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Abstract

Let K be any field with char K , 2, 3. We classify all cubic homogeneous polynomial maps H over K
whose Jacobian matrix, JH, has rkJH ≤ 2. In particular, we show that, for such an H, if F = x + H is a
Keller map, then F is invertible and furthermore F is tame if the dimension n , 4.
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1. Introduction

Let K be an arbitrary field and K[x] := K[x1, x2, . . . , xn] the polynomial ring in
n variables. For a polynomial map F = (F1, F2, . . . , Fm) ∈ K[x]m, we denote by
JF := (∂Fi/∂x j)m×n the Jacobian matrix of F and deg F := maxi deg Fi the degree
of F. A polynomial map H ∈ K[x]m is called homogeneous of degree d if each Hi is
zero or homogeneous of degree d.

A polynomial map F ∈ K[x]n is called a Keller map if detJF ∈ K∗. The Jacobian
conjecture asserts that any Keller map is invertible if char K = 0 (see [1, 8]). It is still
open for any dimension n ≥ 2.

Following [14], we call a polynomial automorphism elementary if it is of the
form (x1, . . . , xi−1, cxi + a, xi+1, . . . , xn), where c ∈ K∗ and a ∈ K[x] contains no xi.
Furthermore, we call a polynomial automorphism tame if it is a finite composition
of elementary ones. The definitions of elementary and tame may be different in other
sources, but (as long as K is a generalised Euclidean ring) the definitions of tame
are equivalent. The tame generators problem asks if every polynomial automorphism
is tame. It has an affirmative answer in dimension two for arbitrary characteristic
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(see [10, 11]) and a negative answer in dimension three for the case of char K = 0
(see [14]), and is still open for any n ≥ 4.

A polynomial map F = x + H ∈ K[x]n is called triangular if Hn ∈ K and
Hi ∈ K[xi+1, . . . , xn], for 1 ≤ i ≤ n − 1. A polynomial map F is called linearly
triangularisable if it is linearly conjugate to a triangular map, that is, there exists
an invertible linear map T ∈ GLn(K) such that T−1F(Tx) is triangular. A linearly
triangularisable map is tame.

Some special polynomial maps have been investigated in the literature. For
example, when char K = 0, a Keller map F = x + H ∈ K[x]n is shown to be linearly
triangularisable in the cases: (1) n = 3 and H is homogeneous of arbitrary degree
d (de Bondt and van den Essen [6]); (2) n = 4 and H is quadratic homogeneous
(Meisters and Olech [12]); (3) n = 9 and F is a quadratic homogeneous quasi-
translation (Sun [16]); (4) n is arbitrary and H is quadratic with rkJH ≤ 2 (de Bondt
and Yan [7]), and to be tame in the case (5) n = 5 and H is quadratic homogeneous
(de Bondt [2] and Sun [17] independently) and to be invertible in the case (6) n = 4
and H is cubic homogeneous (Hubbers [9]). For the case of arbitrary characteristic, de
Bondt [5] described the Jacobian matrixJH of rank two for any quadratic polynomial
map H and showed that if JH is nilpotent then JH is similar to a triangular map.

In this paper, we study cubic homogeneous polynomial maps H with rkJH ≤ 2
for any dimension n when char K , 2, 3. In Section 2, we classify all such maps
(Theorem 2.7). In Section 3, we show that for such an H, if F = x + H is a Keller map,
then it is invertible and furthermore it is tame if the dimension n , 4 (Theorem 3.4).

2. Cubic homogeneous maps H with rkJH ≤ 2

For a polynomial map H ∈ K[x]m, we write trdegK K(H) for the transcendence
degree of K(H) over K. It is well known that rkJH = trdegK K(H) if K(H) ⊆ K(x)
is separable and, in particular, if char K = 0 (see [8, Proposition 1.2.9]). For arbitrary
characteristic, one has rkJH ≤ trdegK K(H) (see [4] or [13]).

It was shown in [5] that when char K , 2, for any quadratic polynomial map H
with rkJH ≤ 2, one has rkJH = trdegK K(H). We will show that when char K , 2, 3,
for any cubic homogeneous polynomial map H with rkJH ≤ 2, one has rkJH =

trdegK K(H). The notation a|x=c below means to substitute x by c in a.

