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Reflection of a centred compression wave
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The reflection of a centred compression wave, that converges to a single point on the
reflecting surface, is studied and compared with shock reflection. It is shown that the
double solution domain, with both regular and Mach reflections, of centred compression
wave reflection is enlarged with respect to shock reflection. For centred compression
wave reflection, no clear triple point structure exists, and instead, the reflected shock
and Mach stem form a smooth curved shock wave. Moreover, the relative Mach stem
height, though decreasing almost linearly with the relative wedge trailing edge height as
in shock reflection, has a lower bound when the trailing edge height increases, meaning
that wedge height variation induced transition, that occurs in shock reflection, does not
exist. The existence of this lower bound is due to the fact that beyond a certain value of the
wedge trailing edge height, the wedge trailing edge encounters the wedge lower surface
that generates the centred compression wave. The present study expands our knowledge of
shock reflection, and may be useful for supersonic inlet design.

Key words: shock waves

1. Introduction

Shock reflection in both a steady and unsteady flow is an important flow phenomenon
(Ben-Dor 2007). Consider just shock reflection in a steady supersonic flow as displayed in
figure 1. Both regular reflection (as shown in figure 1a) and Mach reflection (as shown in
figure 1b) may occur. The inflow Mach number M0 satisfies M0 > 1, a wedge of length w
and angle θw induces an incident shock wave (i), which reflects at the reflecting surface.
For regular reflection, the reflection of the incident shock wave (i) produces a reflected
shock wave (r). For Mach reflection, first observed by Mach (1878), the reflection of the
incident shock wave (i) produces not only a reflected shock wave (r) but also a strong
shock wave called the Mach stem (m), and the three shock waves are connected to a point
known as the triple point (T), from which a slipline (s) is issued. The slipline separates the
flow downstream of the reflected shock wave and the flow downstream of the Mach stem.

† Email address for correspondence: baicy@buaa.edu.cn

© The Author(s), 2024. Published by Cambridge University Press 984 A3-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:baicy@buaa.edu.cn
https://doi.org/10.1017/jfm.2024.105


C.-Y. Bai

Reflecting surface Reflecting surface

(0) (0)

(2)

(3)

(1)
(1)

G G

r

s
m

r

w w

i i
RC

RC
Rt

R(L, g)
R(L, g)

A(0, HA)
A(0, HA)

T(xT, HT)

θw
θw

β1
β1

(b)(a)

Figure 1. Shock reflection configuration. (a) Regular reflection. (b) Mach reflection.

The three shock waves and the slipline separate the flow into four regions (labelled (0),
(1), (2) and (3) in figure 1b), the solutions of which in the vicinity of the triple point can
be obtained using the three shock theory of Von Neumann (1945).

Various issues have been studied for steady shock reflection, among which are the
criteria for transition to Mach reflection from regular reflection and vice versa, and the
structure and size of Mach reflection.

For the first issue, Von Neumann (1943) provided two transition criteria, which are
represented by two curves in the plane (M0, θw): one curve is called the detachment
criterion and is a sufficient condition for Mach reflection, and the other is the von Neumann
criterion and is a necessary condition of Mach reflection. These two curves enclose a
region in the plane (M0, θw) called the dual solution domain, within which both reflections
may be possible (Henderson & Lozzi 1975; Hornung, Oertel & Sandeman 1979). In this
dual solution domain, whether we have Mach reflection or regular reflection depends on
the history of the building of the actual steady flow. Hysteresis of the reflection type and
solution occurs when changing the wedge angle or inflow Mach number from different
directions (see Ben-Dor et al. (2002) and Hornung (2014) for a review of important
works related to this subject). In numerical simulation, if a uniform initial flow at the
dual solution domain is directly given, regular reflection will initially be observed and
will eventually transition to Mach reflection (see, for instance, Mouton & Hornung 2007).
A regular reflection in the dual solution domain may also transit to Mach reflection through
some strong upstream perturbation (Ivanov et al. 1997, 1998; Ivanov, Kudryavtsev &
Khotyanovskii 2000; Kudryavtsev et al. 2002; Li, Gao & Wu 2011).

