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First predicted by Richtmyer in 1960 and experimentally confirmed by Meshkov in 1969,
the Richtmyer–Meshkov instability (RMI) is crucial in fields such as physics, astrophysics,
inertial confinement fusion and high-energy-density physics. These disciplines often deal
with strong shocks moving through condensed materials or high-pressure plasmas that
exhibit non-ideal equations of state (EoS), thus requiring theoretical models with realistic
fluid EoS for accurate RMI simulations. Approximate formulae for asymptotic growth
rates, like those proposed by Richtmyer, are helpful but rely on heuristic prescriptions
for compressible materials. These prescriptions can sometimes approximate the RMI
growth rate well, but their accuracy remains uncertain without exact solutions, as the
fully compressible RMI growth rate is influenced by both vorticity deposited during
shock refraction and multiple sonic wave refractions. This study advances previous work
by presenting an analytic, fully compressible theory of RMI for reflected shocks with
arbitrary EoS. It compares theoretical predictions with heuristic prescriptions using ideal
gas, van der Waals gas and three-term constitutive equations for simple metals, the
latter being analysed with detailed and simplified ideal-gas-like EoS. We additionally
offer an alternative explicit approximate formula for the asymptotic growth rate. The
comprehensive model also incorporates the effects of constant-amplitude acoustic waves
at the interface, associated with the D’yakov–Kontorovich instability in shocks.
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1. Introduction

The Richtmyer–Meshkov instability (RMI) is a fundamental interfacial instability in
hydrodynamics. It develops whenever a planar shock wave interacts with a material
interface, separating two fluids with distinct thermodynamic properties. First predicted
through numerical modelling by Richtmyer (1960) and subsequently experimentally
observed by Meshkov (1969), this phenomenon holds paramount significance across
various realms of physics and astrophysics (see Inogamov 1999; Brouillette 2002;
Aglitskiy et al. 2010; Abarzhi, Gauthier & Sreenivasan 2013; Clavin & Searby 2016;
Zhou 2017a,b; Zhou et al. 2021; Zhou 2024; Zhou, Sadler & Hurricane 2024) and
references therein. In the domain of inertial confinement fusion and the associated area
of high-energy-density physics (HEDP), the strong shocks propagate through condensed
materials or high-pressure plasmas whose equations of state (EoS) under extreme
conditions are typically non-ideal. Consequently, any theoretical framework aspiring to
model HEDP conditions and replicate the RMI development must incorporate realistic
fluid EoS.

Studies of interfacial instabilities begin with the small-amplitude, linear phase of their
development, when the interfacial perturbations can be decomposed into Fourier series,
and each Fourier component is dealt with separately. When the unperturbed state is time
independent, which is the case for the Kelvin–Helmholtz (von Helmholtz 1868; Thomson
1871) and the Rayleigh–Taylor (Rayleigh 1882; Taylor 1950) interfacial instabilities, it
is possible to use the normal-mode decomposition to determine the exponential growth
rate. The RMI analysis is more challenging because the unperturbed flow is not steady (it
involves a transmitted shock wave and a reflected shock or rarefaction wave propagating
away from the shocked material interface), and, therefore, ‘one cannot separate the time
dependence from the linearised perturbation equations’ (Brouillette 2002). This is why
Richtmyer made his discovery by solving these equations numerically with the most
powerful computer of the time, the MANIAC (mathematical analyser, numerical integrator
and automatic computer) at Los Alamos. His linear analysis ‘places no restriction
on the EoS, provided only that the values of several constants are known. But the
only calculations performed with this code so far were for γ -law gases, initially cold,
with the same value of γ ’ (Richtmyer 1960). He was far ahead of his time: a code
numerically solving the linear RMI perturbation equations was recreated only 40 years
after Richtmyer’s work by Yang, Zhang & Sharp (1994). It could handle arbitrary EoS,
although its published output (see also Holmes et al. (1999)) still refers to ideal gases,
generalising Richtmyer’s work in several other ways (the case of reflected rarefaction
wave, finite incident shock strength, different γ s.) The same applies to the analytical
and semianalytical solutions of the linear RMI problem, starting from those published
by Fraley (1986) and Velikovich (1996) for the cases of reflected shock and reflected
rarefaction, respectively.

Given the relative complexity of finding and using the exact solutions of the linear RMI
perturbation problem, it is helpful, particularly for theoretical analysis (see Mikaelian
(1991, 1995), and references therein) to have an approximate but explicit formula for
evaluating the constant asymptotic growth rate. Such a formula, also proposed by
Richtmyer, is derived by treating the RMI as a limiting case of the Rayleigh–Taylor
instability, with instantaneous, rather than constant, acceleration: g = U2δ(t), where U2
is the velocity instantly acquired by the shocked material interface, see figure 1, and
δ(t) is the Dirac delta function. Then, the asymptotic growth rate is estimated as δu∞

i =
kψ0

i U2A2, where ψ0
i is the interfacial ripple amplitude, A2 is the Atwood number at
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The RMI for arbitrary EoS when a shock is reflected

Incident shock Reflected shock Transmitted shockInterface Interface

p1

ρ1r ρ0r

ŷ0
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Figure 1. Sketch of the RMI when a shock is reflected. Panels (a,b) correspond to the preshock and
postshock interaction conditions, respectively: (a) t < 0; (b) t > 0.

the interface and k is the interfacial ripple wavenumber. For an incompressible RMI flow
triggered with a δ-function acceleration pulse, this is indeed an exact result. Predictions
of the linear compressible theory converge to it in the limits of low compressibility
and/or weak shock, see the discussion by Velikovich, Herrmann & Abarzhi (2014).
However, suppose the compressibility of the materials separated by the shocked interface
is relevant, which is the case in most strong-shock RMI situations. In that case, the
preshock values of the Atwood number A0 and the ripple amplitude, ψ0−

i , differ
from the respective postshock values, A2 and ψ0

i . Then, the governing incompressible
equations do not help determine which values to substitute into the above formula, and
the choice has to be made heuristically, resulting in so-called prescriptions. Richtmyer,
comparing the above formula with his numerical results, formulated the prescription
involving the postshock values. Meyer & Blewett (1972) similarly developed a slightly
different prescription, featuring the average of preshock and postshock interfacial ripple
amplitudes and the postshock Atwood number. Vandenboomgaerde, Mügler & Gauthier
(1998) suggested yet another prescription, averaging the preshock and postshock products
of the Atwood number and the ripple amplitude. Of course, in the incompressible
and weak-shock limits all prescriptions converge to the same, exact value of the RMI
growth rate.

Sometimes, the heuristic prescriptions provide an excellent approximation to the
asymptotic RMI growth rate; sometimes, the approximation is not good at all, and,
unfortunately, it is impossible to predict which way it is without solving the perturbation
problem exactly. The physical reason for this uncertainty is that the fully compressible
RMI growth rate is not settled at the instant when the rippled interface is shocked. As
demonstrated by Wouchuk & Nishihara (1997), the RMI growth rate is determined by
two comparable contributions to the interfacial vorticity. One is the vorticity deposited at
the instant of incident shock refraction. The other comes from the multiple refractions of
sonic waves emitted by transmitted and reflected ripple shock fronts (or only transmitted
shock front, in the case of reflected rarefaction). Both shock fronts are in causal interaction
with the material interface, which plays the role of a rippled piston driving them both,
and, through the piston, with each other. The sonic signals received and emitted by the
interface become gradually weaker as the distance between the outgoing shock fronts
and the interface increases, and this contribution to the RMI growth rates asymptotically
approaches a constant value.
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Due to the essential role of compressibility, this contribution cannot be captured by
any of the prescriptions; one needs to solve the fully compressible perturbation problem.
But when the EoS of shocked materials are not realistic, then the applicability of such
analysis is still uncertain. Ideal-gas EoS, with γ s and the preshock pressure p0 chosen as
fitting parameters to match the one-dimensional (1-D) dynamics of observed shock flows,
are often used for the compressible stability analysis of HEDP experiments with solid
targets. For example, Ishizaki & Nishihara (1997) selected γ = 3 for shock-compressed
plastic and a fitting preshock pressure of p0 = 0.7 Mbar to theoretically describe the
dynamics of the observed rippled-shock oscillations in the experiments by Endo et al.
(1995). Similarly, Holmes et al. (1999) selected the values of γ = 1.45 and 1.8 for
low-density foam and beryllium, respectively, with the preshock pressure p0 = 0.1 Mbar
roughly corresponded to the x-ray preheat for their analysis of the RMI experimental data
by Dimonte & Remington (1993) and Dimonte et al. (1996). Both Ishizaki & Nishihara
(1997) and Holmes et al. (1999) successfully reproduced the results of their respective
experiments during the small-amplitude stage of the perturbation development. However,
since matching of the 1-D parameters does not necessarily translate into matching of the
parameters determining the frequency and decay of the shock-fronts’ oscillations, which
were observed by Endo et al. (1995) and affected the RMI growth measured by Dimonte
& Remington (1993) and Dimonte et al. (1996), one cannot evaluate the accuracy of
the compressible linear theory. This uncertainty is similar to that associated with the
use of prescriptions. To eliminate it, the fully compressible linear RMI theory must be
constructed for the realistic EoS, as envisioned by Richtmyer (1960).

Numerical analysis of this problem was published by Ward & Pullin (2011) for
Mie–Grüneisen EoS; for details, see Ward (2011), and also by Tahir et al. (2011) for the
case of aluminium and copper. Here, we report the analytic, fully compressible theory
of the RMI for the reflected shock case with an arbitrary EoS, advancing the results of
the earlier work by Wouchuk (2001), Campos & Wouchuk (2014) and Cobos-Campos
& Wouchuk (2016). As examples of realistic EoS, we chose the venerable van der
Waals (vdW) EoS for a non-ideal gas and the three-term, Grüneisen-type three-term EoS
(Zel’dovich & Raizer 2002, Chapter XI, § 6), applicable to simple metals at pressures not
exceeding 5 Mbar. Of course, these results are readily modified for any EoS presented
in analytical or tabular form. We demonstrate the specifics of the realistic-EoS, fully
compressible RMI analysis, discuss various limiting cases and compare the theoretical
predictions of the asymptotic growth rates with various prescriptions. The lack of Riemann
problem similarity for different EoS (Quartapelle et al. 2003) is addressed by finding the
best fit for both EoS zero-order profiles. With this approach, the incident shock strength
and the effective γ values are selected to yield closely matching values for the target
parameters: shock density and pressure jumps, postshock Atwood number and postshock
dimensionless contact interface amplitude.

In this work, in addition to the extension of the formulation to be applicable to
arbitrary EoS, we use a different resolution method compared with previous theoretical
studies (Wouchuk 2001; Campos & Wouchuk 2014; Cobos-Campos & Wouchuk 2016).
Specifically, we address the initial-value problem by employing the direct inverse Laplace
transform (ILT), which allows the final solution to be expressed as a closed integral. This
approach overcomes issues related to the slow convergence of Fourier–Bessel coefficients
and provides deeper insights into shock-to-shock acoustic coupling interactions, as
demonstrated in Napieralski et al. (2024) for RMI developed in shock-flame interactions.
Understanding the singularities in the complex plane is crucial for the ILT of the
pressure field. For instance, the presence of non-removable singularities, as noted by
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The RMI for arbitrary EoS when a shock is reflected

Calvo-Rivera, Velikovich & Huete (2023), indicates the possibility of spontaneous
acoustic emission (SAE) for one of the shocks. This allows the model to be extended
to conditions where the interface is continuously excited by pressure disturbances.

The remainder of this paper is structured as follows. The problem formulation is
presented in § 2 for the case of reflected and transmitted shocks. The following § 3 is
devoted to the description of the pressure field comprised by the two postinteraction
shocks. The analysis includes the possibility of SAE in the transmitted shock. Section 4
describes the velocity field split into acoustic and rotational perturbations. The asymptotic
velocity field is also analytically derived. The RMI evolution of the interface is addressed
in § 5 for different EoS and shock conditions. Results are compared with known prescribed
formulae for the asymptotic growth rate and with γ -law EoS for metals. Lastly, conclusions
are given in § 6. The resolution of the pressure field using hyperbolic coordinate
transformation, followed by the Laplace transform and its inverse, is thoroughly detailed in
Appendix A. The base-flow resolution particularised for vdW EoS, aluminium and copper
is offered in the supplementary material available at https://doi.org/10.1017/jfm.2024.1010.
Mathematica codes are also provided for both the base-flow properties and the perturbed
RMI problem.

2. Problem formulation in Cartesian coordinates

2.1. Base-flow equilibrium condition for arbitrary EoS
The perturbation-free problem is readily given by the conservation equations across the
shocks and the mechanical equilibrium condition at the interface. Because of there are
five distinct flow regions, it is necessary to choose a clear notation criterion to facilitate
their identification. In our case, as described in figure 1, numbers 0, 1 and 2 are used
to identify the preshock fluids, the flow behind the incident shock and the flow behind
the transmitted and reflected shocks, respectively. An additional subindex is necessary to
identify the position relative to the contact interface: r and t for the regions along where
the reflected and transmitted shocks travel. The mechanical equilibrium applies at the
interface. Before the interaction with the incident shock the equilibrium is dictated by
the continuity of pressure p0r = p0t, provided that both fluids move at the same speed,
i.e. null in the preshock materials’ reference frame.

In order to calculate the base flow equilibrium it is necessary to solve the conservation
equations. In the absence of disturbances, the different regions separated by each shock
wave and the contact interface are steady and uniform. Across each shock the flow
variables changes are related to the Rankine–Hugoniot (RH) equations, namely

[ρu] = 0,
[
p + ρu2

]
= 0,

[
E + p

ρ
+ 1

2
u2
]

= 0, (2.1a–c)

for mass, momentum and energy, respectively; where the square brackets [. . .] denote the
difference between the indicated quantities’ values ahead and behind the shock front. In
(2.1a–c) ρ, u, p and E mean, respectively, density, velocity, pressure and internal energy
evaluated in front and behind each shock wave, with the material velocity measured in the
corresponding shock reference frame, so that U = u + const., in relation to the material
velocity indicated in figure 1.

