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Solving the three-dimensional boundary layer equations carries theoretical significance
and practical applications, which also poses substantial challenges due to its inherent
complexity. In this paper, the laminar boundary layer equations for the symmetry plane
of three-dimensional bodies are derived in an orthogonal curvilinear coordinate system
associated with the principal curvatures. The derivation of the boundary layer equations is
based not only on the common symmetric properties of the flow, as given by Hirschel et al.
(Three-Dimensional Attached Viscous Flow, 2014, Academic Press, pp. 183–187), but also
incorporates the geometric symmetry properties of the body. The derived equations are
more representative and simplified. Notably, these equations can degenerate to a form
consistent with or equivalent to the commonly used boundary layer equations for special
bodies such as flat plates, cones and spheres. Furthermore, for hypersonic flows, the
crossflow velocity gradient at the boundary layer edge on the symmetry plane is derived
based on Newtonian theory. Subsequently, this parameter can provide the necessary
boundary condition needed for solving the boundary layer equations using existing
methods. Finally, as examples, the equations developed in this paper are solved using
the difference-differential method for several typical three-dimensional blunt shapes that
appeared on hypersonic vehicles. They prove to be useful in the analysis and interpretation
of boundary layer flow characteristics in the symmetry plane of blunt bodies.

Key words: compressible boundary layers, hypersonic flow

1. Introduction

Symmetry is ubiquitous in this world, and almost all hypersonic flight vehicles, such as
HTV-2, HIFiRE-5, X-43 and X-37B, also have bilateral symmetry. Conceivably, symmetry
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plane solutions are usually the most representative parts of complete solutions over an
entire body and are frequently needed for practical purposes. Knowing these symmetry
plane solutions, a clear picture of the complete flow may immediately follow. Although
the contributions of modern computational fluid dynamics (CFD) have demonstrated
significant progress over the past two decades, simulation of the symmetry plane flow
characteristics usually requires computationally expensive three-dimensional calculations,
which remain full of complexities, especially for the prediction of aerodynamic heating
and skin friction in hypersonic flows (Candler et al. 2007; Mazaheri & Kleb 2007;
Candler, Subbareddy & Brock 2015). Thus, solving the relatively simple boundary layer
equations in a plane of symmetry is still attractive for theoretical analysis and can
provide accurate results to verify other three-dimensional calculations. Patel & Baek
(1987) have also reviewed the practical importance of plane-of-symmetry boundary
layers.

Indeed, boundary layer theories have received considerable attention over the last
hundred years or so. However, due to the complexities of fully three-dimensional flows,
most boundary layer theoretical analyses have been devoted to two-dimensional or axially
symmetric flows, such as flat plates or stagnation point flows. In the most general case
of three-dimensional flow, the boundary layer cannot be analysed except by cumbersome
numerical methods. Present available three-dimensional methods for hypersonic flows,
such as HABP (Jain & Hayes 2004), MINIVER (Engel & Praharaj 1983), INCHES (Zoby
& Simmonds 1985) and aeroheating (Hamilton, Dejarnette & Weilmuenster 1987), are
engineering methods, and they are overly approximate and restrictive for general use. In
this paper the boundary layer along the plane of symmetry for three-dimensional bodies is
of considerable interest, where the flow can provide the boundary conditions to be satisfied
by the flow on either side of it and, consequently, dictates the behaviour of the boundary
layer over the entire body. The complexity of the plane-of-symmetry boundary layer is
intermediate to that of the idealized two-dimensional boundary layer, on the one hand,
and the fully three-dimensional boundary layer, on the other. It differs from the former in
the presence of lateral flow convergence or divergence and from the latter in the absence
of crossflow. Perhaps the best-known example thereof is the boundary layer on either the
windward or the leeward side of a body of revolution, such as cones and spheroids (Cebeci
& Su 1988). For these shapes, scholars have obtained specific boundary layer equations
on a plane of symmetry based on their coordinate systems and solved the flow parameters
for laminar or turbulent symmetric flows (Murdock 1972; Xu & Wang 1988). Even in the
case of more generalized boundary layer equations, it is also not difficult to derive the
boundary layer equations in symmetry planes under the corresponding coordinate system
from fully three-dimensional boundary layer equations under the orthogonal curvilinear
coordinate system (Hirschel, Cousteix & Kordulla 2014; Schlichting & Gersten 2016).
A body-oriented coordinate system is generally used that has the advantage of being
independent of the angle of attack and is easy to calculate even if the body is not defined
analytically.

Deriving the boundary layer equations becomes manageable when a well-suited
coordinate system is chosen. However, the challenge lies in closing the equations and
achieving an exact solution. The system of equations by Schlichting & Gersten (2016)
for the principal terms of the crossflow seem to be unclosed, as they contain terms with
a longitudinal component of the peripheral velocity gradient, i.e. ∂w/∂z, which must be
taken into account in order to obtain an accurate description of the flow. Unfortunately,
the crossflow leads to complexity in the boundary layer solutions at the symmetry plane.
Currently, there are no general theoretical expressions for the crossflow velocity in the
symmetry plane of three-dimensional bodies.
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Hypersonic boundary layer theory in symmetry plane

Previous studies have typically focused on specific shape flows, such as the symmetry
plane of a spheroid (Wang 1970), a cone (Wu & Libby 1972) or a sharp cone (Murdock
1972), where the longitudinal velocity gradient can be approximately deduced based
on these particular model shapes. For a universal symmetry plane, this crossflow has
usually been simplified within the framework of ‘small crossflow’ or ‘axisymmetric
analog’ approaches traditionally taken in integral-type formulations (Hecht 1976). For
the small crossflow velocity assumption in the inviscid flow at the boundary layer
edge (Cooke 1961), it is interpreted that the transverse curvature perpendicular to the
symmetry plane is small. This condition imposes severe restrictions on the geometry
of the body and the angles of attack. Adams (1972) evaluated the results of ‘effective
cone’ calculations compared with a three-dimensional windward meridian analysis over a
sharp cone. Agnone (1974) also developed a crossflow correction factor for the effective
cone technique for the plane of symmetry of a body at the angle of attack. However,
these methods involve variables related to the flow characteristics, and they may lead to
underprediction of heat transfer in certain situations (Jain & Hayes 2004). Furthermore,
except for relatively simple bodies such as wedges, cones, spheres and sphere–cones, it is
also reasonably challenging to guess the correct form of pressure distribution on bodies
of complex configuration and calculate a streamline path and metric coefficient for an
equivalent axisymmetric body (Jain & Hayes 2004). Hence, the range of application of
the above methods is limited in scope and they fail to yield unique results.

The present investigation aims at carrying out boundary layer studies in the symmetry
plane of three-dimensional bodies and providing more general theoretical solutions for
hypersonic boundary layer equations. No restrictions on the angle of attack or the ‘small
crossflow’ assumption are imposed in deducing the equations, nor are there invoked any
of the common assumptions such as similarity, conical flow and others. Consequently, the
derived equations can provide a broader range of applications for the symmetry plane of
three-dimensional bodies. The paper is organized as follows. Three-dimensional laminar
boundary layer equations in orthogonal curvilinear coordinates are presented in § 2, and
simplified equations in the symmetry plane are derived in § 3 based on a special orthogonal
curvilinear coordinate system relevant to the principal curvatures. Transformation of the
boundary layer equations using the Levy–Lees method is shown in § 4, and remarks
on these equations are given in § 5. Based on Newtonian theory, the crossflow velocity
gradient at the boundary layer edge in the symmetry plane for hypersonic flows is derived
in § 6. Estimation of other boundary layer edge parameters and numerical solution of the
equations are also included in § 6. In § 7, several typical blunt bodies are selected to show
how the present equations are applicable to obtain the flow characteristics in the symmetry
plane quickly. § 8 concludes the paper.

2. General three-dimensional laminar boundary layer equations under the
body-oriented coordinate system

The choice of a coordinate system to describe the boundary layer equations over a
three-dimensional body is of major importance and significantly facilitates analysing and
solving these equations. In addition, the boundary layer approximation is impractical for
implementation in any system other than a body-oriented coordinate system, which is
independent of the angle of attack and takes into account the shape of the body surface
under consideration. Here, a body-oriented orthogonal curvilinear coordinate system
is chosen for the three-dimensional boundary layer equations. This coordinate system
consists of two curvilinear coordinates, x and z, locally parallel to the surface, and a third
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y, v (normal to the surface)

x, u

z, w
Y X

Z
O

Arbitrarily curved surface

Figure 1. Orthogonal curvilinear coordinate system for a three-dimensional boundary layer. Here (x, y, z)
represents the body-oriented coordinate system and (X,Y,Z) represents the Cartesian coordinate system.

coordinate, y, locally normal to the surface, as illustrated in figure 1, where the Cartesian
coordinate system (X, Y, Z) is used as the reference.