For the second issue, one important question is the mechanism to determine the size
of Mach reflection configuration. This has been considered as a challenging problem (see
Ben-Dor (2007), p. 53). Hornung & Robinson (1982) argued that the Mach stem height
is affected by the pressure decreasing information from the wedge trailing edge expansion
fan and postulated a functional form of the Mach stem height, showing that the relative
height of the Mach stem depends on the inflow Mach number, the wedge angle, the ratio
of specific heats of gas and the relative height of the trailing edge. This functional form
has been the basis for many subsequent theoretical modelling starting from the work of
Azevedo (1989) and Azevedo & Liu (1993). The modelling relies on the use of the triple
point solution, the characteristics that bring the trailing edge pressure into the sonic throat
below the slipline and a quasi-one-dimensional modelling for flow below the slipline.
Since then, more elaboration has been considered to improve the modelling (c.f. Li &
Ben-Dor 1997; Mouton & Hornung 2007; Gao & Wu 2010; Bai & Wu 2017, 2021;
Chernyshov, Savelova & Kapralova 2021; Choe 2022) and to extend to more complex
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flow (c.f. Schotz et al. 1997; Grasso & Paoli 1999; Shoesmith & Timofeev 2021; Vinoth,
Sushmitha & Rajesh 2022).

Past studies for symmetric shock reflection have mainly considered one incident shock
wave. Recently, symmetric steady shock reflection with two incident shock waves have
been considered (Guan, Bai & Wu 2018, 2020; Guan et al. 2020). Both pre-Mach reflection
and post-Mach reflection are identified. Pre-Mach reflection means that it is the first
incident shock wave that has Mach reflection while the second incident shock will interact
with the reflected shock of this reflection. Post-Mach reflection means that it is the second
incident shock that has Mach reflection, and the first incident shock wave interacts with
the Mach stem of this reflection. In case of pre-Mach reflection, the second incident
shock wave elevates the Mach stem and may induce inverse Mach reflection below the
von Neumann condition. In case of post-Mach reflection, the first incident shock wave
intersects the Mach stem to produce a type IV shock interaction that produces a jet
penetrating into the flow duct below the slipline.

Isentropic compression has been used in the design of the Busemann inlet (Busemann
1942), which may produce shockless flow (Miri 2012). The full Busemann intake has a
very long axial length, so that viscous loss due to a long boundary layer is important. To
avoid viscous loss, Ogawa et al. (2015) considered truncated and stunted intakes. They
observed that this shortening of the intake may produce transition from regular reflection
to Mach reflection. They then suggested further investigation for this transition.

The specific purpose of this paper is to study the reflection of a centred compression
wave, that is, compression waves that converge to a single point at the reflecting surface.
The study of such an ideal configuration not only expands our knowledge of shock
reflection but also sheds some light on what could happen in isentropic compression
application.

In § 2 the geometry of the wedge is defined to produce the required centred compression
wave considered in this paper. Both regular reflection and Mach reflection will be displayed
through numerical simulation. In § 3 we follow the transition analysis of shock reflection to
derive the detachment condition and the von Neumann condition for centred compression
wave reflection. The difference between the transition criteria of centred compression wave
reflection and shock reflection, and the reasons for this difference, will be discussed. The
study of Mach reflection in centred compression wave reflection will be provided in § 4.
The flow structure and the influence of the relative wedge trailing edge height and the
total wedge turning angle on the Mach stem height will be discussed, with comparison
to the result of shock reflection. Concluding remarks will be provided in § 5. Numerical
simulation is carried out for the compressible Euler equations in gas dynamics, using a
second-order Roe scheme, in a similar way as in Bai (2023).

2. Reflection of a centred compression wave

Figure 2 displays the configuration for shock reflection considered traditionally and for
centred compression wave reflection considered in this paper.

2.1. Method to produce a centred compression wave
The centred compression wave is here generated from the lower wedge surface, which has
a continuously increasing deflection angle, represented in figure 2(b) by a finite number of
Mach waves for clarity.

