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Natural convection in a vertical channel. Part 1.
Wavenumber interaction and Eckhaus instability
in a narrow domain
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In a vertical channel driven by an imposed horizontal temperature gradient, numerical
simulations (Gao et al., Phys. Rev. E, vol. 88, 2013, 023010; Phys. Rev. E, vol. 91, 2015,
013006; Phys. Rev. E, vol. 97, 2018, 053107) have previously shown steady, time-periodic
and chaotic dynamics. We explore the observed dynamics by constructing invariant
solutions of the three-dimensional Oberbeck–Boussinesq equations, characterizing the
stability of these equilibria and periodic orbits, and following the bifurcation structure
of the solution branches under parametric continuation in Rayleigh number. We find that
in a narrow vertically periodic domain of aspect ratio 10, the flow is dominated by the
competition between three and four co-rotating rolls. We demonstrate that branches of
three- and four-roll equilibria are connected and can be understood in terms of their
discrete symmetries. Specifically, the D4 symmetry of the four-roll branch dictates the
existence of qualitatively different intermediate branches that themselves connect to
the three-roll branch in a transcritical bifurcation due to D3 symmetry. The physical
appearance, disappearance, merging and splitting of rolls along the connecting branch
provide a physical and phenomenological illustration of the equivariant theory of D3–D4
mode interaction. We observe other manifestations of the competition between three and
four rolls, in which the symmetry in time or in the transverse direction is broken, leading
to limit cycles or wavy rolls, respectively. Our work highlights the interest of combining
numerical simulations, bifurcation theory and group theory, in order to understand the
transitions between and origin of flow patterns.
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1. Introduction

A fluid subjected to a horizontal temperature gradient, often called natural or vertical
convection, is encountered in a wide range of geophysical (Hart 1971), meteorological
and engineering (Kaushika & Sumathy 2003; Arici, Karabay & Kan 2015) applications.
Scientific research on natural convection with its many variants has a long history.
Motivated by the crucial application of thermal insulation, Batchelor (1954) sought to
determine the width that maximized the insulating properties of an air-filled cavity within
a wall or window, i.e. the double-glazing problem; this solution was later amended by
Poots (1958) and Gershuni, Zhukhovitskii & Tarunin (1966). Elder (1965) observed, both
experimentally and theoretically, the oblique convection rolls that form in a tall enclosure
that we will study here. These rolls, in particular their onset, were further investigated
by, e.g., Eckert & Carlson (1961), Vest & Arpaci (1969), Gershuni & Zhukhovitskii
(1972), Korpela, Gözüm & Baxi (1973) and Mizushima & Gotoh (1976). After nonlinear
numerical simulations became feasible, a number of researchers studied the evolution
of the number of rolls in an air-filled cavity with height-to-width aspect ratio eight to
twenty by means of time integration (Roux et al. 1980; Le Quéré 1990; Wakitani 1998)
or by Newton–Krylov methods (Mizushima & Tanaka 2002; Salinger et al. 2002; Gelfgat
2004; Xin & Le Quéré 2006). Among the phenomena that they observed were hysteresis,
multiplicity of solutions, and a non-monotonic evolution in the number of rolls with
Rayleigh number. Quasiperiodicity and chaos in a cavity whose height is twice its width
have been studied by Oteski, Duguet & Pastur (2014) and Oteski et al. (2015).

Attesting to its importance, natural convection has been chosen as a computational
benchmark for evaluating the accuracy and efficiency of fluid dynamics codes. The
benchmark competition on an air-filled square cavity (de Vahl Davis & Jones 1983)
attracted thirty-seven contributions, comparing results from codes described in, for
example, Gilly, Bontoux & Roux (1981), Winters (1982, 1987), Le Quéré & Alziary de
Roquefort (1985) and Le Quéré (1991). An entire conference and journal volume were
devoted to the benchmark problem of an air-filled height-to-width-ratio of eight (Christon,
Gresho & Sutton 2002).

Continuing our survey of archetypal configurations in vertical convection, low-Prandtl-
number liquid metals are used in the process of growing semiconductor crystals; the goal
is to avoid transition to oscillatory flow that engenders imperfections. A shallow cavity
of height-to-width-ratio 1 : 4 filled with a low-Prandtl-number liquid metal was the topic
of yet another benchmark (Roux 1990). Bifurcation analyses of this configuration have
been carried out by, e.g., Winters (1988), Pulicani et al. (1990), Henry & Buffat (1998)
and Gelfgat, Bar-Yoseph & Yarin (1999). We will continue our survey of the literature
in Zheng, Tuckerman & Schneider (2024), where we will focus on three-dimensional
patterns.

Vertical convection is a special case of inclined layer convection, in which the container
is tilted against gravity so that both buoyancy and shear forces drive the flow (Poots
1958; Fujimura & Kelly 1993; Daniels, Plapp & Bodenschatz 2000; Subramanian et al.
2016; Grayer et al. 2020). Extrapolating in inclination angle from the well-understood
buoyancy-driven Rayleigh–Bénard case to shear-dominated vertical convection may give
insights into transition in pure shear flows such as plane Couette flow (Nagata & Busse
1983). This was one of the motivations for the extensive study of inclined layer convection
by Reetz & Schneider (2020) and Reetz, Subramanian & Schneider (2020), whose spirit
and methods are carried over to the present study.

Rayleigh–Bénard convection, in which the layer is horizontal, is probably the most
studied case of inclined layer convection, but it is exceptional in several important respects:
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the Prandtl number Pr (ratio of kinematic viscosity to thermal diffusivity) plays no role at
threshold, and the primary instability is always steady. In contrast, Korpela et al. (1973)
showed that the primary instability in vertical convection is steady for Pr < 12.7 and
oscillatory for Pr > 12.7, a value that was refined to Pr = 12.45 by Fujimura & Kelly
(1993).

Rayleigh–Bénard convection is also exceptional in that its basic state is motionless, so
that lateral boundaries can be assumed to affect only the regions immediately adjacent to
them. The interior of a finite domain can therefore be approximated as homogeneous in
the horizontal directions parallel to the rigid boundaries, so periodic boundary conditions
can be used in these directions. In contrast, in vertical convection, the basic state includes
a velocity that is vertical and hence normal to boundaries situated at the top and bottom.
Such boundaries can have a substantial influence on the basic solution in the bulk if the
aspect ratio is low or the Rayleigh number is high. This undermines the approximation
of vertical homogeneity, without which theoretical or numerical treatment becomes much
more difficult. Batchelor (1954), Eckert & Carlson (1961), Gill (1966), Vest & Arpaci
(1969), Mizushima & Gotoh (1976) and Bergholz (1978) distinguished two regimes for
the basic solution in the bulk of a finite cavity: the conductive regime, in which the
temperature depends only on the distance from the walls, and the double boundary
layer regime, in which the temperature also has a vertical gradient resulting from the
flow meeting the upper and lower boundaries. The researchers cited above showed that
even in the boundary layer regime, a cavity of finite height can be approximated by a
vertically homogeneous problem if modified boundary conditions are imposed on the
temperature at the two vertical bounding plates, either a finite vertical gradient or else
horizontal isoflux conditions (Kimura & Bejan 1984; Le Quéré 2022). The configuration
that we study here, with aspect ratio 10 and Rayleigh numbers lower than 14 000, falls
safely into the conductive regime. This means that our simulations using periodic vertical
boundary conditions and bounding plates each of constant temperature resemble the flow
in the interior regions of cavities of finite height. For a full treatment of the differences
between periodic domains and those with boundaries (free-slip or rigid), see Hirschberg
& Knobloch (1997).

Our investigation is based on a series of studies by Gao et al. (2013, 2015,
2018). These authors used direct numerical simulations (DNS) combined with linear
and weakly nonlinear approaches to study vertical convection in air (Pr = 0.71). By
systematically increasing the Rayleigh number, Gao et al. (2013) surveyed the regimes
in a three-dimensional domain whose periodic vertical height was ten times that of the
other two. They observed that the flow transitioned from the conductive state to steady
rolls, then to oscillatory flow, and finally to a chaotic state. After acquiring four identical
stacked co-rotating rolls, the flow continued to have a vertical periodicity of a quarter of
the domain length over a fairly large Rayleigh number range. By subsequently confining
the domain to this height to suppress large-scale instabilities, Gao et al. (2015) observed
a period-doubling cascade leading to chaotic dynamics as the Rayleigh number was
increased. However, a quantitative numerical bifurcation analysis corresponding to these
studies has not been performed, thus the bifurcation-theoretic origins of the observed
complex flow patterns remain to be fully explored. This motivates the present study.

We consider the domain [Lx, Ly, Lz] = [1, 1, 10], where x, y and z represent the direction
between the two bounding plates, the transverse direction, and the direction of gravity,
respectively, as shown in figure 1. Here, only one of the three spatial directions is
extended, thus the resulting flow structures, while fascinating and surprisingly complex,
predominantly vary only in the vertical direction. Although the domain has only one
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Figure 1. (a) Schematic of the computational domain. A fluid layer is bounded between two walls located
at x = ±0.5. The temperature at wall x = 0.5 is fixed at a higher value than that at wall x = −0.5. The long
z direction is aligned with gravity; both the y and z directions are taken to be periodic with spatial periods
Ly = 1 and Lz = 10. The orange curve and green line show the cubic velocity (2.3a) and linear temperature
(2.3b) profiles of the conductive base solution. (b–d) Temperature T0 of the basic state, temperature deviation
θ ≡ T − T0, and total temperature field T of the convection roll structure (FP1 in figure 2) visualized in the
x–z plane on the arbitrary plane y = 0.5 at Ra = 13 384.

spatially extended direction, weakly two-dimensional patterns have also been observed.
Note, however, that all computations of Gao et al. (2013, 2015, 2018) as well as those
presented here are fully three-dimensional. The domain [Lx, Ly, Lz] = [1, 8, 9] studied by
Gao et al. (2018) has two extended directions and correspondingly fully two-dimensional
patterns and behaviour. A bifurcation-theoretic analysis of these will be the subject of our
companion paper Zheng et al. (2024).

