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While materials design in the context of texture dependent properties is well developed,
theoretical tools for microstructure design in the context of grain boundary sensitive properties
have not yet been established. In the present work, we present an invertible relationship between
texture and grain boundary network structure for the case of spatially uncorrelated two-
dimensional textures. By exploiting this connection, we develop mathematical tools that permit
the rigorous optimization of grain boundary network structure. Using a specific multi-objective
materials design case study involving elastic, plastic and kinetic properties, we illustrate the utility
of this texture mediated approach to grain boundary network design. We obtain a microstructure
that minimizes grain boundary network diffusivity while simultaneously improving yield strength
by an amount equal to half of the theoretically possible range. The theoretical tools developed
here could complement experimental grain boundary engineering efforts to help accelerate the
discovery of materials with improved performance.

I. INTRODUCTION

Much of microstructure science is focused on two
intimately related tasks: (i) predicting the properties of
a given microstructure and (ii) designing a microstructure
to achieve a desired property. Both of these endeavors are
fundamentally rooted in the notion that material structure
determines material performance. Mathematically this
idea has been canonized in various structure-property
relations (see, e.g., Refs. 1, 2 and references therein).
However, within the meso-scale microstructure commu-
nity, rigorous theoretical developments have been largely
restricted to the forward problem of property prediction.
Various predictive models of material performance have
been formulated and have proven successful.3–5 How-
ever, the inverse problem of microstructure design has
often consisted of an empirical trial-and-error approach.

Over the last decade, theoretical tools have been
developed that allow materials designers to explore the
complete universe of physically realizable microstruc-
tures for a given material and identify those that meet
various performance objectives/design constraints.6,7

This design formalism is referred to as microstructure
sensitive design for performance optimization (MSDPO).
Whereas the materials designer formerly had a finite (and
rather incomplete) catalogue of observed microstructures

and forward models at his/her disposal, the advent of
these new microstructure design tools has allowed for the
consideration of material structure as a continuous design
variable and the rigorous solution of complex inverse
design problems.6,8–14 While this advancement can
hardly be understated, the present microstructure design
paradigm has been limited to materials properties for
which defect insensitive models exist, such as elasticity,
conductivity, thermal expansion, and initial yield.6,8–14

However, other properties of scientific and engineering
interest such as fracture, corrosion, and electromigration,
which depend upon the structure of the grain boundary
network, lie outside of its scope.
The experimental development of grain boundary engi-

neering (GBE)15 has demonstrated the possibility of
controllably varying the structure of grain boundary net-
works in an effort to improve materials properties.16–19

However, materials amenable to this thermomechanical
processing strategy are mostly limited to those that readily
form annealing twins and exhibit appreciable plasticity.
Furthermore, even for this class of materials, successful
processing recipes have been developed through empirical
iteration. If theoretical tools for designing grain boundary
networks and predicting their effective properties were
available, the benefits of GBE could be extended to a much
broader class of materials and the pace of materials
discovery and synthesis could be accelerated.
In the present work we demonstrate the first appli-

cation of the MSDPO methodology to a defect sensi-
tive property: grain boundary network diffusivity.

Contributing Editor: Susan B. Sinnot
a)Address all correspondence to this author.
e-mail: ojohnson@byu.edu

DOI: 10.1557/jmr.2016.138

J. Mater. Res., Vol. 31, No. 9, May 14, 2016 �Materials Research Society 2016 1171

ht
tp

s:
//

do
i.o

rg
/1

0.
15

57
/jm

r.
20

16
.1

38
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

http://crossmark.crossref.org/dialog/?doi=10.1557/jmr.2016.138&domain=pdf
https://doi.org/10.1557/jmr.2016.138


Using a previously developed relationship between
crystallographic texture and grain boundary network
structure,20,21 we develop the mathematical tools nec-
essary for a texture mediated approach to grain bound-
ary network design. This mathematical apparatus is
exercised in the context of a relatively simple, but
illustrative, materials design problem.

II. DESIGN PROBLEM

As a simple example of a multiobjective microstruc-
ture optimization problem involving grain boundary
networks, consider microstructure sensitive design6,7

of metallic interconnects for flexible electronics. Chem-
istry and geometry will be held constant (see Fig. 1) and
we will seek to optimize the microstructure of a poly-
crystalline sample to satisfy certain design constraints
and objectives. To limit the scope of the problem, we
focus on aluminum with a simplified polycrystalline
microstructure composed of regular hexagonal grains,
each having an Æ001æ axis parallel to the sample z-
direction.

The design objectives for this study are summarized
below:

maxry1 ð1aÞ

S1111 ¼ Ssub1111 ð1bÞ

minD ð1cÞ
In Eq. (1a), ry1 represents the effective macroscopic

yield strength in the x-direction (loading direction), which
is an important consideration in this flexible electronics
application both for static loading and because it corre-
lates with fatigue strength.22,23 In Eq. (1b) we require that
the effective elastic constant, S1111, match that of the
substrate, Ssub1111, to which it is applied. Finally, in Eq. (1c)
we seek to minimize the effective diffusivity of the grain
boundary network, D, to mitigate degradation due to
electromigration.

The design variables for this case study include
crystallographic texture and the crystallographic structure
of the grain boundary network. We seek a distribution of
crystal orientations and commensurate grain boundary
network that will optimally satisfy the design constraints
and performance objectives listed in Eq. (1).