Let θw be the accumulated deflection angle of the lower wedge surface to produce the
compression waves. The lower surface producing the centred compression wave can be
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Figure 2. Reflection configuration. (a) Shock wave reflection. (b) Centred compression wave reflection.

viewed as having an infinite number of turning or deflection, each with a deflection angle
�θw → 0. To define the wedge lower surface shape that produces the required centred
compression wave, we adopt a coordinate system with the horizontal axis coinciding with
the reflecting surface and the vertical axis passing through the leading edge A1 of the
wedge.

By centred compression wave reflection we mean all the Mach waves will intersect at
a common point N on the reflecting surface, as shown in figure 2(b). The Mach waves
all converge to a single point (say N) if the coordinates of the wedge lower surface (x, y)
satisfy

tan(θ + μ) = y
xN − x

, (2.1)

where θ , with tan θ = −(dy/dx), is the local wedge angle compared with the horizontal
axis (positive if downward) and μ = arcsin(1/M) is the Mach angle.

The shape given by (2.1) can also be written more explicitly as

tan
(

arcsin
1
M

− arcsin
dy
dx

)
= y

xN − x
, (2.2)

where the Mach number M is determined by the Mach wave relation ν(M) − ν(M0) = −θ ,
or

ν(M) − ν(M0) = arctan
(

dy
dx

)
. (2.3)

Numerically, the centred compression wave may be represented by a finite number, say
K, of discrete Mach waves Lk with k = 1, 2, . . . , K, each being produced due to a small
wedge deflection (�θw = θw/K) at points Ak with k = 1, 2, . . . , K, as shown in figure 2(b)
where only five Mach waves are shown for clarity.
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The wedge deflection angle at each discrete point Ak, compared with the inflow
direction, is θAk = k�θw with k = 1, 2, . . . , K.

The vertical position yAk at each turning point satisfies the following obvious
geometrical relation:{

yAk − yAk+1 = (xAk+1 − xAk) tan(k�θw), k = 1, 2, . . . , K − 1,

yAk − yR = (xR − xAk) tan(k�θw), k = K.
(2.4)

Here yA1 = HA1 = HA and HA denotes the inlet height.
A Mach wave Lk of Mach angle μAk = arcsin(1/Mk−1) is produced at Ak, where Mk−1

is the Mach number just upstream of the Mach wave generated at Ak. The Mach number
Mk is related to the flow deflection angle θAk = k�θw by the Prandtl–Meyer wave relation
applied to the present centred compression wave

ν(Mk) − ν(M0) = −θAk , (2.5)

where ν(M) is the well-known Prandtl–Meyer function defined by

ν(M) =
√

γ + 1
γ − 1

arctan

√
γ − 1
γ + 1

(M2 − 1) − arctan
√

M2 − 1. (2.6)

Alternatively, we may also use the differential form of the Mach wave relation

dM
M

= −

(
1 + γ − 1

2
M2

)
dθ

√
M2 − 1

, (2.7)

which, after integration, also gives (2.5).
For a centred compression wave, each Mach wave is required to reflect at a common

point, here denoted N(xN, 0), on the reflecting surface, which imposes the following
constraint for the horizontal position xAk of Ak:⎧⎨

⎩
xA1 = 0,

xN − xAk+1 = yAk+1

tan(μAk+1 + k�θw)
, k = 1, 2, . . . , K − 1.

(2.8)

Here xN , common to all Mach waves, is determined by that of the leading characteristics,
i.e.

xN = yA1

tan μA1

= HA

tan μA1

. (2.9)

Knowing xA1 = 0, yA1 = HA, and given yR, the expressions (2.4) and (2.8) can be used
to find xA2 and yA2 . More generally, the expressions (2.4) and (2.8) can be solved to give⎧⎨

⎩xAk+1 = yAk + xAk tan(k�θw) − xN tan(μAk+1 + k�θw)

tan(k�θw) − tan(μAk+1 + k�θw)
,

yAk+1 = (xN − xAk+1) tan(μAk+1 + k�θw),

(2.10)

so that xAk+1 and yAk+1 are explicitly related to xAk and yAk .
There will be a limit of the allowable deflection angle θw, and this limit occurs when

the last point AK coincides with the trailing edge R. This restriction will be considered in
§ 4.2.
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Figure 3. Mach number contours for centred compression wave reflection with M0 = 4. (a) Regular
reflection (θw = 18◦, yR/yA1 = 0.45); (b) Mach reflection (θw = 30◦, yR/yA1 = 0.4).