The zero-order problem formulation is completed after providing the equilibrium
conditions that must be imposed at the planar interface: p2t = p2r and U2(x < 0) =
U2(x > 0). Furthermore, along with the isobaric condition, an additional parameter is
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needed to relate the two initial thermodynamic states of the fluids at both sides of the
interface. Typically, the parameter employed is the preinteraction Atwood number

A0 = ρ0t − ρ0r

ρ0t + ρ0r
(2.2)

that is bounded −1 < A0 < 1. The present study does not address the case when a
rarefaction is reflected back after the incident shock refraction, which might manifest
itself when A0 takes low (likely negative) values. However, the kind of the wave reflected
(shock or rarefaction) cannot be predicted solely based on this parameter unless certain
conditions are met, namely when the two materials share identical thermodynamic
coefficients. So, only under these circumstances, a negative value for A0 ensures the
occurrence of a reflected rarefaction. For an interface separating two ideal gases with
similar adiabatic indices, the density jump ρ0t/ρ0r is the only parameter that determines
the problem configuration, rendering a shock-reflected problem whenever ρ0t/ρ0r > 1.
For the ideal-gas shock-interface interaction, the case of reflected rarefaction occurs if
(5a)–(5b) in Yang et al. (1994) are satisfied. This requirement can be presented as a single
inequality

1
γr + γt + 2

<
A0

γr − γt
<

1
γr + γt

, (2.3)

as derived in Velikovich (1996), which is applicable to both γr < γt and γr > γt cases.
In the present case, the boundary between the shock-reflected and rarefaction-reflected
cases, typically referred as ‘total transmission’ since there are no waves reflected back,
must be computed numerically for each specific EoS and flow conditions, as detailed in
the supplementary material.

In dimensionless form, the pressure continuity at the contact interface, p2t = p2r, can be
written as a function of the shock pressure jumps

PrPi = Pt, (2.4)

where Pr = p2r/p1r, Pi = p1r/p0r and Pt = p2t/p0t correspond to the pressure jump
functions across the reflected, incident and transmitted shocks, respectively. On the other
hand, the continuity in the streamwise velocity U2(x < 0) = U2(x > 0) renders

Mi(1 − R−1
i )− Mr(1 − R−1

r )

√
κ1r

κr

Pi

Ri
= Mt(1 − R−1

t )

√
κt

κr

1 − A0

1 + A0
(2.5)

that, as it can be seen, involves more parameters. The functions Mr = (DR + U1)/c1r,
Mi = DI/c0r and Mt = DT/c0t stand for the reflected, incident and transmitted shock
Mach numbers, respectively. The c functions identify the corresponding sound speeds, that
must be computed upon determination of the associated EoS. Equation (2.5) also depends
on the corresponding density jump functions, which read, Rr = ρ2r/ρ1r, Ri = ρ1r/ρ0r
and Rt = ρ2t/ρ0t. Additionally, the associated sonic coefficients, that in the general
case are state functions, are defined as κ = ρc2/p, where, again, c represents the speed
of sound. Finally, the post shock Mach numbers are defined as M2r = (DR + U2)/c2r,
M2i = (DI − U1)/c1r and M2t = (DT − U2)/c2t.

Therefore, (2.4) and (2.5), along with the corresponding RH relations (2.1a–c), the EoS
and the preshock parameters, can be solved for a given incident shock intensity. This
process has been conducted in the supplemental material for the vdW EoS (including
the specific case of the ideal gas) and for simple metals modelled with the three-term
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The RMI for arbitrary EoS when a shock is reflected

EoS (applied to aluminium and copper). Our analysis presumes the existence of a
unique solution to this problem, although this is not always guaranteed. In most cases
involving ‘regular’ EoS, such as those discussed in the supplementary material, a unique
solution either exists for the transmitted and reflected shocks. The case that renders the
reflected rarefaction wave being reflected is left for a separate analysis. However, since
we are considering an arbitrary EoS, we must acknowledge the possibility of anomalous
situations. For instance, an exponentially unstable shock scenario might arise, where,
instead of a single transmitted shock front, two fronts are produced. Such situations are
discussed in Menikoff & Plohr (1989) and Kuznetsov (1989), and they are beyond the
scope of this work.

2.2. Linearised perturbation equations
We consider a perturbed interface, separating two stagnant materials, that is weakly curved
along the transverse coordinate y, before the incident shock first reaches it (t � 0−),
in the form of ψi(t � 0−, y) = ψ0−

i cos(ky), where the amplitude of the perturbation is
ψ0−

i and k stands for the corresponding wavenumber. For linear theory to be applicable,
the condition ψ0

i k ∼ ε � 1 must hold, with ε being defined as the small parameter
characterising the first-order perturbations magnitude. In what follows, all perturbation
variables are of the same order ε. The dimensionless spatial coordinates are defined by
x̄ = kx and ȳ = ky, with the system of reference being fixed at the unperturbed interface,
which moves with velocity U2 x̂0 in the reference frame attached to the upstream stagnant
gas.

When the incident shock wave has totally crossed the rippled interface, t � 0+,
two corrugated shock waves, the transmitted and the reflected one, are generated. The
interfacial ripple amplitude, conveniently normalised with respect to its preshock value,

ψi(t, ȳ)

ψ0−
i

= ξi(t) cos(ȳ), (2.6)

is initially compressed by the shock passage, thereby modifying its initial amplitude to
ξ0

i = ξi(t = 0+) = 1 − U2/DI , provided in (S.2.11) of the supplementary material. Note
that the postshock amplitude differs from the preshock amplitude due to compressible
effects of the shock. Since ρU = const, across the shocks, changes in density lead to
corresponding adjustments in velocity. The corresponding shock front amplitudes are also
scaled with ψ0−

i , thus, the transmitted and reflected shock ripples are equally reduced:

ψt(t, y)

ψ0−
i

= ξt(t) cos(ȳ) and
ψr(t, y)

ψ0−
i

= ξr(t) cos(ȳ). (2.7a,b)

It is straightforward to see that, after incident shock refraction, the initial ripple amplitude
of the transmitted and the reflected shocks can be determined by the relative distances
between the most advanced parts of each front at the time the shock fully crosses the
interface, thereby setting in their initial conditions through ξt(t = 0+) = ξ0

t = 1 − DT/DI
and ξr(t = 0+) = ξ0

r = 1 + DR/DI , where the relations DT/DI and DR/DI depend on
the initial conditions and the corresponding EoS, as explicitly shown in (S.2.10) of the
supplementary material.

All flow variables are disturbed behind the reflected and transmitted shocks, with the
corresponding amplitude being of the same order as the perturbation parameter ε. This is
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used to define the dimensionless order-of-unity functions (bar symbols) for the pressure,
density, longitudinal velocity and transverse velocity variables, namely

δpj

ρjc2
j

= εp̄j(x̄, τj) cos(ȳ),
δuj

cj
= εūj(x̄, τj) cos(ȳ), (2.8a)

δρj

ρj
= ερ̄j(x̄, τj) cos(ȳ),

δvj

cj
= εv̄j(x̄, τj) sin(ȳ), (2.8b)

where subscript ‘j’ indicates whether we are identifying the perturbations behind the
transmitted shock (denoted as ‘j = t’) or the reflected shock (denoted as ‘j = r’). Note
that definitions in (2.8) utilise the periodic symmetry of the flow within the linear regime.
Note that the spatial coordinates and velocities are measured in the reference frame of
the interface, which moves together with the compressed material for τj > 0, where τj is
dimensionless time constructed with the aid of the local speed of sound: τj = kc2jt. This
dimensionless transformation proves to be advantageous when expressing the linearised
Euler equations since they become devoid of parameters. As usual, the linear Euler
equations have been obtained by retaining the first-order perturbations O(ε) and neglecting
those of higher order on either side of the interface, see

∂ρ̄j

∂τj
+ ∂ ūj

∂ x̄
+ v̄j = 0, (2.9a)

∂ ūj

∂τj
+ ∂ p̄j

∂ x̄
= 0, (2.9b)

∂v̄j

∂τj
− p̄j = 0, (2.9c)

∂ p̄j

∂τj
− ∂ρ̄j

∂τj
= 0, (2.9d)

for the mass, streamwise momentum, transverse momentum and energy conservation
equations, respectively, with the latter being reduced to the isentropic condition. The Euler
equations can be rearranged to give the sound wave equation which, in this particular case,
takes the form of the Klein–Gordon equation,

∂2p̄j

∂τ 2
j

= ∂2p̄j

∂ x̄2
j

− p̄j. (2.10)

The noticeable advantage of working with two free-parameter sound wave equations
comes with the price of handling two temporal scales, which are interconnected by the
factor

β = τr

τt
= c2r

c2t
. (2.11)

This parameter plays a crucial role in the acoustic coupling between the reflected and
transmitted shocks, as will be discussed in detail later.

The sound wave equations at both sides of the interface must be integrated, upon
providing the corresponding initial and boundary conditions. The initial conditions are
given by the initial shock ripple amplitudes, ξ0

t and ξ0
r , provided in (2.7a,b) along with

the isobaric condition p̄j(τj = 0+) = 0. The boundary conditions, on the other hand, are
dictated by the perturbed RH equations and the equilibrium condition at the interface.
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The RMI for arbitrary EoS when a shock is reflected

For the reflected shock, at x̄rs = −M2rτr, and the transmitted shock, at x̄ts = M2tτt,
respectively, they read as

dξr

dτr
= − (1 + hr)Rr

2M2r(Rr − 1)
p̄rs and

dξt

dτt
= (1 + ht)Rt

2M2t(Rt − 1)
p̄ts, (2.12a)

ūrs = −1 − hr

2M2r
p̄rs and ūts = 1 − ht

2M2t
p̄ts, (2.12b)

ρ̄rs = − hr

M2r
p̄rs and ρ̄ts = − ht

M2t
p̄ts, (2.12c)

v̄rs = M2r(Rr − 1)ξr and v̄ts = −M2t(Rt − 1)ξt, (2.12d)

where the subscript ‘s’ is used here to indicate that perturbations are evaluated at their
respective reflected and transmitted shock position. The functions M2j, Rj and hj, refer to
the associated postshock Mach number, density jump and the D’yakov–Kontorovich (DK)
parameter, named after the pioneering works of D’yakov (1954) and Kontorovich (1957).
For the sake of generality, they are included here as independent parameters, yet they are
ultimately determined by the initial conditions, the EoS of the fluids and incident shock
intensity, as demonstrated in the supplementary material for vdW EoS and three-term EoS
for condensed materials.

The RH conditions (2.12) can be further reduced by taking the total derivative of the
streamwise velocities ūj along the corresponding shock trajectories, together with the
linear Euler equations (2.9). They read as(

1 − ht

2M2t
+ M2t

)
∂ p̄t

∂τt

∣∣∣∣
s
+
(

1 − ht

2
+ 1

)
∂ p̄t

∂ x̄

∣∣∣∣
s
= −M2

2t(Rt − 1)ξt, (2.13a)

(
1 − hr

2M2r
+ M2r

)
∂ p̄r

∂τr

∣∣∣∣
s
−
(

1 − hr

2
+ 1

)
∂ p̄r

∂ x̄

∣∣∣∣
s
= M2

2r(Rr − 1)ξr, (2.13b)

for the transmitted and reflected shocks, respectively. Equations (2.13a) and (2.13b),
complemented with (2.12a) for the shock ripples evolution, form a closed system of
equations for the perturbed shocks.

The problem formulation is completed after providing the mechanical equilibrium
condition at the contact interface: pressure and velocity are continuous across the interface.
In terms of pressure, they read as

p̄t(τt, 0) = ϑ p̄r(τr, 0), (2.14a)

∂ p̄t

∂ x̄

∣∣∣∣
x̄=0

= β2 ∂ p̄r

∂ x̄

∣∣∣∣
x̄=0

, (2.14b)

where ϑ = κ2r/κ2t is the ratio of the sonic coefficients at both sides of the interface.
For ideal gas EoS, this ratio reduces to γr/γt = const., but this function depends on the
corresponding thermodynamic state of the material, and therefore on the shock intensity,
for more complex EoS, as provided in the supplementary material.

This problem can be readily numerically integrated using the method of characteristics,
as done in Calvo-Rivera et al. (2023) for piston-driven shocks, yielding the spatial and
temporal pressure distribution within the region bounded by the reflected and transmitted
shocks. Nevertheless, the theoretical developments in the following sections, based on
the formulation presented in Wouchuk (2001), will provide analytical expressions for key
quantities, including the asymptotic growth rate of the RMI.
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3. The pressure field

3.1. The resolution of the pressure field
This section examines the physical properties of the pressure field, drawing on the
mathematical properties of the corresponding Laplace transform detailed in Appendix A.
Therefore, although the discussion primarily addresses physical concepts, it is necessary to
explicitly reference some of the properties of the associated Laplace transform functions.
In particular, the evolution of the pressure field is derived by applying the inverse
transformation to the Laplace transform functions described in Appendix A.2).

In the transmitted-shock and reflected shock regions, it can be computed with the aid of

p̄j(ηj, χj) = 1
2πi

∫ r+i∞

r−i∞
Pj(sj, χj)esjηj dsj, (3.1a)

where Pj is the pressure Laplace transform with respect to the coordinate ηj, sj is the
Laplace variable, i = √−1 is the imaginary unit and r is a real number to the right of
the singularities of Pj(sj). The independent variables ηj and χj refer to the hyperbolic
coordinates

x̄ = ηj sinhχj and τj = ηj coshχj (3.2a,b)

defined conveniently to transform the triangular integration domain into a rectangular one
(Zaidel’ 1960; Briscoe & Kovitz 1968).