III. QUANTIFYING MICROSTRUCTURE

The texture of a polycrystal may be described quan-
titatively by its orientation distribution function (ODF),
denoted f(x), where the quantity f(x)dx indicates the
probability of observing a grain whose orientation is
infinitesimally close to x. An ODF can be expanded as
a harmonic series6,7,20,21,24 and, in the present case, may
be expressed as:

f xð Þ ¼
X‘
k¼�‘

cke
ikx ; ð2Þ

which is the familiar complex Fourier series. We take the
convention that f(x) is normalized over the entirety of S1,
which implies that c0 5 (2p)�1. Also, letting s denote the
order of the cyclic rotational symmetry of the crystal
system (s 5 4 for the specific case under consideration),
we have that cns 5 0 " n ; ℤ. An alternative series
expansion can be obtained in the basis of Dirac delta
functions, according to:

f xð Þ �
XL
l¼1

pld x� lx
� �

; ð3Þ

where each of the basis functions is centered at one of
a discrete set of fundamental orientations, {1x, 2x, . . . ,
Lx}, which will be described later. The approximation in
Eq. (3) becomes exact as L ! ∞. We will use both the
Fourier and the Dirac representations and, consequently, it
will be necessary to translate between the two. By taking

FIG. 1. System geometry. Above, the microstructure and loading
conditions of a section of the Al interconnect is shown. A uniaxial
stress, r, is applied in the x-direction. An electrical current, J, also
flows in the x-direction. The microstructure is composed of regular
hexagonal grains all having their Æ001æ axis parallel to the sample z-
direction. Below is a close-up of the region indicated by the red dashed
circle. A triple junction is coordinated by grains with orientations x1,
x2, and x3, defined as the positive clockwise rotations from the sample
x-direction. The grain boundary misorientations, x12, x23, and x31 are
also indicated.
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the Fourier transform of Eq. (3), we obtain the desired
relationship:

ck �
XL
l¼1

pl
lck ; ð4Þ

where lck is the k-th coefficient of a microstructure
composed entirely of the l-th fundamental orientation
(i.e., a single crystal with orientation lx).

The crystallographic structure of the grain boundary
network can be quantified via the triple junction distri-
bution function (TJDF),20,21,25 denoted T(x12,x23),
where the quantity T(x12,x23)dx12dx23 provides the
probability of observing a triple junction in the micro-
structure that is coordinated by an ordered pair of grain
boundary misorientations infinitesimally close to
(x12,x23) (see also Refs. 26 and 27, which describe
a related function). We define the misorientation between
adjacent grains A and B by xAB 5 xB � xA. Because of
conservation of misorientation around a circuit enclosing
a triple junction28 we have x12 1 x23 1 x31 5 0,
indicating that only two of the three possible misorienta-
tions are independent. As a convention we take the first
two grain boundary misorientations, (x12,x23), as the
independent ones that characterize a given triple junction.
Like the ODF, the TJDF can be expressed in spectral
form,20,21 and in the present two-dimensional case, may
be represented in the basis of bipolar complex
exponentials:

T x12;x23ð Þ ¼
X
k1;k3

tk3k1e
ik1x12eik3x23 ; ð5Þ

where the indices k1, k3 2 (�∞, ∞), and the coefficients
are determined using Eq. (A1). Other relevant properties
of the TJDF and its coefficients are given in Appendix A,
including constraints on the TJDF coefficients resulting
from crystallographic and triple junction symmetries. The
TJDF also admits a Dirac basis representation:

T x12;x23ð Þ ¼
XN
n¼1

fnd x12;x23ð Þ; nx12;
nx23ð Þ½ � ; ð6Þ

where d[(x12,x23), (
nx12,

nx23)] [ d(x12 � nx12) d(x23 �
nx23) so that the basis functions are centered at fundamental
triple junctions (as characterized by the corresponding
ordered pair of triple junction misorientations).

IV. MICROSTRUCTURE SETS AND HULLS

The spectral coefficients of an ODF, {. . . , c�1, c0,
c1, . . .}, encode the texture of a given polycrystalline
microstructure. These coefficients can be interpreted as
the coordinates of a point in Fourier space that represents

that texture (see Fig. 2). Microstructures with different
textures will have different coefficients, corresponding to
points with different coordinates. By considering all possi-
ble simultaneous values that the coefficients can take, one
can define a region in Fourier space containing all
physically possible textures. This region is called the texture
hull. This formalism can be extended to bound the space of
grain boundary networks using the spectral coefficients of
the TJDF, in which case we obtain a triple junction hull.
Such closed convex regions are generically referred to as
microstructure hulls and the solution of our design problem
involves searching the appropriate microstructure hull for
a microstructure whose properties optimally satisfy our
design objectives. In this section we explain the process of
generating the relevant microstructure hulls.

A. The fundamental zone

In the two-dimensional case considered here, grain
orientations take values x 2 [0, 2p), which may be
interpreted as points on the unit circle, S1. Due to
crystallographic symmetry, the range of physically
distinct orientations is restricted to x 2 [0,xs), where
xs [ 2p/s. This sub-space of S1, is referred to as the
fundamental zone or asymmetric region for grain orien-
tations, and we denote it by:

A 1ð Þ ¼ x x 2 ½0;xsÞ; xs[
2p
s

����� �
: ð7Þ

In similar fashion, grain boundary misorientations,
xAB [ xB � xA, live on S1, and, consequently, an

FIG. 2. Schematic illustration of the texture hull in the Fourier
basis. Points, with coordinates (c1, c2), correspond to textures as
indicated by the selected inverse pole figures. The grey region
bounding all of the points represents the texture hull, which is
closed and convex. As the number of coefficients is infinite, this
space is infinite dimensional. It is shown here as an orthogonal
projection in two-dimensions.
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ordered pair of independent triple junction misorienta-
tions, (x12,x23), inhabits the product space S

1 � S1. The
application of crystal symmetry operations to the orien-
tations of any of the three grains coordinating a triple
junction will leave the triple junction physically un-
changed. Consequently we have that

x12;x23ð Þ; x12 þ axs;x23 þ bxsð Þ 8 a; b 2 ℤ ð8Þ

(see Appendix A.3 for a derivation). Furthermore, there

are
3
2

� �
ways of selecting the 2 independent misor-

ientations characterizing the triple junction, resulting in
the following set of equivalence relations (see Ref. 20):

x12;x23ð Þ; x12;x23ð Þ ð9aÞ

x12;x23ð Þ; x23;�x12 � x23ð Þ ð9bÞ

x12;x23ð Þ; �x12 � x23;x12ð Þ ð9cÞ

x12;x23ð Þ; �x12;x12 þ x23ð Þ ð9dÞ

x12;x23ð Þ; x12 þ x23;�x23ð Þ ð9eÞ

x12;x23ð Þ; �x23;�x12ð Þ ð9fÞ

which define the physical symmetries of triple junctions
in the present two-dimensional case. Considering both
crystal symmetry and triple junction symmetry, we can
define a canonical fundamental zone for triple junction
misorientations according to:

A 3ð Þ ¼ x12;x23ð Þ x23 $ 0;x23 #x12;x23 ,
1
2

���� xs � x12ð Þ
� �

;

ð10Þ

which is illustrated graphically in Fig. 3, along with the
symmetrically equivalent portions of the triple junction
space. We note that a similar result was previously obtained
by Mason in Ref. 25. The TJDF must repeat itself over each
of the regions symmetrically equivalent to A 3ð Þ. This

requirement results in certain relationships among the TJDF
coefficients (given in Appendix A), which limit the number
of independent coefficients that need to be computed.