2.2. Numerical evidence of regular and Mach reflection for centred compression wave
Here we use numerical simulation to demonstrate the existence of both regular reflection
and Mach reflection. In the meantime we perform a grid convergence study. A regular
reflection and a Mach reflection for centred compression wave reflection are displayed in
figure 3(a,b), respectively.

It is seen that, for regular reflection, there is a single reflected shock, similar to regular
reflection of shock reflection. Mach reflection is largely different to that of shock reflection;
see § 4.1 for discussions.

We have found that a large number of grids is required to resolve the centred
compression wave and the reflected shock wave. To see this, we perform a grid refinement
study. When the grid is refined, the wedge lower surface is also refined, in such way that
the lower surface satisfies the shape function (2.1) if the grid size vanishes.

Figure 4 shows, for M0 = 4 and θw = 30◦, the Mach number contours using four
different grids of increasing density. Mesh C, which has 2000 × 400 grid points, produces
results very close to those using the denser mesh D. The influence of grid density on the
Mach stem height HT is shown in table 1. The Mach stem height HT is defined as the
height of the intersection point between the Mach stem and the leading characteristics of
the centred compression wave. The Mach stem height varies less than 1.4 × 10−3 if we
replace mesh D with mesh C, so we will use a mesh as dense as mesh C in the following
computations.

3. Transition conditions for the reflection of a centred compression wave

We follow Von Neumann (1943) for shock reflection to derive the von Neumann condition
and detachment condition for the reflection of a centred compression wave.

3.1. Transition conditions
Given M0 and the total wedge deflection angle θw, the flow parameters in region (1) of
figure 2(b) downstream of the centred compression wave are simply given by the isentropic
wave relations ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ν(M1) − ν(M0) = −θw,

p1 = p0

⎛
⎜⎝1 + γ − 1

2
M2

0

1 + γ − 1
2

M2
1

⎞
⎟⎠

γ /(γ−1)

,
(3.1)
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(b)(a)

(c) (d )

Figure 4. Mach number contours for M0 = 4, θw = 30◦ with different meshes. (a) Mesh A, 500 × 100;
(b) mesh B, 1000 × 200; (c) mesh C, 2000 × 400; (d) mesh D, 3000 × 600.

Mesh A B C D

HT

HA
0.1095 0.0912 0.0717 0.0716

Table 1. Mach stem height for different meshes at M0 = 4 and θw = 30◦.

where ν(M) is the Prandtl–Meyer function defined by (2.6).
In case of regular reflection, the flow parameters in the region downstream of the

reflected shock, denoted region (2) of figure 2(b), is now given by the oblique shock wave
relation with flow deflection angle θw,

⎧⎨
⎩

tan θw = fθ (M1, β12),
M2 = fM(M1, β12),

p2 = p1fp(M1, β12),

(3.2)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

fθ (M, β) = 2(M2sin2β − 1)

(M2(γ + cos 2β) + 2) tan β
,

fM(M, β) =
√

(γ − 1)M2 + 2

2γ M2sin2β − (γ − 1)
+ 2M2cos2β

(γ − 1)M2sin2β + 2
,

fp(M, β) = 1 + 2γ

γ + 1
(M2sin2β − 1).

(3.3)
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Figure 5. Transition criteria, in the M0 − θw plan, for centred compression wave (CCW) reflection, compared
with the transition criteria for shock wave reflection.

The detachment condition, denoted as θw = θ
(D)
w (M0), is the value of θw such that the

reflected shock reaches the detachment condition, i.e.

tan θ(D)
w (M0) = 2[(M2

1 − 1) tan2 βm − 1]

tan βm[(γ M2
1 + 2)(1 + tan2 βm) + M1(1 − tan2 βm)]

, (3.4)

where βm, given by

sin2 βm = 1
γ M2

1

[
γ + 1

4
M2

1 − 1 +
√

(1 + γ )

(
1 + γ − 1

2
M2

1 + γ + 1
16

M4
1

)]
, (3.5)

is the shock angle β at which dθ/dβ vanishes.
The von Neumann condition is the condition for θw, denoted as θw = θ