The initial step in deriving boundary layer equations in a symmetry plane
involves referencing the general three-dimensional boundary layer equations under the
body-oriented coordinate system, which can be found in various references (Cebeci, Kaups
& Moser 1976; Yousefi & Veron 2020). The laminar boundary layer equations for a steady
compressible flow under a body-oriented orthogonal coordinate system can be expressed
as follows: for continuity,

∂

∂x
(Hzρu)+ ∂

∂z
(Hxρw)+ ∂

∂y
(HxHzρv) = 0; (2.1)

for x-directional momentum,

ρ

(
u

Hx

∂u
∂x

+ w
Hz

∂u
∂z

+ v
∂u
∂y

+ uw
HxHz

∂Hx

∂z
− w2

HxHz

∂Hz

∂x

)
= − 1

Hx

∂p
∂x

+ ∂

∂y

(
μ
∂u
∂y

)
;

(2.2a)

for z-directional momentum,

ρ

(
u

Hx

∂w
∂x

+ w
Hz

∂w
∂z

+ v
∂w
∂y

− u2

HxHz

∂Hx

∂z
+ uw

HxHz

∂Hz

∂x

)
= − 1

Hz

∂p
∂z

+ ∂

∂y

(
μ
∂w
∂y

)
;

(2.2b)

for energy,

ρ

(
u

Hx

∂h
∂x

+ w
Hz

∂h
∂z

+ v
∂h
∂y

)
= u

Hx

∂p
∂x

+ w
Hz

∂p
∂z

+ ∂

∂y

(
μ

Pr
∂h
∂y

)
+ μ

(
∂u
∂y

)2

+ μ

(
∂w
∂y

)2

, (2.3)

where u, v and w are the velocity components in the x, y and z directions, respectively; ρ
is the density, p is the pressure, h is the static enthalpy, μ is the coefficient of viscosity
and Pr is the Prandtl number. Here, Hx and Hz denote the metric coefficients, which can
be obtained from the relationships between (X, Y, Z) and (x, y, z). In accordance with
conventional boundary layer theory, the metric coefficient in the normal direction Hy is
taken equal to unity, and Hx and Hz are assumed to be independent of y. Thus, Hx and Hz
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are given as

Hx =
√(

∂X
∂x

)2

+
(
∂Y
∂x

)2

+
(
∂Z
∂x

)2

, Hz =
√(

∂X
∂z

)2

+
(
∂Y
∂z

)2

+
(
∂Z
∂z

)2

.

(2.4a,b)

At the boundary layer edge, the pressure gradients in (2.2) must be matched to the flow
outside the boundary layer, which are given by Euler equations for inviscid flow. Thus,
(2.2a) and (2.2b) reduce to

− 1
Hx

∂pe

∂x
= ρe

(
ue

Hx

∂ue

∂x
+ we

Hz

∂ue

∂z
+ uewe

HxHz

∂Hx

∂z
− w2

e

HxHz

∂Hz

∂x

)
,

− 1
Hz

∂pe

∂z
= ρe

(
ue

Hx

∂we

∂x
+ we

Hz

∂we

∂z
+ uewe

HxHz

∂Hz

∂x
− u2

e

HxHz

∂Hx

∂z

)
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.5)

where subscript e denotes the outer edge of the boundary layer.
The boundary conditions for the above equations are similar to those for the

two-dimensional flow. That is, at the wall,

y = 0, u = v = w = 0, T = Tw or
(
∂T
∂n

)
w

= 0 (adiabatic wall), (2.6a)

where subscript w denotes the wall. And at the boundary layer edge,

y → ∞, u → ue, w → we, T → Te. (2.6b)

Notably since the boundary layer thickness is not known a priori, the boundary
condition at the edge of the boundary layer is given at large y, essentially y approaching
infinity.

3. Boundary layer equations in the symmetry plane

We investigate the three-dimensional flow over three-dimensional bodies with a symmetry
plane, and the vector of oncoming flow lies within that plane. The body-oriented
orthogonal coordinate system (x, y, z) is applied in the present work. The schematic of
the flow in the vicinity of the symmetry plane is shown in figure 2, where R and r
are the two principal radii of curvatures of the surface, one in the symmetry plane and
the other in its perpendicular plane, respectively. In this coordinate system, the plane of
symmetry is taken as the plane of z = 0, and the coordinate z is aligned on the surface
along the circumferential direction corresponding to the principal radius r. The coordinate
y is directed along the line normal to the body surface, and the coordinate x is locally
orthogonal to the other two coordinates. Differing from the streamline coordinate system,
where the coordinate is formed by the inviscid streamlines and the metric coefficients must
be calculated at every change of attitude of the body or Mach number for compressible
flows, the proposed coordinates are related to the principal directions or the eigenvalues
of the shape operator at a point in differential geometry. This coordinate system is
independent of incoming flows and the metric coefficients are calculated only once.

To obtain the metric coefficients appearing in the boundary layer equations,
relationships between (x, y, z) and (X, Y, Z) are required. At any given surface point
O on the symmetry plane in figure 2, its absolute coordinate values are independent of
coordinate transformation for the metric coefficients. Thus, point O is still defined as the
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EED
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R – r(1 – cosϕ)
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z
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Y (y)Y ( y)

B
B

Figure 2. Schematic geometry in the vicinity of the symmetry plane flows.

origin coordinates in the following analysing process. Points C and D are the centres of r
and R, respectively, i.e. CO = r and DO = R (figure 2). Points B and F are in the vicinity
of the symmetry plane, and point E is the centre of the principal radii of point B in the
x direction. From the coordinate’s illustration of these points, as shown in figure 2, the
transformation between the proposed curvilinear coordinates (x, y, z) and the Cartesian
coordinates (X, Y, Z) of point F are expressed as

X = [R − r(1 − cosϕ)] sinα, α = x
R − r(1 − cosϕ)

, (3.1a)

Y = y, (3.1b)

Z = r sinϕ, ϕ = z
r
, (3.1c)

where ϕ is the angle between lines CO and CB, and α is the angle between EB and EF.
Because the plane of z = 0 is the symmetry plane, the two principal radii of curvature

of the surface R and r can be expanded with respect to the z coordinate as

R(x, z) = R(x, 0)+ 1
2

z2 ∂
2R
∂z2 + · · · , (3.2a)

r(x, z) = r(x, 0)+ 1
2

z2 ∂
2r
∂z2 + · · · . (3.2b)

Approximating these two equations to the first order in z yields

R(x, z) = R(x, 0),
r(x, z) = r(x, 0).

}
(3.3)

Hence, R and r are a function of x only.
To obtain the derivatives required for solving the metric coefficients, we let point F

infinitely approach point O, i.e. x → 0 and z → 0, or ϕ → 0 and α → 0. Thus, cosα ≈ 1,
cosϕ ≈ 1, sinα ≈ x/R and sinϕ ≈ z/R. By utilizing these equations and keeping the first
truncation about z or x, the following equations can be obtained from (3.1) and (3.3):

∂X
∂x

= 1,
∂Z
∂x

= 0,
∂X
∂z

= 0,
∂Z
∂z

= 1,
∂2X
∂x∂z

= − z
Rr
,

∂2Z
∂x∂z

= 0. (3.4)
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Substituting these equations into (2.4a,b) yields the metric coefficients as

Hx = 1, Hz = 1. (3.5a)

Accordingly, the curvature parameters can be obtained as

∂Hx

∂z
= − z

Rr
,

∂Hz

∂x
= 0. (3.5b)

So far, in the symmetry plane, all the metric coefficients and the curvature parameters
needed in the boundary layer equations are obtained, consisting of lines of principal
curvatures of the body surface.

Plane-of-symmetry flows are characterized by the fact that w = 0 holds and all
derivatives with respect to z vanish, apart from the term ∂w/∂z /= 0. Then, the flow
variables can be expanded into a Taylor series about the symmetry plane with respect
to the z coordinate as

u(x, y, z) = u(x, y, 0)+ 1
2

z2 ∂
2u
∂z2 + · · · , (3.6a)

v(x, y, z) = v(x, y, 0)+ 1
2

z2 ∂
2v

∂z2 + · · · , (3.6b)

w(x, y, z) = z
∂w
∂z

+ 1
6

z3 ∂
3w
∂z3 + · · · , (3.6c)

ρ(x, y, z) = ρ(x, y, 0)+ 1
2

z2 ∂
2ρ

∂z2 + · · · , (3.6d)

p(x, z) = p(x, 0)+ 1
2

z2 ∂
2p
∂z2 + · · · . (3.6e)

Substituting the above flow quantities of the first truncation and (3.5) into ((2.1)–(2.3))
yields the boundary layer equations for the symmetry plane. Terms with coefficients of
z or higher orders of z are ignored in the resulting expressions. Additionally, p(x, y) =
pe(x, y) is assumed throughout the boundary layer. Notably, the independent variables are
functions of x and y only in the subsequent equations. The derived continuity, x-directional
momentum, z-directional momentum and energy equations can then be written as

∂ρu
∂x

+ ∂ρv

∂y
+ ∂

∂z

(
ρz
∂w
∂z

)
= 0, (3.7)

ρu
∂u
∂x

+ ρv
∂u
∂y

= −∂pe

∂x
+ ∂

∂y

(
μ
∂u
∂y

)
, (3.8a)

ρu
∂

∂x

(
∂w
∂z

)
+ ρv

∂

∂y

(
∂w
∂z

)
+ ρ

(
∂w
∂z

)2

= −∂
2pe

∂z2 + ∂

∂y

[
μ
∂

∂y

(
∂w
∂z

)]
− ρ

u2

Rr
,

(3.8b)

ρu
∂h
∂x

+ ρv
∂h
∂y

= u
dpe

dx
+ ∂

∂y

(
μ

Pr
∂h
∂y

)
+ μ

(
∂u
∂y

)2

. (3.9)

Accordingly, the Euler equations (2.6) reduce to

−∂pe

∂x
= ρeue

∂ue

∂x
, (3.10a)
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−∂
2pe

∂z2 = ρe

[
ue
∂

∂x

(
∂we

∂z

)
+
(
∂we

∂z

)2

+ u2
e

Rr

]
. (3.10b)

Equations (3.7)–(3.9) are the boundary layer equations for the symmetry plane of
a three-dimensional body within the proposed coordinate system. Compared with the
general three-dimensional boundary layer equations, these equations are significantly
simplified. While the x-directional momentum and energy equations are almost identical to
those of planar boundary layers, it is important to note that the flow in the symmetry plane
differs substantially from that of a planar boundary layer. Here, there may exist mass flow
either into or out of the symmetry plane, a feature represented by the term ∂w/∂z in the
equations. Notably, although figure 2 presents an illustrative diagram of a blunt body, along
with the geometric relationships corresponding to the changes in coordinates, i.e. (3.1).
These geometric relationships remain valid when dealing with concave surfaces, which
can be understood as the inner surface of the blunt body depicted in figure 2. Meanwhile,
the flow symmetry conditions in (3.6) are independent of whether the surface is blunt
or concave. Thus, ((3.7)–(3.9)) are equally applicable to concave surfaces. Besides, the
boundary layer equations provided above are derived from the general three-dimensional
boundary layer equations for compressible flows. And for the specific symmetric problems
addressed in this paper, both the flow’s symmetric properties and the body’s geometric
symmetry properties are inherent, independent of the flow’s Mach number. Hence, these
equations are applicable across compressible flow regimes, including subsonic, supersonic
and hypersonic flows, without differentiation. It is important to highlight that under
hypersonic flow conditions, if chemical reactions are considered within the boundary layer,
the diffusion of chemical species and energy changes resulting from chemical reactions
must be incorporated into the aforementioned equations.