Keeping in mind the analysis of the singularities within the complex plane detailed in
Appendix A.4, there are two contributions to the Bromwich integral, the first one is the
integral around the integration contour in which we introduce the branch cut to avoid the
multivalued nature of the complex functions (A10a) and (A10b), in particular from the line
integrals along the imaginary axis, specifically between the branch points. The second
contribution comes from the existence of imaginary poles inside the contour, which are
calculated by the application of the Cauchy residue theorem. To clarify the analysis, we
split the contributions in the form

p̄j
(
ηj, χj

) = lim
R→∞

1
2πi

{∮
Γ

Pj(sj, χj)eηjsj dsj −
∫

Cj

Pj(sj, χj)eηjsj dsj

}
, (3.3)

where the first term of the right-hand side, obtained by the residue theorem, is associated
with the non-decaying oscillations of a shock front producing SAE. The second term,
which requires the evaluation of the integral along each path of the contour excluding
the vertical line that pass through r, as sketched in Appendix A.4, is associated with the
damped oscillations.

Beginning with the latter, it should be noted that the value of the ratio of the speeds
of sound, β, determines the branch cut on each side. When β > 1, the influence of the
reflected shock oscillations involves a frequency that is higher than that of the transmitted
shock oscillations. Therefore, the branch cut must be extended to range {−iβ, iβ} for the
transmitted side but not for the reflected one, see Appendix A.4. When β < 1, the opposite
happens, the oscillations of the transmitted shock exhibit a higher frequency than the
reflected shock, signifying into an extension of the branch cut of the reflected side with
the range {−iβ−1, iβ−1} due to the change in the dominant evanescent acoustic waves.
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The RMI for arbitrary EoS when a shock is reflected

It results in the closed integral expression for the pressure field which read as

p̄dec
j (ηj, χj) = 2

π

∫ ζj

0
Im{Pj

(−iz, χj
)} sin(zηj) dz, (3.4)

where Pj is given by the solution of the functional system corresponding to each zone.
The domain of validity of (3.4) goes 0 � χt � tanh−1 M2t, for the transmitted side,
and − tanh−1 M2r � χr � 0 for the shock-reflected region within the domain 0 � χt �
tanh−1 M2t. Also ζj depends on the value of β, being

ζt =
{

1 if β � 1
β if β > 1

, ζr =
{
β−1 if β < 1
1 if β � 1

, (3.5a,b)

for the transmitted and reflected cases, respectively. The superscript dec is used in (3.4)
because the branch cut contribution always decays, similar to Bessel functions. These
terms represent the typical transient growth contribution for the RMI and are consistently
reported in the literature.

To obtain the contribution from the residues, it is necessary to consider the imaginary
poles that arise in the complex plane, which are the isolated singularities of (A21a) and
(A21b) for the transmitted and reflected cases, respectively. Such singularities are the
complex roots of D(sj) = 0 in (A22). The amplitude of the non-decaying oscillations is
readily given by the residue theorem

p̄osc
js
(
τj
) = 1

2πi

∮
Γ

Pjs(sj, χj)eτjsj dsj =
n∑

k=1

Res{eτjsjPjs
(
sj
)
, sI,jk}, (3.6)

where sI,jk is the kth imaginary pole in (A24).
We consider the case of the shock natural frequency, i.e. there are no secondary modes

associated with reverberations with the interface and/or the reflected shock. In this case,

lim
s→isI,j

(s − isI,j)Pjs(sj) exp(sjτj coshχjs)+ lim
s→−isI,j

(s + isI,j)Pjs(sj) exp(−sjτj coshχjs)

= πj sin (ωjτj), (3.7)

with use made of the symmetry property

Im
{
Pjs

[
qj
(
isI,j

)]} = −Im
{
Pjs

[
qj
(−isI,j

)]}
. (3.8)

Using the same decomposition of contributions as in (A21), the shock pressure amplitude
associated with non-decaying oscillations can be expressed as

πj =
σcj − σbjs2

I,j + sI

√
s2

I,j − 1(
s2

I,j + s2
R,j

) (
σ 2

bj − 1
) [

σdj

sI,j
+ Im

{
F±

j
[
q
(
isI,j

)± χjs
]}]

. (3.9)

3.1.1. Pressure perturbations at the shock fronts
The evolution of the pressure field at the shocks is readily determined by the superposition
of the decaying and non-decaying oscillating contributions, namely

p̄js(τj) = p̄dec
j (ηj =

√
1 − M2

2j τj, χj = χjs)+ πj sin(ωjsτj) (3.10)

when that SAE condition is met. Otherwise, only the decaying term contributes.
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Figure 2. Pressure perturbation at the respective shocks. The transmitted shock corresponds to the positions
x̄ts = M2tτt > 0 and reflected shock to x̄rs = −M2rτr < 0. Computations are done for different shock
strengths and for ideal-gas (a,b), for vdW gas (c,d) and simple metals (e, f ).

To illustrate the different possibility that may arise depending on the shock properties
and the EoS parameters, figure 2 illustrates the pressure perturbation history at the shocks
for four distinct cases. The transmitted shock coordinate corresponds to the positions
x̄ts = M2tτt > 0 (right half-space) and the reflected shock to x̄rs = −M2rτr < 0 (left
half-space). In figure 2(a), the pressure field is computed for the same case as in Yang
et al. (1994), representing a shock wave propagating from air to SF6 with an incident
Mach number Mi = 1.24. Figure 2(b) depicts a scenario with similar gas conditions
but a stronger incident shock, Mi = 3. Here, the pressure field of the transmitted shock
changes its initial slope sign and exhibits a sudden rise that subsides quickly. Figure 2(c)
shows computations where SAE occurs at the transmitted shock side. The asymptotic
non-decaying contribution is indicated with a dashed line. This case involves a highly
compressible vdW gas with significant covolume and Coulomb contributions on the heavy
gas side, similar to those described in Bates & Montgomery (1999), Huete et al. (2021) and
Calvo-Rivera et al. (2023). The conditions are those marked with a triangle in figureS2 of
the supplementary material. Figure 2(d) presents a computation where the parameter β is
less than unity, necessitating a different contour path in its resolution via the ILT. For this
case, it is noticeable the change in the amplitude of the oscillations of the reflected shock.
Finally, figure 2(e, f ) illustrate the results for a shock wave propagating through aluminium
and impacting copper, leading to the reflection of a backward-moving shock wave. The
incident Mach numbers are Mi = 1.3 and Mi = 2.5, corresponding approximately to the
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The RMI for arbitrary EoS when a shock is reflected

weak and strong test cases analysed in Tahir et al. (2011), with incident shock pressures
of approximately p1 = 0.28 Mbar and 2.9 Mbar, respectively. Base-flow conditions are
described in figure S3 of the supplementary material.

The six panels in figure 2 demonstrate the robustness of the ILT method compared with
the previously used separation of variables technique, which describes the pressure field
in terms of Fourier–Bessel series. Unlike the separation of variables method, the use of
which is limited by the requirement of convergence of its coefficients, the ILT method
consistently provides accurate solutions even under varying conditions and long-time
regimes, this is due to the boundary conditions being time dependent which makes it
necessary to obtain a number of coefficients that tends to infinity for larger times, as seen
in the first chapter of Duffy (2004).

3.1.2. Influence of the pressure disturbances on the interface
Once we understand the evolution of the pressure field at the shock fronts and the potential
for SAE, it is natural to consider the impact on the interface. Ultimately, this affects
the development of the RMI, which is quantified in § 5. Starting from the decaying
contribution, a direct variable change transformation in (3.4) yields the pressure field in
Cartesian coordinates,

p̄dec
j (x̄j, τj) = p̄dec

j

[
ηj =

√
τ 2

j − x̄2, χj = tanh−1 (x̄/τj
)]
, (3.11)

which is applicable within the domain enclosed by the corresponding shock and the
interface.

To better understand the non-decaying oscillating contribution, we can isolate this effect
by analysing a scenario where a shock oscillates with constant frequency and amplitude.
First, we refer again to the dispersion relation (A22). From the analysis of the singularities
in the complex plane performed before, purely imaginary poles arise when σcj > σbj,
which ultimately translates into oscillations with frequency ωjs > (1 − M2

2j)
1/2. Using

a normal mode decomposition for the acoustic frequency and wavenumber, referred to
from now on as the acoustic eigenvalues, ωj and kj, the shock oscillation frequency is
related to the acoustic eigenvalue through the sound wave equation ω2

j = k2
j + 1 and the

compatibility condition ωjs = ωj − M2jkj, to give

kj =
ωjsM2j −

√
ω2

js − (1 − M2
2j)

1 − M2
2j

, ωj =
ωjs − M2j

√
ω2

js − (1 − M2
2j)

1 − M2
2j

. (3.12a,b)

As the wrinkled shock oscillates, it generates pressure disturbances in the downstream
fluid in the form of sound waves (see § 90 of Chapter IX in Landau & Lifshitz (1987)).
A simple inspection of kj in (3.12a,b) reveals that, depending on the shock oscillation
frequency, these sound waves may or may not directly impact the contact interface.
Therefore, three distinct regimes can be identified, as follows.

(i) When ω2
ts < 1 − M2

2j, pressure disturbances at the shock decay according to the
power-law t−3/2 and diminish exponentially with distance from the shock, resulting
in evanescent waves in the longitudinal direction. This scenario corresponds to the
typical case studied in RMI for both transmitted and reflected shock fronts moving
in ideal gases. Therefore, the acoustic influence only affects the interface at early
times, as the exponential decay quickly reduces its relative contribution.
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Acoustic pathways:

SAE-

influence

domain

Zoom in

kt > 0

tan–1(1) = π/4

x̄ –
 τ t =

 c
on

st
.

x̄

x̄ + τt  = const.

tan–1(kt /ωt)

x̄ ts
 =

 M
2t
τ tx̄rs  = –βM

2r τt

�1 – M2
2t < ωts < 1 τtCase (ii)

(a) (b)

Figure 3. Sketch of the acoustic influence of permanent oscillations for case (ii). Solid grey lines represent
the acoustic characteristics in the contact surface reference frame, corresponding to the grey dashed lines. The
trajectory of the constant-amplitude acoustic field is indicated by the orange dashed lines.

(ii) When 1 − M2
2j � ω2

ts < 1, the stability behaviour of the shock front switches to a
neutrally stable regime, and non-decaying acoustic waves are radiated by the shock.
This regime, referred as SAE, is a manifestation of the DK instability (Calvo-Rivera
et al. 2023). In such case, the acoustic eigenvalues become real, with the wavevector
pointing to the radiating shock direction. In the theory of dynamical systems, this
corresponds to a transition through a Hopf-like bifurcation, see Clavin & Williams
(2009, 2012), to a limit cycle which will exhibit permanent oscillations, as explained
in pp. 252–257 of Strogatz (2015). However, regarding the interface behaviour, the
contact interface will not be affected by the acoustic waves, as they cannot reach the
hydrodynamic interface. The permanently oscillating waves travel to the right in the
compressed gas (and interface) reference frame but not reaching the shock front or
the interface, as sketched in figure 3 for the transmitted shock case.

(iii) When ωjs � 1, the behaviour of the corresponding shock front dynamics remains
the same, but the acoustic influence changes as the longitudinal projection of
the wavenumber in the compressed material reference frame points backwards.
Consequently, sound waves propagate to the left, reaching the interface, as sketched
in figure 4 for the transmitted shock.

Further scenarios can also be explored as ωjs increases beyond unity: the radiated
sound waves can reach the reflected shock, causing it to oscillate with constant
amplitude and frequency, and/or they can be reflected back towards the transmitted shock,
imposing a second mode of oscillation, similar to what occurs with piston-driven shocks
(Calvo-Rivera et al. 2023). However, these cases are rare unless the shock oscillation
frequency is externally imposed, as described in Velikovich et al. (2007), where the shock
travels across a non-uniform medium.

To facilitate the discussion, we consider the specific case where SAE occurs only in
the transmitted shock, i.e. σbt < σct, as depicted in figures 3 and 4 for cases (ii) and (iii),
respectively. As per the former, the pressure field associated with the sound radiation by
the transmitted shock, which also corresponds to the pressure field in the long-time regime
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Acoustic pathways:

SAE-

influence

domain

Snell-like

law at the

interface

Zoom in

kt < 0

tan–1 (β)

π – tan–1 (kt/ωt)

tan–1 (kr /βωr) tan–1 (kt/ωt)

x̄

x̄ + βτt  = const.

x̄ ts
 =

 M
2t
τ tx̄rs  = –βM

2r τt

ωts > 1 τtCase (iii)

(a) (b)

Figure 4. Sketch of the acoustic influence of permanent oscillations for case (iii). Solid grey lines represent
the acoustic characteristics in the contact surface reference frame, corresponding to the grey dashed lines.
The trajectory of the constant-amplitude acoustic field is indicated by the orange dashed lines (radiated by
the transmitted shock), while the blue dashed lines and green lines denote the acoustic paths transmitted and
reflected across the interface, respectively.

in this case, can be expressed as a piecewise function of x̄/τt, namely

p̄osc
t (τt, x̄) =

⎧⎪⎪⎨
⎪⎪⎩

πt sin (ωtτt − ktx̄) for
kt

ωt
<

x̄
τt
<M2t

0 for − βM2r <
x̄
τt
<

kt

ωt

(3.13)

where the non-zero pressure field corresponds to the orange-shadowed region in figure 3.
Notice the decaying contribution given in (3.11) is present within the whole domain. The
two limiting cases that bound case (ii) are ωts → (1 − M2

2j)
1/2 and ωts → 1. Per the

former, the value of kt/ωt → M2t, which corresponds to the trajectory of the transmitted
shock wave, thereby eliminating the orange-shadowed region. Regarding the latter, the
value of kt/ωt → 0, which corresponds to the trajectory of the entropy-vorticity waves
(vertical lines in figure 3). Such a case renders a standing acoustic wave and the domain of
influence for the orange-shadowed region is the space between the transmitted shock and
the interface.