Above onset, as the Rayleigh number is increased, a sequence of convective patterns
emerges from the conductive state. At each bifurcation point, symmetries of the previous
state are in general sequentially broken, leading to patterns of increasing complexity.
Those sequentially broken symmetries include continuous or n-fold translation symmetry,
reflection symmetry, centro-symmetry and so on. The transition to n-fold translation
symmetry in an effectively one-dimensional and reflection-symmetric domain generically
leads to Dn symmetry. The phenomenon of competition between steady branches with
different wavenumbers is the essence of the Eckhaus instability (Eckhaus 1965; Tuckerman
& Barkley 1990), especially in the idealized case of long domains. For the particular finite
vertical aspect ratio 10 in our convection problem, four co-rotating rolls are favoured,
competing with three rolls at increasing Ra. As it happens, symmetry groups D4 and D3
have very particular properties; it is this combination of group theory, topology and fluid
mechanics that shapes the resulting bifurcation diagram. The competition between three
and four rolls is also manifested by branches of time-dependent states in which the number
of rolls alternates periodically or chaotically.

More generally, Dangelmayr (1986) carried out a comprehensive investigation using
weakly nonlinear model equations of the scenarios resulting from the competition
between periodic patterns with different wavenumbers. Crawford, Knobloch & Riecke
(1990) applied similar equations to a Faraday wave experiment. Among the features of
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these scenarios are steady pure-mode (single wavenumber) and mixed-mode (multiple
wavenumber) branches, as well as travelling and standing waves. One of the main topics
of our investigation is the numerical simulation and qualitative interpretation of the
mixed-mode branches in our hydrodynamic system.

We begin by reproducing the equilibria and periodic orbits computed by Gao et al.
(2013). By following the branches to which these solutions belong, we discover new
solution branches and identify the bifurcations giving rise to all of them, from onset
to the chaotic regime. The remainder of the paper is structured as follows. In § 2, we
discuss the governing equations, numerical aspects, symmetries, and the measurements
and visualizations to be presented. Section 3 presents the steady solutions or equilibria,
together with a detailed interpretation of the observed bifurcation scenarios using D4
and D3 symmetry (Gambaudo 1985; Swift 1985; Knobloch 1986; Golubitsky, Stewart &
Schaeffer 1988; Dawes 2005). Time-periodic solutions are presented in § 4. Finally, we
conclude with a summary of key results and a discussion in § 5.

2. Vertical convection system and numerical aspects

2.1. Governing equations
We used the inclined layer convection (ILC) extension module of the MPI-parallel
pseudo-spectral code Channelflow 2.0 (Reetz 2019; Gibson et al. 2021) to carry out DNS
of the non-dimensionalized Oberbeck–Boussinesq equations

∂u
∂t

+ (u · ∇)u = −∇p +
√

Pr
Ra

∇2u + T ez, (2.1a)

∂T
∂t

+ (u · ∇)T = 1√
Pr Ra

∇2T , (2.1b)

∇ · u = 0, (2.1c)

in a vertical channel as depicted in figure 1. In (2.1), u = [u, v, w](x, y, z, t) and T =
T (x, y, z, t) stand for total velocity and temperature, respectively. The constant buoyancy
term has been omitted from (2.1a); correspondingly, the pressure p = p(x, y, z, t) is
relative to the hydrostatic pressure. Bold symbols denote vector quantities, and ez is
the vertical unit vector. The equations have been non-dimensionalized with respect to
the temperature difference �ϑ and the distance W between the walls, and the free-fall
time unit (W/gα �ϑ)1/2, where α is the thermal expansion coefficient, and g is the
gravitational acceleration. Two independent dimensionless parameters appear: Rayleigh
number Ra = gα �ϑ W3/(νκ) and Prandtl number Pr = ν/κ , where ν is the kinematic
viscosity, and κ is the thermal diffusivity.

Periodic boundary conditions are imposed in the y and z directions with spatial periods
Ly and Lz, respectively. The walls are no-slip and have prescribed temperatures

u(x = ±0.5) = 0, T (x = ±0.5) = ±0.5. (2.2a,b)

A supplementary integral constraint on either the pressure gradient or the mean flux must
be set in the periodic directions. In order to match the simulations of Gao et al. (2013, 2015,
2018), we impose a mean pressure gradient of zero in y and in z. Equations (2.1) together
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with the boundary conditions admit the conductive solution sketched in figure 1(a):

u0(x) = 1
6

√
Ra
Pr

(
1
4

x − x3
)

ez, (2.3a)

T0(x) = x, (2.3b)

p0(x) = Π, (2.3c)

with arbitrary pressure constant Π .

2.2. Numerical methods
Channelflow-ILC adopts Chebychev–Fourier–Fourier (in x, y and z) expansions for
representing flow fields in space, and a finite differencing method for time integration
(see detailed description in Appendix A of Reetz & Schneider 2020). We have simulated
the three-dimensional computational domain studied in Gao et al. (2013). This narrow
domain [Lx, Ly, Lz] = [1, 1, 10] is discretized by [Nx, Ny, Nz] = [31, 32, 96] collocation
points, resulting in a state space dimension N = 4 × Nx × Ny × Nz × (2

3 )2 of the order
of 2 × 105. The factor four stems from three components of velocity field and one in
temperature field, and (2

3 )2 is due to dealiasing in two Fourier directions (Canuto et al.
2006). Although our resolution is slightly less than that reported in Gao et al. (2013), we
find it to be sufficient, since the ratio of the L2-norm of the last resolved mode to the first
mode of the velocity and temperature fields is less than 10−6 in the y and z directions, and
less than 10−9 in the x direction, a criterion also employed by Gibson & Schneider (2016).

As an extension to the studies based on DNS observations (Gao et al. 2013, 2015,
2018), our objective is to construct the invariant solutions such as equilibria and periodic
orbits underlying the complex spatio-temporal flow dynamics. For identifying linearly
stable states, time-marching (DNS) appropriate initial conditions gives access to these
solutions, which is how Gao et al. (2013, 2015, 2018) proceeded. However, the root-finding
technique is required for constructing unstable states. Invariant solutions are state vectors
x∗(t) satisfying

G(x∗) = σ FT(x∗) − x∗ = 0, (2.4)

where σ is a symmetry operator, and FT is the time-evolution operator integrating
(2.1a)–(2.1c) from an initial state x∗ over a finite time period T (where T is the period
of a periodic solution, which is arbitrary for a steady solution). The shooting-based
Newton–Raphson method in Channelflow-ILC uses a matrix-free Krylov method in which
successive Krylov vectors are generated by time-marching initial conditions (Kelley 2003;
Sánchez et al. 2004). It is usually combined with a hookstep trust-region optimization
based on the Krylov vectors, leading to a greatly increased radius of convergence
(Viswanath 2007, 2009). Convergence is considered to be reached once the norm of the
residual of (2.4) is sufficiently close to machine precision (of the order of 10−12). The
converged solutions are subsequently continued parametrically along a range of Rayleigh
numbers to form bifurcation diagrams (Sánchez et al. 2004; Dijkstra et al. 2014) so as to
understand their bifurcation structure.

The stability of each converged state is evaluated by using the Arnoldi algorithm
(Arnoldi 1951; Antoulas 2005) to determine its leading eigenvalues and eigenvectors
for fixed points, or Floquet exponents and Floquet modes for periodic orbits. In a
highly symmetric problem like this one, most eigenvalues are multiple, since symmetry
operations applied to non-symmetric eigenvectors can yield other eigenvectors. For
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multiple eigenvalues, the Arnoldi algorithm returns an arbitrary set of linearly independent
eigenvectors. We take linear combinations of these to construct those eigenvectors within
the respective eigenspaces that are appropriate for our purposes.

2.3. Symmetries of the system
The vertical convection system is equivariant under y-reflection (2.5a), combined x- and
z-reflection (2.5b), and translation in y and z (2.5c):

πy[u, v, w, T ](x, y, z) ≡ [u, −v, w, T ](x, −y, z), (2.5a)

πxz[u, v, w, T ](x, y, z) ≡ [−u, v, −w, −T ](−x, y, −z), (2.5b)

τ(�y, �z)[u, v, w, T ](x, y, z) ≡ [u, v, w, T ](x, y + �y, z + �z). (2.5c)

Since y and z are periodic directions, the centre of reflection ( y0, z0) is arbitrary, so
reflections y → −y and z → −z in (2.5a) and (2.5b) should be more generally written as
y0 + y → y0 − y and z0 + z → z0 − z for some y0 and z0. We will write these merely as
πy and πxz, while for visualizations we will choose whatever axis of reflection seems most
appropriate for y0 and z0, usually Ly/2 and Lz/2.

The symmetry transformations (2.5) form the equivariance group of the system, which
consists of all products of the generators SVC ≡ 〈πy, πxz, τ (�y, �z)〉 ∼ [O(2)]y × [O(2)]xz.
(Although symmetry groups cannot always be associated with only y or (x, z), we will do
so occasionally when this is convenient and possible.) The groups that arise in this study
are Zn, the cyclic group of n elements, Dn, the cyclic group of n elements together with a
non-commuting reflection, and O(2), the group of all rotations (or equivalently translations
in our periodic domain) together with a non-commuting reflection. We note that D1 = Z2
and D2 = Z2 × Z2. Aside from the conductive solution, which is invariant under the full
group SVC, other solutions may be invariant only under proper (smaller) subgroups of SVC.
Trajectories that begin in an invariant subspace remain so under exact arithmetic, but may
depart due to instability. At times in this study, we have imposed reflection symmetries or
periodicity over an interval shorter than Ly or Lz in order to restrict the dynamics to the
desired invariant subspace or to expedite numerical continuation.

