/0.46 0.08/0.09/0.08 0.23/0.35/0.22 12.17/12.65/12.20

CADRL 0.85/0.76/0.86 0.47/0.44/0.34 0.10/0.10/0.12 0.15/0.24/0.10 13.02/12.71/12.60
CADRL-DZ 0.88/0.81/0.88 0.17/0.10/0.15 0.06/0.12/0.11 0.07/0.12/0.10 16.88/16.08/14.71
CADRL-RA 0.95/0.94/0.95 0.10/0.09/0.07 0.16/0.17/0.16 0.05/0.05/0.04 13.43/13.30/12.74

LSTM_RL 0.84/0.81/0.79 0.29/0.26/0.20 0.08/0.08/0.09 0.11/0.12/0.11 14.58/14.15/14.61
LSTM_RL-DZ 0.89/0.83/0.81 0.27/0.24/0.16 0.06/0.07/0.07 0.08/0.12/0.13 15.00/14.32/14.06
LSTM_RL-RA 0.94/0.87/0.93 0.07/0.06/0.05 0.16/0.16/0.17 0.05/0.11/0.05 13.84/13.56/13.64
SARL 0.95/0.88/0.90 0.27/0.29/0.28 0.09/0.07/0.04 0.05/0.12/0.07 14.36/14.66/15.04
SARL-DZ 0.96/0.93/0.91 0.09/0.12/0.04 0.09/0.03/0.10 0.04/0.04/0.05 14.11/13.64/13.95
SARL-RA 0.99/0.97/0.99 0.05/0.03/0.01 0.16/0.14/0.19 0.01/0.02/0.01 13.35/12.98/13.02

safety performance while maintaining less navigation time than the previous methods. As for SARL,
SARL-RA reaches the best performance among all the algorithms by achieving the highest safety and
task accomplishment. The success rate of SARL-RA is higher than that of SARL and SARL-DZ, and
the danger frequency is significantly decreased. In the group crossing scenarios, the danger frequency of
SARL-RA achieves 0.01, which are the lowest among all models. In general, our approach demonstrates
superior performance compared to the state-of-the-art method, Danger Zone, across various metrics. It
achieves an average increase of 7.2% in success rate, while reducing the collision rate by 4.7% and
the danger frequency by 52.4% in all the experiments. These results confirm the effectiveness of our
approach in mitigating collision risks and enhancing overall navigation performance.

Fig. 6 shows the non-holonomic robot navigation results of the three reward functions based on the
SARL algorithm in three different crossing scenarios. For fairness, the test cases in the same crossing
scenario have the same human trajectories. In Fig. 6(a), SARL adopts aggressive avoidance behavior
and attempts to move in front of Human 2, leading to the dangerous situation at 8.75 s. Similar situations
also arise in Fig. 6(d) and Fig. 6(g), where SARL exhibits risky navigation behavior during interactions
with mobile humans. DZ method pays too much attention to the forward direction of the fast-moving
pedestrians while ignoring the possible risk around. In Fig. 6(b), the robot following SARL-DZ tries to
move behind Human 2 but gets too close to the human side. Moreover, the DZ method converges to the
original position-based penalty when dealing with interactions with stationary pedestrians, leading to
situations where the robot gets too close to static pedestrians, as illustrated in Fig. 6(h). In comparison,
SARL-RA selects an appropriate collision avoidance strategy and keeps a safe distance from all humans.
It is because our approach establishes Risk-Area based on the collision theory and relative movement of
the robot and pedestrians while taking into account all directions of human-robot interaction. According
to (16), the introduction of relative speed in the Risk-Area also contributes the robot to learning effec-
tive collision avoidance actions, thus ensuring navigation efficiency. Experiment results reveal that the
proposed reward function of the Risk-Area along with the SARL algorithm exhibits safe and socially
compliant navigation.

