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ELATIONS OF DESIGNS
WILLIAM M. KANTOR

An elation of a design & is an automorphism y of & fixing some block X
pointwise and some point ¥ on X blockwise. Lineburg [4] and I [2] have
proved results which state that a design admitting many elations and having
additional properties must be the design of points and hyperplanes of a finite
desarguesian projective space. In this note, additional results of this type will
be proved and applied to yield a generalization of a previous result on Jordan
groups [3]. The proofs were suggested by a result of Hering on elations of
finite projective planes [1, pp. 122, 190].

Much of our notation can be found in [1]. Designs will always satisfy
v = k + 2, and the blocks will be distinguishable as sets of points. Isomorphic
designs will be identified. The complement of the block X is € X. If T is an
automorphism group of a design, and x € X, then I'(X) and T'(x) are the
largest subgroups of T fixing X pointwise and x blockwise, respectively. If
I(X) < IT'(X), then lI(x, X) = I'(x) N\ I(X). If I(X) = I'(X) for all X,
then, for each block X and each point x, II(X)* is the set U exII(y, X) and
T(x)* = Uzerll(x, ¥). [a, 8] is the commutator o8~ 1aB. If g is a power of
a prime p and # is an integer, g”n means that g|n but g4 #. A permutation
group is said to act regularly if only the identity fixes a point.

LEMMA 1. Let Ay, Ay, ..., As be non-trivial normal subgroups of a finite
group A such that s 2 1, A, A; =1 14f 1 £ 7, and

<U A1>A0§ U A

0<i<s 0= i<s

Then there is a prime p such that all A; are p-groups.
Proof. Let 8o € Ay have prime order p. If 6 € A;, 7 > 0, then

[60, 5] E Aom Aj = ].

Also,
%0 € og%s; Ar
i

Consequently,

(680)? = &° € A,ﬂ( U Ai> =1
0= iss,
i)
Thus, each A; with 7 > 0 has exponent p. As this determines p uniquely,
Ay is also a p-group.
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LeMMA 2. Let 9 be a design, T' an automorphism group of D, p, q points,
and B, C blocks such that p € B — BN C,q € BN C. Also let 6,8 € T(p, B)
and ¢, ¢’ € T(q, C). Then

(i) [0, ¢] € T(g, B);
i) If [0, o] = [0/, @], then either ¢ € T(q, C) N\ T(D) where D = C, or
001 € T(p, B) N T(C); and
(iii) If (8, o] = [0, ¢'], then either ¢'o~' € T'(q, C) M T'(D), where D  C,
or 6 € T'(p, By \ T(C).

Proof. (i) 67'¢™9 € T'(g, C?) and ¢~0p € T'(p*, B) imply that
[0, 0] € T(g) N T(B) = I'(g, B).

(ii) As 0’67 and ¢ commute, ¢ € T'(q, C) N\ I'(g, C**7*). 1f §'6~1 is in
I'(p, B)e, it fixes all lines [1, p. 65] on » meeting C and consequently is con-
tained in T'(p, B) N T(C).

(iii) As 6 and ¢~ '¢’ commute, ¢~ 1o’ € T'(q, C) N T'(q, C?). If 6 € T'(p, B)¢,
then 6 € T'(p, B) N\ T'(C).

THEOREM 1. Let & be a design admitting an automorphism group T such
that, for each block X, T'x has a normal subgroup N(X) = I'(X) satisfying the
following conditions:

(1) M(XY) = O(X)" for all X and all v € T;
(i) O(x, X) = 1 whenever x € X; and

(i) Mx, X) N TO(Y) = 1 whenever x € X = V.

Then & 1s the design of points and hyperplanes of a finite projective space, and T
contains the little projective group.

We remark that the case II(X) = I'(X) of this theorem is only very slightly
weaker than the theorem itself, and suffices for our application to Jordan
groups. In later results, only the case II(X) = I'(X) will be considered.