For the backwards running waves to reach the contact interface (case (iii)), the
acoustic wave number kt must be negative, implying that ωts > 1, which is a more
stringent condition to satisfy if the shock oscillation frequency is not externally imposed.
Nonetheless, it is worthwhile to outline the consequences if this condition is met, which
can be readily anticipated by simple inspection of figure 4. It can be seen that four
distinguished regions are identified, since the train of acoustic waves radiated by the
transmitted shock are partially reflected from and transmitted through the contact interface,
as detailed below. The following derivation is essentially the same as the one found in § 66
of Chapter 8 in Landau & Lifshitz (1987).
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As in (3.13), the hyperbolic character of the problem allows as to write the pressure field
as a piecewise function of x̄/τt, namely

p̄osc
t (τt, x̄) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

πt sin (ωtτt − ktx̄) , for − kt

ωt
<

x̄
τt
<M2t,

πt
[
sin (ωtτt − ktx̄)+ ℜ sin (ωtτt + ktx̄)

]
, for 0 <

x̄
τt
< − kt

ωt
,

πt𝔗 sin (ωtτt − krx̄) , for
kr

ωt
<

x̄
τt
< 0,

0, for − βM2r <
x̄
τt
<

kr

ωt
,

(3.14)

where the first region corresponds to the orange-shadowed zone in figure 4 and that
is similar to that in figure 3, with the coefficient πt being obtained from the residue
theorem described before. The following green-shadowed region is composed of the
coexisting shock-radiated waves moving backwards and the interface-reflected waves
moving forwards, with the amplitude of the latter being readily given by the reflection
coefficient for the dimensionless pressure amplitude, ℜ. And the blue-shadowed region
corresponds to the pressure field that crosses the interface with an amplitude that is
determined by the transmission coefficient, 𝔗. Such are obtained by applying the boundary
conditions at the material surface, (2.14), taking the form of

ℜ = ktϑ − krβ
2

ktϑ + krβ2 and 𝔗 = 2kt

ktϑ + krβ2 , (3.15a,b)

that involve the wavenumber at the transmitted and reflected sides, respectively, which
are attached to the compatibility condition, i.e. both of them must fulfil the sound
wave equation being subjected to the same frequency, ωt giving k2

r = ω2
t /β

2 − 1 and
k2

t = ω2
t − 1, and it can be checked that they have the same form of those given in

problem 2 of § 84, Chapter IX of Landau & Lifshitz (1987). Notice that, as kt = kt(ωt)
and kr = kr(ωt), the acoustic impedance of the contact interface depends on the acoustic
frequency because it changes the acoustic wavenumber, as expected. For instance, in the
limiting case where ωts → ∞, the value of kt/ωt → −1 corresponds to the wavenumber
of 1-D sound waves (represented by the grey lines). These scenarios extend beyond the
current analysis because, with the modified wavenumber, the constant-amplitude sonic
waves that are reflected and transmitted will reach both the transmitted and reflected
shocks, respectively. This interaction induces at least secondary modes in the transmitted
shock, as described by Calvo-Rivera et al. (2023) for piston-driven shocks. The present
analysis remains consistent because, as β → 1 and ϑ → 1, the coefficients ℜ → 0 and
𝔗 → 1, corresponding to the case of a weak discontinuity at the interface, addressing the
problems already solved in Wouchuk, Huete Ruiz de Lira & Velikovich (2009) and Huete
Ruiz de Lira, Velikovich & Wouchuk (2011).

The opposite limit, involving the total reflection of a sonic wave from a perfectly solid
wall, cannot be directly addressed by simply taking limits of the parameters introduced
here, i.e. 𝔗 /= 0. This is because the nature of the refracted sonic wave fundamentally
changes. As explained by Haberman (2013), see Chapter 4, § 6, the refraction–reflection
problem is characterised by the angle of incidence of the sonic wave defined by
the projection of the wavevector in the transverse direction. In our formulation, this
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The RMI for arbitrary EoS when a shock is reflected

angle is just sin−1(1/ωt). When this angle is greater than the critical value, i.e. when
sin−1(1/ωt) > sin−1(1/β), the refracted (transmitted acoustic wave in the reflected-shock
region) sonic wave is no longer a running wave but it becomes evanescent. Instead,
an evanescent wave is transmitted, which decays exponentially with the distance from
the interface, as readily seen by the compatibility condition k2

r = ω2
t /β

2 − 1, since kr
turns complex when ωt < β. By introducing this consideration and applying the same
boundary conditions for the pressure and its gradient, the wavenumber for the refracted
wave becomes complex. Consequently, one finds that ℜ = −1, similar to the piston-driven
shocks discussed in Calvo-Rivera et al. (2023).

For the sake of completeness, we briefly comment on the possibility of having
permanent acoustic waves at the interface from the Laplace transform equations. With
this purpose, it has proved convenient to write the pressure field in the transmitted shock
side as functions of the coordinate χt and variable qt,

Pt(qt, χt) = F+
t (qt + χt)− F+

t (qt + 2χt − χts)

cosh qt
+ cosh (qt + χts − χt)

cosh qt

×
[
F+

t (qt + 2χt − χts) αt (qt + χts − χt)− P
iso
ts (qt + χts − χt)

]
, (3.16)

where the equation particularised at the shock (A21a) is recovered if χt = χts. This
equation is particularly useful because it can easily adapt to different Riemann-type
configurations. For instance, if we assume that no disturbance can propagate back to
the transmitted shock from behind, making, F+

t = const., the expression simplifies to
match (48) of Wouchuk et al. (2009) for isolated shocks. Despite the evident differences,
a similar analysis can be applied. The first term in (3.16) introduces poles corresponding
to the secondary DK modes. Conversely, the second term in (3.16) contains a common
denominator, whose zeros are the same as those previously derived from the dispersion
relation, but shifted relative to the shock reference frame,

Dt (s̃t) = s̃t

√
s̃2

t + 1 + σbts̃2
t + σct, (3.17)

where s̃t = sinh (qt + χts − χt). The poles given for each χt value, associated with
different relative speeds, can be expressed in the form of

sI (χt) = cosh
[
cosh−1(sI)− χts + χt

]
, (3.18)

which, through manipulation and substitution of the hyperbolic change of variables, allows
us to obtain the pressure field in the spatiotemporal domain,

p̄t = πt sin
[
cosh

(
cosh−1(sI)− χts

)
τt − sinh

(
χts − cosh−1(sI)

)
x̄
]
, (3.19)

where

ωt = cosh
[
cosh−1(sI)− χts

]
and kt = sinh

[
χts − cosh−1(sI)

]
, (3.20a,b)

as a proof of consistency between the Laplace transform and the normal mode analyses.
An alternative scenario arises when the reflected shock satisfies ωrs > 1, with the acoustic
radiation hitting on the interface and travels to the right from the reflected shock. Since the
physical discussion is similar, this case will not be specifically considered in this work.
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3.2. The infinitely dense limit for the heavy material: the sequential model
As commented on in Velikovich et al. (2020), when the Atwood number is sufficiently
high 1 − A0 � 1, the RMI problem can be reduced, to some degree, to a shock-wall
reflection. However, it is convenient to take this limit cautiously because what really
distinguishes the interaction is the postshock Atwood number, in our formulation it
is A2 = (β2 − ϑ)/(β2 + ϑ). The condition 1 − A2 � 1 may not be easily anticipated
by preshock conditions for complex EoS, so the infinitely dense limit is conveniently
rewritten in terms of β2/ϑ � 1. In such a case, the mathematical description of the
pressure field can be significantly simplified. In terms of the mathematical formulation,
this distinguished limit allows us to obtain analytic expressions for the pressure fields
at both sides. When β2/ϑ � 1, expression (A4a–c) for the pressure gradient becomes
l̄ri � 0, that is equivalent to that with the problem of shock wave reflected by a weakly
perturbed wall, as studied in Briscoe & Kovitz (1968) and extended to arbitrary EoS in
Calvo-Rivera et al. (2023).

The physics behind the decoupling of the perturbation evolution of reflected and
transmitted shocks can be understood as follows if dimensional variables are considered.
Due to the significantly higher speed of sound on the reflected-shock side, the corrugated
contact surface evolves more slowly compared with the dynamics of the reflected shock,
whose oscillations decay before the interface shape undergoes significant changes. As
a result, on the time scale of the interface shape variation, the reflected-shock side
maintains a constant pressure from the low-density left-hand side of the interface. For
the high-density right-hand side, the situation corresponds to a rippled surface of a
compressible fluid is instantly loaded with a constant, uniform pressure, resulting in an
RMI-like instability, as first analysed by Nikolaev (1965) for the opposite limit β2/ϑ � 1.
In our dimensionless formulation, the reflected shock operates independently of any
knowledge about the transmitted shock, while the latter is completely influenced by
the former. Thus, the resolution occurs in a sequential manner: initially addressing the
reflected shock, such as in the piston-reflection problem, and subsequently utilising the
pressure field at the contact interface to resolve the transmitted shock. We refer to this
as the sequential model. The mathematical details of the function decomposition in the
Laplace transform are provided in Appendix A.5. By applying the same procedure used
in the previously described ILT, the pressure field in the spatiotemporal domain can be
computed.

For the sake of simplicity, the sequential model has been presented and computed in
the absence of SAE, since the main purpose is the evaluation of the accuracy in regular
conditions. For example, in figure 5(a), the pressure field is computed for the same case
as in figure 2(a) corresponding to Yang et al. (1994). Figure 5(b) is a similar case but
with higher Atwood number and shock strength. The orange line corresponds to the fully
consistent model and the black-dashed line with the sequential model. It is observed that,
even when the parameter β2/ϑ is not very large, the agreement in the shock pressure
perturbations is fairly good. However, it should be noted that a relatively good agreement
in the pressure evolution of the shocks does not necessarily guarantee a similar match
in the evolution of the contact interface, since the simplification stems from a singular
perturbation in neglecting the pressure gradient at the interface. Therefore, the validity
of this method should be checked by comparing the growth rate given from the full
formulation against the present limit, as done in § 5.
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The RMI for arbitrary EoS when a shock is reflected

β = 5.406

ϑ = 1.524

R0 = 5.1, Mi = 1.24

γt = 1.0935, vt = 0 and μt = 0

γr = 1.4, vr = 0 and μr = 0

R0 = 10, Mi = 2

γt = 1.0935, vt = 0 and μt = 0
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β = 2.726

ϑ = 1.280

p̄js       (x̄)
β�1

p̄js (x̄)

p̄js       (x̄)
β�1

p̄js (x̄)

x̄ x̄

–0.4

–0.2

0.2

0.4

0.6

–20 –10 10 20

–0.4

–0.2

0.2

0.4

0.6

–20 –15 –10 –5 5

(a) (b)

Figure 5. Pressure perturbation at the respective transmitted and reflected shocks for different incident Mach
and Atwood conditions. Orange-solid line corresponds to the complete model and black-dashed line with the
sequential model β2/ϑ � 1.

4. The acoustic, rotational and asymptotic velocity fields

This section is dedicated to the analysis of the velocity field. As previously established in
Landau & Lifshitz (1987) and Clavin & Williams (2009, 2012), the velocity field can be
decomposed into two distinct types of waves: an acoustic wave, which is generated by the
pressure sound waves emitted by each front, and an entropy-vorticity wave, which, under
linear stability analysis, represents an isobaric and incompressible flow convected by the
unperturbed flow velocity. The general equation for such velocity field can be given by the
Helmholtz decomposition in the form of

∂2v̄j

∂τ 2
j

= ∇2v̄j + ∇ × (∇ × v̄j
)
, (4.1)

where ∇ × (∇ × v̄j) = ∇ × w̄j is the curl of the vorticity field w̄j. It is convenient to
use Helmholtz decomposition of the velocity field by the superposition of its acoustic or
potential part and its rotational or entropic contribution, namely v̄j(x̄, τj) = v̄ac

j (x̄, τj)+
v̄rot

j (x̄). Note that the rotational contribution remains constant for each fluid particle, as
derived from the linear Euler equations. Therefore, any changes in the rotational field (or
vorticity) must be externally induced, as exemplified here by the corrugated oscillating
shocks.

Similar to the pressure field that has already been calculated in the previous section,
the velocity field can be expressed as a combination of the decaying and non-decaying
components of that pressure field. First, we introduce the acoustic velocity field with
contributions from the decaying part, followed by the permanent oscillatory component.
This results in a piecewise function for the velocity field, depending on the domain of SAE
influence.

4.1. The acoustic wave
The acoustic component of the velocity field can be calculated directly from Euler
momentum equations (2.9). With use made of the hyperbolic transformation (3.2a,b), and
the corresponding Laplace transforms, the streamwise component of the acoustic velocity
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field in the transmitted-shock and reflected-shock sides reads as

U
ac
j (sj, χj) = sinhχj coshχjPj(sj, χj)− cosh2 χj

Lj(sj, χj)

sj
, (4.2a)

V
ac
j (sj, χj) = coshχj

Lj(sj, χj)

sj
+
v̄0

ji

sj
, (4.2b)

where v̄0
ji is suited for both sides, namely, v̄0

ti = −M2t(Rt − 1)ξ0
t and v̄0

ri = M2r(Rr −
1)ξ0

r are the initial value for the transverse velocity at the interface, which are proportional
to the initial shock corrugation amplitudes, defined after (2.7a,b) and explicitly given in
(S.2.10) of the supplementary material. The spatiotemporal evolution can be obtained with
the ILT, similarly as done in (3.3) for the pressure field. For the streamwise components,
we obtain

ūac
j (ηj, χj) = sinhχj coshχjp̄dec

j (ηj, χj)− 2 cosh2 χj

π

∫ ζj

0
Im

{
Lj(−iz, χj)

−iz

}
sin

(
ηjz
)

dz

(4.3)

for the transmitted and reflected sides, respectively. On the other hand, for the transverse
velocity contribution, we find

v̄ac
j (ηj, χj) = 2 coshχj

π

∫ ζj

0
Im

{
Pj(−iz, χj)

iz

}
sin

(
ηjz
)

dz + v̄0
ji. (4.4)

In RMI, an important particular case involves the evolution of velocity profiles at the
interface. This simplifies the aforementioned equations, as for x̄ = ηj sinh 0 = 0 and for
the temporal variable τj = ηj cosh 0 = ηj, yielding

ūac
ti (ηt) = 2

π

∫ ζt

0
Im

{
Lt(iz, 0)

iz

}
sin (ηtz) dz, (4.5a)

v̄ac
ti (ηt) = v̄t0 − 2

π

∫ ζt

0
Im

{
Pt(iz, 0)

iz

}
sin (ηtz) dz, (4.5b)

for the streamwise and transverse velocity contributions, respectively.
As previously mentioned, the expressions presented above are only valid when the shock

front oscillates with a frequency lower than (1 − M2
2j)

1/2, which was referred as case (i).
When the frequency of the shock exceeds this limit, permanent sound pressure waves are
emitted in the compressed fluid, as identified previously as cases (ii) and (iii).

