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PRODUCTS OF PAIRS OF DEHN TWISTS AND
MAXIMAL REAL LEFSCHETZ FIBRATIONS

ALEX DEGTYAREV and NERMİN SALEPCİ

Abstract. We address the problem of existence and uniqueness of a factor-
ization of a given element of the modular group into a product of two Dehn

twists. As a geometric application, we conclude that any maximal real elliptic
Lefschetz fibration is algebraic.

§1. Introduction

1.1. Motivation

An object repeatedly occurring in algebraic geometry is a fibration with

singular fibers. If the base is a topological disk D2 and the number of singu-

lar fibers is finite, the topology (and, in some extremal cases, the analytic

structure as well) can adequately be described by the so-called monodromy

factorization of the monodromy at infinity (the boundary of D2).

More precisely, consider a proper smooth map p :X → B ∼=D2, and let

Δ := {b1, b2, . . . , br} be the set of the critical values of p, which are all

assumed in the interior of B. The restriction of p to B� :=B�Δ is a locally

trivial fibration, and one can consider itsmonodromy m : π1(B
�, b)→AutFb,

where Fb is the fiber over a fixed base point b ∈B� and where G := AutFb

is an appropriately defined group of classes of automorphisms of Fb. (The

precise nature of the automorphisms used and their equivalence depend

on a particular problem.) The monodromy at infinity m∞ :=m[∂B] ∈G is

usually assumed fixed in advance.

Warning. Throughout this paper, all group actions are right. (It is under

this convention that monodromy is a homomorphism.) This convention

applies to matrix groups as well: our matrices act on row vectors by the
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84 A. DEGTYAREV AND N. SALEPCİ

right multiplication. Given a right action X ×G→X , we denote by x ↑ g
the image of x ∈X under g ∈G.

Consider a system of lassos, one lasso γi about each critical value bi,

i= 1, . . . , r, disjoint except at the common base point b and such that γ1 · . . . ·
γr ∼ ∂B. (Such a system is called a geometric basis for π1(B

�, b).) Evaluating

the monodromy m at each γi, we obtain a sequence mi :=m(γi).

Definition 1.1. Given a group G, a G-valued monodromy factorization

of length r is a finite ordered sequence m̄ := (m1, . . . ,mr) of elements of G.

The product m∞ := m1 · . . . ·mr is called the monodromy at infinity of m̄,

and m̄ itself is often referred to as a monodromy factorization of m∞. The

subgroup of G generated by m1, . . . ,mr is called the monodromy group of m̄.

The ambiguity in the choice of a geometric basis leads to a certain equiv-

alence relation. According to Artin [2], if b ∈ ∂B, any two geometric bases

are related by an element of the braid group Br. Hence, the corresponding

monodromy factorizations are related by a sequence of Hurwitz moves

(1.2) σi : (. . . ,mi,mi+1, . . .) �→ (. . . ,mimi+1m
−1
i ,mi, . . .), i= 1, . . . , r− 1.

If the base point is not on the boundary or if the identification between Fb

and the “standard fiber” is not fixed, one should also consider the global

conjugation

g−1m̄g = (g−1m1g, . . . , g
−1mrg)

by an element g ∈G.

Definition 1.3. Two monodromy factorizations are said to be strongly

(resp., weakly) Hurwitz equivalent if they can be related by a finite sequence

of Hurwitz moves (resp., a sequence of Hurwitz moves and global conjuga-

tion). For brevity, we routinely simplify this term to strong/weak equiva-

lence.

It is immediate that both the monodromy at infinity and the monodromy

group are invariant under strong Hurwitz equivalence, whereas their conju-

gacy classes are invariant under weak Hurwitz equivalence.

The best-known examples where this machinery applies are

• ramified coverings, with G= Sn the symmetric group;

• algebraic or, more generally, pseudoholomorphic curves in C2, with G=

Bn the braid group;
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• (real) elliptic surfaces or, more generally, (real) genus one Lefschetz fibra-

tions, with G= Γ̃ := SL(2,Z) the mapping class group of a torus.

(Literature on the subject is abundant, and we direct the reader to [6]

for further references.) Typically, the topological type of a singular fiber

Fi := p−1(bi) is determined by the conjugacy class of the corresponding

element mi, and it is common to restrict the topological types by assuming

that all mi should belong to a certain preselected set of conjugacy classes.

Thus, in the three examples above, “simplest” singular fibers correspond to,

respectively, transpositions in Sn, Artin generators in Bn, and Dehn twists

in Γ̃ (see Section 2.1).

A monodromy factorization satisfying this additional restriction is often

called simple, and a wide open problem with a great deal of possible geomet-

ric implications is the classification, up to strong/weak Hurwitz equivalence,

of the simple monodromy factorizations of a given element m∞ ∈G and of

a given length.

1.2. Principal results

Geometrically, our principal subject is elliptic Lefschetz fibrations, and

the algebraic counterpart is the classification of the factorizations of a given

element m∞ ∈ Γ̃ into products of Dehn twists. At this point, it is worth

mentioning that there are cyclic central extensions Γ̃ � Γ and B3 � Γ, where

Γ := PSL(2,Z) is the modular group, and each Dehn twist in Γ lifts to a

unique Dehn twist in Γ̃ or, respectively, to a unique Artin generator in B3;

hence, the problems of the classification of simple monodromy factorizations

in all three groups are equivalent. For this reason, we will mainly work in Γ.

To simplify the further exposition, we introduce the following terminology:

an r-factorization (of an element g ∈ Γ) is a monodromy factorization m̄=

(m1, . . . ,mr) with each mi a Dehn twist and such that m∞ = g. To shorten

the notation, we will often speak about an r-factorization g =m1 · . . . ·mr.

Even with the group as simple as B3 (the first nonabelian braid group),

surprisingly little is known. On the one hand, according to Moishezon and

Livné (see [11]), a 6k-factorization of a power (σ1σ2)
3k of the Garside ele-

ment is unique up to strong Hurwitz equivalence. This result was recently

generalized by Orevkov [16] to any element positive in the standard Artin

basis σ1, σ2. On the other hand, a series of exponentially large (in r) sets of
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86 A. DEGTYAREV AND N. SALEPCİ

nonequivalent r-factorizations of the same element gr := L5r−6 ∈ Γ (depend-

ing on r) was recently constructed in [6]; furthermore, these factoriza-

tions are indistinguishable by most conventional invariants. (For some other

examples, related to the next braid group B4, see [8].)

Thus, it appears that, in its full generality, the problem of the classifica-

tion of the r-factorizations of a given element is rather difficult and quite

far from its complete understanding. In this paper, we confine ourselves to

2-factorizations only, addressing both their existence and their uniqueness.

Even in this simplest case, the results obtained seem rather unexpected.

Algebraically, our principal results are Theorems 1.4–1.6 below. For the

statements, we briefly recall that the elements of the modular group are

commonly divided into elliptic, parabolic, and hyperbolic, the former being

those of finite order, and the two latter being those that, up to conjugation,

can be represented by a word in positive powers of a particular pair L,R

of generators of Γ (see Section 2.1 for further details). (Whenever speaking

about words in a given alphabet, we mean positive words only; if negative

powers are allowed, they are listed in the alphabet explicitly.) We use At

for the transpose of a matrix A. One has Lt =R; hence, the transpose At

of a word A in {L,R} is again a word in {L,R}: it is obtained from A by

interchanging L↔R and reversing the order of the letters.

Theorem 1.4. An element g ∈ Γ admits a 2-factorization if and only if

one of the following hold:

(1) g ∼X=RL−1 (g is elliptic),

(2) g ∼R2 or g ∼ L4 (g is parabolic), or

(3) g ∼ L2AL2At for some word A �=∅ in {L,R} (g is hyperbolic).

Theorem 1.5. The number of weak equivalence classes of 2-factorizations

of g ∈ Γ is at most one if g is elliptic or parabolic, and at most two if g is

hyperbolic.

Theorem 1.6. The single weak equivalence class of 2-factorizations of

an element g ∼ L4 splits into two strong equivalence classes:

L4 =R · (R−1L2)R(R−1L2)−1 = LRL−1 · (LR−1L2)R(LR−1L2)−1.

In all other cases, each weak equivalence class of 2-factorizations constitutes

a single strong equivalence class.

Theorems 1.4, 1.5, and 1.6 are proved in Sections 3.1, 3.2, and 3.3, respec-

tively. The proofs are based on a relation between subgroups of the modular
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group and a certain class of Grothendieck’s dessins d’enfants. A refinement

of Theorem 1.5, namely, a detailed description of the elements admitting

more than one 2-factorization, is found in Section 3.4 (see Theorem 3.12).

Another interesting phenomenon related to the modular group is the fact

that some of its elements are real — that is, they can be represented as

a product of two involutive elements of PGL(2,Z) � Γ. (For a geometric

interpretation and further details, see [18] and Section 2.3.) The relation

between this property and the existence/uniqueness of a 2-factorization, as

well as the existence of real 2-factorizations, is discussed in Theorem 3.13.

Geometrically, 2-factorizations are related to real relatively minimal Jaco-

bian elliptic Lefschetz fibrations over the sphere S2 with two pairs of com-

plex conjugate singular fibers; an important class of such fibrations com-

prises some maximal ones. Intuitively, an elliptic Lefschetz fibration is a

topological counterpart of an algebraic elliptic surface (see Section 4 for the

precise definitions), and one of the major questions is the realizability of a

given real elliptic Lefschetz fibration by an algebraic one. (In the complex

case, the answer to this question is trivially in the affirmative due to the

classification found in [11] (see Theorem 4.1); in the real case, examples of

nonalgebraic fibrations are known (see [20], [19]).) A real Lefschetz fibration

is maximal if its real part has the maximal Betti number with respect to

the Thom–Smith inequality (4.3). A maximal real Lefschetz fibration may

have none, one, or two pairs of complex conjugate singular fibers (see Sec-

tion 4.5). In the former case, the fibration is called totally real, and such a

fibration is necessarily algebraic due to the following theorem.

Theorem 1.7 (see [20], [19]). Any totally real maximal Jacobian Lefschetz

fibration is algebraic. �

Among the most important geometric applications of the algebraic results

of the paper is an extension of Theorem 1.7 to all maximal Jacobian fibra-

tions.

Theorem 1.8. Any maximal Jacobian Lefschetz fibration is algebraic.

This theorem is proved in Section 6.2.

As another geometric application, we settle a question left unanswered in

[7]. Namely, we show that the equivariant deformation class of a nonsingular

real trigonal M -curve in a Hirzebruch surface (see Section 5 for the defini-

tions) is determined by the topology of its real structure (see Theorems 6.1
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and 6.3). Moreover, at most two such curves may share homeomorphic real

parts.

One may speculate that it is the relation to maximal geometric objects,

which are commonly known to be topologically “rigid,” that makes 2-factori-

zations relatively “tame.” At present, we have no clue what the general

statements concerning the existence and uniqueness of r-factorizations may

look like. One of the major reasons is that, even though an analogue of

Proposition 2.8 holds for any number of Dehn twists, Lemma 3.2 does not

have a literate extension to free groups on more than two generators (cf. [3]).

To our knowledge, even the finiteness of the number of equivalence classes

of factorizations of a given element is still an open question. According to

Matveyev and Rafi [10], certain finiteness statements do hold in hyperbolic

groups; alas, neither Γ nor B3 is hyperbolic. On the other hand, found

in Moishezon [12] is an example of an infinite sequence of nonequivalent

factorizations (although nonsimple) of the element Δ2 in the braid group

B54.

1.3. Contents of the paper

Sections 2, 4, and 5 are of an auxiliary nature: we recall the basic notions

and necessary known results concerning, respectively, the modular group,

(real) elliptic Lefschetz fibrations, and (real) trigonal curves. The heart of

the paper is Section 3: the principal algebraic results and their refinements

are proved here. Section 6 deals with the geometric applications: we estab-

lish the semisimplicity of real trigonal M -curves and, as an upshot, prove

Theorem 1.8.

We use the conventional symbol to mark the ends of the proofs. Some

statements are marked with � or �: the former means that the proof has

already been explained (e.g., most corollaries), and the latter indicates that

the proof is not found in the paper and the reader is directed to the litera-

ture, usually cited at the beginning of the statement.

§2. The modular group

2.1. Presentations of Γ

Consider H = Za ⊕ Zb, a rank 2 free abelian group with the skew-

symmetric bilinear form
∧2H → Z given by a · b = 1. We regard Γ̃ :=

SL(2,Z) as a group acting on H. Moreover, Γ̃ is the group of symplectic
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autosymmetries of H; it is generated by the matrices

X=

[
1 −1

1 0

]
, Y=

[
0 1

−1 0

]

such that X3 =− id, Y2 =− id.

The modular group Γ := PSL(2,Z) is the quotient SL(2,Z)/± id. When

it does not lead to confusion, we use the same notation for a matrix A in Γ̃

and its projection to Γ. It is known that Γ∼= Z3 ∗Z2; we will work with the

following two presentations of this group:

Γ = 〈X,Y :X3 =Y
2 = id〉=

〈
L,R :RL−1R= L−1RL−1, (RL−1)3 = id

〉
,

where

L=

[
1 1

0 1

]
=XY, R=

[
1 0

1 1

]
=X

2
Y,

so that X=RL−1 and Y= LR−1L=R−1LR−1 in Γ. For future reference,

note that the powers of these matrices are given by

Ln =

[
1 n

0 1

]
, Rn =

[
1 0

n 1

]
, n ∈ Z.