Proof. Let X and Y be distinct blocks, and suppose that x € X — X NV
and y e XNY. If 1 #a¢€ O(x,X), then as in Lemma 2, 8 — [a, 8],
B € O(y, V), defines an injection I(y, V) - II(y, X). If 1 =8 € II(y, ),
then o — [, B], @« € U (x, X), defines an injection I (x, X) — I (y, X). Then
|1'I(y, Y)I = lII(y, X)I and |H(x, X)I = lH(y, X)|. As x and vy are any points
of X, while X and Y are any blocks on y, it follows that |H(x, X)] =g is
independent of the block X and the point x € X. The above mappings are
thus bijective.

Let 1#a€ I(x,X) and v € N(y,X). Then v = [a, 8] for some
B € Iy, V), and ay € U (x%, X). Thus, H(X)* is a subgroup of II(X).
Similarly, II(x)* is a subgroup of T'(x). By Lemma 1, there is a prime p such
that g, |II(X)*| =1+ (g — 1)k, and |H(x)*| =1+ (g — 1)r are powers of
p. In particular, g[l(k — 1) and p £ r. (iii) implies that I (x)* acts regularly
on the blocks not on x. Thus

L4+ =D} —7) = @—k)(r/k),
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so that [1 + (g — l)r]l(v —k)-x=(r—\)(k — 1)sinceptr. SincegH (k—1),
it follows that

1+ (g— Drll(r —Ng <201+ (g — 1)].

Thus, r = g\ + 1.
If y # x, then, since II(x)*, acts regularly on the blocks not on x,

r—=x=1+@g—Dr=|U O@EX)| £ m)"||e—>).

ZUEX
It follows that II(x)* is transitive on the blocks not on x and I(x, X) acts
regularly on X when x € X. Then 1+ (g — 1)r = |[II(x)* = b — 7 and
each line has at least g + 1 points. However, each line has at most
(b — \)/(r —\) = g+ 1 points, and all lines have this many points if and
only if & consists of the points and hyperplanes of a projective space
[1, pp. 65, 67]. Together with the transitivity of II(x)*, this proves that &
is desarguesian [1, p. 126] and T contains the little projective group.

COROLLARY 1. Let & be a design admilting a 2-transitive automorphism
group T such that, for each block X, T'x has a normal abelian subgroup fixing X
pointwise and transitive on €X. Then & is either the design of points and
hyperplanes of a finite desarguesian projective space or of an affine space over
GF(2), or v = 22, 23 or 24 and & is the design associated with the Mathieu
group M, (see [3]).

Proof. By [3, Theorem 6.5], we may assume that lines have more than two
points. By [3, Lemma 8.1 (ii)], for each ¥ € X the given subgroup II(X) of
I'(X) has a non-trivial element fixing x blockwise. Since II(X) is abelian, it is
regular on € X. The result now follows from Theorem 1.

CoOROLLARY 2. Let T be a 2-transitive but not k-transitive group of finite degree
v = k 4+ 2> 4 such that, for some set X of k points, I'x has a normal abelian
subgroup fixing X pointwise and transitive on the remaining points. Then T is
similar to one of the following groups in its usual representation: o subgroup of
PTL(d, q) containing PSL(d, q) for some d, q; the full collineation group of
AG(d, 2) for some d; the Mathieu group M, v = 22, 23 or 24; or Aut(Ms.).

Proof. Corollary 1 and [3, Lemma 3.2 and Theorem 5.3].

COROLLARY 3. Let & be a design with X\ = 1 admilting an automorphism
group T such that
(1) For each point x there is a block X on x for which T(x, X) # 1;
(ii) For each block X there is a point x € X for which T'(x, X) # 1; and
(i) T, X)NT(Y)=14xec X =Y.
Then & is a desarguesian plane and T contains the lilile projective group.
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Proof. Suppose that y € X. Let y#x€ X and y€ V= X. If
T(y,Y) # 1% I'(x, X), then I'(y, X) # 1 by Lemma 2. Theorem 1 thus
applies.