2.4. Numerical measurements and visualizations
We define the deviation from the conductive solution θ ≡ T − T0, which we will usually
refer to merely as the temperature, and employ its L2-norm

‖θ‖2 =
(

1
Ly

1
Lz

∫ 0.5

−0.5

∫ Ly

0

∫ Lz

0
θ2(x, y, z) dx dy dz

)1/2

(2.6)

as an observable for plotting the bifurcation diagrams. For fixed points, a single curve
representing ‖θ‖2 as a function of the Rayleigh number is plotted. For periodic orbits,
the maximum and minimum of ‖θ‖2 along an orbit are plotted, resulting in two different
curves representing one solution. Multiple solutions related by symmetry, in particular
those resulting from pitchfork bifurcations, share the same value of ‖θ‖2. In order to
distinguish between symmetry-related flow fields, we use a local measurement θlocal based
on the temperature at a single point. Here and in Zheng et al. (2024), the bifurcation
diagrams contain apparent intersections of curves indicating solution branches that are
not related to bifurcations but result from projecting the high-dimensional flow fields
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onto a one-dimensional scalar quantity. Apparent intersections that are not labelled as
bifurcations are of this spurious type.

In addition, we also calculate the thermal energy input (I) due to buoyancy forces, and
the dissipation (D) due to viscosity, both averaged over the domain, for phase portrait
visualizations. We refer readers to Reetz & Schneider (2020) for more details. In order to
visualize instantaneous flow fields or eigenvectors, we plot their temperature fields θ on
the y–z plane on the midplane at x = 0, and/or on the x–z plane at y = 0.5.

3. Equilibria

Our goal is to understand the formation and instabilities of convection rolls in the
computational domain [Lx, Ly, Lz] = [1, 1, 10], the domain studied by Gao et al. (2013).
Figure 2 displays the equilibria that we have studied. Many more unstable branches
undoubtedly exist that are not shown in this figure, since a new branch is formed whenever
the real part of an eigenvalue traverses zero. Since some of the states that we discuss can
also exist in domains [1, 1, 2.5] and [1, 0, 10], we will also mention their existence and
stability ranges in these smaller domains.

3.1. Two primary and one secondary circle pitchfork bifurcations
The conductive base flow becomes linearly unstable at Ra = 5826, close to the threshold
Ra = 5800 reported by Gao et al. (2013), where it bifurcates to a two-dimensional
state containing four co-rotating transverse convection rolls. Each roll has height (or
wavelength) �z = Lz/4 = 10/4 = 2.5, and we will use both decimal and fractional
notation as seems appropriate. The critical wavelength and Rayleigh number for Pr = 0.71
computed by Vest & Arpaci (1969) are 2.37 and 5595, respectively; since our wavelength
is constrained by our imposed vertical periodicity to be a divisor of 10, the threshold in Ra
is necessarily higher.

The four-roll state, called FP1 in figure 2(a), is illustrated in figures 2(d) and 1(c),
which show the temperature field θ . We recall that we have defined θ to be the deviation
from the conductive solution, which we show in figure 1(b); the full temperature field
is shown in figure 1(d). Examination of figure 1 along with the corresponding velocity
fields shows that the motion of the deviation fields is clockwise (figure 1c), but that
when added to the base flow (figure 1b), the full motion in each roll (figure 1d) is
anticlockwise: colder fluid on the left (x = −0.5) crosses the cavity towards the right and
then rises, while warmer fluid on the right (x = 0.5) crosses towards the left and then
descends. This instability is driven by the shear in the vertical velocity, in contrast to the
buoyancy-driven rolls that occur in Rayleigh–Bénard convection. Here, FP1 has reflection
and translation symmetries SFP1 ≡ 〈πy, πxz, τ (�y, 2.5)〉 ∼ [O(2)]y × [D4]xz, where the
translation symmetry in Lz/4 = 2.5 results from its four vertically stacked identical rolls
in figure 2(d).

We have found another fixed point, FP2, containing three identical rolls, which is shown
in figure 2( f ). Fixed point FP2 bifurcates from the unstable conductive base flow at
Ra = 6868.7 and remains unstable over its entire range of existence. It is invariant under
reflection and translation symmetries SFP2 ≡ 〈πy, πxz, τ (�y, 10/3)〉 ∼ [O(2)]y × [D3]xz.
Fixed point FP1 is stable until Ra = 10 166, when it bifurcates to a state containing four
three-dimensional (3-D) steady rolls, which we have called FP3. This state, observed by
Gao et al. (2013) and shown in figure 2(e), is in turn stable until Ra = 11 261. Fixed point
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Figure 2. (a) Bifurcation diagram of fixed points (FP) using global quantity ‖θ‖2. Solid and dashed curves
signify stable and unstable states, respectively. (b,c) Zooms on the Rayleigh number ranges within which FP4
bifurcates from FP1 and FP2. (d–f ) Flow structure of equilibria visualized via the temperature field in the
y–z plane at x = 0, and in the x–z plane at y = 0.5. FP1 in (d), with four rolls and symmetry group SFP1 ≡
〈πy, πxz, τ (�y, 2.5)〉, and FP2 in ( f ), with three rolls and SFP2 ≡ 〈πy, πxz, τ (�y, 10/3)〉, both bifurcate from
the conductive base flow (stable for FP1 and unstable for FP2), breaking z-translation symmetry. FP3 in (e),
with SFP3 ≡ 〈πy, πxzτ(0.5, 0), τ (0, 2.5)〉, bifurcates from FP1 and breaks its y-translation symmetry. FP4 (see
figure 3), with SFP4 ≡ 〈πy, πxz, τ (�y, 0)〉, bifurcates from FP1 at Ra = 13 383.9 and intersects FP2 at Ra =
11 283. The stars in (a–c) indicate where (d–f ) in the current figure, as well as ( f, j,k) in figure 3, are visualized.

FP3 is invariant under SFP3 ≡ 〈πy, πxzτ(0.5, 0), τ (0, 2.5)〉 ∼ [D1]y × [D4]xz; symmetry
τ(�y, 0) is broken at the circle pitchfork bifurcation point at Ra = 10 166.

3.2. Fixed point FP4: connector between FP1 and FP2 states
Figures 2(a–c) show another equilibrium, which we have called FP4, bifurcating from FP1
at Ra = 13 383.9, and intersecting FP2 at Ra = 11 283. Two sets of solutions, figures 2j,k,
appear from the same FP1 state via simultaneous subcritical pitchfork bifurcations. We
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will call these half-branches; the reason for this and for their simultaneous bifurcation will
become clear below.

We will need to consider another translation-symmetry-related version of FP1, shifted
by a half-roll (�z = ±1.25) from FP1, which we will call FP1′ ≡ τ(0, 1.25) FP1. Because
the global quantity ‖θ‖2 cannot distinguish between symmetry-related states, we represent
FP4 in figure 3(a) by the local and normalized quantity

θlocal(Ra) ≡ θ(Ra)

|θ(Ra = 13383)|
∣∣∣∣
x=0, z=4.375

∈ [−1, 1]. (3.1)

To emphasize the variation of θlocal as FP4 is traversed, for visualization, we suppress the
variation along the FP1 and FP2 branches.

The two endpoints of the FP4 branch, related by a half-roll shift of �z = 1.25,
are shown in figures 3( j) and 3(k). In the bifurcations from FP1 to FP4, the fourfold
translational symmetry in z is lost, but (x, z) reflection symmetry is retained, leading to
SFP4 ≡ 〈πy, πxz, τ (�y, 0)〉 ∼ [O(2)]y × [Z2]xz. We have chosen the spatial phase such
that the centres of symmetry of figures 3( j) and 3(k) are located at z values that are
multiples of 10/8 = 1.25. During the numerical continuation of the FP4 branch, the phase
in z has been fixed by imposing two reflection symmetries.

3.2.1. Tour of FP4: two methods for eliminating one roll
We begin our tour of FP4 from figure 3( j), which displays one end of the FP4 branch,
or equivalently, FP1. Going from figure 3( j) to figure 3(i), the between-roll boundary at
z = 2.5 becomes weaker. In contrast, at z = 7.5 the roll boundary is strengthened, while
the far edges of the two surrounding rolls are weakened. By figure 3(h), the two rolls
formerly surrounding z = 2.5 have merged into a single large roll. For this reason, we call
( j,i,h,g, f ) in figure 3(a) the roll-merging half-branch. Starting from FP1′ in figure 3(k),
i.e. the opposite endpoint of the FP4 branch, the roll centred around z = 7.5 weakens in
figure 3(l) and has almost disappeared by the saddle–node bifurcation of figure 3(m). We
call (k,l,m,n, f ) in figure 3(a), the roll-disappearing half-branch.

At Ra = 11 283, figure 3( f ) has three equally spaced rolls and belongs to branch FP2.
This is why we choose to call this state the dividing point of branch FP4 into two
half-branches. The meeting between FP2 and the two half-branches is a transcritical
bifurcation that will be the topic of § 3.2.4. Both FP4 half-branches lead from four rolls
to three rolls, but in different ways. In the pathway from figure 3( j) to figure 3( f ), the
space between two rolls blurs, and the two rolls merge. In the pathway from figure 3(k) to
figure 3( f ), one roll weakens and disappears. These two types of transitions can occur
at any of the four roll centres and roll boundaries. Thus eight half-branches bifurcate
simultaneously from any FP1 state: four roll-merging half-branches like figures 3( j)–3( f ),
and four roll-disappearing half-branches like figures 3(k)–3( f ). These eight branches
connect an FP1 state with its half-roll-shifted state FP1′.