Since Γ is a free product of cyclic groups, we have the following statement.

Lemma 2.1. Two elements f, g ∈ Γ commute if and only if they generate a

cyclic subgroup or, equivalently, if they are both powers of a common element

h ∈ Γ. �

2.2. The conjugacy classes

A simple way to understand the conjugacy classes is via the action of Γ

on the Poincaré disk. The group Γ is known to be the symmetry group of

the Poincaré disk endowed with the so-called Farey tessellation, shown in

Figure 1. The nontrivial elements of Γ form three basic families: elliptic,

parabolic, and hyperbolic. These families are distinguished by the nature

of their fixed points on the Poincaré disk or, equivalently, by the absolute

value of their traces. An elliptic matrix has | trace | < 2, so that it has a

single fixed point in the interior of the Poincaré disk and acts as a rotation

with respect to this fixed point. Elliptic matrices are the only torsion ele-

ments of Γ. A parabolic matrix has | trace |= 2; it has a single rational fixed

point (on the boundary of the Poincaré disk) and acts as a rotation fixing
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Figure 1: Poincaré disk endowed with the Farey tessellation.

this boundary point. A hyperbolic matrix, defined via | trace |> 2, has two

irrational fixed points on the boundary and acts as a translation fixing the

geodesic connecting these fixed points.

There are three conjugacy classes of elliptic matrices. Representatives of

these classes can be taken as

Y=

[
0 1

−1 0

]
, X=

[
1 −1

1 0

]
, X

−1 =

[
0 1

−1 1

]
.

An element in Γ is called a (positive) Dehn twist if it is conjugate to R.

(The geometric meaning of this definition is explained in Section 2.4.) Any

parabolic element is conjugate to a certain nth power of a Dehn twist. Thus,

a representative of a class can be taken as Rn.

Warning. For the experts, we emphasize that, in accordance with our

right-group action convention, it is R, not L, that represents a positive Dehn

twist.

The conjugacy classes of hyperbolic elements of Γ are determined by

sequences [a1, a2, . . . , a2n], ai ∈ Z+, defined up to even permutations and

called cutting period cycles. Indeed, the fixed points of a hyperbolic matrix

are irrational points that are the zeros of a quadratic equation, and they
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have a continued fraction expansion with the periodic tail

· · ·a1 +
1

a2 +
1

. . . 1
a2n

.

Note that [a1, a2, . . . , a2n] is not necessarily the minimal period: all matrices

sharing the same pair of eigenvectors are powers of a minimal one, and the

precise multiple of the minimal period corresponding to a given matrix A

can be recovered from its trace.

A representative of the conjugacy class corresponding to a cutting period

cycle [a1, a2, . . . , a2n] can be chosen as

Ra1 ·La2 · . . . ·La2n =

[
1 0

a1 1

]
·
[
1 a2
0 1

]
· . . . ·

[
1 an
0 1

]
.

We will be interested not only in the cutting period cycle but also in the

underlying word, called the cutting word, in two letters {L,R}. Recall that
the cutting word encodes the two types (right/left) of triangles of the Farey

tessellation cut by the invariant geodesic (cf. [18], [21]). In terms of the

cutting word, hyperbolic conjugacy classes can be characterized as those

represented by a word in {L,R} with both L and R present. Since the

cutting word is defined only up to cyclic permutation, it is convenient to

represent it in the unit circle, placing the letters constituting the word at

equal angles (cf. Figure 6). The resulting circle marked with a number of

copies of L and R is called the cyclic diagram Dg of a hyperbolic element g.

One can also speak about the cyclic diagram of a parabolic element, with

the letters either all R (for a positive power of a Dehn twist) or all L (for a

negative power).

2.3. Real elements

An involutive element of the coset PGL(2,Z)�Γ is called a real structure

on Γ. An element of Γ is called real if, in PGL(2,Z), it has a decomposition

into a product of two real structures. For any real structure τ , let us define

an involutive antiautomorphism τ̂ : Γ→ Γ given by τ̂(g) = τg−1τ . Then, a

real element can also be defined as one fixed by τ̂ for some real structure τ .

The significance of real elements is in their geometric interpretation. For

example, such an element appears as the Γ-valued monodromy at infinity

of a real elliptic Lefschetz fibration over a disk.
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The characterization of real elements in Γ, as well as in Γ̃, is known (see

[18]): all elliptic and parabolic matrices are real, and a hyperbolic matrix

is real if and only if its cutting period cycle is odd bipalindromic — that

is, up to cyclic permutation, it is a union of two palindromic pieces of odd

length. This property can be interpreted in terms of the cyclic diagram as

the existence of a symmetry axis such that the diagram is invariant under

the reflection with respect to this axis.

Up to conjugation, there are exactly two real structures on Γ:

(2.2) τ1 =

[
0 1

1 0

]
, τ2 =

[
1 0

0 −1

]
.

In the rest of the paper, τ1 and τ2 refer to these particular matrices. The

action of τ̂i on the generators is as follows:

τ̂1(L) =R−1, τ̂1(R) = L−1, τ̂1(X) =X, τ̂1(Y) =Y,
(2.3)

τ̂2(L) = L, τ̂2(R) =R, τ̂2(X) =YXY, τ̂2(Y) =Y.

We extend the antiautomorphism τ̂ : Γ→ Γ to the set of Γ-valued mon-

odromy factorizations as follows:

(2.4) τ̂(m1, . . . ,mr) =
(
τ̂(mr), . . . , τ̂(m1)

)
.

(Note the reverse order.) It is straightforward that the factorizations τ̂(m̄′)
and τ̂(m̄′′) are strongly/weakly equivalent if and only if m̄′ and m̄′′ are.

Furthermore, one has τ̂(m̄)∞ = τ̂(m∞), and the monodromy group of τ̂(m̄)

is the image of that of m̄ under τ̂ .

With future applications in mind, we will also discuss real 2-factorizations.

A 2-factorization m̄ is said to be real if there is a real structure τ such that

either τ̂(m̄) = m̄ ↑ σ1 (see (1.2)) or τ̂(m̄) = m̄. The monodromy at infinity of

a real 2-factorization is obviously real; the converse is not true (see [17], [18]

and Section 3.5).

Remark 2.5. Geometrically, a real 2-factorization represents a real Jaco-

bian Lefschetz fibration over the unit disk D2 ⊂ C (with the standard real

structure z �→ z̄) with two singular fibers (see Section 4.2); in the former case

(τ̂(m̄) = m̄↑σ1), the two singular fibers are real; in the latter case (τ̂(m̄) = m̄),

they are complex conjugate. A specific example of a nonreal 2-factorization

with real monodromy at infinity is studied in [17]; this example has inter-

esting geometric implications.
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Remark 2.6. Alternatively, a 2-factorization m̄ is real if and only if τ̂(m̄)

is strongly Hurwitz equivalent to m̄ for some real structure τ . Indeed, since

an even power σ2k
1 acts via the conjugation by the τ -real element m−k

∞ , it can

be “undone” by replacing τ with τ ′ := τmk
∞, which is also a real structure. In

particular, it follows that being real is a property of a whole strong Hurwitz

equivalence class.

2.4. The mapping class group

The mapping class group Map+(S) of an oriented smooth surface S is

defined as the group of isotopy classes of orientation-preserving diffeomor-

phisms of S. If S is the 2-torus T 2, one can fix an isomorphism H1(T
2,

Z) ∼= H = Za ⊕ Zb, and the map f �→ f∗ establishes an isomorphism

Map+(T
2)→ Γ̃.

The (positive) Dehn twist along a simple closed curve l ∈ S is a diffeomor-

phism of S obtained by cutting S along l and regluing with a twist of 2π. If

S ∼= T 2, the image of the Dehn twist in the mapping class group Γ̃ depends

only on the homology class u := [l] ∈H and is given by the symplectic reflec-

tion x �→ x+(u,x)u, where (u,x) denotes the algebraic sum of the points of

intersection of u an x; we denote this image by tu and call it a Dehn twist

in Γ̃. All Dehn twists form a whole conjugacy class which contains R; they

project to the positive Dehn twists in Γ introduced in Section 2.2.

2.5. Subgroups of Γ

In this section, we summarize the relation between the subgroups of Γ and

a special class of bipartite ribbon graphs, which we call skeletons. A similar

approach, in terms of special triangulations of surfaces, was developed in

[4]. Our approach is identical to the bipartite cuboid graphs in [9], except

that we are mainly interested in subgroups of infinite index and therefore

are forced to consider infinite graphs supported by noncompact surfaces. We

only recall briefly the few definitions and facts needed later in this paper;

for details and further references, see [6]. Note that, due to our right-group

action convention, some definitions given below differ slightly from those

in [6].

Recall that a ribbon graph is a graph (locally finite CW -complex of

dimension 1), possibly infinite, equipped with a cyclic order (i.e., transi-

tive Z-action) on the star of each vertex. Typically, a ribbon graph is a

graph embedded into an oriented surface S, and the cyclic order is induced

by the orientation of S. In fact, a ribbon graph G defines a unique, up to

homeomorphism, minimal oriented surface S0 (noncompact if G is infinite)
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94 A. DEGTYAREV AND N. SALEPCİ

into which it is embedded. The connected components of the complement

S0 �G are called the regions of G.

A bipartite graph is a graph whose vertices are colored with two colors,

• and ◦, so that each edge connects vertices of opposite colors.

Definition 2.7. A skeleton is a connected bipartite ribbon graph with

all •-vertices of valency 3 or 1 and all ◦-vertices of valency 2 or 1. A skeleton

is regular if all its •- and ◦-vertices have valency 3 and 2, respectively.

Since Γ = {X,Y : X3 = Y2 = id}, the set of edges of any skeleton is a

transitive Γ-set, with the action of X and Y given by the distinguished

cyclic order on the stars of, respectively, •- and ◦-vertices. (Because of the

valency restrictions in Definition 5.6 below, this action of Z ∗Z does factor

through Γ.) Conversely, any transitive Γ-set can be regarded as (the set

of edges of) a skeleton, the •- and ◦-vertices being the orbits of X and Y,

respectively. We identify the two categories.

As a consequence, to each subgroup G⊂ Γ one can associate the skeleton

G\Γ (the set of left G-cosets, regarded as a right Γ-set). This skeleton is

regular if and only if G is torsion-free, that is, contains no elliptic elements;

in this case, G is free. The skeleton G\Γ is equipped with a distinguished

edge e := G\G, which we call the base point. Conversely, given a skeleton

S and a base point e, the stabilizer G of e is a subgroup of Γ, and one has

S = G\Γ. In general, without a base point chosen, the stabilizer of S is

defined as a conjugacy class of subgroups of Γ.

Convention. In the figures, we usually omit most bivalent ◦-vertices,
assuming that such a vertex is to be inserted at the center of each “edge”

connecting a pair of •-vertices. When of interest, the base point is denoted

by a gray diamond. For infinite skeletons, only a compact part is drawn,

and each maximal Farey branch (see Section 2.6 and Figure 2, left, below)

is represented by a �-vertex.

A combinatorial path (called a chain in [6]) in a skeleton S can be

regarded as a pair γ := (e′, g), where e′ is an edge, called the initial point

of γ, and g ∈ Γ. Then e′′ := e′ ↑ g is the terminal point of γ, and the eval-

uation map val : γ �→ g sends a path γ = (e′, g) to its underlying element

g ∈ Γ. For a regular skeleton S, the map val establishes an isomorphism

π1(S, e) = G. (In the presence of monovalent vertices, one should replace

π1 with an appropriate orbifold fundamental group.) When the initial point

is understood, we identify a path γ and its image valγ ∈ Γ. The product
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of two paths is defined as usual: (e′, g′) · (e′′, g′′) = (e′, g′g′′), provided that

e′′ = e′ ↑ g′; the inverse of γ = (e′, g) is γ−1 := (e′ ↑ g, g−1).

In the case of skeletons, a region can be redefined as an orbit of L=XY.

In this definition, a region R is the set of edges in the boundary of the

geometric realization of R whose canonical orientation •→−◦ agrees with

the boundary orientation; the other edges in the boundary are of the form

e ↑Y, e ∈R. An n-gonal region is an orbit of length n; intuitively, n is the

number of •-vertices in the boundary. The minimal supporting surface S0

of a skeleton S can be obtained by patching the boundary of each region

R with a disk (if R is finite) or half-plane (if R is infinite).

Given a subgroup G⊂ Γ, the G-conjugacy classes of the Dehn twist con-

tained in G are in a canonical one-to-one correspondence with the monog-

onal regions of the skeleton G\Γ (see [6]): under the canonical identifica-

tion G= πorb
1 (G\Γ,G\G) described above, these classes are realized by the

boundaries of the monogons.

2.6. Pseudotrees

A special class of skeletons can be obtained from ribbon trees as follows.

Consider a ribbon tree with all •-vertices of valency 3 (nodes) or 1 (leaves),

and take its bipartite subdivision — that is, divide each edge into two by

inserting an extra ◦-vertex in the middle. We denote the resulting graph by

G. Let us consider a vertex function � : {leaves} → {0,�,•,◦} such that, if

two leaves are incident to a common node, then � does not assign � to both.

