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Over recent years it has been shown that high resolution scanning transmission electron microscopy 

(STEM) images can be acquired by directly subsampling the probe locations [1-2] and inpainting the 

missing information, so could similar methods be applied to STEM simulation? A common approach to 

STEM simulation is the multislice method [3,4], where the 3-dimensional atomic potential of a sample 

is approximated as a series of 2-dimensional slices. MULTEM [5] is one example of STEM simulation 

software which can accurately provide representation of electron transmission in a STEM [6] using this 

multislice method. To account for thermal diffuse scattering, the frozen phonon model [7] is used, which 

takes a snapshot of the sample at some given time where the atom locations are slightly displaced from 

their equilibrium position depending on the Debye-Waller factor [7] of the atom (figure 1(c)). Each 

snapshot of atom positions is known as a frozen phonon configuration (FPC) and the more 

configurations considered, generally the more accurate the simulation [5,7]. However, this method is 

computationally expensive and therefore requires either a high-end machine, and/or a long time to 

compute [8] to make sure the simulations have converged to best match the experiment. This approach 

also runs into severe limitations when the comparison experimental image quality is poor [9]. This 

means that if a material, interface, or defect is susceptible to electron beam damage, it is hard to develop 

precise simulations of these structures.  

Our method to spatially compress a simulation is to first divide the output region into a set of discrete 

patches (figure 1(a)). Any desired sampling pattern can be generated by the user and then there is a 

function to call each required patch to be simulated. These patches are then substituted back into their 

respective position in the output region. This then provides a spatially sub-sampled simulation. Given 

that the dominant scattering process in HAADF STEM is incoherent, the maximum scattering angle can 

be limited to the outer diameter of the HAADF detector (figure 1(b)), hence fewer reciprocal space 

vectors are required for the output image. It is also possible to reduce the number of FPCs given that the 

increase in accuracy diminishes beyond some critical value. This critical value depends on the thickness 

of the sample, its vertical periodicity, and whether it contains any exotic properties such as grain 

boundaries or defects. The spatially subsampled simulations are reconstructed through an inpainting 

algorithm. Our inpainting algorithm consists of two key parts- a (blind) dictionary learning algorithm, 

followed by a sparse coding algorithm. The image recovery problem is turned into a Bayesian dictionary 

learning problem based on the Beta Process Factor Analysis (BPFA) developed in [10]. 

The results (figure 2(a)) show that it is possible to achieve over 90% structural similarity (SSIM) [11] 

with 3% spatial sampling, 5 FPCs, and a maximum reciprocal space vector of 5.12    . In this 

presentation, the development towards real-time simulations will be discussed, which is the first step in 

the rapid interpretation, classification, and analysis of images and potentially the future development of 
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artificial intelligent STEM [12]. 
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Figure 1. The three methods of simulation compression. (a) The simulation output space is divided into 

N patches of size [m x m] pixels. Each patch is indexed 1 to N (in this case N = 64) and the patches 

highlighted are called to be simulated, in this case a random 25% sampling mask. (b) The simulation 

space in red is limited to the outer diameter of the detector (green) and corresponds to the maximum 

reciprocal space vector used in the simulation. (c) A diagram showing the frozen phonon model 

approximation. 

 

 

Figure 2. (a) Reconstruction 

of a compressed simulation 

of bulk SrTiO3 with 3% 

spatial sampling ratio. It has 

an SSIM of 92.6% and 

PSNR of 26.7 dB with 

respect to (b) the fully 

sampled simulation.  
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