THEOREM 2. Let & be a design with N = 1 admitting an automorphism group T
such that conditions (i) and (iii) of Corollary 3 hold. Then & is a projective
plane.

Proof. We assume that & is not a projective plane, and adopt the following
terminology. Lines are blocks. A centre is a point ¢ such that I'(¢, L) # 1 for
some line L on ¢; any other point is a non-centre. A 1-line is a line L such that
T'(c, L) # 1 for exactly one ¢ € L; any other line is called a 2-line.

Let ¢ and d be distinct centres and L = cd the line joining them. Let
T'(x,L) 2 1,x € L, where we may assume that x 3 ¢. Suppose that
T(c, L") # 1 with ¢ € L' ¢ L. By Lemma 2, I'(¢, L) # 1. Thus, the join of
two centres is a 2-line. Therefore, 1-lines contain only one centre, and if a line
M contains a centre ¢, then T'(¢c, M) # 1.

Let ¢, d, and L be as above. There is a centre not on L, since otherwise all
lines would meet L. Thus, there is a 2-line L’ ¥ Lonc¢. Let 1 2 a € T'(d, L)
and 8 € T'(¢, L). By Lemma 2, v — [a, 7], v € T'(¢c, L’), defines an injection
T'(c, L’) = T'(c, L). By symmetry, this is a bijection. Then 8 = [a, v] for
some v € I'(¢c, L"), so that oB € T'(d", L). It follows from Lemma 1 that
I'(L)* is a p-group for some prime p. As |T'(c, L')| = II‘(c, L)l and the join
of two centres is a 2-line, p is the same for all 2-lines.

Let M be a 1-line on ¢. We know that T'(¢, M) = 1. Let 1 %« € T'(d, L).
8§ — [, 8], 8§ € T'(c, M), defines an anti-monomorphism I'(¢c, M) — I'(c, L).
For, if 8, ¢ € T'(c, M), then

o, 3¢] = [, eller, 8]¢ = [a, €][ex, 8]

since [a, 8] € T'(c, L), € € T'(c, M), and T(c, L) N\ T'(c, M) =1 by (ii).
Thus, all elations in T' are p-elements. By Gleason’s Lemma [1, p. 191], it
follows that for each centre ¢ and non-centre x, T', is transitive on the 2-lines
on ¢, while T is transitive on the lines on x.

There exist 1-lines. Otherwise, T is line-transitive and thus point-transitive
[1, p. 78]. Then all points are centres, and Corollary 3 yields a contradiction.

Let M be a 1-line and ¢ the centre on M. T transitively permutes the lines
containing a point ¢ on M, so that all such lines are 1-lines. If NV is any line
containing a non-centre x, I'; has an element mapping N to a line meeting M
at a point #¢, and N is a 1-line. Thus, for each 2-line L, T'(¢, L) # 1 for all
c€ L.

Let ©* consist of the centres and 2-lines. Then &* is a subdesign of &
fixed by T. By Corollary 8, 2* is a projective plane. Let M be a 1-line on a
centre ¢. Then TI'(¢c, M) induces a collineation group of Z* with centre c.
A non-trivial element of I'(¢, M) must fix pointwise some line of Z*. This
contradicts (iii).
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For further results on the planes characterized in Theorem 2, see [1, p. 193].

THEOREM 3. Let & be a design with \ = 1 admitting an automorphism
group T such that
(1) For each point x there are at least two blocks X on x for which T (x, X) 5 1;
and
() T, X)NT(Y)=14ix€c X = 7.
Then D is a desarguesian projective plane and T contains the little projective
group.

Proof. Blocks will again be called lines. A line L is an axis if I'(¢c, L) # 1
for some ¢ € L, and a non-axis otherwise. In view of Corollary 3, we may
assume that non-axes exist.