We perform the following modifications at each leaf v of G:

• if �(v) = •, then no modification is done;

• if �(v) = ◦, then cut out the leaf and the incident edge, so that the resulting

graph has a monovalent ◦-vertex;
• if �(v) = 0, then splice G with a simple loop (see Figure 2, left);

• if �(v) = �, then splice G with a Farey branch (see Figure 2, right).

Figure 2: A simple loop and a Farey branch.
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Figure 3: The splice of two skeletons.

Formally, a simple loop is the skeleton Γ1(2)\Γ, where Γ1(2) ={[
1
∗

0
1

]
mod 2

}
, and a Farey branch Y\Γ is the only bipartite ribbon tree

regular except a single monovalent vertex, which is ◦. Given two skeletons

S′, S′′, a monovalent •-vertex v of S′, and a monovalent ◦-vertex u of S′′,
the splice is defined as the skeleton obtained from the disjoint union S′�S′′

by identifying the edges e′, e′′ incident to v, u, respectively, to a common

edge e (see Figure 3).

A skeleton that can be obtained by the above procedure is called a pseu-

dotree. A pseudotree is regular if and only if the images of � are in {0,�}.
Crucial for the proofs is the following statement, which is an immediate

consequence of [6, Proposition 4.4].

Proposition 2.8. A proper subgroup G⊂ Γ is generated by two distinct

Dehn twists if and only if its skeleton S :=G\Γ is a regular pseudotree with

exactly two simple loops. In this case, G is freely generated by two Dehn

twists. �

Because of the requirement on the �-values of a vertex function, a pseu-

dotree S as in Proposition 2.8 looks as shown in Figure 4. More precisely,

S consists of two monogons connected by a horizontal line segment and a

number of Farey branches, upward and downward, attached to this segment.

Thus, starting from one of the monogons, one can encode S and, hence, the

subgroup G itself by the sequence of the directions (up/down) of the Farey

branches.

Figure 4: An example of a pseudotree.
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Remark 2.9. The monodromy at infinity of a pseudotree S is the conju-

gacy class m∞ in Γ realized by a large circle encompassing the compact part

of S. Let us choose the base point e next to one of the monogons as shown

in Figure 4. Starting from e, we can realize m∞ by the element L2AL2B,

where A and B are the paths shown in the figure. Namely, A starts at

e′ := e ↑ (XY)2 = e ↑ L2 = e ↑ Y and is a product of copies of R = X2Y and

L = XY, each downward �-vertex contributing an R and each upward �-
vertex contributing an L. The other path B can be described similarly

starting from a base point next to the other monogonal region. However, it

is obvious from the figure that the loop (e,YAYB) is contractible. Hence,

B = YA−1Y, and one can easily verify that At = YA−1Y in Γ. Thus, we

arrive at

(2.10) m∞ ∼ L2AL2At,

where the word A in {L,R} (possibly empty) is as described above. As an

upshot of this description, we have the converse statement: a representation

of the monodromy at infinity in the form (2.10) determines a pseudotree up

to isomorphism.

§3. The classification of 2-factorizations

3.1. Proof of Theorem 1.4

We precede the proof of this theorem with a few auxiliary statements.

Lemma 3.1. Two Dehn twists tu, tv, u, v ∈H, generate Γ if and only if u

and v span H. If this is the case, the pair (tu, tv) is conjugate to (R,L−1).

Proof. If u and v span H, the signs can be chosen so that the matrix

M formed by u, v as rows has determinant 1, that is, belongs to Γ̃. The

conjugation by M takes (R,L−1) to (tu, tv); hence, tu and tv generate Γ.

For the converse statement, assume that the subgroup H′ ⊂H spanned

by u and v is proper. Since Dehn twists are symplectic reflections (see

Section 2.4), the subgroup H′ is obviously invariant under the subgroup

Γ′ ⊂ Γ generated by tu and tv. Thus, there are primitive vectors in H that

are not in the orbit u ↑Γ′. On the other hand, all primitive vectors are known

to form a single Γ-orbit; hence, Γ′ ⊂ Γ is a proper subgroup.

Lemma 3.2 (cf. Bardakov [3]). Let G := 〈α,β〉 be a free group, and let

α′, β′ ∈G be two elements generating G and such that each α′, β′ is conju-

gate to one of the original generators α, β. Then the pair (α′, β′) is weakly

Hurwitz equivalent to (α,β).

https://doi.org/10.1215/00277630-2077026 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-2077026


98 A. DEGTYAREV AND N. SALEPCİ

Proof. After a global conjugation, possibly followed by σ1, one can assume

that α′ = α. Then obviously β′ = T−1βT for some reduced word T in

{α±1, β±1}. One can assume that the first letter of T is not β±1, and, after a

global conjugation by a power of α, one can also assume that the last letter

of T is not α±1. Then, after expressing α′ and β′ in terms of α and β, any

reduced word in {(α′)±1, (β′)±1} results in a reduced word: no cancellation

occurs. Conversely, there is a word that is equal to β. Hence, one must have

T = id and β′ = β.

Proof of Theorem 1.4. Let g ∈ Γ be an element together with a 2-factori-

zation m̄= (m1,m2). Denote by G the monodromy group of m̄.

If G is Γ, then by Lemma 3.1 the pair (m1,m2) is conjugate to (R,L−1),

and thus g is conjugate to X=R ·L−1, which is an elliptic element.

If m1 = m2, then G is a cyclic subgroup of Γ; hence, g is conjugate to

R2 =R ·R, which is a parabolic element.

Otherwise, by Proposition 2.8, G is a proper subgroup such that G\Γ is

a regular pseudotree S with two simple loops. On S, choose a base point

e next to one of the monogons, and fix generators α,β of G = π1(S, e)

as shown in Figure 5. By Lemma 3.2, the pair (α,β) is weakly Hurwitz

equivalent to (m1,m2). Therefore, we get g ∼m∞ ∼ L2AL2At (see (2.10)).

If A=∅, we get a parabolic element g ∼ L4; all other elements obtained in

this way are hyperbolic.

To finish the proof, note that the three cases mentioned above give the

complete list of subgroups generated by two Dehn twists, and the condi-

tions listed in the statement are necessary. For the sufficiency, observe that

a factorization g ∼ L2AL2At is not only a necessary condition but also a

description of a particular 2-factorization, with the two Dehn twists as fol-

lows:

L2AL2At = (XL−1
X
−1

Y)(A)(XL−1
X
−1

Y)(YA−1
Y)

(3.3)
= XL−1

X
−1 · (YAX)L−1(YAX)−1.

Figure 5: Generators of G with respect to the base point.
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Figure 6: Cyclic diagram associated to L2AL2At and its parasymmetry.

Although the converse statements are contained in the above discussions,

let us underline the relation between the type of an element and the mon-

odromy group of its 2-factorization.

Corollary 3.4 (of the proof). The monodromy group G of any

2-factorization of an element g ∈ Γ is as follows:

• g ∼X (elliptic) if and only if G=Γ;

• g ∼R2 (parabolic) if and only if G⊂ Γ is a cyclic subgroup generated by

a single Dehn twist;

• g ∼ L4 (parabolic) or g is hyperbolic if and only if G⊂ Γ is a subgroup as

in Proposition 2.8. �
Remark 3.5. Geometrically, a representation of an element g in the form

(2.10) and the factorization (3.3) can be described in terms of a parasym-

metry on the cyclic diagram of g. Let us call the four special copies of L in

the word L2AL2At anchors. On the cyclic diagram, trace an axis passing

between the two anchors constituting each of the two pairs L2 (see Fig-

ure 6). The reflection with respect to this axis preserves the four anchors,

while reversing the types of all other letters. A reflection with this prop-

erty is called a parasymmetry. We underline that the anchors are always of

type L.

Corollary 3.6 (of the proof and Remark 2.9). The 2-factorizations

(3.3) resulting from two representations L2A1L
2At

1 ∼ L2A2L
2At

2 of the same

conjugacy class are weakly equivalent if and only if A1 =A2 or A1 =At
2. �

3.2. Proof of Theorem 1.5

If g is an elliptic element, we can assume that g = X = R · L−1. Given

another 2-factorization X = tu · tv, the two Dehn twists must generate Γ
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Figure 7: Diagrams with two parasymmetries.

(see Corollary 3.4). Then, due to Lemma 3.1, we have tu = h−1Rh and

tv = h−1L−1h for some h ∈ Γ. It follows that h centralizes X and hence

that h is a power of X (see Lemma 2.1); thus, the second 2-factorization is

strongly equivalent to the first one (as the conjugation by the monodromy

at infinity is the Hurwitz move σ−2
1 ).

The only 2-factorization of the parabolic element g =R2 is R2 itself, as

two distinct Dehn twists would produce X, L4, or a hyperbolic element

(see Corollary 3.4). Finally, the parabolic element g ∼ L4 can be regarded

as V0 (see (3.7)), and this case is considered below. The two orthogonal

parasymmetries of the cyclic diagram of g result in two conjugate (by L)

2-factorizations, which are not strongly equivalent, as the corresponding

marked skeletons (cf. Figure 8 below) are not isomorphic (see Section 2.5).

Now, assume that g is a hyperbolic element, and consider its cyclic

diagram D := Dg. By assumption, it has two parasymmetries r1, r2 (see

Remark 3.5); these symmetries generate a certain finite dihedral group D2n.

Let c := r1r2 be the generator of the cyclic subgroup Zn ⊂ D2n; it is the

rotation through 2α, where α is the angle between the two axes.

3.2.1. The two parasymmetries have a common anchor (see Figure 7,

left). In this case, the D2n-action on D is obviously transitive, and, starting

from an appropriate anchor, we arrive at g ∼ Vm, where n= 2m+ 1 and

(3.7) Vm := L2(LR)mL2(LR)m ∼ L2(RL)mL2(RL)m, m≥ 0.

In particular, n is odd. It is immediate that D has no other parasymmetries,

as it has only four pairs of consecutive occurrences of L, which could serve

as anchors.

https://doi.org/10.1215/00277630-2077026 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-2077026


PRODUCTS OF PAIRS OF DEHN TWISTS 101

3.2.2. The two parasymmetries have no common anchors (see Figure 7,

right). Consider the orbits of the Zn-action on D. Call an orbit special

or ordinary if it does or does not, respectively, contain an anchor. Each

ordinary orbit is “constant,” that is, is either Ln or Rn. To analyze a special

orbit, start with an anchor a of r1 and observe that c preserves the letter

a ↑ ci unless i= 0 mod n (in this case, r1 preserves a and r2 reverses a ↑ r1,
so that a ↑ c is an R) or i = k := [n/2] mod n. In the latter case, if n= 2k

is even, then a ↑ ck is an anchor for r1; otherwise, if n= 2k+1 is odd, then

a ↑ ckr1 is an anchor for r2.

Thus, we conclude that n= 2k+1 must be odd, as otherwise a ↑ck, which
is an R, would be an anchor for r1. Furthermore, there are four special orbits

of Zn, each one being of the form LRkLk (in the orbit cyclic order, which

may differ from the cyclic order restricted from D), where the first and the

(k+ 1)st letters are anchors for r1 and r2, respectively.

Assume that there is a third parasymmetry r. Together with r1 and r2,

it generates a dihedral group D2m ⊃ D2n, and, since Zn ⊂ D2m is a normal

subgroup, r takes c-orbits to c-orbits, reversing their orbit order. Unless

n= 3, a special orbit is taken to a special one, with one of the two anchors

contained in the orbit preserved and the other elements reversed. If n= 3,

a special orbit LRL can be taken to L3, with the two copies of L preserved.

In both cases, r shares an anchor with r1 or r2 and g ∼ Vm for some m,

which is a contradiction.

Corollary 3.8 (of the proof). In the case of Section 3.2.2, the union

of all special orbits is symmetric with respect to the two reflections s1, s2
whose axes bisect the angles between r1 and r2.

Proof. Indeed, since s1cs1 = c′ := r2r1, the orbit {a1 ↑ ci, i ∈ Z} starting

from an anchor a1 of r1 is taken (with the letters preserved) to the orbit

{a2 ↑ (r2r1)i, i ∈ Z} starting from the anchor a2 := a1 ↑ s of r2, and the latter

orbit is also special.

The next corollary refines the statement of Theorem 1.5.

Corollary 3.9 (of the proof). The 2-factorizations corresponding to two

distinct parasymmetries of the cyclic diagram of a hyperbolic element g ∈ Γ

are not weakly equivalent.

Proof. According to Corollary 3.6, the 2-factorizations are weakly equiv-

alent if and only if the two parasymmetries are isomorphic, that is, related

by a rotation symmetry of the cyclic diagram. Since the axes cannot be
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orthogonal (see Section 3.2.2), this rotation would give rise to more axes,

which would contradict Theorem 1.5.

Corollary 3.10. If a hyperbolic 2-factorizable element g is a power hn

for some h ∈ Γ, then n= 1 or 2, and in the latter case, one has g ∼ (L2A)2

for a word A in {L,R} such that At =A.