Theorem 2.1. Let s ≤ n. Take x̃ := (x1, x2, . . . , xs) and L := K(xs+1, xs+2, . . . , xn). To
prove that for (homogeneous) polynomial maps H ∈ K[x]m of degree d,

rkJH = r implies trdegK K(H) = r, for every r < s, (2.1)

it suffices to show that for (homogeneous) polynomial maps H̃ ∈ L[x̃]s of degree d,

trdegL L(H̃) = s implies rkJx̃H̃ = s. (2.2)

Proof. Suppose that H ∈ K[x]m is (homogeneous) of degree d such that (2.1) does not
hold. Then there exists an r < s such that rkJH = r < trdegK K(H). We need to show
that (2.2) does not hold.
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Let s′ = trdegK K(H). Assume without loss of generality that H1,H2, . . . ,Hs′ are
algebraically independent over K and that the components of

H′ := (H1,H2, . . . ,Hs′ , xd
s′+1, x

d
s′+2, . . . , x

d
s )

are algebraically independent over K if s′ < s. Then

rkJH′ ≤ r + (s − s′) < s = trdegK K(H′).

For the case of s′ ≥ s, just take H′ = (H1,H2, . . . ,Hs), again giving rkJH′ ≤ r < s.
Notice that (2.1) is also unsatisfied for H′. So, replacing H by H′, we may assume that
H ∈ K[x]s with rkJH = r < trdegK K(H) = s.

Observe that H1(x1, x1x2, x1x3, . . . , x1xn) is algebraically independent over K of
x2, x3, . . . , xn. On account of the Steinitz–MacLane exchange lemma, we may assume
without loss of generality that the components of

(H(x1, x1x2, x1x3, . . . , x1xn), xs+1, xs+2, . . . , xn)

are algebraically independent over K. Then the components of

H(x1, x1x2, x1x3, . . . , x1xn)

are algebraically independent over L := K(xs+1, xs+2, . . . , xn) and so are the components
of

H̃ := H(x1, x2, . . . , xs, x1xs+1, x1xs+2, . . . , x1xn) ∈ L[x̃]s,

where x̃ = (x1, x2, . . . , xs). That is, trdegL L(H̃) = s.
Let G := (x1, x2, . . . , xs, x1xs+1, x1xs+2, . . . , x1xn). From the chain rule,

Jx̃H̃ = (JH)|x=G · Jx̃G,

so rkJx̃H̃ ≤ rk(JH)|x=G ≤ rkJH < s. Therefore, (2.2) does not hold for H̃, which
completes the proof. �

Lemma 2.2. Let H ∈ K[x]m be a polynomial map of degree d and r := rkJH. Denote
by |K| the cardinality of K.

(i) If |K| > (d − 1)r and JH · x = 0, then there exist S ∈ GLm(K) and T ∈ GLn(K)
such that for H̃ := SH(Tx),

H̃|x=er+1 =

(
Ir 0
0 0

)
.

(ii) If |K| > (d − 1)r + 1 and JH · x , 0, then there exist S ∈ GLm(K) and T ∈
GLn(K) such that for H̃ := SH(Tx),

H̃|x=e1 =

(
Ir 0
0 0

)
.

Moreover, |K| may be one less (that is, at least (d − 1)r and (d − 1)r + 1, respectively)
if every nonzero component of H is homogeneous.
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Proof. (i) Assume without loss of generality that

a0 := detJx1,x2,...,xr (H1,H2, . . . ,Hr) , 0.

Suppose that |K| > (d − 1)r. It follows by [3, Lemma 5.1(i)] that there exists a vector
w ∈ Kn such that a0(w) , 0. So, rk(JH)|x=w = r. There exist n − r independent vectors
vr+1, vr+2, . . . , vn ∈ Kn such that (JH)|x=w · vi = 0 for i = r + 1, r + 2, . . . , n. We may
take vr+1 = w since

(JH)|x=w · w = (JH · x)|x=w = 0.

Take T = (v1, v2, . . . , vn) ∈ GLn(K). From the chain rule, we deduce that

(J(H(Tx)))|x=er+1 · ei = (JH)|x=Ter+1 · Tei = (JH)|x=w · vi (for 1 ≤ i ≤ n).

In particular, rkJ(H(Tx))|x=er+1 = r and the last n − r columns of (J(H(Tx)))|x=er+1 are
zero. There exists S ∈ GLm(K) such that

(J(SH(Tx)))|x=er+1 = S · (J(H(Tx)))|x=er+1 =

(
Ir 0
0 0

)
.