As in the proof of Corollary 3, if L is an axis, then I'(x, L) 3 1 for all
x € L.Lete¢,d € L,c#d. Let M beanaxis#L onc,and 1 ## v € T'(¢c, M).
By Lemma 2, @« — [a, v], « € I'(d, L), defines an injection I'(d, L) — TI'(c, L).
By symmetry, l T (c, L)l =g (L) depends only on L. Similarly, ]I‘(c, ]ll)| =g(L).
By our previous argument there is a prime p such that I'(L)* and T'(c)* are
p-groups.

Set g = g(L). Then |T(L)* =1+ (g — 1)k shows that g|(k — 1). If
there are s axes on ¢, then |I‘(c)*| =14 (g — 1)s. Suppose that s < r.
Since T'(c)* acts regularly on the points s%¢ of a non-axisth rough ¢ (by (ii)),
14+ (¢ — l)s]l(k — 1), contradicting gH(k — 1). Since ¢ is any point, and
all lines on ¢ are axes, there are no non-axes, a contradiction.

THEOREM 4. Let D be a design with X > 1 admitting an automorphism group T
fixing a block B and satisfying the following conditions:
(i) I'(x, X) is non-trivial and acts regularly on €X whenever x € B and
x € X; and
(i1) If X and Y are blocks #B such that BN X NY # 0 but BN X #
BN Y, then BNX)DBNY.
Then & is the design of points and hyperplanes of a projective space.

Proof. Let x and y be distinct points of B, and X a block on x not on y. If
1#~ ¢ I'(x,X) then, by Lemma 2, 8 — [v,8], 8 € I'(y, B), defines an
injection T'(y, B) — I'(x, B). By symmetry, this is bijective and [I‘(x, B)[ =g
is independent of x € B. If @« € T'(x, B), then a = [y, 8] for some 8 € T'(y, B),
so that ya € T'(x)*. Thus, T'(x)*T'(x, B) C I'(x)*. By Lemma 1, there is a
prime p such that I'(x, B) and I'(x, X) are p-groups. Then g is a power of p,
and p is independent of the choice of x and X.

Let L be a line contained in B. If x € L, let x € X, L  X. Then a non-
trivial element of I'(x, X) is a p-element fixing L but moving all points of
L — {x}. By Gleason’s Lemma [1, p. 191], T is transitive on B.

Let X and Y be distinct blocks B on x, where once again x € B. If there
isapointy€E BNY—-BNXNY, letl#vy¢€T(yY) By Lemma 2,
a— [a, v], @ € T'(x, X), defines an injection I'(x, X) — I'(x, V). By (ii) we
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may use symmetry to deduce that ]I‘(x, X )I = [I‘(x, Y)l. Suppose next that
BNX=BNY Ilf BNX = {x}, choose a block Z % B on x meeting B
in a point s#x; then B M Z properly contains B M X, contradicting (ii). We
can thus find a block Z on x not containing B M X. Then

IT@ X)| = |T@ 2)| =T @ D).

As T is transitive on B, |F(x, X)] = g’ is independent of x € B and X # B
on x. As already noted, g’ is a power of p.

We now prove that T'(x)* is a group. We have already shown that
I'(x)*T'(x, B) C I'(x)*. Once again assume that X and Y are distinct blocks
#B on x such that there is a point y € BN Y —-BNXMNY. Let
1#a€ I'(x,X) and B € T(x, V). By Lemma 2, y - [a,v], v € T(y, T),
defines a bijection T'(y, ¥) — I'(x, V) so that 8 = [a, v] for some such ¥,
and af € T(x)*.