This scenario is schematized in figure 4. Each line of longitude (meridian) on the
globe-like figure represents a branch connecting FP1 (top square) and FP1′ (bottom
square), like that shown in figure 3. The roll-merging half-branches are coloured in red
and emerge from the corners of a square; the roll-disappearing half-branches in blue
emerge from the sides of a square. The fact that four of each emerge at each of the squares
corresponds to the fact that each of FP1 and FP1′ contains four rolls and four inter-roll
spaces that can undergo roll disappearance or roll merging. Each half-branch of one colour
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Figure 3. (a) Partial bifurcation diagram focusing on connector state using normalized local quantity θlocal
defined in (3.1). Solid and dashed curves signify stable and unstable states, respectively. (b–e) Eigenmodes
(b,c, left of dashed line and d,e, right of dashed line) and ( f –n) equilibria visualized on the x–z plane. The two
ends, ( j,k), of the connector branch FP4 are created at subcritical pitchfork bifurcations from four-roll branches
FP1 and FP1′, associated with eigenmodes (b) e3 and (c) e′

4, respectively. From ( j) to ( f ), the rolls above and
below z = 2.5 merge, while from (k) to ( f ), the roll at z = 7.5 disappears; we call these the roll-merging and
roll-disappearing half-branches of FP4, respectively. At ( f ), the two half-branches meet three-roll branch FP2
in a transcritical bifurcation; eigenmodes (d) e5 and (e) −e5 lead to the roll-splitting and roll-creation portions
of FP4, respectively. Solutions FP1 and FP2 have symmetry groups [D4]xz and [D3]xz, respectively. The
eigenmodes and the FP4 solutions all have the smaller symmetry group [Z2]xz with no z-translation symmetry.
(All have [O2]y.) Labels ( f, j,k) correspond to those used in the bifurcation diagrams in figures 2(a)–2(c). In
(f –n), the same colour bar is used as in figures 2(d)–2( f ).
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Figure 4. Schematic diagram of the set of FP4 branches associated with figure 3. The square on the top
represents the pitchfork bifurcation point of FP1 (figure 3j), while the square on the bottom, rotated by
2π/8 with respect to the top one, represents that of FP1′ (figure 3k). Four roll-merging half-branches,
shown in red, emanate from four corners of each of the squares; and four roll-disappearing half-branches,
shown in blue, emanate from four sides of each of the squares. These are the half-branches shown in
figures 3( j,i,h,g, f ) and 3(k,l,m,n, f ), and also those obtained by τ(0, 2.5), τ(0, 5.0) and τ(0, 7.5), in which
the roll merging or disappearing occurs at other locations. Each roll-merging half-branch emanating from FP1
meets a roll-disappearing half-branch emanating from FP1′, and vice versa, at the equator, on which are situated
the transcritical bifurcation points with the FP2 branch, such as figure 3( f ).

emanating from FP1 meets a half-branch of the opposite colour emanating from FP1′ at
the equator, which contains transcritical bifurcation points of different phases in z.

3.2.2. Eigenvectors of FP1 and FP1′
Figures 3(b) and 3(c) show the unstable eigenmodes e3 of FP1 and e′

4 of FP1′ at Ra =
13 384 that are responsible for the two simultaneous subcritical pitchfork bifurcations
that create the two half-branches of FP4. We call these e3 and e′

4 because the FP1 (and
FP1′) branch at Ra = 13 384 has two larger positive eigenvalues resulting from the circle
pitchfork bifurcation to FP3. Eigenvectors e3 and e′

4 have the same eigenvalue, λ3,4. The
Arnoldi method computes two linearly independent eigenmodes of the double eigenvalue
λ3,4; for e3 we select the linear combination of these that most resembles the difference
between FP4 and FP1 at the bifurcation point of figure 3( j). The eigenvectors of FP1′
are related to those of FP1 by a translation τ(0, 1.25). We select as e′

4 the analogous
combination of eigenmodes of FP1′ that most resembles the difference between FP4 and
FP1′ at the bifurcation point of figure 3(k). Eigenmodes e3 and e′

4 differ qualitatively: e3
has two narrow intense temperature extrema surrounded by wide diffuse patches of the
opposite sign, while e′

4 has two wide diffuse patches surrounded by narrow extrema. Each
eigenmode has two centres of πxz symmetry, at z = 2.5 and 7.5.

Examining the eigenvectors helps us to understand the progression from the fourfold
translation-symmetric FP1 (and FP1′) to FP4. The eigenvectors describe defects that, when
added to FP1 (or FP1′), lead to roll merging or roll disappearance. The red (hot) and blue
(cold) diffuse patches of e3 are in opposition to those of FP1 at the boundary between two
rolls at z = 2.5; compare figures 3(b) and 3( j). This implies that the between-roll boundary
at z = 2.5 becomes weaker along this half-branch. In contrast, at z = 7.5, FP1 and e3 have
temperatures of the same sign, so this roll boundary is strengthened. Turning now to the
pathway (k,l,m,n, f ), this roll-disappearing half-branch is associated with eigenvector e′

4
in figure 3(c). Eigenvector e′

4 is very weak at z = 2.5 and at z = 7.5, around which rolls
of FP1′ are centred. However, the temperature of e′

4 surrounding z = 2.5 is such as to
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reinforce the roll at z = 2.5 of FP1′, whereas e′
4 and FP1′ display opposite temperatures

surrounding z = 7.5. The roll of FP1′ at z = 7.5 consequently disappears along this
half-branch.

Eigenmodes of the Jacobian matrix describe the temporal dynamics near a fixed
point ū, but we have used them above to describe the tangent along a branch (or
half-branch) near a bifurcation. We now explain the justification for this. For a dynamical
system du/dt = f (u, Ra), a curve of fixed points ū(Ra) is defined via 0 = f (ū(Ra), Ra).
Differentiating in Ra yields

0 = ∂f
∂Ra

+ [Df ]ū
dū

dRa
, (3.2)

where [Df ]ū is the Jacobian evaluated at ū. Near a bifurcation, the Jacobian has an
eigenvalue λbif near zero so that multiplication by the inverse Jacobian projects onto the
bifurcating eigenvector ebif :

dū
dRa

= −[Df ]−1
ū

∂f
∂Ra

= −
∑

j

1
λj

〈
∂f

∂Ra
, ej

〉
ej ≈ − 1

λbif

〈
∂f

∂Ra
, ebif

〉
ebif , (3.3)

where 〈·, ·〉 is an inner product, and (λj, ej) are the eigenpairs of [Df ]ū, with |1/λbif | �
|1/λj| for the other eigenvalues of [Df ]ū. This leads to the expression

ū(Ra − �Ra) ≈ ū(Ra) − �Ra
dū

dRa
≈ ū(Ra) + �Ra

λbif

〈
∂f

∂Ra
, ebif

〉
ebif (3.4)

for the evolution of a branch near a bifurcation.

3.2.3. Normal form of D4 symmetry
The simultaneous occurrence of two pitchfork bifurcations described above is precisely the
scenario seen in pattern formation on a square domain, which, like FP1 (and FP1′), has the
symmetry group D4, generated by πxz and τ(0, 2.5). In the square, rolls can be oriented
horizontally or vertically, and these are equivalent because they are related by a rotation by
π/2. The eigenvectors associated with vertical and horizontal rolls can also be combined to
form diagonal eigenvectors. The nonlinear equations that are equivariant (compatible) with
D4 symmetry predict the existence of branches of diagonal states (Swift 1985; Bergeon,
Henry & Knobloch 2001) that originate from eigenvectors that are equal superpositions of
vertical and horizontal eigenmodes, as will be discussed below. The diagonal roll branches
bifurcate simultaneously with the horizontal and vertical roll branches, but the nonlinear
diagonal states are not related to the horizontal or vertical states by symmetry operations
and are therefore not equivalent. Both types of branches have a reflection symmetry –
vertical or horizontal in one case, and diagonal in the other case – so that their symmetry
groups are Z2.

This scenario for pattern formation on a square domain also exists for the FP1 branch,
with the four co-rotating rolls playing the role of the four sides of a square, and
the four inter-roll intervals playing the role of the corners. Instead of considering the
FP4 branch with its endpoints FP1 and FP1′ as we did in figure 3, we now consider
a single phase of FP1 and its two bifurcations to roll-merging and roll-disappearing
half-branches corresponding to its eigenvectors e3 and e4. Four bifurcating branches
resembling figures 3( j)–3( f ) result from eigenvector e3 along with shifted and reflected
versions, and four branches resembling figures 3(k)–3( f ) result from e4 along with shifted
and reflected versions. The bifurcations occur at the same value of the Rayleigh number,
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but the branches are not equivalent, as seen in figures 2(a) and 3(a), for example,
by the different locations of the saddle–node bifurcations emanating from FP1 and
FP1′.

We now give a more quantitative explanation of this scenario. Consider the dynamical
system governing ( p, q) ∈ R2:

ṗ = (μ − ap2 − bq2)p, (3.5a)

q̇ = (μ − bp2 − aq2)q, (3.5b)

with μ, a, b all real parameters. The bifurcation parameter is μ, and a, b are nonlinear
coefficients that saturate the instability. System (3.5) is a projection of a larger system
near a bifurcation onto the bifurcating eigenmodes. A normal form is the smallest system,
in terms of both number of variables and polynomial order, that is able to reproduce the
behaviour of the larger system near the bifurcation. The form of system (3.5) is dictated
by the requirements that it be equivariant under (consistent with) change in sign of p or q,
and interchange of p and q, which defines the group D4.

The Jacobian of (3.5) is[
μ − 3ap2 − bq2 −2bpq

−2bpq μ − bp2 − 3aq2

]
. (3.6)

Evaluated at the trivial solution ( p, q) = (0, 0), this becomes μI , i.e. a double eigenvalue
μ. The non-trivial fixed points of system (3.5) are

p = ±
√

μ/a, q = 0, (3.7a)

p = 0, q = ±
√

μ/a, (3.7b)

p = ±
√

μ/(a + b), q = ±
√

μ/(a + b), (3.7c)

p = ±
√

μ/(a + b), q = ∓
√

μ/(a + b). (3.7d)

Thus (3.5) has eight non-trivial solutions, two each of types (3.7a), (3.7b), (3.7c) and
(3.7d). Although solutions (3.7a) and (3.7b) are related to one another by the symmetry
( p, q) → (−q, p), as are solutions (3.7c) and (3.7d), solutions (3.7c) and (3.7d) are not
related to solutions (3.7a) and (3.7b) by interchanging p and q, or by changing their signs.