(ii) Suppose that |K| > (d − 1)r + 1. Since JH · x , 0, we may assume that

rk(JH · x,Jx2,x3,...,xr H) = r

and that

a1 := det(J(H1,H2, . . . ,Hr) · x,Jx2,x3,...,xr (H1,H2, . . . ,Hr)) , 0.

It follows by [3, Lemma 5.1(i)] that there exists w ∈ Kn such that a1(w) , 0.
One may observe that rk(JH)|x=w = r and thus there exist independent vectors
vr+1, vr+2, . . . , vn ∈ Kn such that (JH)|x=w · vi = 0 for i = r + 1, r + 2, . . . , n. Since
(JH · x)|x=w is the first column of a full column rank matrix,

(JH)|x=w · w = (JH · x)|x=w , 0.

So, v1 := w is independent of vr+1, vr+2, . . . , vn. Take T = (v1, v2, . . . , vn) ∈ GLn(K).
Then

(J(H(Tx)))|x=e1 · ei = (JH)|x=Te1 · Tei = (JH)|x=w · vi (1 ≤ i ≤ n).

The rest of the proof of (ii) is similar to that of (i).
The last claim follows from [3, Lemma 5.1(ii)], as an improvement to [3, Lemma

5.1(i)]. �

Proposition 2.3. Assume that char K < {1, 2, . . . , d}. Then, for any homogeneous
polynomial map H ∈ K[x]m of degree d with rkJH ≤ 1, the components of H are
linearly dependent over K in pairs and one has rkJH = trdegK K(H).

Proof. The case rkJH = 0 is obvious, so let rkJH = 1. On account of Lemma 2.2,
we may assume that JH|x=e1 = E11. Let j ≥ 2. Since degx1

H j < d, we infer that either
H j = 0 or degx1

∂H j/∂x1 < degx1
∂H j/∂xi for some i ≥ 2, where degx1

0 = −∞. The
latter is impossible due to rkJH = 1, so H j = 0. This holds for all j ≥ 2, which yields
the desired results. �
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Lemma 2.4. Let H = (h, x2
1x2, x2

2x3) or (h, x2
1x3, x2

2x3) ∈ K[x1, x2, x3]3, where h is cubic
homogeneous, and assume that char K , 2, 3. Then rkJH = trdegK K(H).

Proof. It suffices to consider the case of rkJH = 2. Define a derivation D on A =

K[x1, x2, x3] as follows: for any h ∈ A,

D(h) =
x1x2x3

H2H3
detJH.

For H = (h, x2
1x2, x2

2x3), an easy calculation gives D = x1∂x1 − 2x2∂x2 + 4x3∂x3 . It
follows that D(u) = (d1 − 2d2 + 4d3)u for any term u = xd1

1 xd2
2 xd3

3 ∈ A. Consequently,
ker D := {g ∈ A | D(g) = 0}, the kernel of D, is linearly spanned by all terms u with
d1 − 2d2 + 4d3 = 0. So, the only cubic terms in ker D are x2

1x2 and x2
2x3. Since

rkJH = 2, we have detJH = 0 and thus h ∈ ker D, which implies that h is a linear
combination of x2

1x2 and x2
2x3. Thus, trdegK K(H) = 2.

In the case of H = (h, x2
1x3, x2

2x3), one may verify that x2
1x3, x1x2x3 and x2

2x3 are the
only cubic terms in ker D. The conclusion follows similarly. �

Theorem 2.5. Assume that char K , 2,3. Then, for any cubic homogeneous polynomial
map H ∈ K[x]m with rkJH ≤ 2, one has rkJH = trdegK K(H).

Proof. Due to Theorem 2.1, replacing L there by K, we may assume that H ∈
K[x1, x2, x3]3 and it suffices to show that

trdegK K(H) = 3 implies rkJH = 3

or, equivalently,
detJH = 0 implies trdegK K(H) < 3.