B. The microstructure set

By discretizing the fundamental zones (A 1ð Þ and A 3ð Þ)
we obtain sets of fundamental orientations and funda-
mental triple junctions, respectively, on which the Dirac
basis functions of Eqs. (3) and (6) are centered. Consider
a single crystal with orientation lx. The coefficients of its
ODF, in the Dirac representation, are all zero except for
the l-th coefficient, which is equal to unity. We can
represent this set of coefficients as a vector, lp, whose l-th
element is equal to 1 and all others are 0. The L
coefficient vectors corresponding to the fundamental
orientations form a microstructural basis in which an
arbitrary ODF can be expressed. This is referred to as the
texture set and it is defined by

M 1ð Þ
S ¼ lp lp ¼ lp1;

lp2; . . . ;
lpL

� �
; lpr ¼ drl; l 2 1;L½ ��� g :

	
ð11Þ

In light of the relationship between the Fourier and
Dirac representations embodied in Eq. (4), the texture set
can also be expressed in the Fourier representation:

and both representations will be used in the present work.
To make our notation explicit, we will use capital letters
when referring to the Dirac basis (M 1ð Þ

S ), lower-case
letters when referring to the Fourier basis (m 1ð Þ

S ), and
calligraphic script when referring to the abstract concept
independent of either representation (e.g., M 1ð Þ

S ). Bold
face is used to indicate a vector quantity.

In like fashion to the texture set, a triple junction set is
defined by

M 3ð Þ
S ¼ n/ j n/ ¼ nf1;

nf2; . . . ;
nfNð Þ; nfr ¼ drn; n 2 1;N½ �f g

ð13Þ

or

m 1ð Þ
S ¼ lc lc ¼ . . . ; lc�1;

lc0;
lc1; . . .

� �
; lck ¼ 1

2p
e�iklx; lx 2 A 1ð Þ;

���� l 2 1; L½ �; k 2 �‘;‘ð Þ
� �

ð12Þ

m 3ð Þ
S ¼ nt nt ¼ . . . ; nt0�1;

nt1�1; . . . ;
nt00 ;

nt10 ; . . .
� ��� ; ntk3k1 ¼

1
4p2

e�ik1nx12e�ik3nx23 ; nx12;
nx23ð Þ 2 A 3ð Þ; n 2 1;N½ �; k1; k3 2 �‘;‘ð Þ

� �
: ð14Þ
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The importance of these microstructure sets stems
from the fact that they are fundamental building blocks
from which a statistical description (i.e., the ODF or
TJDF) of any microstructure can be constructed. This can
be seen from the form of Eq. (4), in which the Fourier
coefficients of an arbitrary ODF can be expressed as
a weighted sum of the elements of m 1ð Þ

S with the Dirac
coefficients providing the weights. A similar expression
exists in the case of the TJDF coefficients:

tk3k1 �
XN
n¼1

fn
ntk3k1 : ð15Þ

For the case study considered here, we use a resolution
of 5° for both M 1ð Þ

S and M 3ð Þ
S .

C. The microstructure hull

The goal of the design problem considered here is to
identify a microstructure whose properties will optimally
satisfy the design objectives expressed in Eq. (1). As will
be explained in Sec. V, the constitutive models that we
use consider the influence of both texture and grain
boundary network structure. Thus, the design space for
this problem comprises the space of all possible ODFs
and all possible TJDFs. One of the advantages of the
spectral form for ODFs and TJDFs given in Sec. III is
that it facilitates a concrete mathematical description of
this design space. By enumerating all physically possible
simultaneous values of the ODF coefficients, {ck} or
{pl}, we can consider all possible textures and this
defines the design space for textures. The same can be
done with the TJDF coefficients to define the design space
for grain boundary networks. This can be accomplished

most easily in the Dirac basis. Because the ODF is
a probability density function, we have a normalization
condition,

R 2p
0 f xð Þ ¼ 1, and a requirement of non-

negativity, f(x) $ 0. The normalization condition implies
that +L

l¼1pl ¼ 1 and the non-negativity requirement guar-
antees that pl $ 0 " l. These conditions mean that in the
Dirac basis, the space of all possible ODFs is an (L � 1)-
dimensional simplex: the convex hull of the texture set,
M 1ð Þ

S , the elements of which form the vertices. We
therefore refer to this space as the texture hull. Its formal
definition may be expressed as

M 1ð Þ
H ¼ p p ¼ p1; p2; . . . ; pLð Þ; 0# pl 8 l;

XL
l¼1

pl ¼ 1

�����
( )

:

ð16Þ

Using Eq. (4), the texture hull can be expressed in the
Fourier basis as well according to

m 1ð Þ
H ¼ c c �

XL
l¼1

pl
lc; lc 2 m 1ð Þ

S ; 0# pl 8 l;
XL
l¼1

pl ¼ 1

�����
)

:

(
ð17Þ

The same process yields the design space for grain
boundary networks, the triple junction hull:

M 3ð Þ
H ¼ / / ¼ f1;f2; . . . ;fNð Þ; 0#fn 8 n;

XN
n¼1

fn ¼ 1

�����
( )

ð18Þ

in the Dirac representation, or

FIG. 3. The fundamental zone for triple junction misorientations, A 3ð Þ, shown in red. The other triangular regions in the detail view are
symmetrically equivalent to the canonical A 3ð Þ and are related by triple junction symmetries [Eq. (9)]. Crystallographic symmetries [Eq. (8)] cause
the region shown in the detail view to be repeated throughout the remainder of S1 � S1.
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m 3ð Þ
H ¼ t t �

XN
n¼1

fn
nt; nt 2 m 3ð Þ

S ; 0#fn 8 n;
XN
n¼1

fn ¼ 1

�����
)(

ð19Þ

in the Fourier representation.
It is important to note that texture and grain boundary

network structure are not independent microstructural
features, but neither does one fully specify the other. To
find a physically valid solution to our design problem we
cannot search M 1ð Þ