4. Transformation of the boundary layer equations

As in two-dimensional flows, expressing the boundary layer equations in transformed
coordinates is more useful and convenient to yield instructive results. Several
transformations can be used for this purpose. The one adopted herein, similar to the
Levy–Lees transformation widely utilized in two-dimensional and axisymmetric flows,
is

ξ =
∫ x

0
μeρeue dx, (4.1a)

η = ue√
2ξ

∫ y

0
ρ dy, (4.1b)

z = z, (4.1c)

where ρe, ue and μe are the density, velocity and viscosity coefficients at the edge of
the boundary layer, respectively. Since ρe, ue and μe are functions of x only in the
symmetry plane, then ξ = ξ(x). From the chain rule of differential calculus, the derivative
transformations can be expressed as

∂

∂x
= ∂ξ

∂x
∂

∂ξ
+ ∂η

∂x
∂

∂η
= ρeueμe

∂

∂ξ
+ ∂η

∂x
∂

∂η
, (4.2a)

∂

∂y
= ∂η

∂y
∂

∂η
= ue√

2ξ
ρ
∂

∂η
. (4.2b)
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To reduce the number of dependent variables appearing in the boundary layer equations,
it is customary to introduce the streamfunctions ψ and φ, which identically satisfy the
equation of continuity (3.7); they are defined as usual by

ρu = ∂ψ

∂y
, (4.3a)

ρz
∂w
∂z

= ∂φ

∂y
, (4.3b)

ρv = −
(
∂ψ

∂x
+ ∂φ

∂z

)
. (4.3c)

As (3.6) indicate, near the symmetry plane, w is dependent on the first-order and
higher-order derivatives of z. In the following discussions, only the first truncation about z
is kept. Thus, the velocities u and ∂w/∂z are functions of x and y; hence, they are expressed
as functions of ξ and η, such that u = u(ξ, η) and ∂w/∂z = ∂w(ξ, η)/∂z. At the edge of
the boundary layer, ue and ∂we/∂z are a function of ξ only, such that ue = ue(ξ) and
∂we/∂z = ∂we(ξ)/∂z.

Let us define two functions of ξ and η, f (ξ, η) and e(ξ, η), such that

u
ue

= ∂f
∂η

≡ f ′, (4.4a)

∂w
∂z
∂we

∂z

= ∂e
∂η

≡ e′. (4.4b)

where the prime denotes the partial derivative with respect to η. The relationship between
f and ψ is the same as that in the two-dimensional boundary layer flows, such that

ψ =
√

2ξ f (ξ, η). (4.5)

From (4.3b), written in terms of the transformation given in (4.2b) and (4.4b), we have

ue√
2ξ
ρ
∂φ

∂η
= ρz

∂w
∂z

= ρze′ ∂we

∂z
(4.6a)

or
∂φ

∂η
=

√
2ξ

ue
ze′ ∂we

∂z
. (4.6b)

Integrating (4.6) with respect to η, we have

φ =
√

2ξ
ue

e(ξ, η)z
∂we

∂z
. (4.7)

Substituting (4.5) and (4.7) into (4.3) yields

ρu = ∂ψ

∂y
= ρuef ′, (4.8a)

ρw = ∂φ

∂y
= ρ

∂we

∂z
ze′, (4.8b)
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ρv = −
(
∂ψ

∂x
+ ∂φ

∂z

)
= −

[
μeρeue

(
f√
2ξ

+
√

2ξ
∂f
∂ξ

)
+ ∂η

∂x

√
2ξ f ′ +

√
2ξ

ue

∂we

∂z
e
]
.

(4.8c)

Defining the non-dimensional static enthalpy as

g = g(ξ, η) = h
he
, (4.9)

where he is the static enthalpy at the boundary layer edge. Then, by substituting
((4.1)–(4.9)) into ((3.8) and (3.9)), the transformed boundary layer equations for the
symmetry plane of three-dimensional bodies can be written as follows: for ξ -directional
momentum,

(Cf ′′)′ +

⎛
⎜⎝ f + 2ξ

ue

∂we

∂z
ueμeρe

e

⎞
⎟⎠ f ′′ = 2ξ

ue

∂ue

∂ξ

(
f ′2 − ρe

ρ

)
+ 2ξ f ′ ∂f ′

∂ξ
− 2ξ

∂f
∂ξ

f ′′; (4.10a)

for z-directional momentum,

(
Ce′′)′ +

⎡
⎢⎣ f + 2ξ

ue

∂we

∂z
ueμeρe

e

⎤
⎥⎦ e′′ = 2ξ

∂we

∂z

∂

(
e′ ∂we

∂z

)
∂ξ

f ′

+ 2ξ
ue

∂we

∂z
ueμeρe

⎛
⎜⎜⎜⎝e′2 − ρe

ρ
− u2

e(
∂we

∂z

)2
1

Rr
ρe

ρ
+ u2

e(
∂we

∂z

)2
1
ρRr

f ′2

⎞
⎟⎟⎟⎠− 2ξ

∂f
∂ξ

e′′;

(4.10b)

for energy,

(
C
Pr

g′
)′

+

⎛
⎜⎝ f + 2ξ

ue

∂we

∂z
ueμeρe

e

⎞
⎟⎠ g′ = 2ξ

(
f ′ ∂g
∂ξ

− g′ ∂f
∂ξ

+ f ′g
he

∂he

∂ξ
+ ρeue

ρhe
f ′ ∂ue

∂ξ

)
− C

u2
e

he

(
f ′′)2 ,

(4.10c)

where

Pr = μecp

k
, C = ρμ

ρeμe
, (4.11)

k is the thermal conductivity and C is the ‘rho-mu’ ratio.
Accordingly, the transformed boundary layer conditions are as follows. At the wall,

η = 0, f = f ′ = 0, e = e′ = 0, g = gw (fixed wall temperature) or g′ = 0 (adiabatic wall),
(4.12a)

and at the boundary layer edge,

η → ∞, f ′ = 1, e′ = 1, g = 1. (4.12b)

Equations (4.10) are the transformed compressible boundary layer equations for the
symmetry plane. Their derivation and analysis draw partial reference from the planar
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Hypersonic boundary layer theory in symmetry plane

boundary layer equations as studied by Anderson (2006). Apart from f and g that exist
in the planar boundary layer equations, another variable e is newly introduced in (4.10).
The terms containing ∂we/∂z represent the convergence or divergence of the streamlines
close to the symmetry plane. If ∂we/∂z = 0, these equations directly reduce to the same
form as the planar boundary layer equations. Furthermore, (4.10) contain no further
approximations or assumptions beyond those associated with the original boundary layer
equations, namely ((3.7)–(3.9)).

5. Remarks on the equations

Both three-dimensional stagnation points and axisymmetric flows are regarded as special
cases of more general symmetric flows, where all the above equations remain applicable.
These equations can effectively degenerate into forms consistent with or equivalent to
commonly used equations. We will discuss these two special cases in this section.

5.1. Stagnation point flows
Regarding the general three-dimensional stagnation point flow, the velocity at the
boundary layer edge in the x direction can be written as

ue =
(
∂ue

∂x

)
s

x, (5.1)

where (∂ue/∂x)s is the velocity gradient at the stagnation point external to the boundary
layer. The subscript s represents the stagnation point. Substituting (5.1) into (4.1a), we
obtain

ξ =
∫ x

0
μeρe

(
∂ue

∂x

)
s
x dx = 1

2
μeρe

(
∂ue

∂x

)
s
x2. (5.2)

Consider a self-similar solution to the governing boundary layer equations for the
stagnation point case, f , e and g are assumed to be functions of η only; hence,
∂f /∂ξ = ∂f ′/∂ξ = ∂e/∂ξ = ∂e′/∂ξ = ∂g/∂ξ = 0 in (4.10). Substituting (5.1) and (5.2)
into (4.10), and neglecting the terms with higher orders of x, the final equations for the
general three-dimensional stagnation point flow are written as follows: for ξ -directional
momentum,

(Cf ′′)′ +

⎛
⎜⎝ f +

⎛
⎜⎝
∂we

∂z
∂ue

∂x

⎞
⎟⎠

s

e

⎞
⎟⎠ f ′′ = f ′2 − ρe

ρ
; (5.3a)

for z-directional momentum,

(Ce′′)′ +

⎛
⎜⎝ f +

⎛
⎜⎝
∂we

∂z
∂ue

∂x

⎞
⎟⎠

s

e

⎞
⎟⎠ e′′ =

⎛
⎜⎝
∂we

∂z
∂ue

∂x

⎞
⎟⎠

s

(
f ′2 − ρe

ρ

)
; (5.3b)

for energy,

(
C
Pr

g′
)′

+

⎛
⎜⎝ f +

⎛
⎜⎝
∂we

∂z
∂ue

∂x

⎞
⎟⎠

s

e

⎞
⎟⎠ g′ = 0. (5.3c)
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Equations (5.3) are totally identical to the general three-dimensional stagnation point
flow derived by other authors (Libby 1967). It can also be used directly as a starting point
for solving the boundary layer equations over the whole body with a difference-differential
method.