(N)
w (M0), such

that the pressure p2 determined by (3.2) is equal to the pressure pN of a normal shock
wave connecting to region (0), i.e.

p2 = pN = p0 fp
(

M0,
π

2

)
(3.6)

The transition criteria in the M0 − θw are displayed in figure 5, where we also show
the transition criteria for conventional shock reflection. We observe that the von Neumann
condition for centred compression wave reflection is lower than that for shock reflection,
and, in contrast, the detachment condition for centred compression wave reflection is
higher than that for shock reflection. Thus, the double solution domain for the centred
compression wave reflection is larger than that for shock reflection.

The observed difference between centred compression wave reflection and shock
reflection can be heuristically understood. It is well known that to achieve the same flow
deflection angle, isentropic Mach wave compression gives a larger pressure jump and a
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Figure 6. Shock polars for centred compression wave (CCW) reflection, with M0 = 4. Results are shown for
(a) θw = 20◦ and (b) θw = 27◦. RR - Regular reflection; MR - Mach reflection.

smaller Mach number decrease than shock compression, meaning that region (1) has a
higher pressure and higher Mach number with centred compression wave reflection than
that with a shock reflection. Thus, centred compression wave reflection has the same effect
on reflection than shock reflection with a larger θw. As a result, the transition curves for
centred compression wave reflection could be seen as a shift to the left and compression of
the transition curves for shock wave reflection, thus enlarging the double solution domain
at the same abscissa.

The difference between centred compression wave reflection and shock reflection can
also be explained using shock polars. Figure 6(a,b) gives the shock polars for θw = 20◦
and θw = 27◦, both with M0 = 4.

At θw = 20◦, shock polars for shock reflection, marked with dashed lines, only permit
regular reflection. The polar representing the reflected shock wave may intersect the axis
(regular reflection) but not the strong part (upper branch) of the polar from the origin.
Shock polars for centred compression wave reflection, marked with solid lines, however,
allow both regular reflection and Mach reflection. According to figure 5, the condition
with M0 = 4 and θw = 20◦ lies at the regular reflection domain for shock reflection and
the double solution domain for centred compression wave reflection.

At θw = 27◦, shock polars for shock reflection, marked with dashed lines, only permit
Mach reflection. The polar representing the reflected shock wave can not intersect the axis
but can intersect the strong part (upper branch) of the polar from the origin. Shock polars
for centred compression wave reflection, marked with solid lines, however, allow both
regular reflection and Mach reflection. According to figure 5, the condition with M0 =
4 and θw = 27◦ lies at the Mach reflection domain for shock reflection and the double
solution domain for centred compression wave reflection.

In the following we use numerical simulation to verify the conclusion from transition
analysis.
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3.2. Numerical verification of transition conditions
Numerical simulation is carried out for M0 = 4 with a series of wedge deflection angles
θw, which span the Mach reflection region, double solution region and regular reflection
region shown in figure 5 for both centred compression wave reflection and shock wave
reflection. In case it is possible to have a double solution, there are various ways to
get both regular reflection and Mach reflection. According to the studies for hysteresis
phenomenon in transition (Ben-Dor et al. 2002; Hornung 2014), we may use a regular
reflection solution (obtained for smaller θw) as an initial condition to get regular reflection
in the dual solution domain and a Mach reflection solution (obtained for larger θw) as
an initial condition to get Mach reflection in the dual solution domain. Using a uniform
flow with M0 = 4 everywhere as an initial solution, the steady solution of numerical
simulation gives regular reflection in the double solution domain (Mouton & Hornung
2007). To further demonstrate the possibility of Mach reflection, a Mach reflection solution
with a lower Mach number, say M0 = 3, is used as an initial solution and the numerical
simulation is carried out with M0 = 4 as the inflow condition until a steady solution is
obtained.

The Mach number contours from numerical simulation with M0 = 4 and θw =
18◦, 20◦, 23◦, 27◦ and 30◦ are displayed in figure 7 for centred compression wave reflection
and in figure 8 for shock reflection. The difference can also be seen from the hysteresis loop
shown in figure 9 (more discussion about the Mach stem height will be discussed in the
next section).