The scenario by which FP1 gives rise to FP4 is analogous to system (3.5) and (3.7),
with FP1 playing the role of the trivial solution p = q = 0. The assumption of normal
form theory is that FP4 solutions can be approximated as superpositions of the base state
FP1 and its eigenvectors e3 and τ(0, 2.5) e3 at the bifurcation:

FP4 = FP1 + p(t) e3 + q(t) τ (0, 2.5) e3, (3.8)

with p(t) and q(t) governed by the amplitude equations or normal form (3.5). The
quantity p measures the amplitude of eigenvector e3 in figure 3(b), which gives rise
to the half-branch in which two rolls merge at z = 2.5. The phase-shifted τ(0, 2.5) e3,
whose amplitude is measured by q, gives rise to a different half-branch in which roll
merging occurs at z = 5.0. Figures 5(a,b) show these eigenvectors, while figure 5(c) shows
their normalized sum. Further shifts, τ(0, 5) e3 = −e3 and τ(0, 7.5) e3 = −τ(0, 2.5) e3,
correspond to −p and −q, respectively.

Turning now to the four roll-disappearing half-branches bifurcating from FP1, these
are produced by eigenvectors τ(0, 2.5n) e4 for n = 0, 1, 2, 3. The normalized sum of the
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Figure 5. (a) Eigenmode e3 of FP1, with the same phase as in figure 3(b). (b) Quarter-domain-translated
version of (a): τ(0, 2.5) e3. (c) Superposition (e3 + τ(0, 0.25)e3)/

√
2. (d) Superposition (e3 − τ(0, 0.25)

e3)/
√

2. Note that (e3 + τ(0, 2.5) e3)/
√

2 = e4 = τ(0, −3.75) e′
4 (compare with figure 3c).

roll-merging eigenvectors (e3 + τ(0, 2.5) e3)/
√

2 turns out to be the roll-disappearing
eigenvector e4, analogously to the fact that the sum of a p solution and a q solution
yields a p + q solution. (Because these are eigenvectors, their amplitudes have no
importance.) The sum of two neighbouring roll-disappearing eigenvectors (not shown) is
a roll-merging eigenvector, analogously to the combinations ( p + q) + ( p − q) ∝ p and
( p + q) − ( p − q) ∝ q. This confirms the correspondence between the normal form (3.5)
and our hydrodynamic system with its four-roll branch FP1, its connector branch FP4, and
its eigenvectors e3 and e4.

3.2.4. Transcritical bifurcation between FP4 and D3-symmetric FP2
Figure 3(a) shows the intersection between FP4 and the three-roll branch FP2 at figure 3( f )
in a transcritical bifurcation (TC). From the point of view of FP2, the FP4 roll-merging
half-branch ( j,i,h,g, f ) can be called a roll-splitting half-branch when traversed in the
opposite order ( f,g,h,i, j). Similarly, the FP4 roll-disappearing half-branch (k,l,m,n, f ) can
be called a roll-creation half-branch when traversed in the order ( f,n,m,l,k). Because FP2
has threefold translation symmetry τ(0, 10/3), any of the three rolls in figure 3( f ) can be
the site of a roll-splitting or a roll-creation event, so six FP4 half-branches, three of each
type, emanate from FP2 at TC. These join pairwise at FP2: for example, in figure 3, the
upper half-branch with roll splitting at z = 2.5 (figures 3h,i) meets the lower half-branch
in which roll creation occurs at z = 7.5 (figures 3m,l). (We assume that the saddle–node
bifurcations have no effect on this scenario.)

The bifurcation from FP2 to FP4 breaks threefold translation symmetry but retains
reflection symmetry πxz. This can be seen in figure 3(h), for example, where the roll
centred at z = 2.5 is stretched, while the other two rolls remain of the same size and
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related to one another by reflection in z = 2.5. For figure 3(m), the reasoning is the same,
but is applied to the inter-roll space at z = 7.5.

We now turn to the eigenmodes of FP2 and FP4 close to TC. To the right of figure 3( f ),
figure 3(d) displays the eigenmode e5 of FP2 at Ra � 11 283, leading to FP4. As
previously, the name e5 is used because FP2 has four eigenvalues with larger real parts. By
a slight abuse of notation, we use −e5 to denote the direction in which FP2 is approached
from FP4 for Ra � 11 283, and visualize it in figure 3(e). We obtain ±e5 by subtracting the
temperature fields of FP2 from FP4 states to the right and left of point ( f ) in figure 3(a), as
well as from the Arnoldi method. Using (3.4) again, we can superpose FP2 in figure 3( f )
with eigenvector e5 in figure 3(d) to yield FP4 in figures 3(g) and 3(h), since e5 opposes the
roll in FP4 centred at z = 2.5, leading to an expanded roll and eventually to roll splitting.
Similarly, we can superpose figure 3( f ) with eigenvector −e5 in figure 3(e) to yield FP4
in figures 3(n) and 3(m). Since −e5 opposes the rolls on either side of z = 7.5 in FP4, this
inter-roll space expands, eventually making room for roll creation.

As FP2 has threefold translation symmetry, e5 of FP2 can be shifted by ±10/3 in
z, yielding a triple of eigenvectors only two of which are linearly independent, since
τ(0, 10/3) e5 + τ(0, −10/3) e5 = −e5. These share the same eigenvalue λ5,6, depicted
in figure 6(a). Along branch FP4, these eigenvectors are modified, so that they are no
longer related by τ(0, ±10/3) and hence have different eigenvalues, shown as λ5 and λ6
in figure 6(b). Eigenvectors e5 and e6 of FP4 at Ra = 11 292.2, shown in figures 6(d)
and 6(e), are symmetric and anti-symmetric, respectively, with respect to xz-reflection
symmetry about z = 2.5 and z = 7.5.

3.2.5. D3 symmetry
We now consider the equations governing bifurcation in the presence of D3 symmetry. In
this case, we will consider not the normal form, but a related system, i.e. the universal
unfolding of the degenerate case of the normal form, because these are the equations
that best describe our results. See Gambaudo (1985), Golubitsky et al. (1988) and Dawes
(2005) for details. These equations are

ṗ = −μp + b( p2 − q2) − ap( p2 + q2), (3.9a)

q̇ = −μq − 2bpq − aq( p2 + q2), (3.9b)

with a, b real parameters, μ the bifurcation parameter, and ( p, q) the amplitudes of
eigenmodes of the FP2 branch. As stated in § 3.2.3, the correspondence of (3.9) with our
high-dimensional hydrodynamic system consists of approximating FP4 by a superposition
of FP2 with its eigenvectors e5 and τ(0, 10/3) e5 at the bifurcation point, whose amplitudes
are represented here by p and q:

FP4 = FP2 + p(t) e5 + q(t) τ (0, 10/3) e5. (3.10)

Let us begin by studying steady solutions with q = 0:

p = 0, (3.11a)

μ − bp + ap2 = 0 ⇒ p =
[

b ±
√

b2 − 4μa
]

/(2a). (3.11b)

These are shown in figure 7(a). The trivial solution p = 0 corresponds to the FP2
branch. Two sets of solutions corresponding to FP4 are created at μ = b2/(4a); this is a
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Figure 6. (a,b) Evolution of eigenvalues relevant to transcritical bifurcation FP2 ↔ FP4 at Ra = 11 283:
(a) bifurcating double eigenvalue λ5,6 of FP2; (b) two eigenvalues of FP4, λ5 (whose sign is reversed with
respect to λ5,6 of FP2) and λ6, where |λ6| ≈ 3 |λ5|. (c) Base state FP4 for eigenmodes e5 and e6 in (d,e).
(d,e) Eigenmodes e5 and e6 of FP4 associated with λ5 and λ6 at Ra = 11 292.2 (red circles in b). Eigenmode
e5 is xz-reflection symmetric about z = 2.5 (and z = 7.5), and is related to a change in amplitude along the
branch, while e6 is anti-xz-reflection symmetric about z = 2.5 (and z = 7.5), and is related to a change in phase
perpendicular to the branch. In (c), the same colour bar is used as in figures 2 and 3.

saddle–node bifurcation. The set of solutions closer to zero intersects the trivial FP2-type
branch p = 0 in a transcritical bifurcation at μ = 0. These two bifurcations are marked as
SN and TC in the parabola in figure 7(a). The saddle–node and transcritical bifurcations
are also seen in the hydrodynamic case and are labelled by (g, f ) in the bifurcation diagram
of figure 3.

The Jacobian of (3.9) is

[−μ + 2bp − 3ap2 − aq2 −2bq − 2apq
−2bq − 2apq −μ − 2bp − 3aq2 − ap2

]
. (3.12)

Evaluated at ( p, q) = (0, 0) corresponding to FP2, this becomes −μI , i.e. one double
eigenvalue −μ. Evaluated at the q = 0, μ − bp + ap2 = 0 solution corresponding to FP4,
we obtain[−μ + 2bp − 3(bp − μ) 0

0 −μ − 2bp + (μ − bp)

]
=
[

2μ − bp 0
0 −3bp

]
. (3.13)

Since ap2 can be neglected near TC, the FP4-type solutions (3.11b) take the form p ≈ μ/b.
(In accordance with the previous nomenclature, these are two half-branches, one for μ >
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p

0

FP2 TC

SN

(b2/4a, 0)

(0, b/2a)

(0, b/a)

µ

p

µ = 0

(FP2)µ

q

(b)(a)

Figure 7. (a) Parabola in the μ–p plane representing the FP4-like solutions of μ − bp + ap2 = 0 (with a, b
positive) of (3.9). The thicker horizontal axis (p = 0) represents the FP2 branch. The saddle–node SN at μ =
b2/(4a) and transcritical bifurcation TC at μ = 0 are marked by dots. The region surrounded by the grey
square corresponds to the meeting point of two types of half-branches (red and blue) and to the double-cone
schematic in (b). (b) Three-dimensional schematic figure in the p–q–μ plane illustrating the solutions near TC.
Each cone contains three FP4 solutions of each type (red or blue), with angular (phase) separation 2π/3. These
all intersect the μ axis representing FP2 at μ = 0 in a transcritical bifurcation. The solid thicker line (red on
the left cone, blue on the right) represents the path of figure 3, while the five dashed lines correspond to paths
that would be observed with a �z = ±10/3 shift in z or a reversal of the path direction, or both.