H and M 3ð Þ
H independently, but, rather,

we must find an optimal texture and grain boundary
network that are self-consistent (i.e., compatible). To
accomplish this we will consider the subset of micro-
structures for which spatial correlations in grain orienta-
tion are absent. For this reduced set of microstructures
each texture (ODF) associates with exactly one grain
boundary network (TJDF). This mapping has been
published previously for the full 3D case20,21; here, we
provide the formula for the 2D case relevant to the
present design problem:

~tk3k1 ¼ 2pc�k1ck1�k3ck3 : ð20Þ

This expression permits the computation of the TJDF
coefficients of a microstructure from a knowledge of its
ODF coefficients. We include the tilde to indicate that
these are the uncorrelated TJDF coefficients, or the TJDF
coefficients computed under the assumption that the grain
orientations are spatially uncorrelated (see Appendix B).
Equation (20) allows us to define an uncorrelated triple
junction hull:

~m 3ð Þ
H ¼ ~t j~t[ ~tk3k1

n o
; ~tk3k1 ¼ 2pc�k1ck1�k3ck3 ; c[ ckf g; c 2 m 1ð Þ

H

n o
:

ð21Þ

Each point in M 1ð Þ
H maps to exactly one point in fM 3ð Þ

H

allowing us to find a self-consistent solution to our design
problem.

The mapping embodied in Eq. (20) is, however, many-
to-one which can be seen in the inverse mapping (derived
in Appendix B):

cgs ¼
c0

Qg=2
j¼1

~t 2jð Þs
s

~t 2j�1ð Þs
s for eveng

cs
Qg�1ð Þ=2

j¼1

~t 2jþ1ð Þs
s

~t 2jð Þs
s for oddg

8>>>>><>>>>>:
ð22Þ

where again s denotes the order of the cyclic rotational
symmetry of the crystal system. All of the quantities on
the right hand side of Eq. (22) are fully defined except for
the phase of cs, which is a free parameter (see Appendix
B). This indicates that it is possible to recover an ODF
from a TJDF modulo a rotation operation (see Fig. 4). In

other words, all ODFs that differ only by a rotation
(e.g., f(x) and f(x 1 Dx)) correspond to the same TJDF.
In light of this invertible relationship between ODF and
TJDF, it is possible to obtain a microstructural solution
with self-consistent ODF and TJDF via a texture-
mediated approach, i.e. by adopting M 1ð Þ

H as our formal
microstructural design space and mapping it to M 3ð Þ

H as
necessary. The process used to accomplish this is de-
scribed in Sec. VI(B).

V. CONSTITUTIVE MODELS

With a mathematical description of microstructure in
hand, we are prepared to consider constitutive models for
the materials properties relevant to our design problem.
Microstructure sensitive models for S1111 and ry1 are
readily available. Below, we explain the application of
each of these properties models to the present design
problem. We also develop a model for �D that depends on
the types and populations of grain boundaries and triple
junctions present in the polycrystal.

A. Yield

The effective macroscopic yield strength of our poly-
crystalline material can be approximated using the model
developed by Sachs,29,30 according to:

ry1 ¼ sCRSS
1

max
a b1

a qð Þn1a qð Þj j

0B@
1CA ; ð23Þ

where sCRSS is the critically resolved shear stress (0.79
MPa for Al31), b1

a qð Þ and n1
a qð Þ are the x-components of

the slip direction and slip plane normal, respectively, of
the a-th slip system–both of which are functions of the
crystallographic orientation, q, in a given grain.

FIG. 4. An ODF is shown in blue. The corresponding TJDF was
computed using Eq. (20) and then the ODF shown in red was
recovered using Eq. (22). The original ODF and the one
that was recovered from its TJDF differ only by a phase shift (i.e., a
rotation).
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The overbar indicates a volume average over all crystal
orientations in the polycrystal. As mentioned in Sec. II,
we will make the additional assumption that all
orientations in our polycrystal share a common rotation
axis that is orthogonal to the plane of the sample and
which is a four-fold symmetry axis of the crystal (i.e.,
a Æ100æ direction for FCC aluminum as illustrated in
Fig. 1). This makes the problem effectively two-
dimensional and simplifies Eq. (23) to:

ry1 ¼ sCRSS

Z 2p

0
f xð Þg xð Þdx ; ð24Þ

where the scalar x is an orientation, f(x) is an ODF, and
g(x) is defined by:

The function g(x) can also be represented in spectral
form as

g xð Þ ¼
X‘
k¼�‘

gke
ikx : ð26Þ

Substituting Eqs. (2) and (26) into Eq. (24) and
evaluating the integral yields

ry1 ¼ 2psCRSS
X‘
k¼�‘

c�kgk ; ð27Þ

where we have made use of the reality condition,
f(x) 5 f*(x), and the orthogonality of the Fourier basis
functions. As has been pointed out by the MSDPO
community in other contexts,32 the form of Eq. (27) is
significant in that it represents a decoupling of the
microstructural information (encoded in ck) from the
physics of the material phenomena (encoded in gk).
The properties coefficients, gk, need only be computed
once, and then ry1 may be easily and efficiently
evaluated for any microstructure through the inner
product operation represented by Eq. (27), which is
the two-dimensional analog of a result given pre-
viously in Ref. 30.

B. Elastic compliance

The Voigt model24,33 for elastic compliance assumes
that all grains undergo the same elastic strain. This
provides an upper bound, which, for the specific case at
hand, can be expressed as:

S1111 ¼
Z 2p

0
f xð ÞS1111 xð Þdx ð28Þ

with the orientation dependent function S1111(x) defined
by:

S1111 xð Þ ¼ cos4 xþ sin4 x
� �

S1111

þ 2 cos2 x sin2 x S1122 þ 2S1212ð Þ : ð29Þ

Following the same procedure for elasticity as was

employed above for yield, we may express Eq. (29) in
spectral form:

S1111 xð Þ ¼
X‘
k¼�‘

ske
ikx ð30Þ

with the elastic properties coefficients being given
explicitly by

sk ¼

1
8 S1111 � S1122 þ 2S1212ð Þ½ � k 2 �4; 4f g
1
4 3S1111 þ S1122 þ 2S1212ð Þ½ � k ¼ 0

0 otherwise

8>><>>:
ð31Þ

Substituting Eqs. (2) and (30) into Eq. (28) and
evaluating the integral yields

S1111 ¼ 2p
X

k2 �4;0;4f g
c�ksk ð32Þ

as an expression for the Voigt model of elastic compli-
ance, expressed in spectral form.