For clarity, we will restrict our consideration to ωst > 1, associated with cases
where the transmitted shock front can enter the SAE regime and these waves reach
the interface, i.e. case (iii). In this scenario, the longitudinal velocity field can
be expressed as ūac

j (τj, x̄) = ūdec
j (τj, x̄)+ ūosc

j (τj, x̄), where the decaying component
is given in (4.3) with the change of variables to Cartesian coordinates. The
non-decaying component is straightforward to calculate, as it only involves differentiating
and integrating corresponding harmonic functions in (3.14). Consequently, the
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The RMI for arbitrary EoS when a shock is reflected

transmitted- and reflected-side normal velocity components can be expressed as

ūosc
t (τt, x̄) =

⎧⎪⎪⎨
⎪⎪⎩

Qt sin (ωtτt − ktx̄) , for − kt

ωt
<

x̄
τt
<M2t,

Qt
[
sin (ωtτt − ktx̄)+ ℜ sin (ωtτt + ktx̄)

]
, for 0 <

x̄
τt
< − kt

ωt
,

(4.6a)

ūosc
r (τr, x̄) =

⎧⎪⎪⎨
⎪⎪⎩
β

kr

kt
Qt𝔗 sin

(
ωtτrβ

−1 − krx̄
)
, for

kr

ωt
<

x̄
τt
< 0,

0, for − M2r <
x̄
τr
<

kr

ωt
,

(4.6b)

where Qt = πtkt/ωt is the amplitude of the non-decaying contribution. The transverse part
is equally simple to obtain and will be omitted here for the sake of conciseness. Upon close
examination of these expressions, the influence of the SAE at the interface becomes clear.
When the transmitted front oscillates at a frequency higher than one, the wavenumber turns
negative. This causes the non-decaying component of the longitudinal interface velocity
to oscillate with a mean value around zero, while the decaying part increases from zero to
a final constant value. As a result, the oscillatory and decaying components compete over
time without damping the oscillations.

4.2. The vortex-entropic wave
Due to the steady state of the rotational field, the governing equation (4.1) can be expressed
as ∇2v̄rot

j = −∇ × w̄j. This vector equation can be decomposed into its streamwise and
transverse components,

d2ūrot
j

dx̄2 − ūrot
j = −w̄j, (4.7a)

d2v̄rot
j

dx̄2 − v̄rot
j = dw̄j

dx̄
. (4.7b)

Recognising the incompressibility of the linear rotational velocity field, the latter equation
can be replaced with (dūrot

j )/(dx̄) = −v̄rot
j , simplifying the differential to be solved to only

(4.7a) for each side of the contact interface. This fact allows us to calculate the value of w̄j
using RH conditions and Euler equations, namely

w̄j = ±Ωj p̄js (x̄) = ±Ωj p̄j

(
x̄, τj = x̄

sinhχjs

)
, (4.8)

where the positive sign must be chosen for the transmitted shock j = t and the negative sign
for the reflected shock j = r. Notice that τt = x̄/ sinhχts and τr = x̄/ sinhχrs represent the
time when the transmitted and reflected shock fronts, respectively, have just arrived at the
evaluated position x̄, where sinhχjs = M2j/(1 − M2

2j)
1/2. The amplitude of the vorticity

disturbances relative to the shock pressure perturbations is

Ωj =
(Rj − 1

) (
1 + hj

)
2M2j

. (4.9)

Equation (4.7a) is a second-order linear differential equation, the solution of which
involves a combination of the homogeneous and particular solutions. The particular
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solution can be determined using the method of undetermined coefficients, employing
the integral equation as a proposed solution, as outlined in Wouchuk & Cobos-Campos
(2018).

The homogeneous part can be easily solved by using an integrating factor of the form
Ae−x̄ + Bex̄ and neglecting the non-regular contributions of the general solution, in the
case of the transmitted zone B = 0 while for the reflected one A = 0. In determining
the integration constant, a boundary condition arises from the observation that the only
contribution to the vorticity field stems from the oscillations of the shock. Hence, it
becomes evident that at x̄ = 0, the rotational contribution to the velocity field is zero. Thus,
the ultimate expression for the normal component of the rotational velocity corresponds
to the particular solution of (4.7a), which takes the form of

ūrot
j (x̄) = 2Ωj sinh2 χjs

π

∫ ζj

0

Im{Pjs(−iz)}
z2 + sinh2 χjs

sin
(

z
x̄

sinhχjs

)
dz. (4.10)

Given the incompressibility of the linear rotational field, the transverse contribution can
be determined as the derivative with respect to x̄ of (4.10), that renders

v̄rot
j (x̄) = −2Ωj sinhχjs

π

∫ ζj

0

Im{Pjs(−iz)}
z2 + sinh2 χjs

cos
(

z
x̄

sinhχjs

)
z dz. (4.11)

Notice that, as before the expressions are only valid when the frequency of the shock is
lower than ωts < (1 − M2

2t)
1/2. If one of the shock front exceeds that limit, the shock

front enters in the SAE regime. In order to see what modification implicates such a
change we consider the case presented in figure 2(c), i.e. the transmitted shock wave
exhibits permanent oscillations. In terms of mathematical treatment, this only implies
that the transmitted rotational velocity field should contains another particular solution
proportional to sin (krot

t x̄), where the rotational wavenumber is given by krot
t = sI(1 −

M2
2t)/M2t. The corresponding constant is obtained from the method of undetermined

coefficients. Thus, it is possible to include the permanent oscillatory part of the rotational
velocity field as

ūrot
t (x̄) = 2Ωt sinh2 χts

π

∫ ζt

0

Im{Pts(−iz)}
z2 + sinh2 χts

sin
(

z
x̄

sinhχts

)
dz + πtΩt

1 + krot
t

sin (krot
t x̄),

(4.12a)

v̄rot
t (x̄) = −2Ωt sinhχts

π

∫ ζt

0

Im{Pts(−iz)}
z2 + sinh2 χts

cos
(

z
x̄

sinhχts

)
z dz − πtΩtkrot

t

1 + krot
t

cos (krot
t x̄),

(4.12b)

for the streamwise and lateral velocities associated with the transmitted-shock side,
respectively. It is readily seen that SAE-induced rotational disturbances do not contribute
to the velocity field at the interface x̄ = 0, and therefore, they have no effect on the growth
rate.

4.3. Asymptotic velocity field
The asymptotic velocity field depends on the shock oscillation frequency that ultimately
determines the cases (i), (ii) and (iii) commented before. As per the former, as the shocks
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gradually attain planarity over extended periods, the acoustic contribution diminishes,
resulting in an incompressible velocity field for τj � 1. Consequently, (4.1) simplifies to

∇2v̄∞
j = −∇ × w̄j, (4.13)

which is similar to that for the rotational field, albeit with the additional consideration of
accounting for the history of the acoustic perturbation influence, which manifests as the
homogeneous component of the solution to the differential equations. Consequently, the
system of differential equations that must be solved for each side is written as follows:

d2ū∞
j

dx̄2 − ū∞
j = −w̄j, (4.14a)

dū∞
j

dx̄
= −v∞

j . (4.14b)

The general solution for the streamwise and transverse asymptotic velocity field in the
transmitted side can be written as

ūt(x̄) = ū∞
ti e−x̄ + ūrot

t (x̄), (4.15a)

v̄t(x̄) = −ū∞
ti e−x̄ + v̄rot

t (x̄), (4.15b)

where the rotational contribution corresponds to the particular solution. The homogeneous
part, involving the exponentially decaying term, can be calculated via the final value
theorem,

ū∞
ti = lim

τt→∞ ūac
t (τt) = lim

st→0
sUac

t (s, 0). (4.16)

Notice that this term, commonly referred to as the asymptotic growth rate in the RMI
context, is pivotal and will be thoroughly examined in § 5.

Similarly, the reflected field can be articulated as

ūr(x̄) = ū∞
ri ex̄ + ūrot

r (x̄), (4.17a)

v̄r(x̄) = ū∞
ri ex̄ − v̄rot

r (x̄), (4.17b)

where the homogeneous term involves ū∞
ri = ū∞

ti /β.
As discussed in Wouchuk (2001) and Cobos-Campos & Wouchuk (2016), an alternative

method exists for determining the asymptotic velocity, particularly the value of ū∞
ji . This

involves substituting the independent variable x̄ in (4.14a) with the shock position, denoted
as x̄ = ηj sinhχjs. Upon transformation in the Laplace variable, an expression in the
Laplace variable for the asymptotic normal velocity can be found, namely

U
∞
j = sjū∞

ti − sinh2 χjsv̄
∞
ti

s2
j − sinh2 χjs

− w̄j sinh2 χjs

s2
j − sinh2 χjs

, (4.18)

for both the transmitted and the reflected sides. By focusing on the second term in the
aforementioned expression, it becomes evident that it corresponds to the Laplace transform
of the second term in (4.15a) and (4.17a). However, attempting to ILT the first term in
(4.18) yields non-physical results due to the poles at sj = ± sinhχjs. Thus, to obtain a
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regular solution, this term must be nullified at those points. This requirement for regularity
provides us with a set of equations in the form

ū∞
ti − v̄∞

ti = w̄t sinhχtsPts (st = sinhχts) , (4.19a)

ū∞
ri + v̄∞

ri = w̄r sinhχrsPrs (sr = − sinhχrs) , (4.19b)

where ū∞
ti , ū∞

ri , ū∞
ti and v̄∞

ri are unknown quantities referring to the asymptotic normal
and lateral velocities at both sides of the contact interface. The system of equations
completes with use made of the continuity of normal velocity, ū∞

ti = β ū∞
ri , along with

the conservation of tangential momentum at large times, β2(v̄∞
ti − v̄0

ti) = ϑ(v̄∞
ri − v̄0

ri).
Simple manipulation allows us to express the asymptotic normal velocity at the interface
with

ū∞
ti =

(
βv̄0

ti − ϑv̄0
ri
)
β

β2 + ϑ
+
[
βΩt sinh (χts)Pts (χts)+ ϑΩr sinh (χrs)Prs (−χrs)

]
β

β2 + ϑ
,

(4.20)

that renders the same value as (4.16), the latter being similar to (40) of Wouchuk &
Nishihara (1997), which was further analysed in Wouchuk (2001).

If we examine the two terms in (4.20), the first term represents the initial tangential
velocities at the interface, which induce torque and subsequently enhance the interfacial
normal velocity, thereby promoting the growth of ripple amplitude. The second term
refers to the pressure wave induced by the oscillations of the shock fronts. This term
can either augment ū∞

ti or subtract from it, sometimes resulting in a freeze-out at the
interface and halting the growth of interfacial instability (Fraley 1986; Mikaelian 1994;
Wouchuk & Nishihara 2004; Wouchuk & Sano 2015). One might be tempted to assert
that the calculation of the growth rate is only valid in the absence of SAE at the shock
fronts, suggesting that the presence of acoustic disturbances in the long-term regime,
as seen in cases (ii) and (iii), can affect the asymptotic growth rate. For case (ii), since
non-decaying acoustic contributions do not reach the interface, they have no impact on the
contact interface dynamics. In case (iii), where constant-amplitude acoustic disturbances
do reach and cross the contact interface, the result remains the same. The mean value
of this contribution is strictly zero, meaning there is no imbalance in the history of the
acoustic influence for this non-decaying mode. Therefore, the asymptotic growth rate is
also ū∞

ti , though the asymptotic dynamic response is ū∞
ti + Qt sin(ωtτt). Thus, even when

the interface oscillates without damping, oscillations have a mean value, which is ū∞
ti .

Figure 6 shows the asymptotic velocity fields, with figure 6(a) displaying the
longitudinal components and figure 6(b) showing the transverse components. These are
further divided into potential (dashed orange line) and rotational (dashed green line)
contributions. Figure 6(c) presents a vector plot of the asymptotic velocity field overlaid on
the two-dimensional vorticity field. The parameters are chosen to meet Yang et al. (1994)
results. Dimensionless velocity disturbances on the reflected side are scaled by β to match
the normalisation of those on the transmitted shock side. This adjustment ensures that
the continuity of the longitudinal contribution across the interface is easily identifiable
in figure 6(a). As expected, the velocity field near the interface, which is crucial for the
development of the RMI, is governed by the potential contributions, while the far-field
domain is dominated by the rotational contributions. This is also noticed in figure 6(c),
where the misalignment between the eddies and the vorticity peaks close to the interface
appears due to the potential contribution to the velocity field.

In the linear regime, the evolution of the rippled interface is symmetric. However,
as the distortion increases, weakly nonlinear effects become significant, leading to the
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rot

 (x̄)

βūr
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Figure 6. Longitudinal (a) and transverse (b) asymptotic velocity fields split into the potential (dashed-orange
line) and rotational (dashed-green line) contributions. Panel (c) shows a vector plot of the asymptotic velocity
disturbances over the vorticity field.

emergence of distinct bubbles and spikes. The former refers to the lighter fluid penetrating
into the heavier fluid, corresponding the vertical positions where the velocity peaks and
ūti > 0, namely ȳ = 0, ȳ = ±2π, . . ., in our reference frame. The term spike refers to the
heavier fluid penetrating into the lighter fluid, corresponding the vertical positions where
the condition ūti < 0 peaks: ȳ = ±π, ȳ = ±3π, . . .. To evaluate whether the distinguished
acoustic fields presented in figure 2 actually affect the evolution of the nonlinear interface,
an estimation of the characteristic times must be done. From one side, linear theory
can estimate the time at which nonlinear effects enter into play, ξi(τt) ∼ ε−1, which is
found to occur for τt ∼ 1/(εū∞

ti ). On the other hand, the time when the acoustic influence
vanishes is of the order of unity, see Velikovich et al. (2014) and Probyn et al. (2021).
Therefore, if ε is sufficiently small, nonlinearity – manifested as the distinction between
spikes and bubbles – becomes significant only after the asymptotic RMI growth rate is
reached. Regardless of the scenario, the combined rotational and acoustic contributions to
the velocity field will affect the evolution of bubbles and spikes differently depending on
the side of the interface, with SAE amplifying this difference.