Consider special cases: if ((∂we/∂z)/(∂ue/∂x))s = 0, (5.3) reduce directly to represent
the planar stagnation point flow, where the equations are as follows: for ξ -directional
momentum,

(Cf ′′)′ + ff ′′ = f ′2 − ρe

ρ
; (5.4a)

for energy, (
C
Pr

g′
)′

+ fg′ = 0. (5.4b)

Since the flows in the z direction are uninteresting in this case, (5.3b) is inessential and
is dropped here directly. The stagnation flow for the two-dimensional cylinder is the most
special case. Equations (5.4) for the two-dimensional cylinder stagnation flow are totally
the same as those deduced by other authors (Anderson 2006).

If ((∂we/∂z)/(∂ue/∂x))s = 1, (5.3) reduce to represent the axisymmetric stagnation
flow, with a sphere stagnation point flow as the most special case. Then, the equations
are given as follows: for ξ -directional momentum,

(Cf ′′)′ + ( f + e)f ′′ = f ′2 − ρe

ρ
; (5.5a)

for z-directional momentum,

(Ce′′)′ + ( f + e)e′′ = f ′2 − ρe

ρ
; (5.5b)

for energy, (
C
Pr

g′
)′

+ ( f + e)g′ = 0. (5.5c)

Further discussions regarding (5.5) will be conducted in the next section since it is also
a special case of axisymmetric flow.

5.2. Axisymmetric flows
The aforementioned cases of two-dimensional and axisymmetric stagnation point flow
can be regarded as specific cases of more generalized symmetry plane flow. In the
case of axisymmetric flow where the incoming flow aligns with its axis, the situation
becomes slightly more complicated. In the commonly used axisymmetric coordinate
system applied for axisymmetric boundary layers, as detailed by Schlichting & Gersten
(2016), for example, the velocity and its gradients in the circumference direction are zero.
Consequently, the boundary layer equations over an axisymmetric body are similar to those
for two-dimensional flows. However, although we is also zero in our proposed coordinates,
the extra variable ∂we/∂z, which is the gradient of the velocity at the outer edge of the
boundary layer along the z direction, is not necessarily zero and is required in advance for
solving (4.10). In principle, deriving this variable entails solving (3.10b) with respect to
the pressure distribution on the surface. However, for an axisymmetric flow, the situation
can be simplified, and this variable can be directly deduced from the kinematic property
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C
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D′
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Figure 3. Schematic geometry of the axisymmetric boundary layers.

of the axisymmetric flow, with no requirement of the pressure distribution, as illustrated
in figure 3.

At the stagnation point, the velocity gradients can be calculated from Newtonian theory.
Consider an arbitrary point D on the surface of the axisymmetric body, apart from the
stagnation point. The velocity at the boundary layer edge of this point is ue,D. Imagine a
line drawn tangent to the surface at point D and it intersects with the axis of symmetry at
point A, making an angle θ between them, as shown in figure 3. Here CD represents the
principal radius of curvature of the surface at point D, i.e. r in the present study. Due to the
axisymmetric property, AC also coincides with the symmetry line of the physical body.

To derive ∂we/∂z, the velocity near point D at the z coordinate is required. Assume a
nearby point D′ along the z coordinate, and the angle between lines AD and AD′ is ω.
As D′ infinitely approaches D, i.e. ω → 0; and from the property of the axisymmetric
flow, it can be obtained that the magnitude of the velocity at a nearby point D′ along the z
coordinate is approximately equal to that at point D, ue,D′ = ue,D, which is also consistent
with (3.6a). Accordingly, the velocity component in the z direction at point D′ can be
expressed as

we,D′ = ue,D′ tanω = ue,D tanω. (5.6)

In addition, the coordinate of the nearby point D′ is

z = LAD tanω, (5.7)

where LAD represents the length between points A and D, and LAD = r/tan θ . Then,
substituting (5.7) into (5.6) yields

we,D′ = ue,D tanω = z
ue,D tan θ

r
(5.8a)

or (
∂we

∂z

)
D

= ue,D tan θ
r

. (5.8b)

With this relation, there is no substantial difficulty in solving the boundary layer equations
for axisymmetric flows. Since point D is an arbitrary point, the subscript D is dropped in
the following discussions.

Moreover, at the wall, w = ∂w/∂z = u = 0, i.e. (5.8) hold both on the boundary layer
edge and on the wall at any point. Since the boundary layer thickness is assumed to be
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much less than the radii of the surface, (5.8) should be valid throughout the boundary
layer, that is,

∂w( y)
∂z

= u( y) tan θ
r

. (5.9)

This equation indicates that ∂w( y)/∂z is directly dependent on u( y) and the geometric
factors throughout the boundary layer. And ∂w( y)/∂z has the same profile as u( y), that is,

e′ = f ′ (5.10a)

and
e = f . (5.10b)

By substituting (5.10) into (4.10), we have, for ξ -directional momentum,

(Cf ′′)′ +
(

1 + 2ξ
μeρeue

tan θ
r

)
ff ′′ = 2ξ

ue

∂ue

∂ξ

(
f ′2 − ρe

ρ

)
+ 2ξ f ′ ∂f ′

∂ξ
− 2ξ

∂f
∂ξ

f ′′;
(5.11a)

for energy,(
C
Pr

g′
)′

+
(

1 + 2ξ
μeρeue

tan θ
r

)
fg′ = 2ξ

(
f ′ ∂g
∂ξ

− g′ ∂f
∂ξ

+ f ′g
he

∂he

∂ξ
+ ρeue

ρhe
f ′ ∂ue

∂ξ

)
− C

u2
e

he

(
f ′′)2 .

(5.11b)

These equations are the expressions of the axisymmetric boundary layer flow in the
proposed coordinate system.

Consider special cases: for a flat plate case or a sharp cone, ue = const, Te = const, pe =
const, f and g are assumed to be functions of η only.

For a flat plate, we have tan θ = 0 or r → ∞, (5.11) reduce to

(Cf ′′)′ + ff ′′ = 0, (5.12a)(
C
Pr

g′
)′

+ fg′ + C
u2

e

he

(
f ′′)2 = 0. (5.12b)

The above equations for a flat plate are the same as those deduced by Anderson (2006).
For a sharp cone, we have

ξ =
∫ x

0
μeρeue dx = μeρeuex (5.13)

and
tan θ = r

x
. (5.14)

Under these conditions, (5.11) for a sharp cone reduce to

(Cf ′′)′ + 3ff ′′ = 0, (5.15a)(
C
Pr

g′
)′

+ 3fg′ + C
u2

e

he

(
f ′′)2 = 0. (5.15b)

Moreover, if the transformation (4.1b) is replaced by

η =
√

3
ue√
2ξ

∫ y

0
ρ dy (5.16)

then the boundary layer equations for a cone will be totally the same as that for a flat plate,
i.e. (5.12). The derivation process is basically the same as that provided in § 4 and will
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not be repeated in this section. Hence, it is apparent that if the parameters at the boundary
layer edge and at the wall are the same for a flat plate and a sharp cone, the variations
in flow properties throughout the boundary layer will exhibit the same profiles in their
transformed plane. The only difference is a factor of

√
3 between (4.1b) and (5.16), which

indicates that the boundary layer thickness of a flat plate is
√

3 times greater than that of
a cone. Subsequently, the relationship of heat flux for a cone and a flat plate can be easily
obtained as

qcone =
√

3qflat plate. (5.17)

Then, let us return to further simplify (5.5) for the axisymmetric stagnation flow, where
(5.10) also hold. Thus, (5.5) can be further reduced to the following: for ξ -directional
momentum,

(Cf ′′)′ + 2ff ′′ = f ′2 − ρe

ρ
; (5.18a)

for energy, (
C
Pr

g′
)′

+ 2fg′ = 0. (5.18b)

In summary, (5.4) for a cylinder stagnation point, (5.12) for a flat plate, (5.15) for a sharp
cone and (5.18) for a sphere stagnation point are ordinary differential equations (ODEs)
and are self-similar. Besides, they are all deduced in the same coordinate.

6. Solutions of the hypersonic laminar boundary layer equations

From §§ 2–4, no assumptions are made beyond the scope of general boundary layer theory.
The boundary layer equations (4.10) given above apply to compressible flows in the
symmetry plane of three-dimensional bodies; they are also equally applicable to subsonic
and supersonic flows with no distinction made for such cases. They can be applied directly
to hypersonic flows if the high temperature effects are neglected.

In this section we subsequently attempt to find exact solutions to the aforementioned
equations. Of course, solution of the boundary layer equations, whether for planar
equations (Anderson 2006) or for (4.10), both require the properties at the boundary layer
edge in advance. While numerous studies have investigated methods for determining outer
boundary layer parameters (Griffith, Adams & Majors 1981; Liechty et al. 2003), these
do not encompass the newly introduced variable ∂we/∂z at the boundary layer edge that
appears in (4.10), which also necessitates prior deduction. Unfortunately, even modern
CFD poses significant uncertainty in deducing this value, where both the numerator we and
the denominator z are zero in the symmetry plane, but ∂we/∂z does not need to be zero. The
numerical solution of ∂we/∂z is sensitive to factors such as grid resolution and numerical
schemes, similar to heat flux calculation that remains a challenge. The dissipation that is
required to control error across the bow shock and in the stagnation region can modify
the boundary layer and result in poor heat transfer rate predictions (Candler et al. 2015).
Unlike the situation discussed in § 5.2, where ∂we/∂z can be derived from the kinematic
property of axisymmetric flow with no requirement of pressure distribution, there currently
exist no theoretical formulas to derive this value for the symmetry plane of general
three-dimensional blunt bodies.