So, assume that detJH = 0. Since we may replace K by an extension field to make it
large enough, it follows by Lemma 2.2 that we may assume that (JH)|x=e1 = E11 + E22.
Then JH is of the form 

x2
1 + ∗ ∗ ∗

∗ x2
1 + ∗ ∗

∗ ∗
∂H3

∂x3

 ,
where the x1-degree of each element ∗ is less than two. By observing the terms with
x1-degree ≥ 5 in detJH, we see that (∂H3/∂x3) ∈ K[x2, x3]. Now H2 and H3 are of
the form

H2 = x2
1x2 + b10x1x2

3 + b11x1x2x3 + b12x1x2
2 + b0(x2, x3),

H3 = c12x1x2
2 + c00x3

3 + c01x2x2
3 + c02x2

2x3 + c03x3
2.

We shall show that x2
2 | H3, that is, c00 = c01 = 0.

The part of x1-degree four of detJH is (∂H3/∂x3 − (∂H2/∂x1∂x3)(∂H3/∂x1∂x2))x4
1

and it follows that ∂H3/∂x3 − (∂H2/∂x1∂x3)(∂H3/∂x1∂x2) = 0. Consequently,

(3c00x2
3 + 2c01x2x3 + c02x2

2) = (2b10x3 + b11x2)(2c12x2),
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so
c00 = 0, c01 = 2b10c12, c02 = 2b11c12.

One may observe that the coefficient of x3
1x3

3 in detJH is 2c01b10 = 0, which we can
combine with c01 = 2b10c12 to obtain c01 = 0. Therefore,

H3 = (c12x1 + c03x2 + c02x3)x2
2.

Moreover, if c12 = 0, then c02 = 2b11c12 = 0 and thus H3 = c03x3
2.

We now distinguish two cases.

Case 1: c12 , 0 and c12x1 + c03x2 + c02x3 - Hi for some i.
Then H3 is the product of two linear forms, of which two are distinct. Hence, we

can compose H with invertible linear maps on both sides to obtain a map H′ for which
H′2 = x2

1x2 and x2 - H′1.
Notice that H′1(1, 0, t) , 0. As K has at least five elements, it follows from

[3, Lemma 5.1(i)] that there exists a λ ∈ K such that H′1(1, 0, λ) , 0. Hence, the
coefficient of x3

1 in H′1(x1, x2, x3 + λx1) is nonzero and H′2(x1, x2, x3 + λx1) = x2
1x2.

Replacing H′ by H′(x1, x2, x3 + λx1), we may assume that H′2 = x2
1x2 and that H′1

contains x3
1 as a term. We may even assume that the coefficient of x3

1 in H′1 equals 1.
Then JH′|x=e1 is of the form 1 ∗ a

0 1 0
∗ ∗ ∗


and has rank two. Furthermore, v3 = (−a, 0, 1)t belongs to its null space. We may apply
the proof of Lemma 2.2 on H′ by taking T = (e1, e2, v3) and taking an appropriate
S ∈ GL3(K) such that H̃ := SH′(Tx) satisfies J H̃|x=e1 = SJH′|x=Te1 T = E11 + E22.
Since Tx is of the form (L1, x2, L3), and observing the form of JH′|x=e1 , one may
also choose S x to be of the form (∗, x2, ∗). Then H̃2 = L2

1x2.
So, we can compose H̃ with an invertible linear map on the right to obtain a map

H̃′ for which H̃′2 = x2
1x2 and H̃′3 = x2

2L′ for some linear form L′.
Suppose first that L′ is a linear combination of x1 and x2. If H̃′1 ∈ K[x1, x2], then

we are done. Otherwise, we have detJx1,x2 (H̃′2, H̃
′
3) = 0 and then, by Proposition 2.3,

trdegK K(H′2,H
′
3) < 2.

Suppose next that L′ is not a linear combination of x1 and x2. Then we may assume
that H̃′3 = x2

2x3. By Lemma 2.4(i), trdegK K(H̃′) < 3.

Case 2: c12 = 0 or c12x1 + c03x2 + c02x3 | Hi for all i.
Since x2

2 | H3, we can compose H with invertible linear maps on both sides to
obtain a map H′ for which H′1 ∈ {x

3
1, x2

1x2}. After a possible interchange of H′2 and
H′3, the first two rows of JH′ are independent. Now we may apply the proof of
Lemma 2.2 to H′. More precisely, there exist S , T ∈ GL3(K) such that H̃ := SH′(Tx)
satisfiesJ H̃|x=e1 = E11 + E22. If we choose w such that the first two rows of (JH′)x=w
are independent, then we can take S such that S x = ( f1x1 + f2x2, g1x1 + g2x2, ∗). By
repeating the discussion for H̃ as for H above, we may assume that H̃3 = Lx2