Now let X and Y bedistinctandonx,letl o € T'(x, X),1 # B € I'(x, V)
and of ¢ T'(x)*. Then BNX=BNY. Let 26 B—BNX and
x,26 Z#B. Alsolet1 =~ € I'(x, Z). As 6 — [a, 8], § € T'(z, Z), defines a
bijection TI'(z,Z) — I'(x, Z), v = [a, 8] where 1 6§ € I'(3, Z). Similarly,
v =[B8"1 ¢] where €€ T'(z,Z). Here of = 67 'ad- e '8e ¢ T(x)*. Since
6-lad € T'(x, X?) and e8¢ € I'(x, YV¢), it follows that BN X% = BN Y-
Then 8¢t € T'(3, Z) fixes B(NX = BN Y, thus by (ii) fixes a point of
BNX — BN XMNZ, and so is equal to 1 by (i). Then [a, 6] = v = [87L, 3],
so that a8 commutes with § and thus fixes 2. As 3 was arbitrary and o8 fixes
B M X pointwise, o € T'(x) N T'(B) € I'(x)*, a contradiction. This proves
that T'(x)* is a p-group.

Ifx %y € Band z ¢ B, then, by (i),

IT@* =1+ E-D+E-DO -1
and II‘(x)*zl =14 (¢ — 1)\ are powers of p. Since
1+ @-D+E@-DO—-1 =010+ — DN+ (g—2g),

it follows that g = g’. It is now easy to show that T'(B)* is a group. As in the
proof of Theorem 1, b = gr 4+ 1 and r = g\ + 1. bk = vr and \(v — 1) =
r(k — 1) imply that & is symmetric, so thath‘(B)*| =14+ (@g@—1Dk=v—*%
and I'(B)* is transitive on ¥ B. The theorem now follows from [1, p. 85] or [2].

COROLLARY 4. Let & be a symmetric design with N > 1 admiiting an auto-
morphism group T fixing a block B and such that T (x, X) # 1 whenever
x € B, X. Then & is the design of points and hyperplanes of a projective space.

Proof. [4, Hilfsatz 10] and Theorem 4.
This corollary is [4, Satz 10] but without assumption (1) (also see [1, p. 86]).

THEOREM 5. Let & be a design with N\ > 1 admilling an automorphism
group T fixing a point ¢ and such that:
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(i) T(x, X) is non-trivial and acts regularly on €X whenever q, x € X;
(ii) There are no blocks X and Y such that X \'Y = {q}; and
(ili) A non-trivial element of T (q) fixes pointwise at most X + 1 blocks not on gq.
Then D is the design of points and hyperplanes of a projective space.

Proof. Letg € XNY, X #Y,xc X —XNYandl # v € I'(x, X). By
Lemma 2, 8 — [y, 8], B € T(g, Y), defines an injection T'(g, ¥) — I'(¢q, X).
Then ]I‘(q, V)| =|r(g X)I implies that |T'(¢, X)| = g is independent of the
block X on g¢g. If a« € T'(q,X), then a = [y,B8] with 8 € I'(g, V), and
ya € T'(xf, X). Thus, T(X)*I'(¢, X) C T'(X)*.

Let ¢, x, and y be distinct points of X. If there is a block ¥ on ¢ and y but
notonx,letl vy ¢ I'(y, Y). By Lemma 2, o — [, 7], « € T'(x, X), defines
an injection TI'(x, X) — I'(y, X). Thus, II‘(x, X)] < II‘(y, X)|, so that
lP(x, X)] = lP(y, X)I. If, however, ¢, x, and y are collinear, let 2 € X — gx.
Then ]F(x, X)] = II‘(z, X)] = ]I‘(y, X)I = g(X) is independent of x € X,
x #q.

Let X and X’ be distinct blocks on ¢, so that |[X N X’| = 2 by (ii). Let
g#EFxcXNX, 26X —XNX', and 146 € I'(z, X’). By Lemma 2,
a — |[a, 8], @« € T'(x, X), defines an injection T'(x, X) — T'(x, X’). It follows
that g(X) = g(X’) = ¢’ is independent of the block X on g.