For centred compression wave reflection with M0 = 4, the double solution lies in
19.43◦ < θw < 28.80◦ according to the critical condition displayed in figure 5.

For θw = 18◦, we only have regular reflection according to the critical condition
displayed in figure 5. Numerically, we indeed only observe regular reflection and the
numerical result is displayed in figure 7(a).

For θw = 20◦, we should have both regular and Mach reflection according to figure 5.
As shown in figure 7(b,h), we indeed have both regular reflection and Mach reflection.

For θw = 23◦, we also should have both regular and Mach reflection according to
figure 5. As shown in figure 7(c,g), we indeed have both regular reflection and Mach
reflection.

For θw = 27◦, we also should have both regular and Mach reflection according to
figure 5. As shown in figure 7(d,f ), we indeed have both regular reflection and Mach
reflection.

For θw = 30◦, we should have only Mach reflection according to figure 5. Numerically
we indeed only obtain Mach reflection and the numerical result is shown in figure 7(e).

For shock reflection with M0 = 4, the double solution lies in 20.85◦ < θw < 25.61◦
according to the classical von Neumann condition and detachment condition. The
numerical results displayed in figure 8) show that the double solution occurs for θw =
22◦, 23◦ and 24◦, while for θw = 20◦, we only have regular reflection and, for θw = 26◦,
we only have Mach reflection.

4. Mach reflection configuration in centred compression wave reflection

In this section we use numerical simulation to study Mach reflection for a centred
compression wave. First we clarify the structure of Mach reflection that is distinctive
from Mach reflection by shock wave. Second we consider the influence of the wedge
trailing edge relative height g = yR/HA on the Mach stem height and possible transition.
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Figure 7. Mach contours for centred compression wave reflection, showing the regular reflection domain (θw =
18◦), double solution domain (θw = 20◦, 23◦ and 27◦) and Mach reflection domain (θw = 30◦), with M0 = 4.
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Figure 8. Mach contours for shock reflection, showing the regular reflection domain (θw = 20◦), double
solution domain (θw = 22◦, 23◦ and 24◦) and Mach reflection domain (θw = 26◦), with M0 = 4.
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Figure 9. The hysteresis loop in the (HT/HA − θw) (where HT denotes the Mach stem height and HA denotes
the inlet height) plane with M0 = 4. (a) Shock reflection, (b) centred compression wave reflection.

Lastly, we consider the Mach stem height when the flow deflection angle θw of the centred
compression wave increases.

4.1. Mach reflection that lacks a clear triple point
It is well known that, for Mach reflection by a shock wave, there is a triple point that
connects the incident shock, a reflected shock, a Mach stem and a slipline. All these
four discontinuities have a different angle in the vicinity of the triple point (see, for
instance, figure 8e–h). The flow between the slipline and the reflecting surface form a
convergent–divergent duct that is quasi-one-dimensional.

However, the Mach reflection configuration of a centred comnpression wave, as shown
in figure 7(e–h), displays the following differing features. (a) The reflected shock is highly
curved by the centred compression wave. These compression waves weaken the reflected
shock wave, since they are from the opposite family. (b) The Mach stem appears to result
simply from the reflection of the leading Mach wave. However, this is possible only if the
Mach stem is an inverted one. Although the curvature of the Mach stem can not be clearly
identified, it can be argued that it is an inverted Mach stem. Note that the inverted Mach
stem is convex towards the upstream direction and that the initial angle of the slipline is
negative (Henderson & Lozzi 1979; Hornung 1986; Hekiri & Emanuel 2015). (c) There
is no clear triple point, the reflected shock and Mach stem appear to form a single curved
shock and there is no distinct slipline (rather there are shear layers). (d) The flow below
the slipline is far from being quasi-one-dimensional. It is divergent in the initial part
and is then convergent. The divergent part increases the pressure to balance the pressure
increase of the impinging compression Mach waves, while the convergent part decreases
the pressure to balance the pressure decrease due to the impinging wedge trailing edge
expansion wave.