2 for some
linear form L.
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Let Tx = (L1, L2, L3). Notice that H′1(Tx) ∈ {L3
1, L

2
1L2} and that H′1(Tx) is a linear

combination of H̃1 and H̃2. Hence, we can compose H̃ with a linear map on the left to
obtain a map H̃′ for which H̃′2 ∈ {L

3
1, L

2
1L2} and H̃′3 = Lx2

2.
Suppose first that H̃′2 = L2

1L2. Then c12 , 0, so c12x1 + c03x2 + c02x3 | Hi for all i.
From this, we infer that L2 | H̃i and L2 | H̃′i for all i. As x2 - H̃1, we deduce that L
and L2 are dependent linear forms, which are independent of x2. If L and L2 are linear
combinations of L1 and x2, then we can reduce to Proposition 2.3 and otherwise we
can reduce to Lemma 2.4(ii).

Suppose next that H̃′2 = L3
1. If L, L1 and x2 are linearly dependent over K, then we

can reduce to Proposition 2.3. Otherwise, H̃ is as H in the previous case. �

Remark 2.6. Inspired by Lemma 2.4, we investigated maps H of which the
components are terms and searched for H with algebraically independent components
for which detJH = 0. One can infer that H has these properties if and only if the
matrix with entries degxi

H j has determinant zero over K but not over Z.
We found such a nonhomogeneous H over fields of characteristic five:

(x3
1x2, x1x2

2), (x2
1x2, x1x2

3, x2x3)

with the following homogenisations:

(x3
1x2, x1x2

2x3, x4
3), (x2

1x2, x1x2
3, x2x3x4, x3

4).

Besides these homogenisations, we found the following homogeneous H over fields
of characteristic five:

(x2
1x2

3, x1x3
2, x2x3

3), (x4x2
1, x1x2

2, x2x2
3, x3x2

4).

We conclude with a homogeneous H over fields of characteristic seven and a
homogeneous H over any characteristic p ∈ {1, 2, . . . , d}, respectively:

(x3x3
1, x1x3

2, x2x3
3), (xd

1, x
d−p
1 xp

2 ).

These examples show that the conditions in Proposition 2.3 and Theorem 2.5 cannot
be relaxed.

Theorem 2.7. Suppose that char K , 2, 3 and let H ∈ K[x]m be cubic homogeneous.
Let r := rkJH and suppose that r ≤ 2. Then there exist S ∈ GLm(K) and T ∈ GLn(K)
such that, for H̃ := SH(Tx), one of the following statements holds:

(1) H̃r+1 = H̃r+2 = · · · = H̃m = 0;
(2) r = 2 and H̃ ∈ K[x1, x2]m;
(3) r = 2 and KH̃1 + KH̃2 + · · · + KH̃m = Kx3x2

1 ⊕ Kx3x1x2 ⊕ Kx3x2
2.

Furthermore, we may take S = T−1 if m = n.

Proof. By Theorem 2.5, trdegK K(H) = rkJH = r ≤ 2. Since H is homogeneous, we
have trdegK K(tH) = r as well, where t is a new variable.

Suppose first that r ≤ 1. By [4, Theorem 2.7], we may take H̃ as in (1).
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Suppose next that r = 2. By [4, Theorem 2.7], H is of the form g · h(p, q) such that
g, h and (p, q) are homogeneous and deg g + deg h · deg(p, q) = 3.

If deg h ≤ 1, then every triple of components of h is linearly dependent over K and
thus we may take H̃ as in (1). If deg h = 3, then deg(p, q) = 1 and deg g = 0, whence
we may take H̃ as in (2).

So, assume that deg h = 2. Then deg(p, q) = 1 and deg g = 1. If g is a linear
combination of p and q, then we may take H̃ as in (2). If g is not a linear combination
of p and q, then we may take H̃ as in (3) or (1).

Finally, if m = n and H̃ = SH(Tx) is as in (1), then SH(S −1x) = H̃(T−1S −1x) is still
as in (1). So, we may take S = T−1. If m = n and H̃ = SH(Tx) is as in (2) or (3), then
T−1H(Tx) = T−1S −1H̃ is still as in (2) or (3), whence we may also take S = T−1. �

3. Cubic homogeneous Keller maps x + H with rk JH ≤ 2

For two matrices M,N ∈Matn(K[x]), we say that M is similar over K to N if there
exists T ∈ GLn(K) such that N = T−1MT .