C. Grain boundary network diffusivity

The diffusivities of individual grain boundaries can
differ by orders of magnitude. This strong contrast of

g xð Þ ¼

cosx sinxþ cos xð Þ
 ffiffiffi
6

p� 
�1
for x 2 0; p=4½ �; p; 5p=4½ �

sinx sinxþ cosxð Þ
 ffiffiffi
6

p� 
�1
for x 2 p=4;p=2½ �; 5p=4; 6p=4½ �

sinx sinx� cos xð Þ
 ffiffiffi
6

p� 
�1
for x 2 p=2; 3p=4½ �; 6p=4; 7p=4½ �

�cosx sinx� cos xð Þ
 ffiffiffi
6

p� 
�1
for x 2 3p=4;p½ �; 7p=4; 2p½ �

8>>>><>>>>: ð25Þ
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grain boundary diffusivity precludes the use of effective
medium theory models to predict the effective diffusivity
of grain boundary networks in polycrystals.34 McLachlan
proposed a phenomenological model for the effective
electrical conductivity of binary mixtures of insulating
and conducting phases,35,36 which was adapted to the
analogous case of grain boundary network diffusivity by
Chen and Schuh37:

p1
D1

1=s � 2D
� �1=s

D1
1=s þ pc;2�1 � 1

� �
2D
� �1=s þ p2

D2
1=t � 2D

� �1=t
D2

1=t þ pc;2�1 � 1
� �

2D
� �1=t ¼ 0 :

ð33Þ

In this expression, p1 and p2 are the fraction of low-
and high-angle grain boundaries, respectively, D1 # D2

are the corresponding diffusivities, and �D is the effective
diffusivity of the grain boundary network (see Ref. 38 for
a discussion of the slight difference between the form of
Eq. (33) and the corresponding equation provided in
Ref. 37). The exponents are constants that depend only
on the dimensionality of the problem and in this work are
taken as s5 1.09 and t5 1.13. The spatial distribution of
low- and high-angle grain boundaries in real materials is
manifestly non-random and the percolation threshold for
high-angle grain boundaries, pc,2, is sensitive to these
correlations in the grain boundary network,39 which
result from crystallographic constraints, texture, etc.
These correlations are known to be short-range40 and
can be quantified by the triple junction fractions, {Ji j i 2
[0, 3]}, which measure the fraction of triple junctions
coordinated by i “special” grain boundaries (low-angle in
the present context). Frary and Schuh found an empirical
relation that predicts the percolation threshold (the expres-
sions given in Ref. 41 were for pc,1, but can be used to
obtain pc,2 by simply replacing Eq. (7b) of Ref. 41 with its
reciprocal) as a function of the Ji,

41 the details of which
will be omitted here, but which allows us to write

pc;2 ¼ pc;2 J0; J1; J2; J3ð Þ : ð34Þ

The triple junction fractions can be interpreted as the
average probability of observing a triple junction co-
ordinated by i “special” grain boundaries in a given
microstructure. Considering low-angle grain boundaries
as “special”, this allows us to compute the Ji by in-
tegration of the TJDF20,21 according to:

Ji ¼
Z
Xi

T x12;x23ð ÞdXi : ð35Þ

In Eq. (35), Xi is the appropriate integration region as
defined by:

X0 ¼ x12;x23ð Þjx̂12 > xt; x̂23 > xt; x̂31 > xtf g
ð36aÞ

X1 ¼ x12;x23ð Þjx̂12#xt; x̂23 > xt; x̂31 > xtf g
[ x12;x23ð Þjx̂12 > xt; x̂23 #xt; x̂31 > xtf g
[ x12;x23ð Þjx̂12 > xt; x̂23 > xt; x̂31 #xtf g

ð36bÞ

X2 ¼ x12;x23ð Þjx̂12 > xt; x̂23 #xt; x̂31 #xtf g
[ x12;x23ð Þjx̂12 #xt; x̂23 > xt; x̂31#xtf g
[ x12;x23ð Þjx̂12 #xt; x̂23#xt; x̂31 > xtf g

ð36cÞ

X3 ¼ x12;x23ð Þjx̂12#xt; x̂23 #xt; x̂31 #xtf g ð36dÞ

where xt is the angular threshold between low- and high-
angle grain boundaries, which, based on diffusivity data
for Al, we estimate to be xt 5 20° (see Ref. 42, pg. 122).
In Eq. (36), the disorientation angle, x̂AB, is the smallest
misorientation angle among all of those that are symmet-
rically equivalent to the misorientation xAB, and is
defined by

x̂AB ¼ min jxAB modxsj; xj s � xAB modxsð Þj� �
:

ð37Þ
Alternatively, the Ji may be determined by classifying

the fundamental triple junctions in M 3ð Þ
S according to

their Ji type, then the Ji may be obtained using the Dirac
TJDF coefficients according to

Ji ¼
XN
n¼1

fn
nJi ; ð38Þ

where nJi is equal to 1 if the n-th element of M 3ð Þ
S ,

(nx12,
nx23), is a triple junction of type i and 0 otherwise.

Introducing Eq. (38) into Eq. (34) and substituting the
result into Eq. (33) provides an implicit expression for the
effective diffusivity of the grain boundary network, �D, as
a function of the TJDF coefficients, whose solution we
will abstractly denote:

D ¼ D fnf g;D1;D2ð Þ : ð39Þ
In Eq. (39) we use the Dirac coefficients, {fn}, and

Eq. (38) [instead of the Fourier coefficients, ftk3k1g, and
Eq. (35)] because this approach eliminates the truncation
error and other numerical errors that arise from evaluation
of the integral in Eq. (35).