In the context of hypersonic flows, the Newtonian flow model provides a convenient
approximation for obtaining the pressure distribution. We also try to deduce ∂2pe/∂z2

based on the Newtonian theory and subsequently obtain ∂we/∂z by solving (3.10b).
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Figure 4. Illustration of the tangent-cone method for the approximation of the crossflow velocity gradient.

However, Newtonian theory is only applicable under hypersonic conditions, and we
have not found a more general method to deduce ∂we/∂z under subsonic or supersonic
conditions. Therefore, our interest here is in applying the results of this boundary layer
theory to discussions focused on hypersonic flows.

6.1. Approximation of the crossflow velocity gradient at the boundary layer edge for
hypersonic flows

Newtonian theory for prediction of the pressure distribution at a point depends only
on the knowledge of its local surface inclination relative to the free stream. However,
the second-order pressure gradient in the z direction in (3.10b) will be affected by its
surrounding flow field or the shape geometry. An equivalent cone is formed to consider
the effect of surface geometry on the crossflow velocity. Point D is considered to be on the
symmetry plane. Due to the symmetry property, the surface near the symmetry plane is
approximated as an equivalent cone here, as shown in figure 4. Moreover, the semiangle
of the cone is defined as

θ = arctan
dr
dx

or tan θ = dr
dx
, (6.1)

where AC is the axis and the length of CD represents the principal radius of curvature of
the surface at point D. Line AD is tangent to the surface at point D. Unlike the tangent-cone
method commonly used to estimate the local surface pressure, where θ represents the
local deflection angle of the surface, the parameter θ in this study is defined by (6.1). This
definition allows for the consideration of the influence of surface geometry variation on
the second-order pressure gradient or the crossflow velocity gradient. For axisymmetric
flows, a sharp cone, for example, AC coincides with the axis line of the actual body. For
most cases, AC will continuously vary along x as the surface geometry changes, and it is
specifically determined by (6.1).

We assume a nearby point D′′ near the symmetry plane, which also comes from point D
rotated by a small angle ϕ around the axis of the cone, i.e. ϕ represents the angle between
line BD and BD′′. The direction of the normal vector to the surface at point D′′ is consistent
with the direction of the vector CD′′. Thus, in Cartesian coordinates (X, Y, Z), the unit
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Hypersonic boundary layer theory in symmetry plane

normal vectors to the surface at points D and D′′ are expressed as

nD =
⎛
⎝− sin θ

cos θ
0

⎞
⎠ , nD′′ =

⎛
⎝ − sin θ

cos θ cosϕ
cos θ sinϕ

⎞
⎠ . (6.2a,b)

To calculate the vector dot product of the free-stream velocity and the normal vector
to the surface, it is necessary to transform both to the same coordinate system. Here, we
transform both to the coordinate system (x, y, z). Transformation between the coordinates
(x, y, z) and the coordinates (X, Y, Z) is expressed as⎛

⎝x
y
z

⎞
⎠ =

⎛
⎝ cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎞
⎠
⎛
⎝X

Y
Z

⎞
⎠ . (6.3)

Thus, the unit normal vector to the surface at point D′′ in the coordinates (x, y, z) is
expressed as

nD′′ =
⎛
⎝ cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎞
⎠
⎛
⎝ − sin θ

cos θ cosϕ
cos θ sinϕ

⎞
⎠ =

⎛
⎝− cos θ sin θ + sin θ cos θ cosϕ

sin2 θ + cos2 θ cosϕ
cos θ sinϕ

⎞
⎠ .
(6.4)

Consider the free-stream velocity as a vector and β is the angle between the tangent to
the surface and the free stream. Then, the unit velocity vector in the coordinates (x, y, z) is
expressed as

nV∞ =
⎛
⎝ cosβ

− sinβ
0

⎞
⎠ . (6.5)

From Newtonian theory, the pressure coefficient Cp at point D′′ is given by

Cp = p − p∞
1
2
ρ∞V2∞

= 2(nD′′ · nV∞)
2, (6.6)

where the subscript ∞ represents the free-stream flow parameter. Substitution of (6.4) and
(6.5) into (6.6) yields

Cp = 2(− cosβ cos θ sin θ + cosβ sin θ cos θ cosϕ − sinβ sin2 θ − sinβ cos2 θ cosϕ)2.
(6.7)

Differentiating the above equation with respect to ϕ yields

∂Cp

∂ϕ
= 4(− cosβ cos θ sin θ + cosβ sin θ cos θ cosϕ − sinβ sin2 θ − sinβ cos2 θ cosϕ)

(− cosβ sin θ cos θ sinϕ + sinβ cos2 θ sinϕ).

⎫⎬
⎭

(6.8)
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Q. Wang, J. Li and S. Gu

As D′′ infinitely approaches D, ϕ → 0 and ω → 0. Thus, cosϕ ≈ 1, cosω ≈ 1 and
sinϕ ≈ ϕ. From figure 4 we can obtain the following expression:

ϕ ≈ LDD′′

LBD
= LADω

r cos θ
. (6.9)

Substitution of (5.7) into (6.9) yields

ϕ ≈ z
r cos θ

. (6.10)

Thus, (6.8) can be simplified as

∂Cp

∂z
r cos θ = 4(− sinβ)(− cosβ sin θ cos θ + sinβ cos2 θ)

z
r cos θ

(6.11a)

or
∂Cp

∂z
= 4 sin2 β

(
tan θ
tanβ

− 1
)

z
r2 . (6.11b)

Differentiating the above equation with respect to z yields

∂2Cp

∂z2 = 4 sin2 β

(
tan θ
tanβ

− 1
)

1
r2 (6.12a)

or
∂2p
∂z2 = 2ρ∞V2

∞ sin2 β

(
tan θ
tanβ

− 1
)

1
r2 . (6.12b)

In the symmetry plane, i.e. ϕ = 0, the pressure coefficient is given by

Cp|ϕ=0 = 2 sin2 β = pϕ=0 − p∞
1
2
ρ∞V2∞

. (6.13)

Substitution of this equation into (6.12) yields

∂2p
∂z2

∣∣∣∣
ϕ=0

= 2( pϕ=0 − p∞)
r2

⎛
⎜⎝

dr
dx

tanβ
− 1

⎞
⎟⎠ . (6.14)

Given our focus on the symmetry plane flow, the subscript ϕ = 0 is dropped in the
following discussions. Equation (6.14) indicates that the contribution to ∂2p/∂z2 can be
divided into two parts. The first part is the contribution of the kinetic factor, which is
characterized by a constant, i.e. 1 in (6.14). This part can also be seen as the contribution
of an equivalent cylinder with a radius of r to ∂2p/∂z2. The second part is the contribution
of the geometric factor, which is characterized by dr/tanβ, and it can also be seen as the
influence of the local geometric factor or the deviation of the geometry from an equivalent
cylinder with a radius of r on ∂2p/∂z2. Furthermore, dr/dx represents the bluntness effects
of the blunt body on ∂2p/∂z2, where tan β represents the equivalent axisymmetric effects
or axisymmetric effects in simple terms.

Consider special cases: for a hemisphere or a cylinder, dr/dx = 0 or (dr/dx)/tanβ = 0,
(6.14) degenerates to a formula similar to that at the stagnation point, i.e. ∂2p/∂z2 =
−2( pe − p∞)/r2; for a sharp cone with zero angle of attack, θ = β or (dr/dx)/tanβ = 1,
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Hypersonic boundary layer theory in symmetry plane

namely, the contributions of geometric and kinetic factors offset each other out. As a result,
∂2p/∂z2 = 0.

Associating (6.14) with (3.10b) yields

−2( pe − p∞)

⎛
⎜⎝

dr
dx

tanβ
− 1

⎞
⎟⎠ 1

r2 = ρe

[
ue
∂

∂x

(
∂we

∂z

)
+
(
∂we

∂z

)2

+ u2
e

Rr

]
. (6.15)

Similarly, the kinetic factor and the geometric factor in (6.15) will affect ∂we/∂z, just as
they affect ∂2p/∂z2.

In this study, Newtonian theory is used to obtain the pressure distribution, which in
turn facilitates the calculation of the crossflow velocity gradient ∂we/∂z. However, if
more accurate pressure distributions are obtained through alternative methods, they can be
applied directly to (3.10b), resulting in a more precise crossflow velocity gradient. Notably,
the range of applicability of (6.14) and (6.15) is consistent with Newtonian theory, which is
applicable only under hypersonic conditions. Anderson (2006) extensively discussed the
historical background, various improved forms and the scope of application of Newtonian
theory in his book. In the Newtonian model of fluid flow, the particles in the free stream
impact only on the frontal area of the body; they cannot curl around the body and impact
on the back surface. Hence, the application of Newtonian theory appears most suitable
for bodies turning convex surface parts toward hypersonic oncoming gas. Moreover, it is
worth noting that, similar to various methods for solving wall pressure, the precision and
range of applicability of these methods are not entirely definitive. Nevertheless, Newtonian
theory is straightforward and easy to apply in hypersonic flows.

6.2. Boundary layer edge parameters of blunt bodies under hypersonic conditions
Until now, this paper has articulated the new contributions made in the realm of existing
boundary layer theories. We have selected several common blunt bodies encountered in
hypersonic flight for developing our solving program and validating our theory. Another
reason for choosing blunt bodies is the existence of efficient approximate methods for
solving the boundary layer edge parameters for such shapes. Notably, for non-blunt bodies,
considerations must be given to the applicability of Newtonian theory and the selection of
appropriate methods for solving the boundary layer edge parameters.