5. The RMI at the contact interface

5.1. Prescriptions and approximated models
For many decades, various models have been developed to estimate the linear asymptotic
growth rate. These models are referred to as prescriptions. They provide approximate but
explicit formulae for evaluating the constant asymptotic growth rate. Such a formula, also
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proposed by Richtmyer (1960), is derived by treating the RMI as a limiting case of the
Rayleigh–Taylor instability, with instantaneous rather than constant acceleration, assuming
that perturbation fields are incompressible. According to his model, Richtmyer’s formula
should be applied using preshock parameters, namely

ūR
i = ξ0−

i M2t(Rt − 1)A0, (5.1)

where ξ0−
i = 1 with the normalisation chosen. However, to improve agreement with

numerical calculations, Richtmyer himself suggested using postshock values instead of
preshock ones, resulting in the widely known formula

ūR2
i = ξ0

i M2t(Rt − 1)A2, (5.2)

where A2 is the postshock Atwood number and ξ0
i is the postshock interface ripple

amplitude explicitly given in (S.2.11) of the supplementary material. For ideal-gas
configurations, the impulsive models work relatively well for weak shocks and/or high
adiabatic indexes, i.e. when compressible effects are negligible, see figure 1 in Velikovich
et al. (2014). For heavy-to-light accelerations, Meyer & Blewett (1972) empirically
determined that ξ0

i should be replaced by the average of the initial unshocked and
shocked amplitudes to align with their numerical results, ūMB

i = (ξ0−
i + ξ0

i )M2tA2/2,
where ξ0−

i = 1 with our variables normalisation. More accurate formulations have been
proposed, as the prescription by Vandenboomgaerde et al. (1998) that combines both
Richtmyer and Meyer–Blewett expressions,

ūVMG
i = M2t

[
1
2

(
A2ξ

0
i + A0ξ

0−
i

)
− 1

6 (A2 − A0)
(
ξ0

i − ξ0−
i

)]
. (5.3)

For most cases tested in the literature, the second term of the right-hand side of (5.3)
appears to be very small.

In addition to Richtmyer’s impulsive model, another alternative impulsive model
considers two different accelerations, as developed by Wouchuk & Nishihara (1996). In
this case, the growth rate corresponds to the first term of (4.20), which accounts only for
the initial velocity shear deposited at the interface after the incident shock refraction,

ūWN
i = β2M2t(Rt − 1)ξ0

t + ϑβM2r(Rr − 1)ξ0
r β

β2 + ϑ
, (5.4)

where the contribution of transverse velocities at the interface is determined by the initial
shock ripple amplitudes. This two-acceleration formula is an approximation that neglects
the history of the transient acoustic disturbances, but it offers improved predictions for
both reflected shocks and rarefaction cases compared with earlier incompressible models
(Cobos-Campos & Wouchuk 2016; Probyn et al. 2021; Li et al. 2024). The irrotational
Wouchuk–Nishihara model was later extended by the same authors to include bulk
vorticity, as seen in (34) of Wouchuk & Nishihara (1997), which is formally similar to
(4.20) and (4.16) presented in this work. However, while these equations are analytical
and exact, they cannot be expressed in a fully explicit form due to the impossibility to
get an explicit expression for the corresponding Laplace transform: it requires the iterative
evaluation of the functions Pts. Previously, Yang et al. (1994) developed a compressible
linear model derived from the Euler equations, which allows for the calculation of the
exact linear growth rate. However, unlike the posterior works by Wouchuk & Nishihara
(1997) and Wouchuk (2001), the model developed by Yang et al. (1994) is not analytical
and requires a numerical evaluation, except for the weak-shock limit that allows for
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The RMI for arbitrary EoS when a shock is reflected

explicitness. There is still potential for (4.20) to be further developed to achieve more
accurate predictions in an explicit form. For example, Cobos-Campos & Wouchuk (2016)
proposed an approximation of the second term on the right-hand side of (4.20) based on
the first guess of the iterative process. Optimising this choice for the term that accounts
for the compressible history of the interface can lead to very accurate predictions for the
asymptotic growth rate. The functions involved in this second term can be expressed as in
(A21), where αj and P

iso
js are explicit, accounting for the pressure field generated by the

reflected and transmitted shocks as if they were isolated. Therefore, the only non-explicit
expressions are the acoustic-coupling functions F+

t and F−
r , which require an iterative

scheme to be fully calculated, see (A19). For weak shocks, only the first order of iteration
is needed, as the acoustic coupling is negligible. However, since the effect of pressure
disturbances generated by the oscillating shocks is only important very close to the shock
fronts, except for conditions where SAE occurs, this approximate solution offers very good
results even for finite strength shocks, as shown below.

The explicit approximated solution where the pressure field generated by the shocks is
taken as in isolated-shock cases reads as

ūISO
ti = ūWN

i + ϑβΩr sinh (χrs)P
iso
rs (−χrs)− β2Ωt sinh (χts)P

iso
ts (χts)

β2 + ϑ
, (5.5)

where P
iso
js are given in (A21), this expression gives a quick and more accurate evaluation

of the asymptotic growth rate in most of the cases. Another explicit expression can be
constructed that renders the most accurate results compared with all other approximations
for the asymptotic growth rate. It is readily obtained by considering the first guess [k = 0]
to the acoustic functions, so that ū[0]

ti = ūISO
i + δū[0]

i , where

δū[0]
i = β2Ωt sinh (χts) αt (χts)F+,[0]

t (2χts)+ ϑβΩr sinh (χrs)αr (χrs)F−,[0]
r (−2χrs)

β2 + ϑ
,

(5.6)

where F+,[0]
t and F−,[0]

r are given in (A20). The price to pay for this more complicated
expression is compensated by the accuracy gained, as observed in figures 7 and 8,
respectively. Nevertheless it is easy to see that the solution converges to the exact value of
ū∞

ti as the iteration index k increases: ū[k]
ti → ū∞

ti , for k � 1, so the expression converges
to (4.20), or the equivalent (34) from Wouchuk & Nishihara (1997), as the iteration
step advances. The advantage of ū[k]

ti is that it starts from a physically coherent scenario
(isolated shocks), and the effects of acoustic coupling are incorporated iteratively, with the
first correction being fully explicit.

Another approximate solution is the one given by the sequential model developed in
Appendix A.5, which formally applies for conditions where β2/ϑ � 1. For that case, the
value of the asymptotic growth rate is that given by (4.20), where the pressure functions in
the second term of the right-hand side are given by (A27) for Prs, and by the corresponding
combination involving the acoustic function (A28) for Pts. This sequential-model solution
will be denoted as ūSM

ti .
Before examining the temporal evolution of the unstable contact interface in the

linear regime, we conduct a direct comparative analysis of various prescriptions and
approximated models for the long-time asymptotic growth rate, including the exact
solution provided by (4.16) (or (4.20), equivalently). This analysis is illustrated in
figure 7, where we present a shock-strength dependence analysis for certain preshock
thermodynamic conditions of the two materials or materials. Figure 7(a) corresponds to
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R ūti
VMGūti
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Figure 7. Comparison of the different prescription and approximated models with the exact solution
(solid-black line).

the gas-to-air SF6 case, as shown in figures 2(a) and 2(b). Results are aligned with Li
et al. (2024), where they find, for the heavy-to-light case, that ‘the incompressible linear
model loses validity when the incident shock is strong’. Figures 7(b) and 7(c) illustrate
the shock-strength variation for the cases computed in figures 2(c) and 2(d), which are
associated with the vdW EoS. Finally, figure 7(d) presents a shock-strength dependence
study for Al–Cu, as depicted in figures 2(e) and 2( f ), where the values for Mi = 1.3
and Mi = 2.5 correspond to the linear growth rate of the nonlinear ‘light-to-heavy’
configuration addressed numerically by Tahir et al. (2011); see § 5.3 for a more elaborated
discussion.

Through direct inspection, we can draw both general and specific conclusions. First, as
expected, all solutions converge to the linear shock-strength dependence, ū∞

ti ∼ Mi, in the
weak-shock limit Mi − 1 � 1. Second, the approximated solution ū[0]

ti although complex
in form, is fully explicit and is the most accurate across the entire range of parameters
explored with various EoS. In some cases, the discrepancies are nearly imperceptible
within the order-of-unity scale range. Third, the simplest impulsive-model prescription,
based on preshock properties, consistently renders the least accurate predictions. Further
conclusions are more specific. The approximation ūWN

ti is generally the second-best,
except for ideal gases in relatively strong-shock conditions, where ūSM

ti and ūR
ti provide

slightly better approximations. The prescription ūVMG
ti , commonly applied to the reflected

rarefaction scenario, is demonstrated here only under conditions where β < 1 (see
figure 7b,c). The results indicate that the accuracy of prescriptions varies depending
on the specific conditions, with no definitive trend favouring one model over others.
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Figure 8. Transient evolution of the growth rate (solid-black line) alongside different prescriptions and
approximated models. Each panel corresponds to the respective case in figure 2. In panel (a), circles represent
the data of the solution of Yang et al. (1994).

This variability suggests that caution should be taken when applying them, particularly
in the context of non-ideal EoS.

Upon close inspection of the inset in figure 7(d), which corresponds to the three-term
EoS for Al–Cu, it can be observed that the slope of the weak-shock linear dependence
varies depending on the model being assessed. This variation arises because the three-term
EoS lacks sufficient accuracy in the weak-shock limit, where the state functions fail to
converge to the imposed cold conditions, such as the reference sound speeds, c0r and c0t.
The sensitivity of the cold-condition approach depends on specific parameters, such as
R or M2, resulting in each model being affected differently in this weak-shock regime.
However, this is not a major concern, as the weak-shock limit holds minimal relevance in
solid RMI.

5.2. The exact transient model
We have observed that prescriptions and approximated models perform relatively well
under weak-shock conditions. However, significant deviations from the exact asymptotic
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solution occur at finite shock strengths. Since the RMI pertains to a transient growth where
nonlinear effects can become significant as the contact interface amplitude increases, it is
crucial to include the exact temporal evolution in the study.

The exact evolution of the ripple amplitude, (2.6), can be derived from the integration
of the velocity field evaluated at the interface, since we are interested in the point where
the amplitude is greater the growth rate of the interface ripple is given by

dξi

dτt
= ūti(τt), (5.7)

taking the Laplace transform in time of the above equation the solution take the form of

Si = ξ0
i

st
+ Uac

t (st, 0)
st

, (5.8)

where ξ0
i is the dimensionless postshock amplitude at τt = 0+, provided in (S.2.11) of the

supplementary material. With use made of the ILT, along with the convolution theorem
for the second term, we obtain

ξi(τt) = ξ0
i + 2

π

∫ ζt

0
Im

{
Lt(iz, 0)

iz

}
1 − cos(τtz)

z
dz, (5.9)

allowing us to write the temporal evolution of the ripple amplitude with an integral
expression, since Lti = Lt(st, 0) is already determined. However, for sufficiently large
times τt � 1, the asymptotic linear growth rate can be used to write

ξi(τt � 1) = ξ∞
i0 + ū∞

t τt, (5.10)

where the offset

ξ∞
i0 = ξ0+

i − ∂Lti

∂st

∣∣∣∣
st=0

, (5.11)

is given through the Taylor series expansion of (5.8) in the variable st. The value of the
second term is obtained by taking the derivative of the functional expression Lti evaluated
at st = 0, as done in Cobos-Campos & Wouchuk (2016).

The above expressions are valid for cases (i) and (ii). In case (iii), where SAE
disturbances reach and cross the contact interface, the result for the ripple evolution is
similar but includes a new oscillatory term. Specifically, it can be readily found through
straightforward construction that

ξi(τt) = ξ0
i + 2

π

∫ ζt

0
Im

{
Lt(iz, 0)

iz

}
1 − cos(τtz)

z
dz + Qt

ωt
[1 − cos(ωtτt)] , (5.12)

i.e. an oscillatory term must be included. Likewise, we obtain

ξi(τt � 1) = ξ∞
i0 + ū∞

t τt + Qt

ωt
[1 − cos(ωtτt)] (5.13)

for the asymptotic long-time regime.
To analyse the transient evolution of the contact interface, we perform calculations

of the interface dynamics under the same conditions as in figure 2. The results,
presented in figure 8, indicate that in most cases, the known expressions are not
suitable for predicting the RMI, in agreement with the discussion following figure 7.
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Additionally, it is worth noting the multifrequency character of the solution associated with
the acoustic coupling with the oscillating reflected and transmitted shocks. For example,
the solid line in figure 8(a) shows the interface evolution in the linear regime, along with
the circle symbols corresponding to the case computed in Yang et al. (1994). Given that
the application of the ILT in this specific case is novel, we believe the Yang results, based
on the same physical assumptions as our model but integrated with a different numerical
method, are well-suited for benchmarking our model. Note that in our figure, the vertical
axis represents the dimensionless interface ripple growth rate and incorporates a factor of
Mic0r/c2t = 3.075 compared with that in figure 7 of Yang et al. (1994). Meanwhile, the
horizontal axis, associated with the temporal scale, is the inverse. Figure 8(b), depicting
a similar air-SF6 configuration but with an stronger incident shock, demonstrates similar
qualitative dynamics. In contrast, figure 8(c,d), which correspond to cases using the vdW
EoS, exhibit noticeable differences in the frequency and amplitude of oscillations. These
differences arise from the distinct characteristics of the two configurations: figure 8(c)
depicts a neutrally stable shock with an oscillating regime that does not decay over
time, while figure 8(d) illustrates a postshock situation where β < 1. For this case,
is the reflected shock the one producing stronger oscillations, as seen in figure 2(d).
Please note that we have not included the line corresponding to Richtmyer’s postshock
formula, as it yields a negative value (ūR2

i = −0.0297). The curve ūSM
i has also been

omitted for the similar reasons. Finally, figure 8(e, f ) pertain to Al–Cu configurations
under different shock strengths. The stronger-shock case results in a much smoother curve
with significantly lower oscillations, consistent with the pressure field results shown in
figures 2(e) and 2( f ). A more detailed explanation of the effect of the EoS modelling for
Al–Cu configurations is provided below.