VI. MATERIALS PROPERTIES DESIGN SPACE

A. Properties closure

With consitutive models in terms of the spectral
microstructure coefficients for each of the materials
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properties relevant to the design problem, we can now
map the microstructural design space, M 1ð Þ

H , to the
materials properties design space, P, referred to in the
MSDPO literature as a properties closure.7 Since, M 1ð Þ

H

contains all physically possible microstructures relevant
to the present design problem (under the assumption of
spatially uncorrelated grain orientations), by exercising
the structure-property models over its entirety we obtain
the complete universe of physically possible combina-
tions of the properties of interest. A survey of algorithms
for constructing properties closures is given in Ref. 7. In
the present work we use a new approach that consists of
three steps: (1) hierarchically sample ODFs from each of
the (L � u)-dimensional simplices (for u 2 [1, L]) that

compose M 1ð Þ
H ; (2) compute the properties for each

sample via Eqs. (27), (32) and (39); and (3) compute
the alpha hull43,44 of the resulting points in the properties
space to define the boundary of P. Figure 5(a) shows
a smoothed approximation of the resulting properties
closure for the present design problem, generated
by sampling 106 ODFs from M 1ð Þ

H .

B. Solving the design problem

With both the microstructural design space (M 1ð Þ
H )

and the corresponding properties design space (P) in
hand, the solution of our design problem involves
identifying the point in P that optimally satisfies the
design objectives [Eq. (1)] and finding the corresponding

FIG. 5. (a) The properties closure, P, for the present design problem. The locations of the optimal, pessimal, and isotropic solutions are also
shown. (b)–(d) Microstructures representative of the optimal, pessimal, and isotropic solutions, respectively, with the grains colored according to
their crystallographic orientation, x (see color bar at right). (e)–(f) The grain boundary networks of the corresponding microstructures in (b)–(d),
with grain boundaries colored according to their disorientation, x̂AB (see color bar at right).
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microstructure(s) in M 1ð Þ
H . To do this, we first express the

design problem as an optimization problem:

arg min
p2M 1ð Þ

H

h pð Þ

subject to y ¼ 0
ð40Þ

where the objective function is defined by

h pð Þ ¼ z pð Þ þ 2
x pð Þ þ 2

ð41Þ

and the problem has been centered and scaled according
to the following coordinate transformations:

x pð Þ ¼ 2ry1 pð Þ � max ry1
� �þmin ry1

� �� �
max ry1

� ��min ry1
� � ð42aÞ

y pð Þ ¼ 2S1111 pð Þ � max S1111
� �þmin S1111

� �� �
max S1111

� ��min S1111
� � ð42bÞ

z pð Þ ¼ 2 lnD pð Þ � max lnD
� �þmin lnD

� �� �
max lnD

� ��min lnD
� � ð42cÞ

The theoretical minimum and maximum values of each
of the properties appearing in Eq. (42) are provided
in Table I. The optimization constraint y5 0 is just the de-
sign constraint of Eq. (1b) transformed according to Eq.
(42b), where we have chosen Ssub1111 ¼ 2:81� 10�11 Pa�1.

Equation (41) indicates that we have chosen the Dirac
representation of the texture hull, M 1ð Þ

H , as the optimiza-
tion domain, with the Dirac ODF coefficients, p 5 (p1,
p2, . . . , pL), as the optimization variables. Our design
problem involves texture sensitive properties, ry1 and
S1111, and a grain boundary network sensitive property,
D. To obtain a self-consistent design solution (i.e.,
a texture and grain boundary network that are compati-
ble) we must optimize them simultaneously and this
requires a relationship between ODF and TJDF. Equation
(20) provides the needed relationship between the Fourier
ODF coefficients and the Fourier TJDF coefficients.
Using Eq. (20) we could perform the optimization with
the Fourier ODF coefficients as the design variables
and c 2 m 1ð Þ

H as the domain. However, respecting
the bounds of this domain requires the computation of

a high-dimensional convex hull, m 1ð Þ
H , which is expensive.

In contrast, the texture hull in the Dirac representation,
M 1ð Þ

H , is an (L � 1)-simplex and, consequently, does not
require explicit computation. Instead, restricting our sol-
utions to this domain in the Dirac space—which guaran-
tees that they will be physically realizable—is easily
accomplished by requiring 0 # pl " l and

PL
l¼1 pl ¼ 1.

To perform the optimization over M 1ð Þ
H requires that we

recast our constitutive models in terms of p. Introducing
Eq. (4) into Eqs. (27) and (32) results in:

ry1 ¼ 2psCRSS
XL
l¼1

pl
lry1 ; ð43Þ

S1111 ¼ 2p
XL
l¼1

pl
lS1111 ; ð44Þ

where lry1 and lS1111 are the properties of the l-th
fundamental orientation. Our model for grain boundary
network diffusivity is already in terms of Dirac coef-
ficients [Eq. (39)], but they are the coefficients of the
TJDF. Equation (20) provides a relationship between
ODF and TJDF coefficients in the Fourier basis. The
corresponding relationship in the Dirac basis is given by:

~fn ¼
X

a;b;cð Þ2En

papbpc : ð45Þ

In Eq. (45), En is the equivalence class of the n-th
fundamental triple junction, (nx12,

nx23), defined by the
combination of crystal symmetry and triple junction
symmetry [Eq. (9)]. In other words, Eq. (45) indicates
that the probability of observing a triple junction
belonging to a bin centered at (nx12,

nx23) is given by
the joint probability of observing the corresponding
triplet of orientations, summed over all orientation
triplets that could produce that triple junction.
Substituting Eq. (45) into Eq. (39) permits the compu-
tation of �D from the Dirac ODF coefficients.

With all of our constitutive equations in terms of p, it is
now possible to solve our design problem in a self-
consistent fashion. Equation (40) is of the form of a canon-
ical quasi-convex optimization problem, and we employ
sequential quadratic programming to obtain a solution.

Figure 5 shows the optimal solution, together with the
pessimal (i.e., worst performing) and isotropic solutions
for comparison. The properties closure shown in Fig. 5(a)
highlights the competing nature of our design objectives:
no microstructure exists for which ry1 and �D are,
respectively, maximized and minimized simultaneously.
The optimal microstructure for the design problem is the
one that makes the best trade-off between the two
competing properties.