4.3. Performance comparison in different dense crowds
In actual cases, the number of humans in the environment is changeable. To test the safety of the model,
we further compare the navigation performance of our reward function with the baselines in the dif-
ferent dense crowds. The experiments are conducted based on the models with the best performance
in Section 4.2, including SARL, SARL-DZ, and SARL-RA. The human number of the crowd is set to
N ∈ [7, 9, 11, 13, 15]. In the non-holonomic robot setting, with the crowd density increasing, all three
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6. Comparison of the three different reward functions based on SARL in three different cross-
ing settings. The hollow circles represent the pedestrians, and the red arrows indicate the velocities of
the agents. (a) SARL(circle). (b) SARL-DZ(circle). (c) SARL-RA(circle). (d) SARL(square). (e) SARL-
DZ(square). (f) SARL-RA(square). (g) SARL(group). (h) SARL-DZ(group). (i) SARL-RA(group).

models’ task accomplishment and safety decrease, as shown in Fig. 7(a)-(c). The SARL trained with the
position-based reward function has the fastest performance degradation. SARL-DZ achieves a better
task accomplishment in the different dense crowds than SARL. In comparison, SARL-RA achieves the
best performance, maintaining the highest success rate and minimum separation distance. The danger
frequency of SARL-RA is also the lowest in all the scenarios. Experiment results show that the proposed
reward function improves the safety of the model in different crowd density scenarios.

The experiment results in the holonomic robot setting are shown in Fig. 7(d)-(f). Similar to the
non-holonomic robot setting, the performance of SARL degrades fast as the human number in the
environment increases. The success rate of SARL is only 62% when the human number reaches 15.
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Figure 7. The navigation performance of SARL, SARL-DZ, and SARL-RA in the holonomic and
non-holonomic robot settings with different crowd dense.

Benefiting from the consideration of human behaviors, SARL-DZ achieves a lower danger frequency
than SARL. However, the minimum separation distance is not ideal due to the neglect of the relative
movement among agents. It can be seen from the experiment that SARL-RA is least affected by the
increase in crowd density. The model trained with our approach has the best performance in both success
rate and safety. The experiment results reveal that the reward function is noteworthy to the navigation
performance of the model. Moreover, by introducing relative movement and collision theory to repre-
sent the risk in the environment correctly, the model generalizes well in different dense crowd navigation
scenarios.

Fig. 8 visualizes some typical results in holonomic robot setting for all the three models, including
SARL, SARL-DZ, and SARL-RA. The methods with risk perception mechanisms have more efficient
avoidance behaviors and reduce the freezing robot problem. The avoidance behaviors of SARL are
aggressive, with a high frequency of danger occurring during traveling, as shown in Fig. 8(a) and (b).
Moreover, in Fig. 8(c)-(d), SARL suffers from the freezing robot problem seriously, and the path has mul-
tiple diversions, which wastes time and causes more dangerous situations during navigation. Benefitting
from the prediction of the human behaviors, SARL-DZ ameliorates the freezing robot problem, but
unnatural and risky behaviors still occur during collision avoidance, as shown in Fig. 8(e). In contrast,
SARL-RA makes the robot take clear paths to ensure safety and comfort instead of entering the human
cluster since it considers the risk of all humans around based on the relative movement. In general, the
proposed method, combined with the collective importance of the crowd of SARL, is able to avoid the
freezing robot problem and has a better generalization ability in different dense crowd scenarios.

4.4. Real-world experiment
Besides the simulation experiments above, we also conduct real-world experiments to verify the effec-
tiveness of the proposed method. We implement the SARL-RA policy with the best performance in the
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Figure 8. Comparison of the three different reward functions based on SARL algorithm in different dense crowds. The blue line represents the path of the
robot without danger. The yellow line is the path that the robot gets too close to the humans. The gray line denotes the path of humans in the environment.
(a) N= 7. (b) N= 9. (c) N= 11. (d) N= 13. (e) N= 15.
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Table III. Navigation results of turtlebot2 in real-world environment.