4.2. Influence of g and absence of wedge height induced transition
For shock reflection, it has been shown that when the relative wedge trailing edge height
g is small, the relative Mach stem height HT/HA (where HA = yA is the inlet height)
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Figure 10. Mach stem height as a function of g, with M0 = 4 and θw = 30◦.

decreases almost linearly with g (Li & Ben-Dor 1997; Schotz et al. 1997). This means
that Mach reflection may transit to regular reflection by increasing g. Vuillon, Zeiton
& Ben-Dor (1995) anticipated that such transition occurs before the wedge trailing edge
expansion fan interacts with the incident shock. Later on, Li & Ben-Dor (1997) found that
this transition occurs after the wedge trailing edge expansion fan interacts with the incident
shock. Bai (2023) determined the shape of the incident shock during interaction and found
the exact condition for transition. Due to the interaction between the wedge trailing edge
expansion fan and the incident shock, so the incident shock is weakened and the Mach
stem height decreases with g more slowly than a linear curve.

One would expect that, for centred compression wave reflection, we have a similar
phenomenon, i.e. Mach reflection to regular reflection transition should occur for some
large enough g. But, as we shall see, this does not happen.

Figure 10 displays, for M0 = 4, θw = 30◦, the Mach stem heights for different g.
Figure 11 show the Mach number contour lines. We observe that HT/HA varies almost
linearly with g, i.e. it holds that

HT

HA
≈ Ag + B, (4.1)

where A and B are independent of g. According to figure 10, the linear curve (4.1)
would intersect the axis g if g goes beyond 0.498. However, such a direct intersection
is impossible.

In shock reflection the wedge trailing edge expansion fan prevents the direct intersection
of a similar linear curve (4.1) with the g axis. In fact, interaction between this expansion
fan and the incident shock occurs when g > gmax, with

gmax = hmax/w
hmax/w + sin θw

,
hmax

w
= cos θw tan β01 − sin θw

tan(θw + μ1) − tan β01
tan(θw + μ1) (4.2a,b)
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Figure 11. Mach contours for M0 = 4, θw = 30◦ with different g. Results are shown for (a) g = 0.35,
(b) g = 0.375, (c) g = 0.4, (d) g = 0.41.

according to Li & Ben-Dor (1997) and Bai (2023). Here μ1 is the Mach angle in region (1)
of figure 1, β01 is the shock angle of the incident shock wave. Due to this interaction, the
linear decrease (4.1) is replaced by a nonlinear curve (see figures 9 and 14 of Bai 2023).

For centred compression wave reflection, we only have linear variation as given by
(4.1) and have no intersection, according to figure 10. In other words, we have pure linear
variation as given by (4.1) for some small values of g and for larger g, there is no solution!

In the case of centred compression wave reflection, the last Mach wave of the centred
compression wave is parallel to the leading characteristics of the trailing edge expansion
fan, since between two simple waves (here the compression Mach waves and the wedge
trailing edge expansion fan) is one uniform flow region where the characteristics lines are
parallel. Hence, no interaction between the centred compression wave and the trailing edge
expansion fan occurs. But this does not mean that the curve (4.1) can intersect the axis g
more easily than in shock reflection. In fact, it does not intersect the axis g at all. The
reason is given below.

When g increases, the last point (as point A5 in figure 2) of the wedge deflection part
that produces the centred compression wave will approach the trailing edge (R). Assume
that these two points coincide at g = gmax, i.e. gmax is the value of g at which the last point
( xAK ,yAK ) given by (2.10) coincides with the trailing edge (xR, yR). This means that the
maximum allowable value of g is restricted by the encounter of the last point AK with the
trailing edge (R).

Figure 12 gives the maximum values gmax. Not enough compression waves can be
produced when g > gmax. For the present case shown in figure 10, with M0 = 4, θw = 30◦,
we have gmax ≈ 0.426 according to figure 12, which is far below g = 0.498 required for
intersection in figure 10.
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Figure 12. The maximum value g = gmax at which the last characteristics line of the centred compression
wave coincide with the leading characteristics line of the trailing edge expansion wave.