Theorem 3.1. Let F = x + H ∈ K[x]n be a Keller map with trdegK K(H) = 1. ThenJH
is similar over K to a triangular matrix and the following statements are equivalent:

(1) detJF = 1;
(2) JH is nilpotent;
(3) (JH) · (JH)|x=y = 0, where y = (y1, y2, . . . , yn) are n new variables.

Proof. Since trdegK K(H) = 1, by [4, Corollary 3.2] there exists a polynomial p ∈ K[x]
such that Hi ∈ K[p] for each i, say, Hi = hi(p), where hi ∈ K[t] for each i. Write
h′i = ∂hi/∂t. Then

JH = h′(p) · J p. (3.1)

Assume without loss of generality that

h′1 = h′2 = · · · = h′s = 0

and that
0 ≤ deg h′s+1 < deg h′s+2 < · · · < deg h′n.

For s < i < n,

deg h′i(p) = deg h′i · deg p ≤ (deg h′i+1 − 1) · deg p = deg h′i+1(p) − deg p.

Since the degrees of the entries of J p are less than deg p, we deduce from (3.1) that
the nonzero entries on the diagonal of JH have different degrees in increasing order.
Furthermore, the nonzero entries beyond the (s + 1)th entry on the diagonal of JH
have positive degrees.

By (3.1), rk(−JH) ≤ 1 and thus n − 1 eigenvalues of −JH are zero. It follows that
the trailing degree of the characteristic polynomial of −JH is at least n − 1. More
precisely,

det(tIn +JH) = tn − tr(−JH) · tn−1
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and thus
detJF = (tn − tr(−JH) · tn−1)|t=1 = 1 + trJH.

Observe that the diagonal of JH is totally zero, except maybe the (s + 1)th entry,
which is a constant.

Thus, ∂p/∂xi = 0 for all i > s + 1 and JH is lower triangular. If the (s + 1)th entry
on the diagonal of JH is nonzero, then (1), (2) and (3) do not hold. If the (s + 1)th
entry on the diagonal of JH is zero, then ∂p/∂xi = 0 for all i > s, whence (1), (2) and
(3) hold. �

Let H ∈ K[x]n be homogeneous of degree d ≥ 2. Then x + H is a Keller map if and
only if JH is nilpotent (see, for example, [8, Lemma 6.2.11]). So, we first investigate
nilpotent matrices over K[x].

Lemma 3.2. Suppose that N ∈Mat2(K[x]) is nilpotent. Then there exist a, b, c ∈ K[x]
such that

N = c
(
ab −b2

a2 −ab

)
.

Furthermore, N is similar over K to a triangular matrix if and only if a and b are
linearly dependent over K.

Proof. Since det N = 0, we may write N in the form

N = c ·
(
b
a

)
· (a −b̃),

where a, b ∈ K[x] and b̃, c ∈ K(x). Since tr N = 0, we have b̃ = b. If we choose a and b
to be relatively prime, then c ∈ K[x] as well.

Furthermore, a and b are linearly dependent over K if and only if the rows of N are
linearly dependent over K, if and only if N is similar over K to a triangular matrix. �

Lemma 3.3. Let H ∈ K[x]2 be cubic homogeneous such that Jx1,x2 H is nilpotent. Then
there exists T ∈ GL2(K) such that for H̃ := T−1H(T (x1, x2), x3, x4, . . . , xn), one of the
following statements holds:

(1) Jx1,x2 H̃ is a triangular matrix;
(2) there are independent linear forms a, b ∈ K[x] such that

Jx1,x2 H̃ =

(
ab −b2

a2 −ab

)
and Jx1,x2

(
a
b

)
=

(
0 0
0 0

)
;

(3) char K = 3 and there are independent linear forms a, b ∈ K[x] such that

Jx1,x2 H̃ =

(
ab −b2

a2 −ab

)
and Jx1,x2

(
a
b

)
=

(
0 1
1 0

)
.
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Proof. Suppose that (1) does not hold. By Lemma 3.2, there are a, b, c ∈ K[x] such
that

Jx1,x2 H = c
(
ab −b2

a2 −ab

)
,

where a and b are linearly independent over K. As H is cubic homogeneous, the entries
of Jx1,x2 H are quadratic homogeneous, so c ∈ K and a and b are independent linear
forms.