Proof. Under the assumptions, in addition to a parasymmetry r, the dia-

gram Dg has a rotation symmetry c of order n > 1 and hence also parasym-

metries c−irci, i= 0, . . . , n−1. In view of Section 3.2.2, it follows that n≤ 2,

as otherwise Dg would have two parasymmetries with orthogonal axes (if

n= 4) or more than two parasymmetries (if n= 3 or n≥ 5).

Remark 3.11. From Corollary 3.10, it follows immediately that for such

g, the cutting period cycle is either the minimal period or, at worst, twice

the minimal period of the continued fraction expansion.

3.3. Proof of Theorem 1.6

If g ∼X or g ∼R2, the 2-factorization of g is unique up to strong equiv-

alence (see the beginning of Section 3.2).

Let g be a hyperbolic element, and assume that g = f−1gf for some

f ∈ Γ that is not a power of g. Then both f and g are powers of a hyperbolic

element h ∈ Γ (see Lemma 2.1), and, due to Corollary 3.10, we have g = h2 ∼
(L2A)2 and At = A (hence, YAY = A−1). Modulo g, we can assume that

f = (L2A)−1; then the 2-factorization (3.3) and its conjugate by f differ by

one Hurwitz move. (Geometrically, one can argue that the skeleton S of the

monodromy group has a central symmetry and that the two 2-factorizations

are obtained from two symmetric markings of S.)

Finally, if g ∼ L4, the corresponding skeleton S is as shown in Figure 8. It

has four markings with respect to which the monodromy at infinity is L4 (see

Figure 8), and the corresponding marked skeletons split into two pairs of iso-

morphic ones, resulting in two strong equivalence classes of 2-factorizations:

L4 =R · (R−1L2)R(R−1L2)−1 = LRL−1 · (LR−1L2)R(LR−1L2)−1.

Note that the two classes are conjugate by L.

Figure 8: The skeleton corresponding to g = L4.
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3.4. Elements admitting two 2-factorizations

Let n= 2k+1, and consider the word w1/n := l(lr)kl(lr)k in the alphabet

{l, r}. Denote by w[i], i≥ 0, the ith letter of a word w, the indexing starting

from 0. Pick an odd integer 1≤m<n prime to n, and let wq, q :=m/n, be

the word in {l, r} of length 2n defined by

wq[i] =w1/n[mi mod 2n], i= 0, . . . ,2n− 1.

Given a word B in {L,R}, let wq{B} be the word obtained from wq by

inserting a copy of B between wq[2i] and wq[2i+1] and a copy of Bt between

wq[2i+ 1] and wq[2i+ 2], i = 0, . . . , n− 1. Finally, let Wq(B) be the word

obtained from wq{B} by the substitution l �→ L2, r �→R2.

Theorem 3.12. An element g ∈ Γ admits two distinct strong equivalence

classes of 2-factorizations if and only if either g ∼ Vm, m≥ 0 (see (3.7)) or

g ∼Wq(B), where 0< q < 1 is a rational number with odd numerator and

denominator and where B is any word in {L,R}, possibly empty.

Proof. It has been explained in Section 3.2 that each element g ∼ X or

g ∼R2 admits a unique 2-factorization, whereas an element g ∼ Vm, m≥ 0,

admits two 2-factorizations (which are weakly equivalent if g ∼ L4 = V0; see

Section 3.3 for more details on this case). Thus, it remains to consider a

hyperbolic element g that is not conjugate to any Vm, m≥ 0.

Consider the cyclic diagram D =Dg. According to Section 3.2.2, the two

parasymmetries r1 and r2 of D have no common anchors, and their axes

are at an angle α of the form πm/n, where n = 2k + 1 ≥ 3 is odd and m

is prime to n. Choosing for α the minimal positive angle and replacing

it, if necessary, with π − α, we can assume that m is also odd and that

0<m< n, so that q :=m/n is as in the statement. Consider the orbits of

the rotation c := r1r2. The union of the special orbits (see Section 3.2.2)

is uniquely determined by the angle α: if m = 1, then g ∼W1/n(∅) (with

the ordinary orbits disregarded; cf. Figure 7, right); otherwise, each orbit

is “stretched” m times and “wrapped” back around the circle, so that g ∼
Wq(∅). In the union of the special orbits, adjacent to each semiaxis of

each symmetry contained in D2n is a pair of equal letters, either both L

or both R; these pairs are encoded by, respectively, l and r in the word

w1/n used in the definition of Wq. These pairs divide the circle into 2n arcs,

which are occupied by the ordinary orbits, and, taking into account the full

D2n-action, one can see that the union of all ordinary orbits has the form
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B,Bt, . . . ,B,Bt, where B is the portion of this union in one of the arcs (see

Figure 7, right); it can be any word in {L,R}.

3.5. Relation to real structures

Here, we discuss the elements of Γ that admit both a 2-factorization and

a real structure.

Clearly, an elliptic element g ∼X and a parabolic element g ∼R2 have this

property. In both cases, the only 2-factorization is real. Furthermore, in both

cases we have both types of real structures (or real Lefschetz fibrations; see

Remark 2.5): for X=R ·L−1, the action of τ̂1 preserves the 2-factorization,

whereas that of τ̂ with τ = τ2R
−1 changes it by the Hurwitz move σ1;

for R2 = R · R, the action of τ̂2 can be regarded as either preserving the

2-factorization or changing it by σ1.

A parabolic element g ∼ L4 has two strong equivalence classes of 2-factori-

zations and four real structures, as can be easily seen from its cyclic diagram.

Both 2-factorizations are real with respect to two of the real structures and

are interchanged by the two others.

Theorem 3.13. Assume that a hyperbolic element g ∈ Γ is real and

admits a 2-factorization m̄. If m̄ is real, then it is unique, and g has a

unique real structure. Otherwise, g has two 2-factorizations, both nonreal,

which are interchanged by the real structure.

Proof. Under the assumptions, the cyclic diagram D :=Dg has a parasym-

metry (the 2-factorization) r and a symmetry (the real structure) s. Then

r′ := srs is also a parasymmetry, and unless r′ = r, the two 2-factorizations

corresponding to r and r′ are interchanged by the real structure.

If r′ = r, that is, if r is real, the axes of r and s are orthogonal. (Since

g �∼ L4, the two axes cannot coincide.) If there were another parasymmetry

r1 �= r, then r, r1, and r′1 := sr1s would define three distinct 2-factorizations,

which would contradict Theorem 1.5. Similarly, another symmetry s1 �= s

would generate, together with s, a dihedral group D2n, n≥ 3, giving rise to

n distinct parasymmetries.

Remark 3.14. The proof of Theorem 3.13 gives us a complete charac-

terization of real hyperbolic elements g admitting a 2-factorization m̄.

The 2-factorization m̄ of g is real if and only if g ∼ L2AL2At for a palin-

dromic word A in {L,R}.
Otherwise, there are two 2-factorizations, and we have either g ∼ Vm,

m ≥ 1, or g ∼ Wq(B) (see Theorem 3.12). In the former case, g has two
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real structures, the corresponding symmetries of the cyclic diagram hav-

ing orthogonal axes. In the latter case, due to Corollary 3.8, the union of

the special orbits, that is, the part Wq(∅), is symmetric with respect to

two reflections s1, s2 whose axes are distinguished as those bisecting the

“odd” and “even” angles between the axes of the parasymmetries (the hor-

izontal and vertical axes, respectively, in Figure 7). The symmetry s1 is a

real structure on Wq(B) if and only if B is palindromic, whereas s2 is a

real structure if and only if B = ∅. (It is worth mentioning that the two

nonequivalent factorizations of Vn or Wq(B) with B palindromic differ by

a global conjugation in the group PGL(2,Z).)

Remark 3.15. If τ̂(m̄) is strongly equivalent to m̄, then τ̂ preserves the

monodromy group G of m̄ and, hence, induces an orientation reversing sym-

metry of the skeleton G\Γ. Clearly, any such symmetry of a skeleton S as

in Proposition 2.8 with at least one Farey branch must interchange the two

monogons of S. Hence, any real 2-factorization m̄ of a hyperbolic element

of Γ represents a real Lefschetz fibration with a pair of complex conjugate

singular fibers (see Remark 2.5); in other words, it is real in the sense that

τ̂(m̄) = m̄ for some real structure τ .

3.6. Further observations

For practical purposes, the following observation is useful, as it eliminates

most matrices as not admitting a 2-factorization.

Proposition 3.16. If an element g ∈ Γ̃ factors into a product of two

Dehn twists, then (2− traceg) is a perfect square.

Remark 3.17. This is definitely not a sufficient condition; for a coun-

terexample, one can take the element R3LR2 = (L2RL3)t of trace 7.

Proof. Up to conjugation, we can assume that the two Dehn twists consti-

tuting the product are R= ta and A := t[p,q] for some [p, q] ∈H, gcd(p, q) = 1.

Since

A=

[
1− pq −q2

p2 1 + pq

]
,

one has traceRA= 2− q2; on the other hand, trace is a class function.

As a consequence of the proof, we conclude that, for each integer q, there

does exist an element g ∈ Γ̃ of trace 2− q2 which is a product of two Dehn

twists in Γ̃. For an element g ∈ Γ, one should check whether 2± traceg is

a perfect square. Proposition 3.16 has a geometric meaning: the number
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2− traceg is the square of the symplectic product of the eigenvectors of the

two Dehn twists.

For another necessary condition, consider a finite group G, and fix an

ordered sequence of conjugacy classes represented by elements g1, . . . , gr ∈G.

Then the number N(g1, . . . , gr) of solutions to the equation x1 · . . . ·xr = id,

xi ∼ gi, i = 1, . . . , r, is given by the following Frobenius-type formula (see

[1]):

N(g1, . . . , gr) =
|g1| · · · |gr|

|G|
∑ χ(g1) · · ·χ(gr)

χ(id)r−2
,

where | · | stands for the size of the conjugacy class, and the summation runs

over all irreducible characters of G. Applying this formula to the images

of g1 = g2 = R, g3 = g−1 in a finite quotient of Γ̃, we have the following

statement.

Proposition 3.18. If an element g ∈ Γ̃ factors into a product of two

Dehn twists, then, for each positive integer n, one has

∑
χ(R)2χ(g−1)χ(id)−1 �= 0,

the summation running over all irreducible characters of the group SL(2,Zn).

�

Note that all irreducible characters of the groups SL(2,Zp) for p prime

are known (see, e.g., [13]), and, for each prime p, the condition in Propo-

sition 3.18 can be checked effectively in terms of certain Gauss sums. At

present, we do not know whether an analogue of the Hasse principle holds

for the 2-factorization problem, that is, whether Propositions 3.16 and 3.18

together constitute a sufficient condition for the existence of a 2-factorization.

§4. Real elliptic Lefschetz fibrations

4.1. Lefschetz fibrations

Let X be a compact connected oriented smooth 4-manifold, and let B

be a compact connected smooth oriented surface. A Lefschetz fibration is a

surjective smooth map p :X →B with the following properties:

• p(∂X) = ∂B, and the restriction p : ∂X → ∂B is a submersion;

• p has finitely many critical points, which are all in the interior of X , and

all critical values are pairwise distinct; and

• about each critical point x of p, there are local charts (U,x)∼= (C2,0) and

(V, b)∼= (C1,0), b= p(x), in which p is given by (z1, z2) �→ z21 + z22 .
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The restriction of a Lefschetz fibration to the set B� of regular values of p is

a locally trivial fibration with all fibers closed connected oriented surfaces;

the genus of p is the genus of a generic fiber. Lefschetz fibrations of genus

one are called elliptic.

An isomorphism between Lefschetz fibrations is a pair of orientation-

preserving diffeomorphisms of the total spaces and the bases commuting

with the projections. The monodromy of a Lefschetz fibration is the mon-

odromy of its restriction to B�. As it follows from the local normal form

in the definition, the local monodromy (in the positive direction) about a

singular fiber is the positive Dehn twist about a certain simple closed curve,

well defined up to isotopy; this curve is called the vanishing cycle. The sin-

gular fiber itself is obtained from a close nonsingular one by contracting

the vanishing cycle to a point to form a single node. A singular fiber is

irreducible (remains connected after resolving the node) if and only if its

vanishing cycle is not null-homologous. If the vanishing cycle bounds a disk,

the singular fiber contains a sphere, which necessarily has self-intersection

(−1), that is, is a topological analogue of a (−1)-curve. As in the analytic

case, such a sphere can be blown down. The fibration is called relatively

minimal if its singular fibers do not contain (−1)-spheres — that is, none

of the vanishing cycles is null-homotopic.

From now on, we consider only relatively minimal elliptic Lefschetz fibra-

tions over the sphere B = S2. After choosing a base point b ∈ B� and fix-

ing an isomorphism H1(p
−1(b)) = H, the monodromy of such a fibration

becomes a homomorphism π1(B
�, b)→ Γ̃, and it is more or less clear (see

[11] for a complete proof) that, up to isomorphism, the fibration is deter-

mined by its monodromy. By the Riemann–Hurwitz formula, χ(X) = r,

where r is the number of singular fibers.

Theorem 4.1 (Moishezon and Livné (see [11])). Up to isomorphism, a

relatively minimal elliptic Lefschetz fibration X → S2 is determined by the

Euler characteristic χ(X), which is subject to the restrictions χ(X)≥ 0 and

χ(X) = 0 mod 12. �
Since for any k ≥ 0 there exists an elliptic surface E(k) with χ(E(k)) =

12k, it follows that any elliptic Lefschetz fibration p :X → S2 is algebraic

(i.e., X and S2 admit analytic structures with respect to which p is a regular

map).