In summary, for shock reflection with large g, it is the interaction between the wedge
trailing edge expansion fan with the incident shock that prevents the intersection of a linear
curve (4.1) with the axis g, while for centred compression wave reflection, when g goes
beyond some threshold shown in figure 12, the encounter of the last point (xAK+1 , yAK+1)
given by (2.10) with the trailing edge (xR, yR) prevents any increase in g at which the
linear curve (4.1) intersects the axis g. However, transition from Mach reflection to regular
reflection due to increasing g can still occur for shock reflection, while this transition does
not occur in centred compression wave reflection.

4.3. Influence of θw

It is well known that, keeping other flow parameters fixed, increasing θw (or the shock
angle of the incident shock wave) will increase the Mach stem height for shock reflection
(see Hornung & Robinson 1982). It is interesting to see whether the Mach stem height is
increased or reduced when the incident shock is replaced by a centred compression wave.

For M0 = 4, the Mach stem height variations as a function of the wedge angle θw are
shown in figure 13 for both centred compression wave reflection and shock wave reflection,
with g = 0.4 and 0.45.

We observed the following two phenomena.

(1) For centred compression wave reflection, the relative Mach stem height HT/HA
varies with θw much more slowly than for shock reflection.

(2) For θw larger than some value, the relative Mach stem height HT/HA for centred
compression wave reflection is smaller than that for shock reflection, while for
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Figure 13. Mach stem heights for centred compression wave reflection and shock wave reflection with
M0 = 4. Results are shown for (a) g = 0.4 and (b) g = 0.45.

θw smaller than some value, the relative Mach stem height HT/HA for centred
compression wave reflection is larger than for shock reflection.

We have shown in § 3 that, for centred compression wave reflection, the von Neumann
condition in terms of θw is lower than that for shock reflection. Thus, below the von
Neumann condition of shock reflection and above the von Neumann condition of centred
compression wave reflection, we have a finite height of the Mach stem in centred
compression wave reflection. This is why for relatively small θw, the Mach stem height
is higher in centred compression wave reflection than in shock reflection. For a higher
value of θw, we fail to find a simple reason to explain why shock reflection has a higher
Mach stem than in centred compression wave reflection.

5. Concluding remarks

We have studied reflection of a centred compression wave in steady supersonic flow
and compared the difference between centred compression wave reflection and shock
reflection. As in shock reflection, both regular reflection and Mach reflection exist. The von
Neumann condition and detachment condition for centred compression wave reflection are
obtained in a similar way as in shock reflection. The Mach reflection configuration and the
size of the Mach stem height are studied numerically.

It is shown that, in the θw–M0 plane, the von Neuman condition of centred compression
wave reflection is lower than that of shock reflection, while the detachment condition is
higher, i.e. the double solution domain is larger in centred compression wave reflection.

The Mach reflection configuration of centred compression wave reflection is found to
contain a single shock wave instead of three shock waves in Mach reflection of shock
reflection, though one part could be considered as the Mach stem and the rest as the
reflected shock. The flow duct below the slipline has a divergent part followed by a
convergent part, to balance the pressure of the incident compression waves and the pressure
of the wedge trailing edge expansion fan. Since the so-called Mach stem is directly
produced by the leading characteristics of the centred compression wave, it is necessarily
an inverted Mach stem.
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It is found numerically that the relative Mach stem height (HT/HA) decreases almost
linearly with the relative wedge trailing edge height (g), similarly as in shock reflection.
We find the existence of a maximum value of g above which the last point of the wedge
lower surface generating the centred compression wave encounters the wedge trailing edge
and, as a result, this linear curve can not intersect the axis g. This is different to shock
reflection, for which there is a maximum value of g above which the wedge trailing edge
expansion fan interacts with the incident shock. Moreover, no Mach reflection to regular
reflection occurs by increasing g, and we simply do not have a solution for large g. This
is different from shock reflection, where Mach reflection to regular reflection occurs for
large g.

The Mach stem height increases with the wedge deflection angle (θw) much more slowly
than in shock reflection. For θw smaller than some value, the Mach stem height of centred
compression wave reflection is higher than that of shock reflection, while for θw larger than
some value, this trend is reversed.

For shock reflection, a number of studies have been devoted to estimate the height of the
Mach stem height. However, since the flow below the slipline is highly two dimensional,
it would be challenging to work out a Mach stem height model for the present centred
compression wave reflection.
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