Environment Method Result Danger Minimum Separation Navigation
Count Distance Time

circle SARL-RA suc 1 0.18 22.63
SARL-DZ suc 1 0.14 27.44

SARL suc 2 0.08 21.11
square SARL-RA suc 0 – 19.27

SARL-DZ suc 1 0.10 21.20
SARL col – – –

group SARL-RA suc 0 – 21.65
SARL-DZ suc 0 – 20.71

SARL suc 0 – 31.46

non-holonomic robot setting simulation on a Turtlebot2 platform in a human-robot coexisting indoor
environment. The robot is equipped with a SLAMTEC RPLIDAR A3 for pedestrian detection, and the
action commands are generated by an IRU mini PC installed with Ubuntu 16.04 and ROS Kinetic. The
positions and velocities of the robot and pedestrians are obtained using the ROS package amcl and
leg_detector, respectively. The crossing scenarios in the real environment are similar to that in the sim-
ulated environment, including circle, square, and group settings. However, in the real environment, after
completing the same navigation tasks as in the simulated environment, pedestrians continue to move ran-
domly based on their own intentions. Additionally, due to sensor delays, pedestrian movements exhibit
higher uncertainty compared to the simulated environment.

The navigation results in real-world environments are presented in Table III. Among all the exper-
imental cases, only SARL has one collision. Both the SARL-RA and SARL-DZ safely complete the
navigation tasks. Our method has the fewest occurrences of dangers among all the algorithms while
maintaining a favorable minimum separation distance. In terms of navigation time, due to the maxi-
mum speed limitation of the turtlebot2 robot, the navigation time in the real environment inevitably
becomes longer than in the simulated environment. In comparison, SARL-RA achieves the shortest
average navigation time in the navigation cases.

Fig. 9 shows the robot navigates with the crowd. The numbers in red are the participant numbers.
The blue dashed lines with arrows indicate the trajectories of the participants. The purple dots indicate
the trajectory of the robot. The green arrow represents the action command generated by the SARL-RA
algorithm. The red arrow denotes the current pose of the robot. The white arrows stand for the people’s
velocity detected by the 2D lidar. The red dots are the local targets generated by the robot navigation
frame. The specific navigation cases demonstrate the robot’s effective avoidance of fast-moving pedestri-
ans in the environment. As observed in Fig. 9(a) and Fig. 9(b), the robot proactively executes avoidance
maneuvers for pedestrians approaching from the opposite direction and timely creates pathways for
pedestrians moving in the same direction. Additionally, Fig. 9(c) reveals that the robot maintains a safe
distance from stationary pedestrians and selects appropriate routes to evade them. Throughout the nav-
igation scenarios, no collisions or obstructions to pedestrian movement are encountered. Experiments
in the real world demonstrate that our Risk-Area method, combined with the collective importance of
crowd of SARL, develops secure and socially compliant robot navigation.

5. Conclusions and future work
This paper proposes a safety mechanism named Risk-Area within reinforcement learning framework
for safe socially aware robot navigation in fast-moving and densely populated environments. First, we
establish the collision model of the human and the robot in-plane and formulate Risk-Areas around
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Figure 9. A Turtlebot2 robot navigates in the crowd with the SARL-RA policy. (a) Circle crossing
scenario. (b) Square crossing scenario. (c) Group crossing scenario.

each human based on the relative movement of the agents. Then, the reward function and the geometry
of the Risk-Area are established to ensure the safety of the crowd-robot navigation. After that, in the
deep reinforcement learning framework, the robot is trained to understand the real-time human-robot
interactions and not enter the Risk-Area. Experiment results confirm that our approach outperforms
the state-of-the-art method in terms of safety and task accomplishments. In addition, by introducing
the Risk-Area, the safety performance in different dense crowds of the model has also been improved.
Finally, we deploy our method combined with SARL on a Turtlebot2 robot, which successfully navigates
in real-world environments among fast-moving pedestrians.

While our approach has proven effective in enhancing safety in various crowded scenarios, the cur-
rent risk representation based on collision theory lacks an expression for irregularly shaped moving
objects, necessitating further research. Additionally, our adoption of a sparse reward function, which
lacks rewards related to the robot’s proximity to the goal, restricts improvements in navigation effi-
ciency. In future work, we plan to 1) apply camera resources with depth, semantic labels, and optical
flows into our system to resolve the limitation of only using 2D LiDAR information; 2) improve our
reward function to incentivize more efficient navigation; 3) and extend our risk representation based on
collision theory to more general environments involving pedestrians and other static obstacles.
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