Parameters at the boundary layer edge, i.e. the values of ue, ρe, he, μe and ∂we/∂z,
must be determined to solve (4.10). While ∂we/∂z is deduced from (6.15), other boundary
layer edge parameters are obtained using the simplest and, therefore, the most commonly
employed method (Griffith et al. 1981). From the exact normal shock wave theory, ps
behind a normal shock is then determined as

ps

p∞
=
[

(γ + 1)2M∞2

4γM∞2 − 2(γ − 1)

]γ /(γ−1) [
1 − γ + 2γM∞2

γ + 1

]
, (6.16)

where γ is the ratio of specific heats and ps is the total pressure behind a normal shock
wave. Subsequently, pe over the body of interest is obtained from the modified Newtonian
method firstly as

Cp = pe − p∞
1
2
ρ∞v2∞

= ps − p∞
1
2
ρ∞v2∞

cos2 θ, (6.17)
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where Cp is the pressure coefficient. The subscript ∞ denotes the free-stream flow
parameter. Subsequently, the local flow conditions along the boundary layer edge, i.e. ue,
ρe, Te, are deduced by isentropically expanding from these stagnation conditions to the
known local pressure pe, thus treating the boundary layer edge as an isentropic surface.
The isentropic relations are given as

(
ρe

ρ∞

)γ
= pe

p∞
=

⎛
⎜⎝1 + γ − 1

2
M2∞

1 + γ − 1
2

M2
e

⎞
⎟⎠
γ /(γ−1)

=
(

Te

T∞

)γ /(γ−1)

, ue = Me

√
γ

pe

ρe
.

(6.18a,b)

The viscosity μ and μe are calculated according to Sutherland’s law in this study. And for
air at standard conditions, Pr equals 0.71 in this study.

To complete the system, the following two thermodynamic state equations are required:

T = T( p, ρ), h = h( p, ρ). (6.19a)

Here T is the temperature. A calorically perfect gas is applied in the present study, then

p = ρRT, h = cpT, (6.19b)

where R is the specific gas constant of the gas and cp is the specific heat capacity at constant
pressure; he is calculated from (6.19b). At this point, all the necessary outer boundary layer
parameters required for solving (4.10) have been obtained.

Notably, the above method does not consider the effect of the entropy layer on the
boundary layer edge parameters. This method is satisfactory for the forward partition of a
blunt body. Nevertheless, alternative existing methods for taking the outer edge properties
can replace the methods outlined in this section, such as extracting the boundary layer
edge quantities from the computational fluid dynamic solutions (Hamilton & Greene 1994;
Liechty et al. 2003). Solving the Navier–Stokes equations is more time consuming. It
can yield more accurate parameters such as ue, ρe, he and μe. However, even modern
CFD poses significant uncertainty in deducing ∂we/∂z, as already described earlier.
Thus, we mainly opt for ((6.15)–(6.19)) to provide a rapid estimation of the boundary
layer conditions. Anderson (2006) also discussed the entropy effects on aerodynamic
heating under hypersonic flows in Chapter 6 and provided some methods to mitigate their
influence.

6.3. Numerical solution of the boundary layer equations
Compared with the planar boundary layer equations (Anderson 2006), exact solutions of
(4.10) do not add inherent difficulty if the parameters at the boundary layer edge are known.
Commonly used methods for solving these general, non-similar planar boundary layer
equations, such as local similarity, difference-differential approach and finite-difference
solutions (Anderson 2006), are all applicable for solving (4.10). Furthermore, the existing
literature in this field is quite expansive. Finite-difference solutions discretize the equations
into finite grids and solve them numerically, requiring appropriate grid resolution and
numerical schemes similar to those used for solving the Navier–Stokes equations. Instead,
we choose the difference-differential approach, which can simplify (4.10) to ODEs for
solution in some cases and is also an exact solution for general non-similar boundary
layers. The Crank–Nicolson type differential method is similar to that used by other
authors (Blottner & Ellis 1973; Wang 1975; Popinski & Baker 1976) is adopted here.
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Hypersonic boundary layer theory in symmetry plane

Stations

(i – 2)

(i – 1)

(i)
(i – 1, j – 1)

(i – 1, j +
 1)

(i – 1, j)

(i, j + 1)

(i,  j)

Edge of

boundary

layer

 

 

(1)

(2)

y, η

x, ξ

Figure 5. Schematic for finite-difference solution of the boundary layer.

Schematic for finite-difference solution of the boundary layer is shown in figure 5.
Assume that we wish to calculate the boundary layer profiles at the station denoted by
i. The derivatives in the direction along the surface are replaced with finite-difference
relations. The first-order derivatives with respect to ξ in (4.10) are replaced by the
two-point backward finite-difference quotients as

∂f
∂ξ

= fi − fi−1

�ξi
at a given j. (6.20)

Identical expressions are used for other parameters as those used for the derivative
with respect to ξ , such as ∂f ′/∂ξ , ∂e′/∂ξ and ∂g/∂ξ . At the stagnation point, i.e. i = 1
in figure 5, the velocity gradients at the stagnation point in the x and z directions are
calculated from Newtonian theory, that are(

due

dx
= 1

R

√
2( pe − p∞)

pe

)
s

,

(
dwe

dz
= 1

r

√
2( pe − p∞)

pe

)
s

, (6.21a,b)

where the subscript s represents the stagnation point. Afterward, we proceed to solve the
ordinary differential boundary layer equations (5.3) to obtain the boundary layer profiles
at i = 1. Choosing the stagnation point as the starting point, the difference-differential
method is then implemented to move to the next downstream location. In other words, fi−1
in (6.20) are known numbers. The only unknown number in (6.20) is fi. Recall that due/dξ
and ∂we/∂z are also known numbers, obtained from the known velocity variation at the
boundary layer edge. Thus, when the difference expressions such as (6.20) are substituted
into (4.10), the only derivatives that appear are η. Hence, (4.10) are ODEs that can be
integrated across the boundary layer at station i. A more detailed description of the solution
method in this section can be found in the book by Anderson (2006).

After substituting the derivatives with respect to ξ into (4.10) they are reformulated into
a system of linear algebraic equations in terms of the single independent variable η. The
successive over-relaxation iterative method is then adopted to solve these equations. To
accelerate convergence, a relaxation factor is applied in the iterative progress. Once (4.10)
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Parameters Case 1 Case 2 Case 3 Case 4

p∞ (Pa) 79 80.1 72.9 501.3
Free-stream parameters T∞ (K) 107 137 116 66.7

M∞ 8.8 8 8 7.32
Sphere radius R (mm) 25 12.2 12.2 88.9

Experiments (kW m−2) 318 26.32 20.94 94.47
Heat flux Fay–Riddell (kW m−2) 283.5 25.30 20.24 95.27

Present method (kW m−2) 286.6 25.21 20.22 95.26

Table 1. Heat flux at the stagnation point of spheres in air between the present theoretical results and the
experimental data and the Fay–Riddell results. Experimental data of case 1 are from Irimpan & Menezes
(2023), cases 2 and 3 are from Irimpan et al. (2015), case 4 are from Kaattari (1978).

has been solved for all grid points, the transformed streamfunction values at discretized
points within the boundary layer are known. These values can be used to calculate detailed
parameters such as velocity, enthalpy and temperature at each grid. Consequently, they
can be employed to compute other boundary layer characteristics of interest, such as skin
friction and heat transfer.

7. Examples and discussions

7.1. Comparison with experimental results

7.1.1. Stagnation point heat flux
Considerable attention is often given to the stagnation point of blunt bodies, where the
local heat flux is usually the greatest. Additionally, the subsequent calculations for the
blunt bodies in this paper also choose the stagnation point as the starting point, requiring
the boundary layer information at this initial point. Thus, we firstly compare the stagnation
point heat flux of spheres obtained by solving (4.10) with both the experimental data, and
the results estimated using the analytical approach proposed by Fay & Riddell (1958).
Because of its simplicity, the Fay and Riddell approach has been used extensively for
re-entry flight design as well as ground test facility applications, where the expression is
shown in (7.1) as below:

qs = 0.763Pr−0.6(ρeμe)
0.5

√
due

dx
(h0 − hw). (7.1)

Equation (7.1) is its simplified form and is valid for equilibrium and a non-reacting gas.
The heat flux values corresponding to the ‘present method’ column in table 1 are

obtained by solving (5.18). Equation (5.18) are ODEs and are self-similar. The boundary
layer edge parameters are obtained based on ((6.15)–(6.19)). It can be observed from
table 1 that the stagnation points heat flux obtained by the present method aligns very well
with both experimental values and the results from the commonly used Fay and Riddell
approach.

7.1.2. Heat flux distribution on the sphere
The second validation case involves a sphere, and the results from the present method by
solving (4.10) are also compared with the experimental data. Two sets of experimental
data are considered. The experiments were conducted in the Langley 31-inch Mach tunnel
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Hypersonic boundary layer theory in symmetry plane

(Hamilton, Millman & Greendyke 1992). This study primarily employs ((6.15)–(6.19))
to obtain the boundary layer edge parameters. As a comparison, we also obtain the
boundary layer edge parameters of these cases by solving the Navier–Stokes equations,
which are solved by an in-house code named the advanced research tool in science and
technology CFD (ARTIST-CFD). The ARTIST-CFD is a parallel, finite volume code that
solves two-dimensional, axisymmetric and three-dimensional Navier–Stokes equations
based on multi-block structured meshes. Roe upwind scheme with second-order MUSCL
reconstruction and minmod limiter is applied for inviscid fluxes, and viscous fluxes are
discretized by second-order central difference scheme. For details about the ARTIST-CFD,
we refer the reader to Wang et al. (2023); Guo, Wang & Li (2024). The boundary layer
edge in the computations is defined where the local stagnation enthalpy is equal to 99.5 %
of the free-stream stagnation enthalpy. However, due to the difficulty in solving ∂we/∂z, it
is still obtained through (6.15).