Definition 4.2. A Jacobian Lefschetz fibration is a relatively minimal

elliptic Lefschetz fibration p : X → B ∼= S2 equipped with a distinguished
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section s : B → X of p. Isomorphisms of such fibrations are required to

commute with the sections.

According to Theorem 4.1, any elliptic Lefschetz fibration over S2 admits

a section, which is unique up to automorphism.

4.2. Real Lefschetz fibrations

Mimicking algebraic geometry (cf. Section 5.2 below), define a real struc-

ture on a smooth oriented 2d-manifold X as an involutive autodiffeomor-

phism cX :X →X with the following properties:

• cX is orientation-preserving (resp., -reversing) if d is even (resp., odd);

and

• the real part XR := Fix cX is either empty or of pure dimension d.

A real Lefschetz fibration is a Lefschetz fibration p :X →B equipped with a

pair of real structures cX :X →X and cB :B →B commuting with p. Such

a fibration is totally real if all its singular fibers are real. (Auto)Homeomor-

phisms of real Lefschetz fibrations are supposed to commute with the real

structures. A Jacobian Lefschetz fibration is real if the distinguished section

is real, that is, commutes with the real structures.

Recall that for any real structure c onX one has the Thom–Smith inequal-

ity

(4.3) β∗(XR)≤ β∗(X),

where β∗ stands for the total Betti number with Z2-coefficients. If (4.3)

turns into an equality, the real structure (or the real manifold X) is called

maximal. If X is a closed surface of genus g, we have β0(XR)≤ g+ 1.

From now on, we assume that the base B is the sphere S2 and that the

real part BR is a circle S1; that is, cB is maximal (BR is sometimes referred

to as the equator). A real Lefschetz fibration equipped with a distinguished

orientation of BR is said to be directed ; a directed (auto)homeomorphism

of such fibrations is an (auto)homeomorphism preserving the distinguished

orientations. The fibers over BR inherit real structures from cX ; they are

called real fibers.

A large supply of real Jacobian Lefschetz fibrations is provided by real

Jacobian elliptic surfaces (see Section 5.3). Such fibrations are called alge-

braic; formally, a real (Jacobian) Lefschetz fibration p :X →B is algebraic

if X and B admit analytic structures with respect to which p (and s) are

holomorphic and cX , cB are antiholomorphic. It turns out that some (in a

sense, most) Lefschetz fibrations are not algebraic; the realizability of a given
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Table 1: Necklace stones.

Segment Stone Dual Inverse Monodromy

◦⇒=◦ © � © YX
2
YX

2
Y

×⇒=× � © � X2YX2

×⇒=◦ > < < XY

◦⇒=× < > > YX

fibration by an elliptic surface is one of the principal questions addressed in

this paper (see Section 6.2).

4.3. Necklace diagrams

Define a broken necklace diagram as a nonempty word in the stone alpha-

bet {©,�,>,<}. Associate to each stone its dual and inverse stones and

its monodromy (an element of Γ) as shown in Table 1. Then, given a broken

necklace diagram N , we can define its

• monodromy m(N ) ∈ Γ, which is obtained by replacing each stone with its

monodromy and evaluating the resulting word in Γ;

• dual diagram N ∗, obtained by replacing each stone with its dual; and

• inverse diagram N−1, obtained by replacing each stone with its inverse

and reversing the order of the stones.

Note that the operations of dual and inverse commute with each other and

that for any diagram N one has m(N ∗) = Y · m(N ) · Y and m(N−1) =

τ̂1(m(N )). Furthermore, the symmetric group Sn acts on the set BND(n) of

broken necklace diagrams of length n. For any cyclic permutation σ ∈ Sn,

one has (N ↑ σ)∗ = N ∗ ↑ σ and (N ↑ σ)−1 = N−1 ↑ σ−1; thus, on BND(n)

there is a well-defined action of the group Z2 ×D2n generated by the dual,

inverse, and cyclic permutations.

Definition 4.4. An oriented necklace diagram N is an element of the

quotient set BND(n)/Zn by the subgroup Zn of cyclic permutations or,

equivalently, a cyclic word in the stone alphabet. A (nonoriented) neck-

lace diagram is an element of the quotient BND(n)/D2n by the subgroup

generated by the cyclic permutations and the inverse.

With real trigonal curves in mind, define also oriented flat and twisted

necklace diagrams as elements of the quotients BND(n)/Z2 × Zn and

BND(n)/Z2 × Z̃2n, respectively. Here, Z2 acts via N �→N ∗, Zn is the sub-

group of cyclic permutations, and Z̃2n acts via the twisted shifts S1S2 · · ·Sn �→
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S2 · · ·SnS
∗
1 . In both cases, the nonoriented versions are defined by further

identifying the orbits of N and N−1.

Consider a directed Jacobian Lefschetz fibration p :X →B, and assume

that it has at least one real singular fiber. The restriction pR : XR → BR

can be regarded as an S1-valued Morse function, and one can assign an

index 0, 1, or 2 to each real singular fiber (i.e. the critical point of pR). The

real part of each real nonsingular fiber is nonempty (as there is a section);

hence, it consists of one or two circles (see (4.3)), and the number of circles

alternates at each singular fiber. Define the uncoated necklace diagram of p

as the following decoration of the oriented circle BR:

• each singular fiber of index 0 or 2 is marked with ◦, and each singular

fiber of index 1 is marked with ×;
• each segment connecting two consecutive singular fibers over which non-

singular fibers have two real components is doubled.

A typical real part XR and its uncoated necklace diagram are shown in

Figure 9, middle and bottom, respectively.

Definition 4.5. The oriented necklace diagram N (p) of a directed Jaco-

bian Lefschetz fibration p :X →B is the cyclic word in the stone alphabet

obtained by replacing each double segment of its uncoated necklace diagram

with a single stone, as shown in Table 1. In the presence of a base point

Figure 9: A nonhyperbolic trigonal curve (top), a covering

Jacobian surface (middle), and its uncoated necklace diagram

(bottom); the horizontal dashed lines represent the

distinguished sections.
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b inside one of the simple segments of BR, one can also speak about the

broken necklace diagram Nb(p) of p, with the convention that the first stone

S1 is the immediate successor of b.

For example, the necklace diagram of the fibration shown in Figure 9 is

−�−©−©−<−−−>−−−©−>−−−©−<−−−�−>−−−©−.

(In [19], necklace diagrams are drawn in the oriented circle BR, and we

respect this convention by drawing a “broken” necklace. For long diagrams

we will also use the obvious multiplicative notation for associative words.)

According to the following theorem, a totally real fibration is uniquely recov-

ered from its necklace diagram.

Theorem 4.6 (see [20], [19]). Given k > 0, the map p �→ N (p) establishes

a bijection between the set of isomorphism classes of (directed) totally real

Jacobian Lefschetz fibrations with 12k singular fibers and the set of (ori-

ented) necklace diagrams of length 6k and monodromy id ∈ Γ. �

The classification of totally real Lefschetz fibrations for the small values

of k is also found in [20] and [19]. For k = 1, there are 25 undirected iso-

morphism classes, among which four are maximal. For k = 2, the number of

classes is 8421.

4.4. Generalizations

Let N be a broken necklace diagram. A w-pendant on N is a strong

Hurwitz equivalence class of w-factorizations m̄ of m(N ). The (Z2 ×D2n)-

action on the set BND(n) is extended to pairs (N , m̄) as follows:

• the inverse (N , m̄)−1 is (N−1, τ̂1(m̄));

• the dual (N , m̄)∗ is (N ∗,Ym̄Y);

• the cyclic permutation 1 �→ 2 �→ · · · acts via N = S1 · · ·Sn �→ S2 · · ·SnS1

and m̄ �→ P−1
1 m̄P1, where P1 is the monodromy of S1.

An oriented w-pendant necklace diagram is an orbit of the cyclic permuta-

tion action on the set of pairs (N , m̄) as above; a (nonoriented) w-pendant

necklace diagram is obtained by the further identification of the orbits of

(N , m̄) and (N , m̄)−1. The length of a w-pendant necklace diagram repre-

sented by (N , m̄) is the length |N |, the number of stones on N .

Remark 4.7. An oriented flat w-pendant necklace diagram is defined as

an orbit of the further action (N , m̄) �→ (N , m̄)∗. In the case of twisted neck-

lace diagrams, both the monodromy and the notion of w-pendant should be
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defined slightly differently. Namely, given a broken necklace diagram N , let

m̃(N ) :=m(N )Y. The twisted shift by the cyclic permutation σ : 1 �→ 2 �→ · · ·
acts via m̃(N ↑σ) = P−1

1 m̃(N )P1, and we can define a twisted w-pendant as a

strong equivalence class of w-factorizations m̄ of m̃(N ). The twisted action

of Z2 × Z̃2n extends to pairs (N , m̄) in the same way as above, and an

oriented twisted w-pendant necklace diagram is defined as an orbit set of

this action. The nonoriented analogues are defined as above, by the further

identification of the orbits of (N , m̄) and (N , m̄)−1.

Let p :X →B be a directed Jacobian Lefschetz fibration with r > 0 real

and w ≥ 0 pairs of complex conjugate singular fibers. Denote by B+ ⊂ B

the closed hemisphere inducing the chosen orientation of the equator BR.

Decorate BR as explained in Section 4.3, and remove from B+ the union of

some disjoint regular neighborhoods of the stones (i.e., double segments);

denote the resulting closed disk by Ω, and let Ω� =Ω ∩B�. Choose a base

point b ∈ Ω ∩ BR, and pick a geometric basis {δ1, . . . , δw} for the group

π1(Ω
�, b) (see Figure 10, where black dots denote nonreal singular fibers).

The real structure c := cX |Fb
in the real fiber Fb over b is conjugate to

τ1; it gives rise to a distinguished pair of opposite bases ±(a,b) in the

homology H1(Fb), which are defined by the condition that a± b should be

a (±1)-eigenvector of c∗. Thus, there is a canonical, up to sign, identification

H1(Fb) =H, and the monodromies m(δi) project to well-defined elements

mi ∈ Γ, i= 1, . . . ,w. Let m̄b(p) = (m1, . . . ,mw).

Figure 10: The monodromy of a real Lefschetz fibration.
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Lemma 4.8. The strong equivalence class of the w-factorization m̄b(p) is

indeed a w-pendant on the broken necklace diagram Nb(p). A change of the

base point b used in the definition results in a cyclic permutation action on

the pair (Nb, m̄b).

Proof. According to [20], the monodromy Pi of a stone Si is the Γ-valued

monodromy along a path γi connecting two points bi and bi+1, right before

and right after Si, and circumventing Si in the clockwise direction (see

Figure 10). (To obtain a well-defined element of Γ, in the fibers over both

points one should use the canonical bases described above.) Hence, the first

statement of the lemma follows from the obvious relation γ1 · . . . · γn ∼ [∂Ω].

For the second statement, it suffices to notice that, changing the base point

from b= b1 to b2, one can take for a new geometric basis for π1(Ω
�, b2) the

set {γ−1
1 δiγ1}, i= 1, . . . ,w.

Theorem 4.9. The map sending p : X → B to the class of the pair

(Nb(p), m̄b(p)) establishes a bijection between the set of isomorphism classes

of (directed) Jacobian Lefschetz fibrations with 2n > 0 real and w pairs of

complex conjugate singular fibers and the set of (oriented) w-pendant neck-

lace diagrams of length n.

Proof. Due to Lemma 4.8, the map in question is well defined, and to

complete the proof it suffices to show that a Lefschetz fibration can be

recovered from a pair (N , m̄) uniquely up to isomorphism. The necklace

diagram N gives rise to a unique, up to isomorphism, totally real directed

Jacobian Lefschetz fibration over an equivariant regular neighborhood U of

the equator BR (see [20] for details; this statement is an essential part of the

proof of Theorem 4.6). The complement B � U consists of two connected

components B◦
±, and m̄ is a w-factorization of the monodromy m(∂B◦

+) =

m(N ); due to [11], this factorization determines a unique extension of the

fibration from ∂B◦
+ to B◦

+. The extension to the other half B◦
− is defined by

symmetry.

Remark 4.10. It is not easy to decide whether a given necklace diagram

N admits a w-pendant. There are simple criteria for w = 0 (one must have

m(N ) = id), w = 1 (m(N ) must be a Dehn twist), and w = 2 (the criterion

is given by Theorem 1.4). In general, one can lift m(N ) to a degree w

element in the braid group B3 and apply Orevkov’s quasi-positivity criterion

(see [15]): a w-pendant exists if and only if the lift is quasi-positive. A lift

of degree w exists (and then is unique) if and only if degm(N ) =w mod 6,

https://doi.org/10.1215/00277630-2077026 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-2077026


114 A. DEGTYAREV AND N. SALEPCİ

where deg : Γ � Z6 is the abelianization epimorphism, with the convention

that degR= 1. Obviously, this condition is necessary for the existence of a

w-pendant.