If we take

T =

(
c 0
0 1

)
then Jx1,x2 H̃ =

(
ãb̃ −b̃2

ã2 −ãb̃

)
,

where ã = c · a|x1=cx1 and b̃ = c−1 · b|x1=cx1 .
We claim that the coefficient k2 of x2 in b̃ is 0. Suppose conversely that k2 , 0. Then

the coefficient of x3
2 in

3H̃1 = Jx1,x2 H̃1 ·

(
x1

x2

)
= b̃(x1ã − x2b̃)

is nonzero. In particular, char K , 3. One may verify that

Jx1,x2 (H̃1 + 1
3 k−1

2 b̃3) = (c̃b̃, 0),

where c̃ := ã + k−1
2 b̃(∂b̃/∂x1). As a consequence, ∂(c̃b̃)/∂x2 = ∂0/∂x1 = 0. Furthermore,

c̃ and b̃ are independent, and so also are ã and b̃. From ∂(c̃b̃)/∂x2 = 0, we have
c̃b̃ ∈ K[x1, x3, x4, . . . , xn] if char K , 2. Since c̃ and b̃ are independent, we deduce that
if char K = 2, then c̃b̃ ∈ K[x1, x3, x4, . . . , xn] as well. Since the coefficient λ of x2 in b̃
is nonzero, we have c̃ = 0, which is a contradiction.

So, the coefficient of x2 in b̃ is 0. Similarly, the coefficient of x1 in ã is 0.
Consequently,

Jx1,x2

(
ã
b̃

)
=

(
0 λ
µ 0

)
,

where λ, µ ∈ K. Therefore,

Jx1,x2 H̃ =

(
(λx2 + · · · )(µx1 + · · · ) −(µx1 + · · · )2

(λx2 + · · · )2 −(λx2 + · · · )(µx1 + · · · )

)
.

So, the coefficient of x2
1x2 in 2H̃1 is equal to both λµ and −2µ2. Similarly, the

coefficient of x1x2
2 in 2H̃2 is equal to both λµ and −2λ2. It follows that either

λ = µ = 0 or 0 , λ = −2µ = 4λ. In the former case, H̃ satisfies (2). In the latter case,
char K = 3 and λ = µ. Replacing H̃ by λH̃(λ−1(x1, x2), x3, x4, . . . , xn), we see that H̃
satisfies (3). �

Theorem 3.4. Suppose that char K , 2, 3. Let H ∈ K[x]n be cubic homogeneous such
that x + H is a Keller map, that is, JH is nilpotent.
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(i) If rkJH = 1, then there exists T ∈ GLn(K) such that for H̃ := T−1H(Tx),

H̃1 ∈ K[x2, x3, x4, . . . , xn],
H̃2 = H̃3 = H̃4 = · · · = H̃n = 0.

(ii) If rkJH = 2, then either H is linearly triangularisable or there exists T ∈
GLn(K) such that for H̃ := T−1H(Tx),

H̃1 − (x1x3x4 − x2x2
4) ∈ K[x3, x4, . . . , xn],

H̃2 − (x1x2
3 − x2x3x4) ∈ K[x3, x4, . . . , xn],

H̃3 = H̃4 = · · · = H̃n = 0.

Furthermore, x + tH is invertible over K[t] if rkJH ≤ 2, where t is a new variable.
Moreover, x + tH is tame over K[t] if either rkJH = 1 or rkJH = 2 and n , 4. In
particular, x + λH is invertible and tame under the above condition respectively for
every λ ∈ K.

Proof. We may take H̃ as in (1), (2) or (3) of Theorem 2.7. If rkJH = 1, then H̃ is as
in (1) of Theorem 2.7, that is, H̃i = 0, 2 ≤ i ≤ n, whence (i) holds because trJ H̃ = 0.
So, assume that rkJH = 2. Notice that JH is nilpotent.

If H̃ is as in (1) or (2) of Theorem 2.7, that is, H̃i = 0, 3 ≤ i ≤ n or H̃ ∈ K[x1, x2]n,
then Jx1,x2 (H̃1, H̃2) is nilpotent.