TABLE I. The theoretical maximum and minimum values of each of
the three effective properties considered.

ry1 S1111 �D

min(. . .) 4
ffiffi
6

p
sCRSS

3þ ffiffi
2

p þtan p=8ð Þ S1111 D1/2

max(. . .)
ffiffiffi
6

p
sCRSS 1

2 S1111 þ S1122ð Þ þ S1212 D2/2
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With respect to ry1, the optimal solution outperforms
the pessimal and isotropic solutions by 16% and 10%,
respectively. This performance improvement is particu-
larly noteworthy as the maximum theoretical yield
strength, max ry1

� �
, is only 20% larger than the minimum

theoretical yield strength, min ry1
� �

. Thus, the improve-
ment of the optimal microstructure over the pessimal
spans nearly the complete range of possible yield
strengths, and the improvement over the isotropic micro-
structure spans half of the theoretically possible range.
The ODF of the optimal solution is dominated by two
texture components (orientations): xA 5 0° and xB 5 45°.
The ODF of the pessimal solution is identical, but is
shifted by a 22.5° rotation (phase shift), which leads to its
diminished ry1.

The value of D is the same for both the optimal and
pessimal microstructures, and only slightly lower for the
isotropic microstructure. The reason that �D is identical for
the optimal and pessimal solutions is that they both
possess the same TJDF—evident in the visual similarity
of their grain boundary networks [Figs. 5(e) and 5(f)]—
which are composed entirely of J1 and J3 type triple
junctions. This is because, as indicated in Eq. (22), two
ODFs that differ only by a rotation will possess identical
TJDFs. All three microstructures possess the same
fraction of low-angle grain boundaries (p1 5 0.5), but
the isotropic microstructure contains J0 and J2 type triple
junctions, which are not present in the other two micro-
structures. This highlights the important fact that speci-
fication of the fraction of “special” boundaries, p1, in
a microstructure, is insufficient to adequately quantify the
structure of the grain boundary network as topological
details have a strong effect on its effective properties.

VII. SUMMARY

The present work represents the first application of the
MSDPO methodology6,7 to a defect sensitive property
(grain boundary network diffusivity). The mathematical
apparatus required for this development was presented and
applied to a specific design problem to illustrate its utility.

We have defined the TJDF for two-dimensional
crystallographic textures as a means to quantify the
structure of the grain boundary network. We also pro-
vided the equivalence relations for triple junction sym-
metries and explicitly defined the boundaries of a triple
junction fundamental zone that includes the effects of
both triple junction symmetry and crystallographic sym-
metry. A formula was derived relating crystallographic
texture (ODF) to grain boundary network topology
(TJDF) and, by inverting this relationship, we demon-
strated that it is possible to recover an ODF from a given
TJDF modulo a rotation operation. Using the spectral
representation of the ODF and TJDF, we constructed
microstructure hulls, in both the Fourier and Dirac bases,

which constitute the complete universe of possible ODFs
and TJDFs, respectively.

Using these tools, we performed a design case study
for a flexible electronics application, with competing
design constraints/objectives, to demonstrate the process
of texture mediated grain boundary network design. We
determined a grain boundary network and commensurate
texture that optimally satisfy the design objectives, which
included elastic, plastic (initial yield), and kinetic prop-
erties. In the process we also developed a refined
constitutive model for grain boundary network diffusivity
that considers the influence of grain boundary network
topology. The shape of the resulting properties closure
indicated a non-trivial correlation between the properties
considered, which required a trade-off between yield
strength and diffusivity. The improvement in yield
strength of the optimal microstructure over an isotropic
microstructure was fully half of the theoretically possible
range without significant sacrifice in diffusivity. The
generalization of the present work to arbitrary 3D
textures will be presented in a subsequent paper.

We note that the anisotropy ratio of aluminum is nearly
unity and therefore the design space for elastic properties in
our case study was limited. However, the focus of the
present work was on the novel ability to explore the design
space for grain boundary network sensitive properties,
specifically diffusivity as it pertains to electromigration in
metallic interconnects. Aluminum was chosen because of its
relevance to the electronic application and because it is not
amenable to traditional cyclic thermomechanical process-
ing, commonly referred to as grain boundary engineering
(GBE). While GBE has demonstrated substantial improve-
ments in materials properties by modifying the structure of
the grain boundary network, it is only effective for low
stacking-fault energy FCC metals. The present work
provides a way to identify optimal grain boundary network
structures for arbitrary polycrystalline materials, thereby
facilitating a route to grain boundary engineer a much
broader class of materials, including those, like aluminum,
that do not readily form annealing twins.

Once an optimal microstructure is found, the next
challenge is to identify a suitable processing route to
synthesize it. While this remains a challenging problem,
the texture mediated approach to grain boundary network
design outlined in the present work suggests a potential
strategy. The influence of various processing methods on
crystallographic texture has been studied extensively. If
these operations can be combined in an appropriate
sequence it may be possible to approach a target texture.
With the relationship between texture and grain boundary
network structure, identified in the present work, this may
enable the synthesis of desired grain boundary network
structures also. Some work on the construction of suitable
processing paths for synthesizing desired textures has
already been performed45 and merits further investigation.
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APPENDIX A: PROPERTIES OF THE TJDF AND ITS
COEFFICIENTS

Appendix A.1: The TJDF coefficients

The Fourier coefficients of a TJDF in the present two-
dimensional case are computed via

tk3k1 ¼
1
4p2

Z 2p

0

Z 2p

0

T x12;x23ð Þe�ik1x12e�ik3x23dx12dx23 :

ðA1Þ

We take the convention that the TJDF is normalized
over the entirety of S1 � S1, which sets

t00 ¼
1
4p2

: ðA2Þ

Because a TJDF is a real-valued function we have that
T*(x12,x23) 5 T(x12,x23). Expressing both sides of this
equation in spectral form [Eq. (5)] and rearranging, one
arrives at the reality condition for the coefficients of
a TJDF:

tk3�k1
¼ t�k3

�k1
: ðA3Þ

Appendix A.2: Triple junction symmetry relations

The physical symmetries of a triple junction were
expressed in the form of the equivalence relations pro-
vided in Eq. (9). These equivalence relations induce
constraints on the coefficients of a TJDF, which limit the
number of independent coefficients that must be calcu-
lated. Consider the equivalence relation of Eq. (9f),
which requires that the value of a TJDF at the point
(x12,x23) be equal to the value of the TJDF at point
(�x23,�x12). This implies