Figure 6(a) first presents a comparison of the boundary layer edge parameters, i.e. Te and
ue, derived from ((6.16)–(6.19)) with those obtained from CFD. In the front portion of the
model, the differences between the two methods are minor, while the main discrepancies
appear in the rear part of the model. As mentioned in § 6.2, ((6.16)–(6.19)) provide a
quick and straightforward method to solve for the boundary layer edge parameters but
do not account for the entropy effect. Computational fluid dynamics methods, although
inevitably introducing additional complexity, can provide more reliable boundary layer
edge parameters, except for ∂we/∂z. After obtaining the boundary layer edge parameters
using the two methods described above, we used them as inputs to solve the boundary
layer equation (4.10), resulting in the respective boundary layer parameter profiles. These
were then compared with the boundary layer parameter distributions obtained from
CFD, as shown in figures 6(b) and 6(c), which respectively present the temperature and
velocity profiles. When the boundary layer edge parameters are consistent, the theoretical
solutions from this study match quite well with the CFD-derived boundary layer parameter
distributions at both θ = 0◦ and θ = 41.7◦ positions. Here θ is the angle between the
radius vector and the flight direction, as illustrated in figure 6(b). Since the velocity at the
edge of the boundary layer at the stagnation line is zero, as also illustrated in figure 6(a),
only the velocity profiles at θ = 41.7◦ are provided.

Furthermore, the heat flux distribution on the sphere between the present theoretical
results and the experimental data are shown in figure 7, where two boundary layer
edge parameters are utilized. One involves deriving them through ((6.16)–(6.19)) (dash
dot), while the other involves using CFD (solid). As shown in figure 7, in the forward
region of the model, particularly where θ is smaller than 70◦, the results by the present
method exhibit a close agreement with experimental data (i.e. within ±10 %) for the
two boundary layer parameters. However, as θ further increases, disparities between
theoretical and experimental results become more pronounced while using ((6.16)–(6.19))
to deduce the boundary layer edge parameters. This discrepancy primarily arises because
the simplified method employed in ((6.16)–(6.19)) neglects the influence of the entropy
layer. This issue becomes prominent at the rear of blunt bodies, where the boundary layer
thickness increases and interacts with the entropy layer, resulting in vorticity interaction.
Consequently, the entropy layer poses analytical challenges when calculating the above
boundary layer parameters on the surface. This is also evident in figure 6(a), where the
discrepancy between the boundary layer edge parameters derived from ((6.16)–(6.19))
and those obtained via CFD increases progressively towards the rear part of the model.
Certainly, while choosing alternative methods, such as extracting the boundary layer edge
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Figure 6. (a) Temperature and velocity profiles at the boundary layer edge. (b) Temperature profiles in the
boundary layer. (c) Velocity profiles in the boundary layer. Two methods are used to obtain the boundary
layer edge parameters; one involves deriving them through ((6.16)–(6.19)) (dash dot), while the other involves
solving the Navier–Stokes equations (solid). The results are obtained under the conditions of R = r = 50.8 mm,
Tw = 300 K, γ = 1.4, M∞ = 9.74, p∞ = 65.2 Pa, T∞ = 53.17 K and zero angle of attack.
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Figure 7. Heat flux distribution on the sphere in air between the present theoretical results and the experimental
data under the conditions of R = r = 50.8 mm, Tw = 300 K, γ = 1.4 and zero angle of attack. Two methods
are used to obtain the boundary layer edge parameters, one involves deriving them through ((6.16)–(6.19)) (dash
dot), while the other involves solving the Navier–Stokes equations (solid). Other conditions are as follows: Case
1: M∞ = 9.74, p∞ = 65.2 Pa, T∞ = 53.17 K; Case 2: M∞ = 9.55, p∞ = 29.8 Pa, T∞ = 54 K.

quantities from CFD, these discrepancies in the rear part of the sphere are subject to
improvement (solid line in figure 7).

7.1.3. Heat flux distribution on the spherical blunt cone
The third comparison case involves a 15◦ semiapex spherical blunt cone. The experimental
tests were conducted in air at the Ames 3.5-foot hypersonic wind tunnel (Cleary 1969).
The tests were made at a Mach number of 10.6 and a total temperature of 1111 K. The
authors conducted tests at different Reynolds numbers, angles of attack and nose radius.
We selected a specific set of conditions with a nose radius of R = 9.5 mm, a total model
length of L = 541.53 mm and an incoming unit Reynolds number of 3.9 × 106 m−1 for
comparison. The heat flux results at three different angles of attack were compared. The
boundary layer edge parameters were obtained both through ((6.16)–(6.19)) and CFD,
similar to the previous sphere case. Notably, ∂we/∂z was still obtained through (6.15).

The comparative results are depicted in figure 8. Notably, the X in figure 8 is based on
values in the Cartesian coordinate system, with the coordinate origin at the stagnation
point of the model. For the heat flux results (solid) obtained by solving (4.10) with
boundary layer edge parameters derived from CFD, there is relatively good agreement
with experimental data across all three conditions as shown in figure 8. When using
boundary layer edge parameters quickly obtained from ((6.16)–(6.19)), excellent agreement
is observed between the theoretical (dash dot) and experimental heat flux values for the
model’s forward region at 0◦ angle of attack, as well as for the entire model at 15◦
and 20◦ angles of attack. However, at the rear section of the model with a 0◦ angle of
attack, disparities between theoretical (dash dot) and experimental results become more
pronounced. This discrepancy is attributed to the same reason for the increasing disparity
in heat flux observed at the rear section of the model in figure 7. At the rear section of the
model with a 0◦ angle of attack, the boundary layer is thicker, making it more susceptible
to the entropy effects, thereby affecting the accuracy of solving ((6.16)–(6.19)) to obtain
boundary layer edge parameters. Similar to the cases shown in figure 7, CFD simulations

997 A21-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

70
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.708


Q. Wang, J. Li and S. Gu

X/L

q w
 (

k
W

 m
–
2
)

0.15 0.30 0.45 0.60 0.75 0.90

10

20

30

40

50

60

70

80

90

Experiments

20° 

0°

Present method

15°

Figure 8. Heat flux distribution along the windward meridian of the 15◦ semiapex spherical blunt cone in
air, comparing the present theoretical results with the experimental data under three different angles of attack.
The test conditions are as follows: R = r = 9.5 mm, Tw = 294.4 K, γ = 1.4. M∞ = 10.6, p∞ = 132.1 Pa,
T∞ = 47.33 K, L = 541.53 mm. Two methods are used to obtain the boundary layer edge parameters, one
involves deriving them through ((6.16)–(6.19)) (dash dot), while the other involves solving the Navier–Stokes
equations (solid).

provide more accurate boundary layer edge parameters, thereby enhancing the accuracy of
heat flux calculation at the rear portion of the model under 0◦ angle of attack.

Based on the above analysis, it can be concluded that solution accuracy of the boundary
layer equations (4.10) primarily relies on the precision of the boundary layer edge
parameters. With reliable boundary layer edge parameters, solving (4.10) can yield reliable
results. Besides, the impact of entropy on the boundary layer edge parameters is itself an
important topic, with dedicated research being conducted in this area. This paper does not
delve into the discussion of how entropy affects the accuracy of solving ((6.16)–(6.19))
to obtain boundary layer edge parameters. Additionally, for most regions of the blunt
body considered in this study, ((6.16)–(6.19)) can still produce satisfactory results. Thus,
((6.16)–(6.19)) are still employed in the following examples.

7.2. Leading edge of a saucer-shaped body
One example to be examined here has a very simple shape, namely, a semi-circular disk
with a semi-circular edge. Similar shapes can be found in many hypersonic vehicles,
such as X51 and some other wave riders. In these shapes, the most severe aerodynamic
heating occurs at the leading edge, and existing methods can only predict it approximately.
Thus, this paper aims at providing more precise results using the proposed method. The
schematic geometry of the semi-circular disk is shown in figure 9, where R and r remain
constant along the whole symmetry plane. In the case where R/r → ∞, the body can be
treated as a cylinder with a radius of r and if R/r = 1, the body is a sphere.

Figure 10 shows the theoretical heat flux at the stagnation point and at the symmetry
plane using the non-dimensional form of q/qs,sphere, where qs represents the heat transfer
rate at the stagnation point and the subscript ‘sphere’ denotes the case under R/r = 1.
As shown in figure 10(a), the heat flux rate at the stagnation point (θ = 0) decreases
rapidly as R/r increases, and the final result converges to that of a cylinder where
qs,cylinder/qs,sphere = 0.7274. This value can be interpreted as the difference between the
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Stagnation point

The symmetry

plane of interest

R

r
θ

Figure 9. Schematic geometry of a semi-circular disk body.

leading coefficient in the approximate expression for the stagnation point heat transfer rate,
i.e. 0.57 for a cylinder and 0.763 for a sphere, as shown by Anderson (2006).

Figure 10(b) shows q/qs,sphere as a function of θ at the symmetry plane, including
the results from Lees’ approximation (Lees 1956) under R/r = 1. Lees’ approximation
is a method used to estimate aerodynamic heating in hypersonic flows. It involves an
analytical approximation developed by Lees (1956), which provides a simplified approach
to calculate heat flux at the surface of a body moving at hypersonic speeds. Despite
its simplicity, Lees’ approximation has been widely used in the field of hypersonic
aerodynamics due to its ease of implementation and reasonable accuracy for certain flow
conditions. At θ greater than 60◦, the change in q/qs,sphere with R/r is relatively small. At
θ smaller than 60◦, q/qs,sphere decreases with an increasing R/r and converges to the heat
flux distribution in the symmetry plane of a cylinder. At R/r = 10, the maximum deviation
of q/qs,sphere from that for the cylinder heat flux distribution is within 4 %. Besides, the
results presented in this paper also align well with Lees’ approximation under the condition
R/r = 1, which is acceptable for aerodynamic heating calculations.