If H̃ is as in (3) of Theorem 2.7, that is,

KH̃1 + KH̃2 + · · · + KH̃n = Kx3x2
1 ⊕ Kx3x1x2 ⊕ Kx3x2

2,

then H̃3 = 0, because x−1
3 H̃3 is the constant part with respect to x3 of trJ H̃ = 0. So,

Jx1,x2 (H̃1, H̃2) is nilpotent in any case.
One may observe that, in all the cases (1), (2) and (3) of Theorem 2.7, if

Jx1,x2 (H̃1, H̃2) is similar over K to a triangular matrix, then J H̃ is similar over K
to a triangular matrix, and so is JH, and thus H is linearly triangularisable.

Now suppose that Jx1,x2 (H̃1, H̃2) is not similar over K to a triangular matrix.
Noticing that char K , 2, 3, Jx1,x2 (H̃1, H̃2) must be as in (2) of Lemma 3.3, that is,

Jx1,x2 H̃ =

(
ab −b2

a2 −ab

)
and Jx1,x2

(
a
b

)
=

(
0 0
0 0

)
,

where a, b are linearly independent linear forms.
If H̃1 ∈ K[x1, x2, x3], then a, b ∈ k[x3], which is a contradiction. So, H̃ is not as in

(2) or (3) of Theorem 2.7 and thus is as in (1) of Theorem 2.7, that is, H̃3 = H̃4 = · · · =

H̃n = 0. Consequently, by a linear coordinate transformation, we may take H̃ such that
a = x3 and b = x4. So, (ii) holds.

For the last claim, when rkJH = 1, H̃ is of the form in (i), whence x + tH̃ is
elementary and thus tame. When rkJH = 2, H̃ is of the form in (ii) and it suffices to
show that the automorphism

F = (x1 + tx4(x3x1 − x4x2), x2 + tx3(x3x1 − x4x2), x3, x4, x5)

is tame over K[t].
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For that purpose, let w = t(x3x1 − x4x2) and let D := x4∂x1 + x3∂x2 be a derivation
of K[t][x1, x2, x3, x4]. Observe that D is triangular and w ∈ ker D, and hence that
F = (exp(wD), x5). Therefore, F is tame over K[t] from Lemma 3.5 below. �

Recall that a derivation D of K[x] is called locally nilpotent if for every f ∈ K[x]
there exists an m such that Dm( f ) = 0. For such a derivation, exp D :=

∑∞
i=0 (1/i!)Di

is a polynomial automorphism of K[x]. A derivation D of K[x] is called triangular if
D(xi) ∈ K[xi+1, . . . , xn] for i = 1, 2, . . . , n − 1 and D(xn) ∈ K. A triangular derivation is
locally nilpotent.

Lemma 3.5. Let D be a triangular derivation of K[t][x] and w ∈ ker D, that is,
D(w) = 0. Then (exp(wD), xn+1) is tame over K[t].

Proof. From [15, Corollary], there exists a k such that (exp(wD), xn+1, xn+2, . . . , xn+k)
is tame over K(t). Inspecting the proof of [15, Corollary] yields that (exp(wD), xn+1) is
tame over K[t]. �

References

[1] H. Bass, E. Connel and D. Wright, ‘The Jacobian conjecture: reduction of degree and formal
expansion of the inverse’, Bull. Amer. Math. Soc. 7 (1982), 287–330.

[2] M. de Bondt, Homogeneous Keller Maps, PhD Thesis, University of Nijmegen, Nijmegen, The
Netherlands, 2009.

[3] M. de Bondt, ‘Mathieu subspaces of codimension less than n of Matn(K)’, Linear Multilinear
Algebra 64(10) (2016), 2049–2067.

[4] M. de Bondt, ‘Rational maps H for which K(tH) has transcendence degree 2 over K’, J. Pure
Appl. Algebra (to appear), doi:10.1016/j.jpaa.2018.01.003.

[5] M. de Bondt, ‘Quadratic polynomial maps with Jacobian rank two’, Preprint, 2017,
arXiv:1061.00579v4 [math.AC].

[6] M. de Bondt and A. van den Essen, ‘The Jacobian conjecture: linear triangularization for
homogeneous polynomial maps in dimension three’, J. Algebra 294(1) (2005), 294–306.

[7] M. de Bondt and D. Yan, ‘Triangularization properties of power linear maps and the structural
conjecture’, Ann. Polon. Math. 112(3) (2014), 247–266.

[8] A. van den Essen, Polynomial Automorphisms and the Jacobian Conjecture, Progress in
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