5.3. The impact of the EoS choice
In the previous subsection we have analysed the accuracy of the approximated models or
prescriptions when compared with the exact solution, regardless of the EoS employed in
the analysis. The present work, which is accommodated to employ any EoS, can be used
to analysed whether γ -like assumptions are sufficiently accurate, see Holmes et al. (1999),
Ishizaki & Nishihara (1997) and Endo et al. (1995), where a fitted or effective value of γ
and initial pressure p0 in an ideal gas EoS are selected to match the post shock values of
pressure p2 and velocity U2 observed in real experiments, or Ward & Pullin (2011), where
the authors carry out a dimensional analysis in order to find complete similarity between
Mie–Grüneisen and perfect gas EoS modelled flows.

To conduct this analysis, we examine the case of RMI in an Al–Cu system, similar to
the numerical results presented by Tahir et al. (2011) (case II), which also correspond
to the cases shown in figure 2(e, f ). The incident shock Mach numbers associated with
incident shock pressures of approximately p1 = 0.28 Mbar and 2.9 Mbar are Mi ∼
1.3 and Mi ∼ 2.5, respectively, according to the three-term EoS model. Although the
base-flow conditions are detailed in figure S3 of the supplementary material, here we
analyse the ‘equivalent’ ideal gas problem. Due to the impossibility of finding an initial
preshock combination of parameters for γ -like EoS that exactly matches the base-flow
results with more complex EoS (as the three-term description used in this work), i.e. due
to the lack of Riemann problem similitude for different EoS (Quartapelle et al. 2003),
we adopt an alternative approach. In particular, the procedure for setting up effective
initial parameters for perfect-gas-like problems involves finding the best fit for both EoS
zero-order profiles. The method is as follows: first, the preshock pressure p0 and the
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EoS γr γt Ri Rr Rt p0 p1 p2 A2 ξ0+
i

3-terms Al Cu 1.213 1.066 1.180 10−6 0.2844 0.4194 0.4980 0.8847
γ -like 3.64 5.44 1.214 1.064 1.179 0.1366 0.2844 0.3571 0.4982 0.8896
3-terms Al Cu 1.914 1.188 1.753 10−6 2.8802 4.6650 0.4320 0.6642
γ -like 2.52 3.14 1.913 1.189 1.754 0.3382 2.8805 4.4780 0.4323 0.6804

Table 1. Matched initial preshock parameters between the three-terms EoS for Al–Cu cases for Mi = 1.3 and
2.5 and their equivalent ideal gas ones. Preshock Atwood number is A0 = 0.53436. Dimensional pressures
quantities are in measured in Mbar.

adiabatic index γr of the fluid through which the incident shock travels are determined
by the density and pressure jumps across the shock. Then, the effective adiabatic indices
γt, along with Mr and Mt, are calculated to match the conservation of material velocity
at the interface, given a fixed preshock Atwood number and the density jumps across the
reflected and transmitted shocks. This procedure has been found to be very effective, at
least for this Al–Cu combination considered in this work, as demonstrated in table 1, where
all the base-flow density jumps across the shocks, and the postshock Atwood number and
dimensionless interface corrugation are fairly similar between three-terms EoS and γ -like
models. Specifically, for the Al–Cu case with Mi = 1.3, the equivalent postshock pressure
conditions approximate those of an ideal gas with effective values of γr = γAl = 3.64,
γt = γCu = 5.44, with a preshock pressure p0 = 0.1366 Mbar and the same initial density
jump at the interface, characterised by A0 = 0.53436. Similarly, for the Al–Cu case with
Mi = 2.5, the effective values are γAl = 2.52, γCu = 3.14 and p0 = 0.3382 Mbar.

The exact temporal evolution of the interface ripple velocity and its corresponding
asymptotic value are shown in figure 9 using the three-term EoS (black) and the ideal-gas
simplification (red) for the cases represented in table 1. Precisely, in the cases presented in
figure 9(a,b), the ideal gas model underestimates the growth rate by 8 % and overestimates
it by 28 %, respectively. Additionally, for figure 9(a), the ideal gas model predicts a
slightly higher frequency and amplitude in the ripple velocity time evolution compared
with the three-terms model. In figure 9(b), the frequency difference is minimal, but the
amplitude increases because the temporal evolution of the three-terms model becomes
quasiplanar after the velocity reaches its asymptotic value. Moreover, if a prescription
for the asymptotic growth rate is used in addition to the simplification of the EoS, the
discrepancies are expected to increase further, as demonstrated in figure 8.

Note that, although Tahir et al. (2011) examines a similar scenario of a shock incident
on an Al–Cu interface, a direct comparison between the asymptotic growth rate and the
numerical results there shown is not feasible due to differences in the regimes analysed.
In particular, the numerical set-up in their study corresponds to a fully nonlinear regime
where, in addition, elastic–plastic effects are considered. It is there shown that, for weak
shocks, the interface grows from ψ0−

i ∼ 25 μm to ψi(t∗) ∼ 77 μm, in a time scale that
ranges t∗ ∼ 800 ns. In our dimensionless variables, this corresponds to ξ(τ ∗) ∼ 3, where
the dimensionless time domain between frames corresponds to τ ∗ ∼ 270, as λ ∼ 100 μm
and c2t ∼ 5.5 km s−1 for the weak shock case (Mi ∼ 1.3). Therefore, even if the initial
amplitude were significantly smaller – which is not the case, as ε ∼ 1 – the long-time
behaviour would likely correspond to a nonlinear regime in practical conditions. The
strong shock case considered in Tahir et al. (2011) pertains to the nonlinear regime
too. Motivated by the lack small-amplitude studies, this work aims to address such
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Figure 9. Temporal evolution of the interface ripple velocity and its asymptotic value with the three-terms
EoS for Al–Cu cases – Mi = 1.282 in (a) and 2.532 in (b) – and their equivalent ideal gas results using the
effective preshock parameters listed in table 1.

shortage of exact verification solutions in RMI in solids. To facilitate this, we provide,
not only an analytic description detailed here and in the supplementary material, but also
Mathematica notebooks for both base-flow and perturbation problems. Note that, although
the linear RMI problem presented here cannot be compared with the results in Tahir et al.
(2011), the base-flow solutions do allow for some direct comparisons, as discussed in the
supplementary material.

6. Conclusions

This work advances the well-studied problem of the RMI in the linear regime by presenting
an analytical, fully compressible theory for RMI involving reflected shocks with arbitrary
EoS. The key advancements are that on one hand, the initial value problem perturbation
model is solved using the ILT. In contrast to the previously used separation of variables
technique, which describes the pressure field in terms of Fourier–Bessel series, the method
proposed in this work offers accurate solutions even under varying conditions and over
long-time regimes. On the other hand, this study advances previous work by not being
restricted to any particular EoS. Specific theoretical computations are conducted for an
ideal gas, a vdW gas and three-term constitutive equations for simple metals. The problem
formulation also includes the possibility of SAE for any of the reflected or transmitted
shocks and the study of its influence on the compressed material and, eventually, on
the contact interface. Additionally, an explicit expression for the asymptotic growth rate
is presented, demonstrating excellent agreement across a wide variety of conditions,
including variations in incident shock intensity and types of EoS. Two major conclusions
are drawn, as follows.

(i) When comparing heuristic prescriptions with the exact model for the linear evolution
of the interface, it is found that the former have a very narrow limit of validity when
the shock is not sufficiently weak, regardless of the choice of EoS.

(ii) When comparing realistic EoS with γ -like EoS, artificially constructed to mimic
zeroth-order conditions, it is found that such a EoS simplification offers low accuracy
concerning the asymptotic growth rate and the characteristic dynamical properties
of the transient evolution. Differences increase with the shock strength. Such
comparison has been done with use made of the exact linear model.

(iii) The combined use of heuristic simplifications and γ -like EoS models rarely yields
accurate results for the linear evolution of the interface. To reliably predict the
contact interface dynamics and growth rates for the RMI, it is crucial to develop

1000 A18-33

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
10

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1010


M. Napieralski, F. Cobos, A.L. Velikovich and C. Huete

precise analytical solutions and realistic EoS models. As shown in this work,
achieving this requires extensive algebraic calculations.

This study opens several opportunities for extensions and potential improvements that
the authors consider highly significant. First, the heavy-to-light configuration should
be addressed in similar terms. Second, for both the light-to-heavy and heavy-to-light
cases, the effect of a non-ideal EoS in the nonlinear regime can be investigated using
the incompressible model (see Velikovich & Dimonte (1996), Zhang & Sohn (1999),
Matsuoka, Nishihara & Fukuda (2003b), Matsuoka, Nishihara & Fukuda (2003a),
Velikovich et al. (2014), Matsuoka & Nishihara (2020) and references therein). Third,
the use of more complex materials as those undergoing elastic–plastic regimes (Piriz
et al. 2008). Finally, multimode and non-periodically symmetric configurations should be
explored to better simulate realistic scenarios (see Groom & Thornber (2019), Thornber
et al. (2019), Probyn et al. (2021) and Dimonte et al. (2024)).

Supplementary materials. Supplementary material, including detailed mathematical derivations of the
base-flow solution for the van der Waals gas and simple metals equations of state, as well as Mathematica
codes for calculating base-flow parameters for various EoS and a Mathematica script for the linear evolution of
the Richtmyer–Meshkov instability, are available at https://doi.org/10.1017/jfm.2024.1010. Further data can be
provided upon request.
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Appendix A. Resolution via the Laplace transform

This appendix presents the resolution of the initial value problem enunciated before
through the Laplace transform method. As in previous works (Zaidel’ 1960; Wouchuk
& Nishihara 1996; Cobos-Campos & Wouchuk 2016; Huete & Vera 2019; Calvo-Rivera
et al. 2023), it is useful to apply a change of variables that transforms the triangular domain
of the initial value problem into a square-shaped domain through a hyperbolic stretching
at the origin. Subsequently, the Laplace transform is applied.

A.1. The hyperbolic transformation
The relation between the Cartesian coordinates with the hyperbolic coordinates is given by
(3.2a,b) that can be applied to the sound wave equations and the corresponding boundary
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The RMI for arbitrary EoS when a shock is reflected

and initial conditions. As per the former, (2.10) takes the form

ηj
∂2p̄j

∂η2
j

+ ∂ p̄j

∂ηj
+ ηjp̄j = ∂ l̄j

∂χj
, (A1)

where the function

l̄j = 1
ηj

∂ p̄j

∂χj
(A2)

has been conveniently introduced to facilitate the manipulation of the equations, as
demonstrated later on. Likewise, the boundary conditions at the transmitted shock, see
(2.13a) and (2.13b) for the pressure, and (2.12a) for the ripples of the transmitted and
reflected side, respectively, and

l̄ts = −σ2t
∂ p̄t

∂ηt

∣∣∣∣
s
− σ3tξt and

dξt

dηt
= σ1tp̄ts, (A3a)

l̄rs = σ2r
∂ p̄r

∂ηr

∣∣∣∣
s
− σ3rξr and

dξr

dηr
= −σ1rp̄rs, (A3b)

respectively, where the coefficients σ1j, σ2j and σ3j have similar form as those in Huete &
Vera (2019) and Calvo-Rivera et al. (2023), specifically

σ1j =
(
1 + hj

)Rj

2M2j

√
1 − M2

2j(Rj − 1)
, σ2j = 1 − hj

2M2j
, and σ3j =

M2
2j

(Rj − 1
)

√
1 − M2

2j

.

(A4a–c)
The mechanical equilibrium at the interface is

p̄t(ηt, 0) = ϑ p̄r(ηr, 0) and l̄t(ηt, 0) = β2 l̄r(ηt, 0). (A5a,b)

Notice that, although the relation between the ηr and ηt depends on the corresponding
trajectories χr and χt, they can be uniquely related at the interface, where cosh(χr = 0) =
cosh(χt = 0) = 1, resulting in the relationship ηr = βηt.

A.2. The Laplace transform
The analysis proceeds by employing the Laplace transform on the variable ηj, which
corresponds to the scaled temporal variable τj along a specific fixed trajectory χj. In
particular, the Laplace transforms over the functions p̄j and l̄j at both sides of the contact
interface are

Pj(sj, χj) =
∫ ∞

0
p̄j(ηj, χ)e−sjηj dηj and Lj(sj, χj) =

∫ ∞

0
l̄j(ηj, χ)e−sjηj dηj.