To show that I'(X)* is a group when ¢ € X, let ¢, x, and y be non-collinear
pointsof X,letq,y € Yandx ¢ V. Alsoletl £ a € I'(x, X)andB € T'(y, X).
As usual, 8 = [a, v] for some vy € T'(y, V). Thus, af € T(X)*.

Now let ¢, x, and y be distinct and on X, let 1 #a € I'(x, X),
1#pB€T(y,X)and af ¢ T(X)* Then gx = ¢qy. Ilf ¢ € Z and x ¢ Z, then
by (ii) thereisa point 2 gon X N Z. Let 1 # v € I'(2, Z). As § — [a, 8],
8 € T'(z, Z), defines a bijection I'(z, Z) — I'(3, Z), v = la, 6] for some such &,
and § # 1. Similarly, v = [671, €] for some ¢ € T'(2, Z). Since

af = 6 lad - 1B ¢ T(X)*,
lad € T(x% X) and €8¢ € T'(y¢, X),

it follows that gx® = gyc. Then §¢! € T'(3, Z) fixes gx and thus =1. Then
[a, 6] = [67Y, 8], so that B commutes with 6 and thus fixes Z. Since a8 also
fixes all blocks on ¢ and x,a8 € T'(X) N\ I'(q) € I'(X)*, a contradiction.
I'(X)* is thus a group.

By a standard argument, I'(X)* is an elementary abelian p-group for some
prime p. Thus, g, ¢’, and 1 + (g — 1) + (¢’ — 1)(k — 1) are powers of p,
aﬁd gl| (2 — 1). By (i) it follows that g|(» — k) but g it (v — k). It follows that
gl —1).

Let x 5 ¢, and let X and Y be distinct blocks on ¢ and x. In the usual way
we can define a bijection I'(x, X) — I'(x, Y) in order to show that I'(x)* is
a p-group of order 1 + (g’ — 1)A. Then g’|(>\ — 1). Since T'(x)* acts regularly
on the blocks on ¢ but not x (by (i)), #|(r — ). Thus, p|(r — 1).

T' is transitive on the points 3g¢. For, if L is a line not on ¢ and ¥ € L, then
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T has a p-element fixing x and L but moving all points of L — {x}. The assertion
then follows from Gleason’s Lemma [1, p. 191].

Since T'(g, X) " T'(g, V) =1if g€ XN Y, X % Y, the subgroup T'(q)
of T generated by I'(¢)* is an elementary abelian p-group. Clearly T'(g) < T.
Then all orbits of T'(g) of points 3¢ have the same length g. If ¢ € X, then

g=|TgX)| =g@-1).

However, g“ (v — 1) and g is a power of p. Thus, g = g.

We now show that T'(g) acts regularly on the blocks not on ¢. For let
¢ € T(q) fix Z, where g ¢ Z. ¢ fixes each block in ZT@ pointwise, and thus
fixes some block Z’' # Z not on ¢. Then ¢ fixes a point ¥ ¢ ¢ not on Z. If
v € T'(x)* then [o, v] € T(x)* N\ T'(g) = 1. Thus, ¢ fixes Z’ and all blocks
in ZT®* a total of at least 1 + 1 + (g’ — 1)\ = A\ + 2 blocks. By (iii),
¢ = 1, as claimed.

Thus, |T(Q)|[(® —7) = (r/k)(@@ — k) = (r/k\)(k — 1)g~1 - g(r — \). Since
p+rand gl|(k — 1), it follows that

1+ (g —r = [T(@Qllgtr —2) <201+ (g — 1)r].

This implies that |I‘_(g_)| = g(r — \). If x ## ¢, then II‘_(gﬁA =g(r—2N)/g =
r — \. Then T(g), is transitive on the blocks on x not on g, so that T'(g) is
transitive on the blocks not on ¢. Then & — 7 = g(r — \), or v — 1 = gk,
and (v, k) = 1. Since b —r = (r/k) (v — k) is a power of p and p 1 7, it follows
that /k = 1. Corollary 4 now completes the proof.
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