T x12;x23ð Þ ¼ T �x23;�x12ð Þ : ðA4Þ

Expressing the TJDF in spectral form we haveX
k1;k3

tk3k1e
ik1x12eik3x23 ¼

X
k91;k

9
3

t
k93
k91
e�ik91x23e�ik93x12 ðA5Þ

using the index substitution �k934k91 on the right-hand
side and rearranging we findX

k1;k3

tk3k1e
ik1x12eik3x23 ¼

X
k91;k

9
3

t
�k91
�k93

eik
9
1x12eik

9
3x23 : ðA6Þ

Equating the coefficients yields the constraint imposed by
this equivalence relation:

tk3k1 ¼ t�k1
�k3

: ðA7Þ

The same process may be followed for each of the
equivalence relations of Eq. (9), resulting in the following
set of TJDF coefficients whose values must be equal for
the TJDF to exhibit the required physical symmetries of
triple junctions:

tk3k1 ¼ t�k1
k3�k1

¼ tk1�k3
�k3

¼ tk3k3�k1
¼ tk1�k3

k1
¼ t�k1

�k3
: ðA8Þ

Appendix A.3: Crystal symmetry relations

In addition to triple junction symmetries, the TJDF must
exhibit crystallographic symmetries that are inherited from
the crystal symmetries of the grains coordinating the triple
junction. These symmetries also impose constraints on the
TJDF coefficients. If the grains in this two-dimensional case
possess cyclic symmetry of order s, then we have that

x;xþ kxs ; ðA9Þ

where xs [ 2p/s and k 2 ℤ. Substituting this into the
definition of a misorientation yields.

xAB ¼ xB � xA

¼ xB þ kxsð Þ � xA þ lxsð Þ
¼ xB � xA þ k � lð Þxs

¼ xAB þ k � lð Þxs ðA10Þ
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Because (k � l) 2 ℤ, this implies that the misorienta-
tions exhibit independent periodicity equal to xs, i.e.,

xAB ;xAB þ mxs : ðA11Þ
Following the same process as before we can substitute

Eq. (A11) into the TJDF to determine the constraints on
the TJDF coefficients. The result is

tk3k1 ¼ tk3k1e
i k1mþk3nð Þxs ; ðA12Þ

where m,n 2 ℤ. For this expression to be valid, either
tk3k1 ¼ 0 (the trivial case), or we must have that k1m 1 k3n
is an integer multiple of s for arbitrary m and n, which is
only possible if k1 and k3 are both integer multiples of s.
Thus, the crystal symmetry constraint for the TJDF
coefficients is

tk3k1 ¼ 0 8 k1; k3 =2 sℤ : ðA13Þ

APPENDIX B: DERIVATION OF THE INVERSE
MAPPING FROM TJDF TO ODF

The forward mapping from ODF to TJDF for two-
dimensional textures is accomplished in the same fashion
as for the three-dimensional case provided in Ref. 21. If
grain orientations are spatially uncorrelated, then the joint
probability density for observing a triple junction co-
ordinated by orientations x1, x2, and x3 is given by

~T x1;x2;x3ð Þ ¼ f x1ð Þf x2ð Þf x3ð Þ ; ðB1Þ

where f(x) is the ODF. Expressing this in spectral form
we obtain

~T x1;x2;x3ð Þ ¼
X‘

k1¼�‘

ck1e
ik1x1

X‘
k2¼�‘

ck2e
ik2x2

X‘
k3¼�‘

ck3e
ik3x3 :

ðB2Þ

Using the definition of a misorientation, xAB 5 xB �
xA, and making use of the addition theorem for expo-
nentials, the joint probability density function can be
expressed in terms of the two independent misorienta-
tions according to

~T x12;x23ð Þ ¼
X

k1;k2 ;k3

ck1ck2ck3e
�ik1x12eik3x23

Z 2p

0
ei k1þk2þk3ð Þx2dx2 :

ðB3Þ

The integral evaluates to zero unless k2 5 �(k1 1 k3),
for which its value is 2p, which eliminates the summation
over k2. The resulting uncorrelated TJDF is given by

~T x12;x23ð Þ ¼
X
k1;k3

~tk3k1e
ik1x12eik3x23 ðB4Þ

with the TJDF coefficients given by

~tk3k1 ¼ 2pc�k1ck1�k3ck3 ; ðB5Þ

which is the expression given in Eq. (20) defining the
mapping from ODF to TJDF via their respective Fourier
coefficients.

To obtain the inverse mapping, note that the ODF
coefficients and the TJDF coefficients are only nonzero
when their indices are integer multiples of s. Let k1 5 s,
k3 5 gs, where g 2 ℤ, and substitute (c0)

�1 for 2p;
Eq. (B5) then becomes

~ts
gs ¼ c�s c 1�gð Þscgs

c0
: ðB6Þ

Solving for cgs and using the complex conjugation
relation, c�k 5 ck*, we obtain

cgs ¼ c0~tsgs

c�s c
�
g�1ð Þs

; ðB7Þ

which is in the form of a recurrence relation: given the
TJDF coefficients and c(g�1)s it is possible to compute
cgs. To use Eq. (B7) one must know the value of cs. This
is obtained by noting that if k1 5 k3 5 s then Eq. (B5)
yields ~tss ¼ c�s cs, which is just the squared magnitude of
cs. Therefore, ~tss must be a non-negative real number and
the magnitude of cs is given by

csk k ¼
ffiffiffiffi
~tss

p
: ðB8Þ

The phase of cs is a free parameter and cannot be
recovered, but can be arbitrarily chosen without loss of
generality. This indicates that the coefficients of an ODF
may be recovered from those of an uncorrelated TJDF,
modulo a rotation operation and, conversely, in the absence
of spatial correlations in grain orientation, all ODFs that
differ by only a rotation will yield the same TJDF.

A closed form solution for the recurrence relation can
be obtained by evaluating Eq. (B7) for increasing values
of g and simplifying the results. We omit the details of
this straightforward, but tedious, process and present the
final result:

cgs ¼
c0

Qg=2
j¼1

~t 2jð Þs
s

~t 2j�1ð Þs
s for eveng

cs
Qg�1ð Þ=2

j¼1

~t 2jþ1ð Þs
s

~t 2jð Þs
s for oddg

8>>>>><>>>>>:
ðB9Þ

which permits the computation of the ODF coefficients
directly from those of the uncorrelated TJDF without
resorting to recurrence.
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