0, and the other for μ < 0.) The Jacobian becomes[
2μ − μ 0

0 −3μ

]
=
[
μ 0
0 −3μ

]
. (3.14)

Thus the FP4 states emanating from TC each have two eigenvalues of opposite signs,
which are approximately μ (in the p direction connecting FP2 and FP4) and −3μ (in the q
direction, perpendicular to p). This is precisely the behaviour seen in figures 6(a) and 6(b).
Indeed, if we define −μ to be the eigenvalue of FP2 in figure 6(a), then we find that the
eigenvalues of FP4 in figure 6(b) are approximately μ and −3μ.

Dropping now the requirement that q = 0, two more solutions to (3.9) of FP4-type exist,
related to the q = 0 solution by rotation by ±2π/3 in the p–q plane:(

p
q

)
→
(

cos(2π/3) ± sin(2π/3)

∓ sin(2π/3) cos(2π/3)

)(
p
q

)
. (3.15)

Each can be assigned an amplitude
√

p2 + q2 ≈ μ/b and a phase tan−1(q/p). The phase
can in turn be mapped to a vertical location in [0, Lz) of a defect in one of the three rolls or
inter-roll spaces. Such a defect is a precursor to roll splitting or roll creation, respectively,
as one leaves TC along one of the half-branches. The eigenvalues of the other two FP4
solutions are again μ and −3μ. The eigenvector associated with μ resembles the defect
itself; i.e. it corresponds to a change in its amplitude. The eigenvector associated with
−3μ corresponds to a change in phase, i.e. a tendency for the defect to translate in z. Like
all eigenvectors, this tendency is local to TC, and nonlinear trajectories deviate from the
phase-translation path before any phase change is actually achieved.

A schematic illustration of these solutions and the transcritical bifurcation is shown
in figure 7(b). Roll-splitting and roll-creation half-branches are shown in red and blue,
respectively. Three of each type of half-branch exist on each cone. The thick red and blue
half-branches comprise the branch followed in figure 3 from FP1 to FP1′, along which
roll merging and then roll creation occur. Another two half-branches comprise a branch
from FP1 to FP1′ along which roll disappearance and then roll splitting occur. The other
four branches have starting or ending points that are shifted by �z ± 10/3 from FP1 or
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FP1′. These six branches are all included in figure 7(b) in order to give a full picture of
the transcritical bifurcation; their depiction is not necessary for the understanding of the
single path of figure 3.

3.3. Wider perspectives
In the previous subsections, we have extensively discussed the D4 and D3 bifurcation
scenarios separately. We now take a wider perspective, discussing various aspects of the
interaction between the D4 and D3 bifurcations.

The double-cone visualization of figure 7 may seem incompatible with the globe-like
visualization of figure 4. In fact, each figure is local, and the two visualizations have
only two branches in common. Each branch belongs simultaneously to a sphere and
to a double cone. Four of the branches traversing TC through the double cone are not
present in figure 4; two more spheres would be required to contain them. Similarly,
more double cones would be required to contain all the meridians of the globe. A total
of 2 × 3 × 8 = 48 half-branches = 24 branches are necessary to close the system, i.e. to
include all branches that emanate from all bifurcations encountered by branches created at
FP1. (Other phase changes in z lead to a continuous infinity of branches.) It is not possible
(or we have not been able) to depict the entire scenario in a single diagram. However, we
again emphasize that figure 3 can be understood without recourse to this large number of
other symmetry-related branches.

We have depicted FP4 as connecting two versions of FP1 related by a shift �z = 1.25,
while passing continuously through a transcritical bifurcation at FP2. However, there exists
another construction of this scenario: the transcritical bifurcation could be broken apart in
such a way that rather than traversing FP2 smoothly, FP4 enters the transcritical bifurcation
at FP2 but then exits at FP2′ ≡ τ(1.25, 0) FP2. In figure 3, the second row would contain
not a repeated version of figure 3( f ), but instead a shifted version of it. Figures 3(n,m,l,k)
would then also be shifted, with the result that figure 3(k) would be identical to figure 3( j)
instead of being a shifted version of it. In the schematic figure 7, the left cone and right
cone would each be reflected in such a way as to separate the two vertices and to join the
two bases. In the schematic figure 4, the equator would be cut open, while the north pole
and a rotated south pole would be joined. In summary, the FP4 branches start and end
in states with a shift �z = 1.25 between them, but this can happen either by connecting
FP1 and FP1′ while passing continuously through FP2, as discussed in §§ 3.2.1–3.2.5,
or alternatively, by connecting FP2 and FP2′ while passing continuously through FP1.
Yet another alternative point of view is to double the FP4 branch, passing continuously
through FP1, FP2, FP1′, FP2′, FP1 without any phase jumps.

Dangelmayr (1986) determined the normal form for the occurrence of bifurcations to
periodic patterns of two different wavenumbers, and its unfolding. The equations for
the D3–D4 mode interaction predict a number of the features that we observe for our
branch FP4 connecting the four-roll and three-roll branches FP1 and FP2, such as the
existence of two qualitatively different connecting branches (like our roll-disappearing
and roll-merging branches), a nearby saddle–node bifurcation on one of them (like that of
figure 3g), and a Hopf bifurcation giving rise to temporally periodic solutions (such as the
PO1 branch to be discussed in § 4.2). Some of the features of our scenario are not present
in the normal form, in particular the subcriticality of the bifurcations from FP1 to FP4 and
the possibly related two additional saddle–node bifurcations of FP4. Another feature that
is not mentioned in Dangelmayr (1986) is the involvement of the two Lz/8 phase-shifted
versions of FP1. The normal form predicts the stable and unstable eigenvalues of the
solution branches, such as those discussed in the next subsection.
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3.4. Stability
We start by discussing the stability of the FP4 state, which changes multiple times along
its branch. Bifurcating subcritically from FP1, the upper (roll-merging) branch of FP4 is
initially unstable and inherits the four unstable eigendirections of FP1 at Ra = 13 383.9
(two of which are the y-dependent modes that give rise to FP3). Three of these four
positive eigenvalues are successively stabilized along the upper branch by undergoing
tertiary bifurcations to quaternary states that are not discussed in this work. The last
positive eigenvalue is stabilized after undergoing a saddle–node bifurcation at Ra = 8255.
This stability is short-lived, however, ending when FP4 undergoes a Hopf bifurcation
at Ra = 9980 to a periodic orbit to be discussed in the next section. The FP4 branch
undergoes two more saddle–node bifurcations, at Ra = 11 437 and then at Ra = 10 020,
before it finally terminates on FP1′, a translated version of the FP1 branch that also has
four unstable eigendirections. The connector branch FP4 is thus stable over the interval
8255 < Ra < 9980, along with the four-roll branch FP1. However, it is not surprising
that the FP4 branch was overlooked by Gao et al. (2013), since it is unstable over
most of its range of existence, and its bifurcation occurs from a point at which FP1 is
unstable.

As mentioned in § 3.1, in domain [Lx, Ly, Lz] = [1, 1, 10], branch FP1 is stable at onset,
while FP2 is unstable. Both FP1 and FP2 exist in domain [1, 0, 10] as well. After the
bifurcation to FP1, the conductive state acquires two unstable y-independent eigenmodes.
These are inherited by FP2 at onset, and so FP2 is also unstable when computed in
domain [1, 0, 10]. Concerning the stability of FP1, since the bifurcation to FP3 breaks
y-translation symmetry, it does not occur in domain [1, 0, 10], and FP1 remains stable until
the bifurcation to FP4 (in § 3.2) at Ra = 13 383.9. Regarding FP4, its range of stability
does not change if computed in domain [1, 0, 10], since the unstable part of the FP4 branch
always has at least one unstable y-independent eigenmode. Due to their fourfold symmetry,
FP1 and FP3 can exist in domain [1, 1, 2.5], in which their existence and stability ranges
are the same as in [1, 1, 10]. These ranges are summarized and compared in table 1
below. Since every zero-crossing of an eigenvalue or of its real part is accompanied by
a bifurcation, there necessarily exist many more branches that we have not computed, for
example along the FP4 branch.

4. Periodic orbits

Gao et al. (2013) report that the flow becomes oscillatory at Ra = 11 270 through
a Hopf bifurcation from the three-dimensional steady rolls (FP3), and that this is
followed by a period-doubling bifurcation at approximately 12 100 < Ra < 12 200. In
our simulations of the domain [1, 1, 10] in the range 9980 < Ra < 11 270, the flow can
be either steady or time-periodic, depending on the initial conditions. This suggests
that in addition to the stable steady solution FP3, a limit cycle also exists in this
configuration and Rayleigh number range. We have performed simulations at multiple
Rayleigh numbers far from the onset of convection. The time-periodic states have
been numerically identified and converged to periodic orbits via the standard Newton
shooting approach. These converged time-periodic solutions were subsequently extended
in Rayleigh number by parametric continuation. The connections between the periodic
orbits and the previously discussed fixed points are shown in the bifurcation diagram in
figure 8(a). (As stated previously, other unstable equilibria and periodic orbits exist that
we did not investigate or include in figure 8.) This section is devoted to explaining this
figure.
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Flow Present results Present results Gao et al. (2013, 2015)
existence stability

Domain [1, 1, 10]
Base flow 0 � Ra 0 � Ra < 5826 0 � Ra < 5800
FP1 (4 2-D rolls) 5826 < Ra < 14 000 5826 < Ra < 10 166 5800 < Ra < 10 100
FP2 (3 2-D rolls) 6869 < Ra < 14 000 Unstable —
FP3 (4 3-D rolls) 10 166 < Ra < 14 000 10 166 < Ra < 11 261 10 100 < Ra < 11 270
FP4 (connector) 8255 < Ra < 13 384 8255 < Ra < 9980 —
PO1 9980 < Ra < 14 000 9980 < Ra < 12 013 Ra = 12 000
PO2 12 013 < Ra < 12 832 12 013 < Ra < 12 082 12 200 < Ra � 13 000
PO3 11 261 < Ra < 13 300 11 261 < Ra � 11 700 11 270 < Ra < 12 000
PO4 12 066 < Ra < 13 300 Unstable 12 100 < Ra < 12 200
PO5 12 257 < Ra < 13 300 Unstable —
PO6 12 306 < Ra < 13 300 Unstable —