(A6a,b)

Following the same structure as before, we first present the Laplace transform of the
sound wave equation, followed by the shock and interface boundary conditions. Regarding
the former, and using the change of variable sinh qj = sj, one can write the expressions
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(A1) and (A2) as a dynamical system with the form (Briscoe & Kovitz 1968)

∂

∂qj

(
cosh qjPj

)+ ∂Lj

∂χj
= 0, (A7a)

∂

∂χj

(
cosh qjPj

)+ ∂Lj

∂qj
= 0, (A7b)

which applies at both sides of the interface. The RH conditions for the transmitted and
reflected shocks are, respectively,

Lts(qt) =
(

−σ2t sinh qt − σ1tσ3t

sinh qt

)
Pts(qt)− σ3t

sinh qt
ξ0

t , (A8a)

Lrs(qr) =
(
σ2r sinh qr + σ1rσ3r

sinh qr

)
Prs(qr)− σ3r

sinh qr
ξ0

r . (A8b)

Notice that the time scale factor β is used here to link the frequency variables in the form
sinh qt = β sinh qr. The same transformation can be applied for the continuity of pressure
and streamwise velocity at the interface (A4a–c), which is written in terms of the variable
qj reads as

β Pt(qt, 0) = ϑ Pr(qr, 0) and Lt(qt, 0) = β Lr(qr, 0). (A9a,b)

Equations (A7)–(A9a,b) form a self-contained system that can be numerically integrated
to yield the Laplace transform of the pressure field. Nevertheless, there is room for
additional analytical derivation, as the solution to the system described in (A7) can be
expressed as a combination of acoustic functions, much akin to the d’Alembert solution
(see Briscoe & Kovitz (1968)) for the 1-D wave equation, namely

cosh qj Pj(qj, χj) = F−
j (qj − χj)+ F+

j (qj + χj), (A10a)

Lj(qj, χj) = F−
j (qj − χj)− F+

j (qj + χj), (A10b)

where F−
j and F+

j denote unknown functions that characterise sound wave propagation
in the negative and positive directions of χj, respectively. To clarify, F−

j represents
left-travelling sound waves originating from the transmitted shock and heading towards the
reflected shock, while F+

j corresponds to right-travelling sonic waves. The main advantage
of considering (A10) for F−

j and F+
j , over (A7) for Pj and Lj, is that the system of

differential equations is converted into a system of functional equations (Wouchuk 2001).
Referring to (A8), we can express the equations in relation to the acoustic function

through (A21), with use made of (A10) to write Pj as function of the two pair of acoustic
functions F±

j ,

F−
t (qt) = [

αt (qt + χts) cosh (qt + χts)− 1
]

F+
t (qt + 2χts)− P

iso
ts (qt + χts) , (A11a)

F+
r (qr) = [

αr (qr − χrs) cosh (qr − χrs)− 1
]

F−
r (qr − 2χrs)− P

iso
rs (qr − χts) , (A11b)

where αj(qj) are auxiliary functions that represent the downstream acoustic influence,
incorporating the corresponding Doppler-shift effects between the two shocks and the
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interface,

αj(qj) = 2 sinh qj

sinh qj cosh qj + σbj sinh2 qj + σcj
, (A12)

and where P
iso
js are the isolated-shock pressure contributions,

P
iso
js (qj) = σdj

sinh qj cosh qj + σbj sinh2 qj + σcj
, (A13)

with the minus sign in (A21b) being given by the change in the system of reference
with respect to isolated shock configurations. In addition, the following definitions have
been included: σbj = σ2j, σcj = σ1jσ3j and σdj = σ3jξj0, in accordance with the notation
employed in Calvo-Rivera et al. (2023).

On the other hand, the equilibrium conditions at the contact interface, (A9a,b), can be
also rearranged as a function of the pair of acoustic functions in the following form:

F−
t = ϕ1ϑ cosh (qt)F−

r − ϕ2F+
t , (A14a)

F+
r = ϕ2F−

r + ϕ1 cosh (qr)F+
t , (A14b)

with use made of the auxiliary functions

ϕ1 = 2β
β2 cosh (qr)+ ϑ cosh (qt)

and ϕ2 = β2 cosh (qr)− ϑ cosh (qt)

β2 cosh (qr)+ ϑ cosh (qt)
. (A15a,b)

Therefore, the expressions (A11) and (A14) form a closed functional system of four
equations that can be easily reduced to a system of two equations,

F−
r
[
qr (qt)

] = Θr3F+
t (qt)+Θr2F+

t (qt + 2χts)+Θr1, (A16a)

F+
t
[
qt (qr)

] = Θt3F−
r (qr)+Θt2F−

r (qr − 2χrs)+Θt1, (A16b)

with the auxiliary functions Θj1, Θj2 and Θj3 defined as follows:

Θr1 = −cosh (qt + χts)

cosh (qt)

Piso
ts (qt + χts)

ϑϕ1
(A17a)

Θr2 = cosh (qt + χts)

cosh (qt)

αt (qt + χts)

ϑϕ1
− sech qt

ϑϕ1
, (A17b)

Θr3 = ϕ2 sech qt

ϑϕ1
(A17c)

and

Θt1 = cosh (qr − χrs)

cosh (qt)

Piso
rs (qr − χrs)

ϕ1
, (A18a)

Θt2 = cosh (qr − χrs)

cosh (qr)

αr (qr − χrs)

ϕ1
− sech qr

ϕ1
, (A18b)

Θt3 = −ϕ2 sech qr

ϕ1
, (A18c)

for the reflected and transmitted shocks, respectively. In writing the functionsΘj1,Θj2, we
have made use of the definitions P

iso
js and αj(qj), defined in (A12) and (A13). The resolution
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of the system of equations is far from trivial, as functions depend on themselves shifted
with respect to the variable χj, which is the mathematical manifestation of the Doppler
shift effect between the shocks and the contact interface. It is worth emphasising that
functional equations, including linear ones, often defy analytical solutions. The details of
the resolution of this functional system are explained below.

A.3. The iteration scheme
The iteration scheme, based on fixed point method from Wouchuk (2001), renders

F−[k]
r (qr) = Θr1 −Θt1Θr3

1 −Θt3Θr3
+ Θr2

1 −Θt3Θr3
F+[k−1]

t
[
ζt(qr)+ 2χts

]
− Θt2Θr3

1 −Θt3Θr3
F−[k−1]

r (qr − 2χrs) , (A19a)

F+[k]
t (qt) = Θt1 −Θr1Θt3

1 −Θt3Θr3
+ Θt2

1 −Θt3Θr3
F−[k−1]

r
[
ζr(qt)− 2χrs

]
− Θr2Θt3

1 −Θt3Θr3
F−[k−1]

t (qt + 2χts) , (A19b)

where the superscript [k] indicates the iteration steep and where the dependence of Θ
functions on q is deliberately omitted for clarity purposes. Highlighting the non-trivial
nature of selecting an iteration scheme, it is important to emphasise that choosing
the correct functional expression is pivotal for guaranteeing solution convergence. By
referencing the recurrence functions, it becomes evident that an effective iteration path
should consider both its own terms and the contribution from its counterpart shock front.
Keeping this concept in mind, the iteration scheme (A19) was proposed, as demonstrated
in Wouchuk (2001). Additionally, to effectively resolve the problem, an initial estimate for
(A19) needs to be supplied. One possibility is the high-frequency limit, where the initial
guess is directly given by the limit qj � |χjs| that neglects Doppler shift contributions,
obtaining

F−[0]
r (qr) = Θr1 + (Θr2 −Θr3)Θt1

1 − (Θr2 −Θr3)(Θt2 −Θt3)
, (A20a)

F+[0]
t (qt) = Θt1 −Θt3F−[0]

r
[
ζr(qt)

]+Θt2F−[0]
r

[
ζr(qt)− 2χrs

]
, (A20b)

where the superscript [0] refers to initial guess. With use made of (A20) in (A19), a good
solution convergence accuracy is reached within a few iterations, only demanding around
five iterations for the most exigent cases associated with high compressible situations
(Cobos-Campos & Wouchuk 2016).

A.4. Singularities in the complex plane and the possibility of neutral stability
Once the functions F−

t and F+
r are determined from (A16a) and (A16b), the other

functions F+
t and F−

r can be easily derived from the equilibrium the RH conditions,
(A11), which can be gather together to get Pj(qj, χj), with use made of the wavefunction
solution (A10a). Therefore, the pressure field at both sides of the interface is fully
determined in the Laplace-frequency variables, either qj or sj = sinh qj. The pressure field
within the domain −M2rτr � x̄ � M2tτt is ultimately determined by the corresponding
inverse of the Laplace transform of Pj(qj, χj). Likewise, the pressure gradient function
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Lj(qj, χj) is given by (A10b). In order to obtain the pressure field description in the
spatiotemporal domain an analysis of the singularities arisen in the complex plane is
needed. Basically, there are two types of singularities that can appear in the complex plane:
isolated singularities and branch points which are related with complex functions that are
multivalued. The former ones split into three different types depending on the behaviour
of the Laurent expansion for the corresponding complex function (Duffy 2004, 2016):
essential singularities which are characterised by the fact of have an infinite number of
negative-order coefficients; removable singularities which have zero residue; and poles,
whose largest inverse (negative) power of the Laurent expansion is finite. In the present
case, the only isolated singularities that appear are poles, which can be easily anticipated
by the study of the EoS in the same way as in previous works (D’yakov 1954; Bates &
Montgomery 1999; Wouchuk & Cavada 2004; Calvo-Rivera et al. 2023). For example,
simple rearrangement of the above Laplace-variable equations renders

Pts(qt) = −P
iso
ts (qt)+ αt(qt)F+

t (qt + χts), (A21a)

Prs(qr) = P
iso
rs (qr)+ αr(qr)F−

r (qr − χrs). (A21b)

From (A21) it is clear that the roots in the denominator are similar to those occurring
in the isolated shock cases, since the roots implicitly associated with the functions F+

t
and F−

r involve lower-frequency roots. The existence of imaginary poles that lie out of the
previously defined branch cut affects the stability of the shock fronts, rendering the regime
of SAE, which means that the shock fronts exhibit a permanent oscillating behaviour
entering in a neutrally stable regime. It is easy to anticipate the existence of poles inside of
the Bromwich contour by analysing the denominator of the expressions (A12) and (A13),
which in terms of the variable sj is

D
(
sj
) = sj

√
s2

j + 1 + σbjs2
j + σcj, (A22)

where D(sj) = 0 is the dispersion relation that one gets by performing the normal mode
analysis as D’yakov (1954), obtaining the same as Clavin & Searby (2016) show in their
§ 4.4, with the substitution s = iω. Direct inspection in the dispersion relation provides
limit below which damped oscillations occurs, namely sj = ±i, since imaginary poles are
placed below than the branch point value so that they are omitted from the integration
path. For σcj < σbj < σcj + 1/(4σcj) (a condition that shock waves in an ideal gas meet) the
corresponding decay follows the following temporal power law t−3/2. For σcj + 1/(4σcj) <
σbj, the long-time power law is the same but the initial damping is primarily exponential
(Bates 2004). Under this condition, σbj > σcj, the only singularities present in this problem
are exclusively branch points, mathematically associated with the multivalued character
of the functions involving the term cosh qj (or

√
s2

j + 1), and physically related to the
self-oscillation frequency of each shock. When σbj = σcj, decaying oscillation changes it
envelope to t−1/2, at this point one get the critical value of the DK parameter hj = hcj,
where

hcj = 1 − M2j(1 − Rj)

1 − M2j(1 + Rj)
, (A23)

with j = t, r being transmitted or reflected front density jump and postshock Mach number,
respectively. Finally, for σbj < σcj in the shock oscillates with constant amplitude in the
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Figure 10. Bromwich integral contours for the transmitted (a,c) and reflected (b,d) sides. Blue circles
correspond to self-induced acoustic oscillations of the shock in its respective side. Orange circles refer to
oscillations influenced by opposite shock.

long-time regime. If this condition applies, the roots of the dispersion relationship

s∗
j = ±

[
2σbjσcj − 1

2(σ 2
bj − 1)

(
1 ±

√
4σcj(σcj − σbj)+ 1

2σbjσcj − 1

)]1/2

= ± [n(1 ± m)]1/2 (A24)

can be split into the imaginary and real parts, namely sI = ±[n(1 − m)]1/2 and sR =
±[n(1 + m)]1/2, respectively. Here, the real part, sR, provides spurious roots of the
dispersion relationship.

Due to the acoustic coupling between the two fluids, an additional pair of branch
points will arise in both sides. For example, in the transmitted pressure field the term
cosh qr appears, which in terms of st variable means [(st/β)

2 + 1]1/2. Then, if β > 1, the
frequency induced by the reflected shock is going to exceed the oscillation frequency of
the transmitted one, signifying in a extension of the branch cut, again we refer to scheme
given in figure 10.
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A.5. The sequential model
Therefore, under the limit β2/ϑ � 1, simple manipulation of the Laplace pressure
functions of the reflected shock renders

Prs = φr1(qr)+ φr2(qr)Prs (qr − 2χrs) , (A25)

involving the following auxiliary functions:

φr1(qr) = σ3rξr0

sinh (qr − 2χrs)

sinh (qr − 2χrs)+ sinh (qr)

sinh qr cosh qr + σ2r sinh2 qr + σ1rσ2r
,

φr2(qr) = sinh (qr)

sinh (qr − 2χrs)

sinh (qr − 2χrs) cosh (qr − 2χrs)− σ2r sinh2 (qr − 2χrs)− σ1rσ2r

sinh qr cosh qr + σ2r sinh2 qr + σ1rσ2r
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A26)

which can be solved with a recurrence expression

Prs = φr1 (qr)+
∞∑

n=1

φr2 (qr − 2nχrs)

n−1∏
k=0

ζ1 (qr − 2kχrs) , (A27)

as shown in Wouchuk & Cavada (2004), Calvo-Rivera et al. (2023) and repeated here
for convenience. From the above equation, that describes the reflected-shock pressure
field, the function F−

r can be obtained by direct substitution into the RH condition
(A21). Besides, through the pressure relationships at the interface in the asymptotic limit
β2/ϑ � 1, namely F+

r (qr) = F−
r (qr), the complete pressure field can be constructed

within the reflected-shock side. As per the transmitted-shock side, the knowledge of the
pressure field at the contact interface can be used to fully determine the transmitted shock
evolution. For example, a single functional expression for F+

t , i.e.

F+
t = φt1(qt)+ φt2(qt)F+

t (qt + 2χts), (A28)

must be resolved, with the auxiliary functions

φt1(qt) = cosh (qt + χts)
[
β2 cosh(qr)+ ϑ cosh(qt)

]
β2 cosh qr − ϑ cosh qt

P
iso
ts (qt + χts)

+ 2βϑ cosh qt

β2 cosh qr − ϑ cosh qt
F−

r [qr (qt)], (A29)

φt2(qt) = β2 cosh qr + ϑ cosh qt

β2 cosh qr − ϑ cosh qt
[1 − αt (qt + χts) cosh (qt + χts)], (A30)

being expressed in terms of the already known pressure function F−
r , and also Piso

ts
being the translated function given in (A13), and αt being determined in (A12) after the
corresponding variable shift. Once F+

t is established, the remaining acoustic functions F−
t ,

Pt and Lt can be readily determined through straightforward manipulation.
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