7.3. Leading edge of an ellipsoid-cone-shaped body
Blunt shapes are of particular interest for various applications, including aerodynamic
decelerators for aerobraking systems or as re-entry vehicles. Among these configurations,
the spheroid has garnered attention as an orbital, ballistic-entry vehicle. Thus, a spheroid,
defined as an ellipsoid of revolution about the major axis of an ellipse, is examined here.
The equation of a spheroid with X as the symmetry axis is given as

X2

a2 + Y2 + Z2

c2 = 1. (7.2)

The semi-axis c is the equatorial radius of the spheroid and a is the distance from centre
to pole along the symmetry axis. The model is an oblate spheroid if c > a and a prolate
spheroid if c < a. The case of a = c corresponds to a sphere. The schematic geometry
of the spheroid is shown in figure 11. A full mathematical description of the analytical
expression for the principal curvature is given by Weatherburn (1927).

In figure 12 the crossflow velocity gradient and heat flux at the symmetry plane are
plotted as functions of θ for c/a = 0.6, 0.8, 1, 1.3, 1.5 and 2. Both are displayed using the
non-dimensional form and normalized by their value at the stagnation point. It is important
to note that at the stagnation point for the model illustrated in figure 11, the flow diverges,
indicated by (∂we/∂z)s being positive in the current coordinate system. Therefore, values
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Figure 10. Theoretical heat flux under the conditions of M∞ = 7, p∞ = 1197 Pa, T∞ = 226.5 K, Tw =
293 K, γ = 1.4, r = 5 mm and zero angle of attack. (a) At the stagnation point. (b) At the symmetry plane.
The boundary layer edge parameters are obtained based on ((6.16)–(6.19)).
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Figure 11. Schematic geometry of a spheroid body.
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Figure 12. Crossflow velocity gradient (a) and heat flux (b) distributions at the symmetry plane under the
conditions of M∞ = 7, p∞ = 1197 Pa,T∞ = 226.5 K,Tw = 293 K, γ = 1.4, a = 50 mm and zero angle of
attack. The boundary layer edge parameters are obtained based on ((6.16)–(6.19)).

of (∂we/∂z)/(∂we/∂z)s larger than zero indicate that the flows are diverging from the
symmetry plane, and there are mass flows diverging from the symmetry plane for all
cases, as evidenced in figure 12(a). Comparatively, the prolate spheroid exhibits a smaller
crossflow velocity gradient than the sphere, whereas the oblate spheroid displays a larger
crossflow velocity gradient. Generally, a larger crossflow velocity gradient corresponds
to greater flow divergence from the symmetry plane, thinner boundary layer thickness or
higher temperature gradients near the wall. This trend is also reflected in figure 12(b),
where the heat flux values along the symmetry plane gradually increase from c/a = 0.6 to
c/a = 2.

Furthermore, the heat flux distribution on the oblate spheroid exhibits greater
complexity, where the heat flux on some aft section of the body is even larger than
that at the stagnation point, as observed for c/a = 2 in figure 12(b). On a general
three-dimensional blunt body, the longitudinal and circumferential compression both
contribute to heat fluxes. In the case of c/a = 2, the crossflow velocity gradient is
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Figure 13. Schematic geometry of an elliptic cone body (not to scale).

larger than that at the stagnation point. Consequently, the accompanying increase in
circumferential compression on some portion of the boundary layers may dominate the
compression effect, resulting in higher heat flux values. These findings also reflect that
the impact of three dimensionality on heat fluxes is much more complicated than the heat
fluxes analysed in two-dimensional cases where only longitudinal compression exists.

Another cone-shaped body examined in this study is an elliptic cone, which shares
similarities with vehicles like the HIFiRE-5 (Juliano, Jewell & Kimmel 2019) and HyTRV
(Xiang et al. 2022). The schematic geometry of the elliptic cone considered here is shown
in figure 13, where r = 20 mm, L = 100 mm and the half-angle in the minor axis (X–Z)
plane is 7deg. The ellipticity c/a is set to 1, 1.5, 2 and 3. Notably, the case of c/a = 1
corresponds to a 7-deg sphere–cone configuration.

The crossflow velocity gradient and heat flux at the φ = 0◦ symmetry plane exhibit
similar trends to those observed for a spheroid body, as shown in figure 14. Hence, we will
not discuss this in detail here. Instead, more attention is drawn to the parameters at the
φ = 90◦ symmetry plane, as shown in figure 15. The values of (∂we/∂z)/(∂we/∂z)s under
c/a = 1 are positive, indicating that the flows are diverging from the symmetry plane.
However, for c/a that are larger than 1, the values of (∂we/∂z)/(∂we/∂z)s can become
negative at certain sections in the aft body of the cone, indicating converging flow to
the symmetry plane; and the larger the c/a is, the further forward (∂we/∂z)/(∂we/∂z)s
becomes negative.

In the case of converging flow, the shock will be pushed farther away, resulting in
a thicker boundary layer thickness and reduced heat flux, as illustrated in figure 15(b).
Nevertheless, the non-dimensional heat fluxes at the φ = 90◦ symmetry plane are
relatively close to each other for all cases. Notably, we do not consider the presence of
separated flows in this analysis.

8. Concluding remarks

The general boundary layer equations are derived specifically for the symmetry plane of
three-dimensional bodies. These equations are established on the basis of a body-oriented
orthogonal curvilinear coordinate system relevant to the principal curvatures. Derivation
of the boundary layer equations relies on the symmetric properties of the flow and
the geometry, both of which are independent of the flow state. Thus, the equations
derived in this paper based on compressible laminar flows are also applicable to
incompressible flows. In addition, a turbulence model such as the Baldwin–Lomax model
can be incorporated into the current laminar boundary layer equations ((3.7)–(3.9))
to address turbulence effects. Moreover, ((3.7)–(3.9)) can also be extended to account
for chemically reacting viscous flows by adding the species continuity equations and
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Figure 14. Crossflow velocity gradient (a) and heat flux (b) distributions at the φ = 0◦ symmetry plane under
the conditions of M∞ = 7, p∞ = 1197 Pa, T∞ = 226.5 K, Tw = 293 K, γ = 1.4, r = 20 mm and zero angle
of attack. The boundary layer edge parameters are obtained based on ((6.16)–(6.19)).

modifying the energy equation to incorporate diffusion effects. These extensions align
with those presented by Anderson (2006), where he augmented the two-dimensional
laminar boundary layer equations with turbulence models and expanded the equations to
accommodate high temperature reacting flows.

In this paper the choice of a coordinate system relevant to the principal curvatures is
a good strategy, which can avoid the singularity appearing in the metric coefficient and
geodesic curvatures in other coordinates (Cebeci, Chen & Kaups 1990). This simplifies
the solution of the equations to some extent. Besides, the calculation of metric coefficients
is required only once in the proposed coordinate, which is also independent of the flow
characteristics.

With no restrictions on the magnitude of the crossflow, the crossflow velocity gradient
at the boundary layer edge on the symmetry plane is derived based on Newtonian theory,
where the three-dimensional effects are considered. This theoretical expression has not
been previously seen in other studies. Other boundary layer edge parameters are solved
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Figure 15. Crossflow velocity gradient (a) and heat flux (b) distributions at the φ = 90◦ symmetry plane under
the conditions of M∞ = 7, p∞ = 1197 Pa, T∞ = 226.5 K, Tw = 293 K, γ = 1.4, r = 20 mm and zero angle
of attack. The boundary layer edge parameters are obtained based on ((6.16)–(6.19)).

based on the normal shock and isentropic relations, which is the simplest and, therefore,
the most commonly employed method for blunt bodies. Notably, the entropy-layer effects
on the boundary layer edge conditions are not considered in this method. Subsequently,
the difference-differential method is applied to obtain an exact solution of our derived
boundary layer equations. Comparisons between the theoretical and experimental heat
flux data regarding the stagnation point heat flux and heat flux distribution on both a
sphere and a sphere-cone body are displayed. The flow characteristics at the leading
edge of saucer-shaped bodies and ellipsoid-cone-shaped bodies are finally presented and
discussed based on the developed boundary layer theory. Besides, theoretical expression of
the crossflow velocity gradient has the same range of applicability with Newtonian theory,
i.e. applicable only under hypersonic conditions. However, other existing methods for
taking the outer edge properties are all applicable to the present boundary layer equations.

Given the known boundary layer edge parameters, we can degrade (4.10) to an ODE
equation using the difference-differential method to solve it, thus minimizing the influence
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of grid resolution and numerical schemes. Hence, its solution accuracy heavily relies on
the precision of the boundary layer edge parameters. One reliable approach to solving
these parameters is through fully viscous three-dimensional calculations (Anderson 2006).
Notably, the difference-differential approach chosen in this paper for solving the boundary
layer equations requires a starting point of known information for computation, i.e. the
information of station 1 in figure 5. Initially, the three-dimensional stagnation point
boundary layer equations are solved, and the obtained results are used as the starting point
for downstream calculations. However, for non-blunt bodies, the selection of the starting
point needs additional consideration if employing the difference-differential approach
proposed in this paper.

Notably, theoretical framework developed herein for hypersonic flows shares similarities
with the discussions on viscous boundary layers outlined in Anderson (2006, Chapter
6). Nonetheless, the present theory can provide a much more comprehensive range of
applications for the symmetry plane of three-dimensional bodies. This theory completely
covers the planar boundary layer equations and the two typical cases examined in
(Anderson 2006, Chapter 6).
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