Remark 4.11. If w = 0 or 1, a necklace diagram N obviously admits

at most one w-pendant. If w = 2, there are at most two w-pendants (see

Theorems 1.5 and 3.12). It follows that at most two isomorphism classes

of real Jacobian Lefschetz fibrations with two pairs of complex conjugate

singular fibers may share the same necklace diagram (equivalently, fibered

topology of the real part).

We used Maple to compute the numbers of undirected isomorphism classes

of real Jacobian Lefschetz fibrations for some small values of k and w (where

12k is the total number of singular fibers and w is the number of pairs of

complex conjugate ones). For k = 1, the numbers are 25 (w = 0), 28 (w = 1),

and 24 (w = 2); for k = 2, they are 8421 (w = 0) and 15602 (w = 1). (For

k = w = 2, the computation is too long.) In all examples, a fibration with

w > 0 pairs of conjugate singular fibers can be obtained from one with

(w − 1) pairs by converting the pair of real fibers constituting an arrow-

type stone to a pair of conjugate ones. We do not know how general this

phenomenon is.

4.5. Counts

We conclude this section with a few simple counts. Let p :X → B be a

real Jacobian Lefschetz fibration, χ(X) = 12k > 0, and let N =N (p). We

assume that N �= ∅, so that 0 < |N | ≤ 6k. Denote by #� := #�(N ) the

number of stones of type �, � ∈ {©,�,>,<}. Then one has

(4.12) β∗(X) = χ(X) = 12k

and

(4.13) β∗(XR) = 2(#© +#�) + 4, χ(XR) = 2(#© −#�)

(see [20], [19], or Figure 9). In particular, #© +#� ≤ 6k− 2 (see (4.3)), and

X is maximal if and only if #© +#� = 6k− 2. Alternatively, X is maximal

if and only if

(4.14) #< +#> +w = 2,

where w ≤ 2 is the number of pairs of complex conjugate singular fibers.
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§5. Real trigonal curves

5.1. Trigonal curves

A Hirzebruch surface Σd, d > 0, is a geometrically ruled rational surface

with a (unique) exceptional section E of self-intersection −d. We denote the

ruling by p : Σd →B ∼= P
1; its fibers are called the fibers of Σd. A (proper)

trigonal curve is a reduced curve C ⊂Σd disjoint from the exceptional sec-

tion and intersecting each fiber at three points (counted with multiplicities);

in other words, the restriction p : C → B is a map of degree 3. A singular

fiber of a trigonal curve is a fiber of Σd intersecting the curve geometri-

cally at fewer than three points; equivalently, singular are the fibers over

the critical values of the restriction p|C . In this paper, we consider almost

generic trigonal curves only; that is, we assume that all critical points of

p|C are simple. Such a curve is nonsingular and irreducible; hence, it has

genus g(C) = 3d− 2 (the adjunction formula), and the number of singular

fibers is 6d (the Riemann–Hurwitz formula).

Given a point b ∈B, let Fb be the fiber p−1(b), and let F ◦
b be the affine

fiber Fb�E. It is an affine complex line. Hence, in the presence of a trigonal

curve, one can speak about the zero section Z sending each point b ∈B to

the barycenter of the three points C ∩ F ◦
b and about the fiberwise convex

hull convC ⊂Σd �E.

5.2. Real trigonal curves

Recall that a real structure on an algebraic (analytic) variety X is an anti-

holomorphic involution cX :X →X . A pair (X,cX) is called a real algebraic

variety ; usually, the real structure c is understood, and we speak about a real

algebraic variety X . Given a real structure, the fixed point set XR := Fix cX
is called the real part of X . A maximal real algebraic variety (see (4.3)) is

usually called an M -variety.

Up to isomorphism, a Hirzebruch surface Σd admits a unique real struc-

ture cd with nonempty real part (Σd)R, the latter being a torus or a Klein

bottle for d even or odd, respectively. This real structure cd descends to a cer-

tain real structure cB on the base B, so that the ruling p is real. In what fol-

lows, when speaking about a real Hirzebruch surface, we assume such a pair

(cd, cB) fixed. Any real automorphism ϕ : Σd →Σd induces a cB-equivariant

autohomeomorphism (in fact, a real automorphism) ϕB : B → B. Such an

autohomeomorphism ϕB (and the original automorphism ϕ) is said to be
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directed if it preserves the orientation of BR. More generally, a directed auto-

homeomorphism of a real Hirzebruch surface p : Σd →B is an orientation-

preserving cd-equivariant fiberwise autohomeomorphism whose descent to

B preserves the orientations of B and BR (cf. Section 4.2).

A trigonal curve C ⊂Σd is real if it is cd-invariant; then, the restriction of

cd to C is a real structure on C. In affine coordinates, such a curve is given

by a polynomial with real coefficients. By a deformation of real trigonal

curves, we mean an equivariant deformation (a path in the space of real

polynomials) in the class of almost generic curves. Two curves are said to

be (directedly) deformation equivalent if they differ by a deformation and/or

a (directed) real automorphism of Σd.

Fix a real trigonal curve C ⊂ Σd, and consider the restriction pR : CR →
BR. If each fiber of pR consists of three points, the curve C is called hyper-

bolic. In this case, the real part CR consists of three (if d is even) or two (if

d is odd) components; in the former case, each component is mapped onto

BR homeomorphically, and in the latter case, one “central” component is

mapped homeomorphically and the other is a double covering. It can be

shown that all hyperbolic curves (in a given surface) are deformation equiv-

alent (see, e.g., [7]). If C is not hyperbolic, its real part looks like that

shown in Figure 9, top. More precisely, CR has one long component that

is mapped onto BR and, possibly, a number of ovals, necessarily unnested.

The long component may contain some zigzags (the Z-shaped fragments

in Figure 9). For a formal definition, consider a maximal, with respect to

inclusion, segment I ⊂ BR with the property that each point b ∈ I has at

least two pullbacks under pR. If the pullback p−1
R

(I) is disconnected, one of

its components is an oval; otherwise, the pullback is called a zigzag. With

a certain abuse of the language, the projections of the ovals and zigzags to

BR (i.e., maximal segments I ⊂ BR as above) are also referred to as ovals

and zigzags, respectively (cf. Section 5.5 below).

5.3. The covering elliptic surface

Let C ⊂ Σd be a real trigonal curve. If d is even, the double cover-

ing X → Σd ramified at C + E is a Jacobian elliptic surface (E being

the section), and the real structure cd lifts to two opposite real structures

c± :X →X that differ by the deck translation of the covering. Disregarding

the analytic structure, one can consider the corresponding real varieties X±
as real Jacobian Lefschetz fibrations.
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The necklace diagrams N (X±) are dual to each other, and each of them

determines the embedded topology of the real part CR ⊂ (Σd)R. Hence, the

latter can be encoded by the pair N (X±), that is, by a flat necklace diagram.

If d is odd, a covering elliptic surface exists only over the complement of

the fiber Fb over a point b ∈ B. In this case, choosing for b a generic real

point with one preimage under pR and analyzing the dependence of XR on b,

one can see that the real part CR ⊂ (Σd)R is encoded by a twisted necklace

diagram.

In both cases, the ovals of CR correspond to the �- and ©-type stones,

whereas the zigzags correspond to the arrow-type stones (see Figure 9).

5.4. Dessins

In appropriate (real) affine coordinates (x, y), a (real) trigonal curve C ⊂
Σd can be given by its Weierstraß equation

(5.1) y3 + g2(x)y+ g3(x) = 0,

where g2 and g3 are some (real) polynomials in x of degree at most 2d and

3d, respectively, and the discriminant Δ(x) :=−4g32−17g23 is not identically

zero. The j-invariant of C is defined as the meromorphic function

(5.2) jC :B → P
1 =C ∪ {∞}, jC :=−4g32

Δ
.

If C is real, so is jC .

If C is almost generic, by a small equisingular deformation it can be made

generic, that is, such that the j-invariant jC has generic branching behavior

in the sense of [11], which means that all zeros of jC are triple, all zeros

of (jC − 1) are double, all poles of jC are simple, and all critical values of

jC other than 0 or 1 are also simple. (We emphasize that these properties

are highly nongeneric for a map B → P1, but they do correspond to truly

generic trigonal curves.) For generic real trigonal curves, we define (directed)

strict deformation equivalence as the equivalence relation generated by the

(directed) real automorphisms of Σd and equivariant equisingular deforma-

tions in the class of generic curves.

Fix a generic trigonal curve C, and define its dessin D := DssnC as the

embedded graph j−1
C (P1

R
)⊂B decorated as follows:

• the pullbacks of 0, 1, and ∞ are •-, ◦-, and ×-vertices, respectively;
• an edge is colored solid, bold, or dotted if its image belongs to (−∞,0),

(0,1), or (1,∞), respectively, and is directed according to the canonical

orientation of P1
R
, that is, the standard linear order on R;
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• the critical points of jC with real critical values distinct from 0, 1, or ∞
are considered monochrome vertices, respectively, solid, bold, or dotted.

If C is real, its dessin D is invariant with respect to the real structure c on

B, and the real part BR is a union of edges and vertices of D. The properties

of the graph thus obtained are summarized in the following definition.

Definition 5.3. Let B be the sphere S2, and let c :B →B be the reflec-

tion against the equator. A (real) dessin is a c-invariant embedded directed

graph D⊂B decorated with the following additional structures (referred to

as the colorings of the edges and vertices of D, respectively)

• each edge of D is of one of the three kinds: solid, bold, or dotted; and

• each vertex of D is of one of the four kinds: •, ◦, ×, or monochrome (the

vertices of the first three kinds being called essential);

and satisfying the following conditions:

(1) the equator of B is a union of edges and vertices of D, and each mono-

chrome vertex is at the equator;

(2) each •-, ◦-, ×-, or monochrome vertex has valency 6, 4, 2, or 4, respec-

tively;

(3) the orientations of the edges of D induce an orientation of the boundary

of the complement B �D;

(4) all edges incident to a monochrome vertex are of the same kind;

(5) the ×-vertices are incident to incoming dotted edges and outgoing solid

edges;

(6) the •-vertices are incident to incoming solid edges and outgoing bold

edges;

(7) the ◦-vertices are incident to incoming bold edges and outgoing dotted

edges;

(8) D has no directed monochrome cycles, that is, directed cycles with all

edges of the same kind and all vertices monochrome.

In items (5)–(7), the lists are complete, that is, vertices cannot be incident

to edges of other kinds or with a different orientation.

The equator Fix c is called the real part of the dessin; the edges and

vertices of D that are in the equator are called real, whereas the other

vertices are called inner.

Two dessins are said to be (directedly) homeomorphic if they are related

by a (directed) orientation-preserving c-equivariant autohomeomorphism of

B. Note that directedly homeomorphic dessins are, in fact, equivariantly

isotopic.
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Figure 11: Dessins of M -cubics.

If C is a generic curve in Σd, then deg jC = 6d, and hence, the numbers of

•-, ◦-, and ×-vertices of the dessin DssnC are 2d, 3d, and 6d, respectively.

The number 3d of ◦-vertices is called the degree of the curve C and dessin

DssnC.

Convention. In view of the symmetry, in the figures we draw only

the portion of a dessin contained in one of the two hemispheres, which is

represented by a disk. The real part of the dessin (the boundary of the disk)

is shown by a thick gray line (cf., e.g., Figure 11). When speaking about

directed dessins, we choose the closed hemisphere B+ whose orientation

induces the fixed orientation of the equator BR.

Theorem 5.4 (see [7], [14]). The map C �→DssnC establishes a bijection

between the set of (directed) strict deformation equivalence classes of generic

real trigonal curves and that of (directed) homeomorphism classes of dessins.

�
Remark 5.5. The notion of strict deformation equivalence is not very

meaningful from the topological point of view, as some codimension 1 degen-

erations of the j-invariant do not affect the topology of the curve. It is shown

in [7] that deformation equivalence classes of almost generic curves are in a

one-to-one correspondence with certain equivalence classes of dessins, where

two dessins are considered equivalent if they are related by a sequence of

homeomorphisms and certain elementary moves. We omit the description

of these moves as they are not essential in the case of M -curves, which are

the only ones considered in this paper.

Definition 5.6. The union of the bold edges and •- and ◦-vertices of the
dessin DssnC is called the skeleton of C and is denoted by SkC. If DssnC

has no bold monochrome vertices, SkC is a regular skeleton in the sense of

the definition given in Section 2.5.
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5.5. Topology in terms of dessins

The topology of the real part CR ⊂ (Σd)R is easily recovered from the

dessin D := DssnC. It is immediate from (5.1), (5.2), and the definition of

D that

(1) the singular fibers of C are those over the ×-vertices of D;

(2) the points of intersection C ∩Z are over the ◦-vertices of D; and

(3) a point b inside a real edge e of D has three preimages under pR if and

only if e is dotted.

It follows that the ovals and zigzags of CR, regarded as subsets of BR, are

the maximal dotted segments in BR; any such segment is bounded by two
×-vertices and is allowed to contain a number of ◦- or monochrome vertices

inside. In view of item (2) above, a maximal dotted segment in BR is an

oval (resp., zigzag) if and only if it contains an even (resp., odd) number of

◦-vertices.
The uncoated necklace diagram N of the covering elliptic surface X of

C is also recovered from D. (If the degree of C is odd, we should fix a base

point b inside a solid or bold real edge of D and speak about the uncoated

diagram broken at b.) The ×- and ◦-points of N are the ×-vertices of D,

and the double segments of N are the maximal dotted segments of D. (At

this point, we need to apologize for the notation clash. Unfortunately, both

notation sets are quite well established, and it seems unwise to change them.)