Domain [1, 1, 2.5]
Base flow 0 � Ra 0 � Ra < 5826 0 � Ra < 5800
FP1 (1 2-D roll) 5826 < Ra < 14 000 5826 < Ra < 10 166 5800 < Ra < 10 100
FP3 (1 3-D roll) 10 166 < Ra < 14 000 10 166 < Ra < 11 261 10 100 < Ra < 11 270
PO3 11 261 < Ra < 13 300 11 261 < Ra < 12 066 11 270 < Ra < 12 068
PO4 12 066 < Ra < 13 300 12 066 < Ra < 12 257 12 068 < Ra < 12 258
PO5 12 257 < Ra < 13 300 12 257 < Ra < 12 306 12 258 < Ra < 12 306
PO6 12 306 < Ra < 13 300 12 306 < Ra < 12 316 12 306 < Ra < 12 317

Domain [1, 0, 10]
Base flow 0 � Ra 0 � Ra < 5826 0 � Ra < 5708
FP1 (4 2-D rolls) 5826 < Ra < 14 000 5826 < Ra < 13 384 5708 < Ra < 13 000
FP2 (3 2-D rolls) 6869 < Ra < 14 000 Unstable —
FP4 (connector) 8255 < Ra < 13 384 8255 < Ra < 9980 —
PO1 9980 < Ra < 14 000 9980 < Ra < 14 000 13 500 < Ra < 15 300

Table 1. Summary of bifurcation sequence and comparison with the literature, including all fixed points (FP)
and periodic orbits (PO) mentioned in this paper. All of the states exist in domain [Lx, Ly, Lz] = [1, 1, 10], while
only some exist in smaller domains [1, 1, 2.5] and [1, 0, 10]. For each of the three domains, we summarize the
ranges of existence and stability for all states that we have computed. States existing in two domains may be
stable in the smaller domain but unstable in the larger domain. When upper limits are listed as 14 000 or 13 300,
these numbers are not the end of the branch, but where we stopped the numerical continuation. The Rayleigh
number ranges given in the last column correspond to those reported by Gao et al. (2013, 2015) and do not
necessarily strictly correspond to existence or stability ranges. Ranges not reported are indicated by ‘—’.

4.1. Period-doubling cascade: PO3–PO6
Periodic orbit PO3 arises from FP3 in a supercritical Hopf bifurcation at Ra = 11 261, at
which all of the spatial symmetries of FP3 are preserved. This is depicted in the upper
left inset of figure 8(a), where the two red branches bifurcating from the FP3 branch
correspond to the maximum and minimum of ‖θ‖2 along PO3. Orbit PO3 was observed
by Gao et al. (2013, 2015), and the threshold that they reported is Ra = 11 270. Comparing
the vorticity isosurfaces of FP3 at Ra = 11 000 and PO3 at Ra = 11 500, Gao et al. (2013)
show in their figures 10 and 13 that PO3 conserves most of the spatial structure of FP3,
with the addition of strands connecting the rolls that appear and disappear periodically.

Orbit PO3 undergoes a period-doubling bifurcation leading to PO4 at Ra = 12 066, with
further period-doubling bifurcations leading to PO5 and PO6 at Ra = 12 257 and 12 306
(very similar to the thresholds Ra = 12 068, 12 258 and 12 306 found by Gao et al. 2015).
The temperature norms ‖θ‖2 of PO3–PO6 are all close, as is typical for period-doubling
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Figure 8. (a) Bifurcation diagram containing four fixed points (FP) and six periodic orbits (PO) in domain
[Lx, Ly, Lz] = [1, 1, 10]. For each periodic orbit, two curves (maximum and minimum of ‖θ‖2 along an
orbit) are shown. Orbit PO1 bifurcates from FP4 at Ra = 9980; PO2 bifurcates from PO1 at Ra = 12 013
and undergoes a saddle–node bifurcation at Ra = 12 832; PO3 bifurcates from FP3 at Ra = 11 261, followed
by a period-doubling cascade creating PO4–PO6 at Ra = 12 066, 12 257 and 12 306. The apparent lack of
smoothness in the curves representing PO6 at Ra ≈ 13 000 corresponds to the overtaking of one temporal
maximum of ‖θ‖2 by another as Ra is varied. The two insets zoom in on the Rayleigh number range where
PO2 and PO3 bifurcate. Stable and unstable branches are represented by solid and dashed curves, respectively.
The stability ranges shown for PO3–PO6 are those for domain [1, 1, 2.5]; in domain [1, 1, 10], PO3 is unstable
above Ra = 11700, so PO4–PO6 are all unstable at onset. (b) The periods of the six periodic orbits in (a), with
the same colour code. The Rayleigh numbers and periods are listed at each period-doubling bifurcation point,
indicated by stars.

cascades. The periods of these limit cycles are shown in figure 8(b), where period-doubling
bifurcation points are indicated by stars. We were able to continue all of PO3–PO6 until at
least Ra = 13 300. The dynamics of PO4–PO6 are very similar to those of PO3, so we do
not show visualizations of them. Orbits PO3–PO6 inherit the fourfold symmetry [D4]xz of
FP3, hence their spatial and temporal variations all take place within a single roll. These
states and the transitions between them are the only phenomena that we report that are not
related to competition between three and four rolls.

We refer readers to Gao et al. (2015) for their measurements of the convergence to
the Feigenbaum number characterizing the accumulation of period-doubling bifurcations
until chaos. Indeed, Gao et al. (2013) observed that the flow in [Lx, Ly, Lz] = [1, 1, 10]
becomes irregular following subharmonic oscillations at Ra = 12 200. Gao et al. (2015)
estimated that a chaotic regime is reached at approximately Ra = 12 320 (in [Lx, Ly, Lz] =
[1, 1, 2.5]), and our DNS results confirm this. Gao et al. (2015) also discovered and
reported five other periodic windows in their table II, each corresponding to another
period-doubling cascade leading to chaotic behaviour. Although we have converged and
continued these periodic windows, we omit them from the bifurcation diagram to avoid its
becoming even more crowded.

Domain size has a major effect on the stability of PO3–PO6. When computed in a
domain of the size of one wavelength [1, 1, 2.5], PO3 is stable until it is succeeded by
PO4, but in the domain [1, 1, 10], it becomes unstable at Ra ≈ 11 700 by undergoing
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a large-wavelength instability which breaks the fourfold symmetry. Since this is prior
to the period-doubling bifurcation, PO4, PO5, PO6 and the subsequent states resulting
from the period-doubling cascade are also unstable in [1, 1, 10]. The stability properties
that we have chosen to indicate in figure 8(a) for PO3–PO6 are those for the domain
[1, 1, 2.5]. We have summarized the range of existence and stability of PO3–PO6 in both
three-dimensional domains in table 1. Because FP3 is a three-dimensional state, PO3–PO6
do not exist in the two-dimensional domain [1, 0, 10].

4.2. Wavelength-changing periodic orbits: PO1 and PO2
For Ra > 12 200 in domain [1, 1, 10], Gao et al. (2013) observed that numerical
simulations started from a random initial condition settled down to three rolls, while
four rolls were found intermittently. They also observed hysteresis in a simulation at
Ra = 12 000, initiated from an instantaneous three-roll flow field at Ra = 12 200, which
finally settled down to a periodic orbit with three rolls. We have carried out DNS at nearly
the same parameter values, illustrated in figure 9(a), which show long intervals of two
types of time-periodic behaviour, which we call PO1 and PO2. The simulation is started
from a random initial condition. The initial chaotic behaviour for t � 250 is succeeded by
the weakly unstable PO1 (300 � t � 650). Afterwards, PO2 is visited (1000 � t � 1600)
before a transition via subcritical period-doubling to a fully chaotic state (t � 1800),
which then persists without relaminarization. A phase portrait of these DNS is shown
in figure 9(b), where instantaneous flow fields are represented by grey dots in the D/I–I
plane, where D is the dissipation due to viscosity, and I is the thermal energy input due to
buoyancy. It can be seen that the two periodic orbits, with relatively low input/dissipation,
are surrounded by the fully chaotic dynamics in this projection.

Continuing PO1 backwards in Rayleigh number, we find that PO1 is created via
a supercritical reflection-symmetry-breaking Hopf bifurcation from FP4 at Ra = 9980,
where FP4 is stable, so that PO1 is stable at onset. The complex conjugate neutral
eigenvector pair of FP4 is anti-xz-reflection symmetric, so PO1 has the spatial symmetry
group SPO1 ≡ 〈πy, τ (�y, 0)〉 ∼ [O(2)]y, and the spatio-temporal symmetry

(u, v, w, θ)(x, y, z0 + z, t + T/2) = (−u, v, −w, −θ)(−x, y, z0 − z, t), (4.1)

where here, z0 ≈ 4 and T/2 ≈ 14; compare figures 9(d) and 9(e), as well as figure 10(a).
Orbit PO1 arises from FP4 at a Rayleigh number at which it has three unequal rolls; its

temporal dynamics consists of periodic lengthening and near-fragmentation of the longest
roll. Figure 10 shows temperature profiles in z for PO1 (and PO2) at fixed x and y locations,
and at two instants separated in time by approximately a half-period. In these profiles,
two successive zero-crossings (θlocal(z) = 0) correspond to one roll. Figure 10(a) shows a
close, but unsuccessful approach to roll creation in PO1 at z ≈ 3 (t = 12) and then again
at z ≈ 5 (t = 26).