Since X has two opposite real structures, we cannot distinguish between

the ×- and ◦-type critical points, but we can compare pairs of points: two

critical points are of the same type (both × or both ◦) if and only if they are

separated by an even number of ◦-vertices of D. All assertions are simple

consequences of elementary Morse theory; they are obvious from Figure 9.

Given a necklace diagram N , denote by #ess the number of simple seg-

ments of the corresponding uncoated diagram connecting pairs of critical

points of opposite types, that is, those of the form ◦→−× or ×→−◦. (Such seg-

ments are called essential.) Since any real Jacobian elliptic surface X is the

double covering of the Hirzebruch surface Σd =X/± id ramified at E and a

certain real trigonal curve C, we have the following necessary condition for

a necklace diagram N to be algebraic.

Proposition 5.7 (see [20], [19]). Let X →B be a real Jacobian elliptic

surface with χ(X) = 12k > 0. Then its necklace diagram N is subject to the

inequalities

#ess ≤ 2k, #ess +#< +#> ≤ 6k.
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Proof. The second statement follows from the fact that each zigzag (an

arrow-type stone) and each essential segment contains an odd number, hence

at least one, of ◦-vertices of the dessin, and #◦ = 6k. For the first one,

observe that a ◦-vertex inside an essential segment is separated from each

of the two ×-vertices bounding the segment by at least one •-vertex (as

the type of the edges must change from bold to solid; cf. Figure 11), and

#• = 4k.

5.6. The monodromy

Let Ω⊂B be a closed disk. A continuous section s : Ω→Σd of p is called

proper (with respect to a fixed trigonal curve C) if its image is disjoint

from both E and convC. Since the disk Ω is contractible and all fibers

Fb � (E ∪ convC) are connected, a proper section exists and is unique up

to homotopy in the class of proper sections.

Fix a trigonal curve C, a disk Ω, and a proper section s. Assume that the

boundary ∂Ω contains no singular fibers of C, and denote by Ω� the disk Ω

with all singular fibers removed. The restriction p : p−1(Ω�)� (C ∪E)→Ω�

is a locally trivial fibration, and one can consider the associated bundle

with the discrete fibers Autπ1(Fx � (C ∪E), s(x)), x ∈Ω�. This bundle is a

covering, and, fixing a base point b ∈Ω� and lifting loops starting from the

identity over b, we obtain a homomorphism m̃ : π1(Ω
�, b) → Autπb, where

πb := π1(Fb � (C ∪E), s(b)). This homomorphism is called the monodromy ;

since the section s is proper, it actually takes values in the braid group

B3 ⊂ Autπb, where πb is identified with the free group F3 by means of a

geometric basis.

We will “downgrade” the monodromy to the modular group Γ and con-

sider the composition m : π1(Ω
�, b)→ B3 � Γ, called the reduced monodromy.

If d is even, m coincides with the Γ-valued reduction of the monodromy

(homological invariant) of the covering elliptic surface. The following state-

ment is essentially contained in [5], although the conventions and notation

in [5] differ slightly from those used in this paper.

Theorem 5.8 (see [5]). Consider a connected component S0 of the inter-

section SkC ∩ Ω, and assume that the base point b is in an edge e of S0.

Then, under an appropriate choice of a geometric basis in the reference fiber

Fb, the diagram
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π1(S0, e)
i∗−−−−→ π1(Ω

�, b)

j∗

⏐⏐�
⏐⏐�m

π1(SkC,e)
val−−−−→ Γ

commutes, where i :S0 ↪→Ω� and j :S0 ↪→ SkC are the inclusions. �

Now, assume that the curve C is real. Orient the real part BR, and

consider the positive hemisphere B+. Choose some disjoint regular neigh-

borhoods Ui ⊂ B of the singular fibers of C, and let Ω = B+ �
⋃
Ui, the

union running over the real singular fibers only (cf. a similar construction

in Section 4.4 and Figure 10). Pick a base point b in the boundary ∂Ω,

make the other necessary choices, and consider the reduced monodromy

m : π1(Ω
�, b)→ Γ.

Definition 5.9. The image MG(C) := Imm⊂ Γ is called the monodromy

group of C; the element m∞ :=m[∂Ω] ∈MG(C) is called the monodromy at

infinity.

The following statement is straightforward.

Proposition 5.10. The pair (MG,m∞), m∞ ∈MG⊂ Γ, is determined by

the curve C and orientation of BR up to conjugation. The conjugacy class

of the pair (MG,m∞) is invariant under directed autohomeomorphisms of

the pair (Σd,C); in particular, it is a directed deformation invariant of real

trigonal curves. �

The conjugacy class of the monodromy at infinity depends on the real part

CR only. Indeed, choose the base point b real and outside the zigzags and

ovals, and represent the real part by a broken (at b) necklace diagram N , flat

or twisted (see Section 5.3). Then, up to conjugation, one has m∞ =m(N )

if d is even and m∞ = m̃(N ) if d is odd. (Note that the conjugacy class of

m̃(N ) is preserved by the twisted shifts used in the definition of twisted

diagrams (see Remark 4.7).)

5.7. Real trigonal M -curves

In view of (4.3), the real part CR of an M -curve C ⊂Σd has 3d− 1 con-

nected components. Hence, unless d= 1, such a curve is nonhyperbolic, its

real part has 3d−2 ovals, and, since each oval and each zigzag consumes two

real singular fibers, one has z+w = 2, where z is the number of zigzags and
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w is the number of pairs of complex conjugate singular fibers; in particular,

z,w ≤ 2. Comparing this with (4.14), we conclude that C is an M -curve if

and only if any/both covering elliptic surfaces X± are M -varieties. (This

statement trivially holds for hyperbolic curves as well.)

For d= 1 (essentially, plane cubics), there are four deformation families of

M -curves: one hyperbolic and three nonhyperbolic, denoted by Iz , z = 0,1,2:

a curve of type Iz has one oval and z zigzags (see Figure 11 for z = 1 and 2).

To describe the other M -curves, we need the operation of junction. Con-

sider two directed dessins Di ⊂Bi, i= 1,2. Choose a pair of zigzags Zi of

Di with a single ◦-vertex vi in each, and let I i ⊂ ∂Bi
+ be a segment con-

tained in the interior of Zi and containing vi inside. Pick a homeomorphism

ϕ : I1 → I2, and consider the connected boundary sum B+ :=B1
+�ϕB

2
+ and

the graph

D+ := (D1 ∩B1
+)�ϕ (D2 ∩B2

+)⊂B+.

Finally, double B+ to form a new sphere B ∼= S2, and double D+ to form

a graph D ⊂ B; the two real ◦-vertices v1, v2 are replaced with a pair of

complex conjugate ◦-vertices, and the common endpoints of I1, I2 become

monochrome vertices of D. The resulting graph D ⊂ B is a dessin; it is

called the junction of D1 and D2 along the pair of zigzags Z1, Z2. Up to

isotopy, the junction depends only on the pair of dessins D1, D2 and the

pair of zigzags Z1, Z2 and on whether the homeomorphism ϕ is orientation-

preserving or -reversing. The zigzags Z1, Z2 are “consumed” by the junc-

tion, being replaced by a pair of ovals. It follows that an iterated junction

of several dessins does not depend on the order of the individual operations:

one can start with the disjoint union of all dessins involved and identify all

pairs of segments (which are all disjoint) simultaneously.

An example of junction is shown in Figure 12, where only some essential

parts of the dessin are drawn.

Theorem 5.11 (see [7], [14]). Each directed deformation class of real

trigonal M -curves C ⊂Σd, d≥ 2, contains a representative whose dessin is

Figure 12: A junction of six M -cubics (∗↑↑↓↑∗ ).
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an iterated junction of d copies of cubic dessins I2, I1 shown in Figure 11.

Conversely, any such junction is the dessin of an M -curve. Two (directed)

deformation classes are equal if and only if their corresponding dessins as

above are (directedly) homeomorphic. �
According to the number of zigzags, a dessin of type I1 participates in

exactly one junction (consuming its only zigzag), whereas a dessin of type

I2 can participate in one or two junctions. Furthermore, a dessin of type I1
has a “horizontal” axis of symmetry preserving the zigzag (see Figure 11),

whereas a dessin of type I2 does not. It follows that, after the junction as

in Theorem 5.11, the individual blocks form a linear chain, which can be

encoded by a word in the alphabet {↑,↓,∗}, with the convention that ∗ can

only appear as the first and/or last letter. Here, ∗ represents a dessin of type

I1, and ↑ and ↓ represent a dessin of type I2, oriented, respectively, as shown

in Figure 11 or upside down (see Figure 12 for an example). On the set Md

of such words of length d, there is an action of the group Z2×Z2 generated

by the vertical flip v, reversing the order of the letters, and the horizontal

flip h, interchanging ↑ and ↓. Each flip is realized by a homeomorphism

of dessins reversing the orientation of the equator. In these terms, one can

restate Theorem 5.11 as follows.

Corollary 5.12. The directed (resp., undirected) deformation classes

of real trigonal M -curves in Σd are in a natural one-to-one correspondence

with the orbit set Md/vh (resp., the orbit set Md/〈v,h〉). �
The number of ∗-type letters in the word representing an M -curve C

equals the number w ≤ 2 of pairs of complex conjugate singular fibers of C.

As explained at the beginning of this section, an M -curve C has at most

two zigzags. If C has at least one zigzag, the appropriate (flat or twisted)

necklace diagram of C determines the representation of the dessin DssnC

in the form of iterated junction and, hence, the deformation class of C (see

[7] for details). If C has no zigzags, this assertion is no longer true. The

shortest example is the pair of degree 12 curves represented by ∗↑↓∗ and

∗↓↑∗ : they share the same oriented flat necklace diagram ©5�5 but are not

related by a directed deformation equivalence. The two degree 30 curves

represented by

(5.13) ∗↓↑↓↓↑↑↓↑∗ and ∗↓↑↑↓↑↓↓↑∗

share the same oriented diagram (©5�5©�3)2 but are not deformation

equivalent, directedly or not. An explanation of this phenomenon is given
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in Remark 6.7 below. We address this (non)uniqueness question in greater

detail in the next section (see Corollaries 6.5 and 6.6).

§6. Geometric applications

6.1. Real trigonal M -curves are quasi-simple

Recall that a deformation family of complex algebraic varieties is called

quasi-simple if, within this family, the equivariant deformation class of a

real variety is determined by the topology of its real structure. The first

geometric application of our algebraic results is the quasi-simplicity of real

trigonal M -curves.

Theorem 6.1. Two real trigonal M -curves C1,C2 ⊂Σd are in the same

(directed) deformation class if and only if the quadruples (Σd,Ci, p, cd), i=

1,2, are related by a (directed) homeomorphism.

The case where each curve has at least one zigzag is settled in [7]; in this

case, nonequivalent curves differ by their real parts (more precisely, appro-

priate necklace diagrams, flat or twisted). Thus, we need to consider curves

without zigzags only (equivalently, those with two pairs of conjugate singu-

lar fibers), and for such curves Theorem 6.1 follows from a much stronger

statement, Theorem 6.3 below.

Definition 6.2. A word w in the alphabet {L,R} is called even if all

letters occur in w in pairs or, equivalently, if w can be represented as a

word in {L2,R2}. A parabolic or hyperbolic element g ∈ Γ is even if, up to

conjugation, g is represented by an even word in {L,R}. For a hyperbolic

element, this condition is equivalent to the requirement that all entries of

the cutting period cycle of g should be even. Finally, a regular pseudotree S

with two loops (cf. Proposition 2.8) is even if its monodromy at infinity is

even. Informally, S is even if its Farey branches pointing upward/downward

appear in pairs (see Remark 2.9).

Theorem 6.3. Two real trigonal M -curves C ′ ⊂Σd′ and C ′′ ⊂Σd′′ with-

out zigzags are directedly deformation equivalent (in particular, d′ = d′′) if

and only if the monodromy groups MG(C ′) and MG(C ′′) are conjugate in Γ.

Furthermore, a subgroup G⊂ Γ is the monodromy group of a real trigonal

M -curve without zigzags if and only if the skeleton G\Γ is an even regular

pseudotree with two loops.

Proof. Let C be a trigonal curve as in the statement. According to The-

orem 5.11, we can assume that the dessin of C is a junction of two cubic
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dessins I1 and several cubic dessins I2 (see Figure 12). (To simplify the fig-

ure, we show only the real part BR, maximal real dotted segments (which

are all ovals), junctions, and the portion of the skeleton SkC that is in B+.)

We extend the graph SkC ∩B+ to a regular skeleton S′ by attaching, at

each real •-vertex, a Farey branch reaching beyond the boundary to B−
(shown as thick dashed lines in Figure 12). Then, the following statements

are straightforward.

• The skeleton S′ is an even regular pseudotree with two loops (cf. Propo-

sition 2.8).

• Any even regular pseudotree with two loops can be obtained in this way,

starting from a certain junction of M -cubics.

• The monodromy group MG(C) is the stabilizer of S′ (see Theorem 5.8).

• The dessin DssnC is uniquely recovered from S′.

The first two statements imply the last assertion of the theorem. The fact

that a curve is uniquely determined by its monodromy group follows from

the last two statements and Theorem 5.11.

In view of our previous results concerning 2-factorizations, we have the

following corollaries of Theorem 6.3.

Corollary 6.4 (cf. Theorem 1.4). Anecklace diagramN (flat or twisted)

without arrow-type stones is the diagram of a real trigonal M -curve if and

only if the monodromy m(N ) has the form L2AL2At for some even word A

in {L,R}. �

Corollary 6.5 (cf. Theorem 1.5). A necklace diagram N as in Corol-

lary 6.4 is the diagram of at most two, up to equivalence, real trigonal

M -curves. In other words, at most two equivalence classes of curves may

have homeomorphic real parts. �

Corollary 6.6 (cf. Theorem 1.5). A necklace diagram N as in Corol-

lary 6.4 gives rise to two equivalence classes of real trigonal M -curves if

and only if the monodromy m(N ) has the form Wq(B) for some even word

B in {L,R}. �

Remark 6.7. The two M -curves given by (5.13) which share the same

topology of the real part (i.e., flat necklace diagram) correspond to the two

nonequivalent 2-factorizations of the element W1/3(L
2R2) (see Section 3.4

and Theorem 3.12).
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6.2. Maximal Lefschetz fibrations are algebraic

As stated in the introduction, one of the major questions in the theory of

real elliptic Lefschetz fibrations is whether a given fibration can be realized

by an algebraic one. Unlike the complex case, there do exist nonalgebraic real

Lefschetz fibrations. Thus, among the 25 undirected isomorphism classes of

totally real fibrations with 12 singular fibers, only 17 are algebraic (see [20],

[19]); the eight others are ruled out by Proposition 5.7. Of the 8421 classes

of totally real fibrations with 24 singular fibers, at least 4825 classes are

nonalgebraic as they violate Proposition 5.7. At present, we do not know if

all 3596 remaining classes are algebraic, nor do we know any simple criterion

that would establish that a given fibration is algebraic. (In the case of 12

singular fibers, an analytic structure is constructed in [20] and [19] by finding

a dessin with the desired flat necklace diagram.)

In this section, we prove Theorem 1.8, closing the question for maximal

fibration.

Consider a fibration p :X →B as in the statement of Theorem 1.8, and

let N := N (p) be its necklace diagram. Let w be the number of pairs of

complex conjugate singular fibers of p; we have w ≤ 2 (see (4.14)). The

case w = 0 is covered by Theorem 1.7, and it remains to consider the cases

w = 1,2.

Proof of Theorem 1.8: The case w = 2. The diagram N has no arrow-

type stones (see (4.14)); hence, N is of the form �i1©j1 · · ·�is©js (assuming

that N has both ©- and �-type stones and breaking it between a © and

a �). Then, using Table 1, after cancellations we have

m(N ) = (RLi1−1R)(RLj1−1R) · · · (RLis−1R)(RLjs−1R).

Thus, in the cyclic diagram D of m(N ), the copies of R appear in pairs. On

the other hand, since m(N ) admits a 2-factorization (see Theorem 4.9), D
has a parasymmetry (see Remark 3.5). It follows that the copies of L also

appear in pairs (two pairs of anchors and pairs of L symmetric to those of

R); that is, m(N ) is an even element of Γ. Hence, the monodromy group of

any 2-factorization of m(N ) is as in Theorem 5.11, and the corresponding

flat pendant necklace diagram is realized by a real trigonal M -curve C.

Due to Theorem 4.9, one of the two opposite real Jacobian elliptic surfaces

ramified at C +E is isomorphic to p.

If all stones of N are of the same type, then, since the monodromy of

each ©- or �-type stone is conjugate to L (see Table 1), we have m(N )∼
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Lr, where r is the length of N . Hence, r = 4 and N = ©4 or �4 (see

Theorem 1.4), and in view of Theorem 1.6, N admits two nonequivalent

2-pendants. It is immediate that the four real Lefschetz fibrations obtained

in this way are isomorphic to the four rational real elliptic surfaces ramified

over the two zigzag-free trigonal M -curves of degree 6, namely, ∗↑↑∗ and

∗↑↓∗ .

To complete the proof, we need a few observations and a lemma.

Consider a real Jacobian elliptic M -surface p :X →B with two pairs of

conjugate singular fibers. In the class of real Jacobian elliptic surfaces, there

are exactly four ways to collide a pair of conjugate singular fibers to a single

real fiber F of type Ã∗∗
0 (Kodaira’s type II) and perturb F to produce a pair

of real singular fibers (see, e.g., [7]; in the realm of real trigonal M -curves,

this procedure corresponds to replacing one of the ∗-type letters at an end

of the word representing the junction of M -cubics with ↑ or ↓). In two cases,

the new necklace diagram has an extra stone of type >, and in the two other

cases, it has an extra stone of type <. Cutting the original diagram N (p)

at a base point b right before the new stone, we conclude that the pendant

necklace diagram of p has two representatives of the form (N ′, (R,g′)) (for
some g′ ∈ Γ) and two representatives of the form (N ′′, (L−1, g′′)) (for some

g′′ ∈ Γ).

Conversely, given a representative of a pendant necklace diagram of the

form, for example, (N , (R, . . .)), the corresponding real Lefschetz fibration

can be modified, in the topological category, so that a pair of conjugate sin-

gular fibers disappears to produce a >-type stone. (Topologically, we merely

remove an equivariant disk surrounding the two fibers and replace it with

another disk, with two real singular fibers and the same monodromy at the

boundary; see the discussion of the two real structures on the 2-factorization

X=R ·L−1 in Section 3.5.) The following lemma asserts that, in the case of

a maximal Lefschetz fibration, any such topological modification is one of

the two described above and hence can be realized in the algebraic category.

Lemma 6.8. The pendant necklace diagram of a real Jacobian elliptic

M -surface with two pairs of complex conjugate real fibers has exactly two

representatives of the form (N ′, (R,g′)) (for some g′ ∈ Γ) and exactly two

representatives of the form (N ′′, (L−1, g′′)) (for some g′′ ∈ Γ).

Proof. We consider the representatives of the form (N ′, (R,g′)), which
result in the >-type stones. According to the discussion above, two such
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representatives do exist; they correspond to the two algebraic modifications

of the fibration. Fix one of these representatives. Since the action of σ2
1 is the

conjugation by Rg′ =m(N ′), the 2-factorization of any other representative

in question is either (P−1RP, . . .) or (P−1g′P, . . .), where P is a monodromy

(not necessarily the shortest, i.e., possibly multiplied by a power of m(N ′))
from the original base point b′ to the new base point b′′. We assert that

P−1RP = R if and only if P = id. Indeed, consider the part SkC ∩ B+

of the skeleton of the corresponding real trigonal curve and extend it to

a pseudotree S as explained in the proof of Theorem 6.3 (cf. Figure 12).

Assume that the original base point b′ is contained in the boundary of

the leftmost cubic dessin I1 in Figure 12, and assign to b′ the base point

e′ := e ↑ Y of S, where e is the edge constituting the leftmost monogonal

region. Starting from e′, “project” any other base point b′′ to S by assigning

to b′′ the edge e′′ := e′ ↑P . Taking into account Table 1 and using induction,

one can easily show that the edges obtained are either as shown in Figure 13

(if the stone S preceding b′ is of type �) or those in the figure shifted by

Y (if S is of type ©). Crucial is the fact that all these points are pairwise

distinct. On the other hand, e′ ↑Rn = e′ for any n ∈ Z. Hence, unless P = id,

the monodromy P is not a power of R, and we have P−1RP �=R.

It follows, in particular, that the >-type stone that may appear in the

cubic dessin I1 at the other end of the junction results in a 2-factorization

of the other form, that is, (P−1g′P, . . .), and the same argument as above

shows that this representative is also unique.

Proof of Theorem 1.8: The case w = 1. According to (4.14), the necklace

diagram N :=N (p) has a single arrow-type stone S, which we can assume

to be of type >. (Otherwise, switch to the dual diagram N ∗.) Replace the

two real singular fibers contained in S with a pair of conjugate singular

Figure 13: Necklace base points in the skeleton.
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fibers (the inverse of the operation described prior to Lemma 6.8). The new

Jacobian Lefschetz fibration is maximal and, according to the first part of

the proof, is algebraic. Now, due to Lemma 6.8, there are only two ways to

revert the operation and recreate a >-type stone; both result in algebraic

Lefschetz fibrations.

As a consequence of Theorem 1.8, we have a more effective description

of the deformation classes of maximal real Jacobian Lefschetz fibrations:

the directed (resp., undirected) deformation classes of such fibrations are in

a natural one-to-one correspondence with the orbit set Md/vh (resp., the

orbit set Md/〈v,h〉) (cf. Corollary 5.12).

Acknowledgments. This paper was essentially completed during the sec-

ond author’s stay as a Leibniz fellow and the first author’s visit as a

Forschungsgast at the Mathematisches Forschungsinstitut Oberwolfach; we

are grateful to this institution and its friendly staff for their hospitality and

for the excellent working conditions. We would like to thank Viatcheslav

Kharlamov for his encouragement and interest in the subject, and Alexan-

der Klyachko, who brought to our attention the Frobenius-type formulas

counting solutions to equations in finite groups. We are also grateful to

Anton Klyachko and to the anonymous referee of this text, who drew our

attention to Bardakov’s paper [3] and Kulkarni’s paper [9], respectively.

References

[1] Z. Arad, J. Stavi, and M. Herzog, “Powers and products of conjugacy classes in
groups” in Products of Conjugacy Classes in Groups, Lecture Notes in Math. 1112,
Springer, Berlin, 1985, 6–51. MR 0783068. DOI 10.1007/BFb0072286.

[2] E. Artin, Theory of braids, Ann. of Math. (2) 48 (1947), 101–126. MR 0019087.

[3] V. G. Bardakov, The structure of a group of conjugating automorphisms (in Russian),
Algebra Logika 42 (2003), no. 5, 515–541, 636; English translation in Algebra Logic
42 (2003), no. 5, 287–303. MR 2025714. DOI 10.1023/A:1025913505208.

[4] F. Bogomolov and Y. Tschinkel, “Monodromy of elliptic surfaces” in Galois Groups
and Fundamental Groups, Math. Sci. Res. Inst. Publ. 41, Cambridge University
Press, Cambridge, 2003, 167–181. MR 2012216.

[5] A. Degtyarev, Zariski k-plets via dessins d’enfants, Comment. Math. Helv. 84 (2009),
639–671. MR 2507257. DOI 10.4171/CMH/176.

[6] , Hurwitz equivalence of braid monodromies and extremal elliptic surfaces,
Proc. Lond. Math. Soc. (3) 103 (2011), 1083–1120. MR 2861751. DOI 10.1112/
plms/pdr013.

[7] A. Degtyarev, I. Itenberg, and V. Kharlamov, On deformation types of real elliptic
surfaces, Amer. J. Math. 130 (2008), 1561–1627. MR 2464028. DOI 10.1353/ajm.0.
0029.

https://doi.org/10.1215/00277630-2077026 Published online by Cambridge University Press

http://www.ams.org/mathscinet-getitem?mr=0783068
http://dx.doi.org/10.1007/BFb0072286
http://www.ams.org/mathscinet-getitem?mr=0019087
http://www.ams.org/mathscinet-getitem?mr=2025714
http://dx.doi.org/10.1023/A:1025913505208
http://www.ams.org/mathscinet-getitem?mr=2012216
http://www.ams.org/mathscinet-getitem?mr=2507257
http://dx.doi.org/10.4171/CMH/176
http://www.ams.org/mathscinet-getitem?mr=2861751
http://dx.doi.org/10.1112/plms/pdr013
http://www.ams.org/mathscinet-getitem?mr=2464028
http://dx.doi.org/10.1353/ajm.0.0029
http://dx.doi.org/10.1112/plms/pdr013
http://dx.doi.org/10.1353/ajm.0.0029
https://doi.org/10.1215/00277630-2077026


PRODUCTS OF PAIRS OF DEHN TWISTS 131

[8] V. S. Kulikov, D. Oru, and V. Shevchishin, Regular homotopy of Hurwitz curves

(in Russian), Izv. Ross. Akad. Nauk Ser. Mat. 68 (2004), no. 3, 91–114; English

translation in Izv. Math. 68 (2004), no. 3, 521–542. MR 2069195. DOI 10.1070/

IM2004v068n03ABEH000487.

[9] R. S. Kulkarni, An arithmetic-geometric method in the study of the subgroups of the

modular group, Amer. J. Math. 113 (1991), 1053–1133. MR 1137534. DOI 10.2307/

2374900.

[10] R. Matveyev and K. Rafi, personal communication, 2011.

[11] B. Moishezon, Complex Surfaces and Connected Sums of Complex Projective Planes,

with an appendix by R. Livne, Lecture Notes in Math. 603, Springer, Berlin, 1977.

MR 0491730.

[12] , “The arithmetic of braids and a statement of Chisini” in Geometric Topology

(Haifa, 1992), Contemp. Math. 164, Amer. Math. Soc., Providence, 1994, 151–175.

MR 1282761. DOI 10.1090/conm/164/01591.
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