Orbit PO1 loses stability in a supercritical pitchfork bifurcation at Ra = 12 013
(emphasized in the upper right inset of figure 8a), leading to the creation of PO2,
in which y-translation symmetry is broken, but y-reflection symmetry is retained:
SPO2 ≡ 〈πy〉 ∼ [Z2]y. Unlike PO1, in PO2 the central roll succeeds in splitting, as can
be seen in figures 11(b) and 11(h), as well as by the zero-crossings in figure 10(b), but only
temporarily (figures 11(b,e,h,k). Orbit PO2 has the spatio-temporal symmetry

(u, v, w, θ)(x, y, z0 + z, t + T/2) = (−u, v, −w, −θ)(−x, y + 0.5, z0 − z, t), (4.2)
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Figure 9. The DNS at Ra = 12 200. (a) Time series initialized by random initial conditions. The trajectory
passes through two unstable time-periodic flows emphasized in the inset, PO1 (300 < t < 650) with period
T = 27.6, and PO2 (1000 < t < 1600) with period T = 34.5. (b) Projection of the instantaneous flow fields,
separated by �t = 1, of the chaotic dynamics and of the two periodic orbits onto the thermal energy input (I)
and the viscous dissipation over energy input (D/I). (c–e) Flow structures of PO1 visualized via the temperature
field on the y–z plane (at x = 0) and x–z plane (at y = 0.5). During the cycle, the longest of the three rolls
lengthens and begins to fragment, and then recovers. The flow structures of PO2 are shown in figure 11.

where z0 ≈ 4 and T/2 ≈ 17. (The wavy structure of PO2 leads to the requirement that a
half-domain shift in y be included in (4.2). The combination of τ(0.5, 0) and πxz relates
the red upward-facing ‘tongues’ centred at y = 0.5 to the blue downward-facing ‘tongues’
centred at y = 0.)

Orbit PO2 undergoes a saddle–node bifurcation at Ra = 12 832, and we followed
this PO2 branch until Ra = 12 804, shortly after the saddle–node bifurcation. Also,
PO2 undergoes a secondary Hopf bifurcation (also called a Neimark–Sacker or torus
bifurcation) at Ra = 12 082, at which a complex conjugate pair of eigenvalues crosses the
real axis, which generally leads to a torus that we will not discuss in the present work. Thus
PO2 is stable only over a very small range of Rayleigh number (12 013 < Ra < 12 082),
as can be seen in the upper right inset of figure 8(a). It is therefore not surprising that PO2
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Figure 10. Temperature profile θlocal at fixed x, y and along z ∈ [0, 10] for two instants of (a) PO1, period
T = 27.6, and (b) PO2, period T = 34.5, at Ra = 12 200. The time interval between two instants for both PO1
and PO2 is approximately half of the corresponding period. For PO1 in (a), the same x and y locations are used,
while for PO2 in (b), the y-locations at which the measurements are taken differ by Ly/2. The instantaneous
temperature fields at t = 12 and t = 26 for PO1 as well as at t = 6 and t = 23 for PO2 are shown in figures 9
and 11.

was not observed by Gao et al. (2013). The period of PO1 remains nearly constant over a
wide range of Ra, while that of PO2 increases with Ra and then stays almost constant.

Orbits PO1 and PO2 capture the oscillatory dynamics of convection rolls. Orbit PO1
has three non-uniform rolls of fluctuating size and intensity (figures 9c–e). Although
some rolls stretch and become quite weak, they never actually split anywhere along the
branch. For PO2, the number of rolls varies between three (figures 11(a,c,d, f ) along with
figures 11(g,i, j,l)) and four (figures 11(b,e) along with figures 11(h,k)). We suggest that the
intermittency and hysteresis observed by Gao et al. (2013) are a manifestation of visits to
the coexisting unstable periodic orbits PO1 and PO2.

Since PO1 is y-independent, it can also exist in domain [Lx, Ly, Lz] = [1, 0, 10]. While
the existence ranges of PO1 in domains [1, 0, 10] and [1, 1, 10] are the same, their
stabilities differ: in [1, 0, 10], the bifurcation to y-dependent PO2 does not occur, so
PO1 remains linearly stable at least until Ra = 14 000, the upper limit at which we
stopped the continuation. Gao et al. (2013) also observed this oscillating three-roll flow
in the two-dimensional domain [1, 0, 10], for 13 500 < Ra < 15 300. Orbits PO1 and PO2
cannot exist in domain [1, 1, 2.5], and PO2 cannot exist in domain [1, 0, 10]. The existence
and stability intervals that we have computed for all of these flows are stated and compared
with those of Gao et al. (2013, 2015) in table 1.

5. Discussion and conclusions

Vertical convection supports a large variety of flow patterns and thus can serve as a
paradigm for nonlinear pattern formation in driven dissipative out-of-equilibrium systems.
In this work, we have investigated thermal convection between two vertical plates held at
different temperatures via both numerical simulation and continuation. We have computed
the stable and unstable invariant solutions of the fully nonlinear three-dimensional
Oberbeck–Boussinesq equations leading to the spatio-temporal complex convection
patterns observed in experiments and simulations, far beyond the onset of convection.

We have also discovered previously unknown fixed points and periodic orbits. For
these and the previously known solutions, we have identified the bifurcations responsible
for their generation and termination, as well as their stabilization and destabilization.
Summarizing the bifurcations and regimes in the computational domains [Lx, Ly, Lz] =
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Figure 11. Three-dimensional periodic orbit PO2 at Ra = 12 200 (with period T = 34.5) via two
complementary visualizations of the temperature field: (a–f ) y–z plane at x = 0, and (g–l) x–z plane at
y = 0.5.

[1, 1, 10], [1, 1, 2.5] and [1, 0, 10], we compare in table 1 the results from Gao et al. (2013,
2015) with those that we have obtained by computing unstable states and their bifurcations.
Good quantitative agreement is achieved for those states that are observed in both studies.
We note that all of the solution branches that we have found are connected by one or more
bifurcations to the laminar branch.

Despite the complexity of the bifurcation diagrams shown in figures 2 and 8, almost
all of the dynamics of this system results from one simple physical phenomenon: the
competition between three and four rolls. (The exception is the steady three-dimensional
state FP3 and the subsequent period-doubling sequence PO3–PO6, whose dynamics
involves a single roll.) This competition takes different forms for the steady and
time-dependent states.
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For steady states, the most basic scenario in pattern formation is essentially
one-dimensional and consists of a sequence of primary bifurcations from a featureless
state to branches with different numbers of regularly spaced rolls, cells or waves. Of these,
only the first to bifurcate is stable at onset; primary branches often undergo secondary
instabilities to mixed-mode branches that transfer stability between the different branches
(e.g. Knobloch & Guckenheimer 1983). In an idealized context, this is the Eckhaus
instability (e.g. Eckhaus 1965; Tuckerman & Barkley 1990). A mathematical framework
that covers wavelength competition is that of mode interaction (Dangelmayr 1986).

Our hydrodynamic configuration involving the four-roll branch FP1, the three-roll
branch FP2, and the connector branch FP4 presents a complicated version of this basic
scenario. The FP1 branch with four equally spaced rolls has D4 symmetry and hence
gives rise to two sets of mixed-mode branches FP4. These two sets are associated with
two qualitatively different paths for passing from four to three rolls: the merging of two
rolls, and the disappearance of a roll. (This is kinematically possible because these are
co-rotating rolls, rather than the counter-rotating rolls of the standard Rayleigh–Bénard
configuration.) Indeed, dual sets of branches are a typical feature of bifurcation in the
presence of D4 symmetry (Swift 1985; Knobloch 1986). The D4 bifurcation scenario is
present in many other situations and will be encountered again in our companion paper
Zheng et al. (2024), in the more classic two-dimensional context of competition between
straight and diagonal orientations (Demay & Iooss 1984; Tagg et al. 1989; Chossat & Iooss
1994; Bengana & Tuckerman 2019; Reetz et al. 2020).

A new feature of the D4 scenario seen here is that each FP4 half-branch of
disappearing-roll type meets and merges smoothly with an FP4 half-branch of
merging-roll type. To the best of our knowledge, this phenomenon has not been observed
previously. The FP4 branches that merge do not emanate from the same four-roll branch,
but from two branches, FP1 and FP1′, that are phase-shifted by a half-roll with respect to
one another. The simultaneous existence of branches FP1 and FP1′ is in turn due to the
fact that FP1 branches of all phases are created by a circle pitchfork bifurcation. At this
meeting point, the two types of half-branches also meet the FP2 branch, which contains
states with three equal rolls, in a transcritical bifurcation. The phase jump can instead be
assigned to the transcritical bifurcation, i.e. between three-roll branches FP2 and FP2′,
rather than to the pitchfork bifurcations from the four-roll branches. A last alternative is
to follow the FP4 branch twice, via FP1, FP2, FP1′, FP2′, FP1 without any phase jumps.
The D3 symmetry of the FP2 states governs the details of the transcritical bifurcation. The
physical phenomena of roll merging and roll disappearance, roll creation and roll splitting,
provide visual illustrations of the group-theoretic D4 and D3 scenarios, and of the D3–D4
mode interaction equations in Dangelmayr (1986) and Crawford et al. (1990).

Turning now to time-dependent solutions, periodic orbits PO1 and PO2 could be
considered to be temporal versions of the variation with Rayleigh number along the
connector branch FP4, from which PO1 bifurcates. Figure 9 shows that PO1 contains
temporal phases in which one of its three rolls widens or weakens, resembling the
precursors to four rolls seen in figure 3 as Ra is varied along the FP4 branch. Although
PO1 does not succeed in creating a fourth roll, figure 11 shows that in PO2, these events
culminate in the periodic formation and destruction of a fourth small and fragile roll.
This may or may not be related to the breaking of y-translation symmetry from PO1 to
PO2; perhaps roll formation or destruction is facilitated when rolls become wavy. The
competition between three and four rolls continues to dominate for Rayleigh numbers
above 12 082 when PO2 is destabilized, since the dynamics beyond this point consists
of chaotic three-roll flow with infrequent and irregular bursts of four rolls, as illustrated
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by Gao et al. (2013). In the present study in domain [Lx, Ly, Lz] = [1, 1, 10], we report
no stable fixed points for Ra > 11 261 and no stable periodic orbits for Ra > 12 082.
Nevertheless, we have been able to numerically continue these unstable solutions into
the chaotic regime, far from the parameter regime in which they are stable.

Although DNS can give access to complex flow dynamics at specific control
parameters, numerical continuation organizes these solutions and determines their
bifurcation-theoretic origin, by situating them in the context of a bifurcation diagram. Our
work bridges the gap between purely DNS-based observations and numerical bifurcation
analysis, leading to a better description and understanding of complex convective flows.
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