THE NEVANLINNA-PICK THEOREM AND A NON-POSITIVE DEFINITE MATRIX

TAKAHIKO NAKAZI

Let $\{z_j\}$ be an interpolation sequence in the open unit disc and $\{w_j\}$ a bounded sequence. In this note, it is shown that there is a function F in $H^\infty+C$ satisfying $\|F\|_\infty \le 1$ and $\tilde{F}(z_j)-w_j\to 0$ as $j\to\infty$ if and only if there exists a compact matrix $[t_{ij}]$ such that $[1-w_i\bar{w}_j/1-z_i\bar{z}_j]\ge [a_{ij}]$ on $\mathbb{A}\times\mathbb{A}$ where $[a_{ij}]=[w_j\bar{t}_{ji}+\bar{w}_it_{ij}]+[t_{ij}][(1-|z_i|^2)^{1/2}(1-|z_j|^2)^{1/2}/1-\bar{z}_iz_j]^{-1}[\bar{t}_{ji}]$.

Let U be the open unit disc and ∂U the unit circle. For $0 , the spaces <math>L^p(d\theta/2\pi)$ will be denoted simply by L^p , and the corresponding Hardy classes by H^p . Let C denote the space of continuous complex valued functions on ∂U . It is well-known that $H^\infty + C$ is a closed subalgebra of L^∞ . We shall identify a function in H^∞ or $H^\infty + C$ with its holomorphic or harmonic extension to U. The space

Received 23 October 1986. This research was partially supported by Grant-in-Aid for Scientific Research, Ministry of Education

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/87 \$A2.00 + 0.00.

 $M(H^{\infty} + C)$ consists of $M(H^{\infty})$ with U deleted.

For a function F in $H^\infty+C$, Z(F) denotes the zero set of F in $M(H^\infty+C)$. If b is an interpolating Blaschke product, then Z(b) is an interpolation subset for H^∞ . Let ℓ^∞ be the space of all bounded sequences of complex numbers and $\ell^\infty_0=\{w\in\ell^\infty: \lim w_j=0\}$. We shall prove the following theorem.

THEOREM. Let b be an interpolating Blaschke product having zeros at z_1 , z_2 , z_3 , ... and u a continuous function on Z(b). Then there exists a unique sequence $\{w_j\}$ in ℓ^∞ modulo ℓ^∞_0 such that $f(z_j) = w_j$ $j=1,2,\ldots,f=u$ on Z(b) and f in H^∞ and the following are equivalent:

- (1) there exists F in $H^{\infty}+C$ such that $||F||_{\infty} \leq \varepsilon$ and $F \mid Z(b) = u$;
- (2) there exists F in $H^{\infty}+C$ such that $\|F\|_{\infty}\leq \varepsilon$ and $\{F(z_j)\}-\{w_j\}$ in \mathbb{L}_0^{∞} ;
- (3) there exists a compact matrix $[t_{ij}]$ such that $[\varepsilon w_i \bar{w}_j / 1 z_i \bar{z}_j] \ge [a_{ij}] \quad \text{on} \quad \mathbb{N} \times \mathbb{N} \quad \text{where} \quad [a_{ij}] = [w_j \bar{t}_{ji} + \bar{w}_i t_{ij}] + [t_{ij}] [(1 |z_i|^2)^{1/2} (1 |z_j|^2)^{1/2} / 1 \bar{z}_i z_j]^{-1} [\bar{t}_{ji}] \quad \text{and} \quad \varepsilon \ge 0 \ .$

To prove the theorem we require four lemmas.

LEMMA 1. If b is an interpolating Blaschke product with zeros $\{z_j\}$ then for any continuous function u on Z(b) there exists a unique sequence $\{w_j\}$ in ℓ^∞ modulo ℓ^∞_0 such that $f(z_j) = w_j$ $j = 1, 2, \ldots$, f = u on Z(b) and f in H^∞ .

Proof. Since Z(b) is an interpolation subset for H^{∞} , there exists an $f \in H^{\infty}$ such that f = u on Z(b). Put $w_j = f(z_j)$ $j = 1, 2, \ldots$ If $g \in H^{\infty}$ satisfies g = u on Z(b) then $\{f(z_j) - g(z_j)\} \in \ell_0^{\infty}$ because $Z(b) = \overline{\{z_j\}} \setminus \{z_j\}$ where $\overline{\{z_j\}}$ is the closure of $\{z_j\}$ in $M(H^{\infty})$.

For an inner function b, put $K=H^2\ \theta\ bH^2$. The orthogonal projection in L^2 with range K will be denoted by P. For f a function in $H^\infty+C$ let S_f denote the operator $PM_f|K$ where M_f is the multiplication on L^2 that it determines.

LEMMA 2. For f a function in $\operatorname{H}^{\infty} \|S_f\| = \|f + b\operatorname{H}^{\infty}\|$ and $\|S_f\|_e = \|f + b(\operatorname{H}^{\infty} + C)\|$, where the essential norm $\|S_f\|_e$ of S_f is the distance to the compact operators.

Proof. Theorem 1 in [4] shows $\|S_f\| = \|f + bH^\infty\|$. We shall show $\|S_f\|_e = \|f + b(H^\infty + C)\|$. The proof is similar to the calculation of the essential norm of a Hankel operator (see [1, p. 608]). We can show that $\|S_f\|_e \ge \|f + b(H^\infty + C)\|$ because $S_z^{*n} \longrightarrow 0$ strongly. For the converse inequality use Theorem 2 in [4].

If b is the Blaschke product with zeros $\{z_j\}$, the functions

$$k_j(z) = (1 - |z_j|^2)^{1/2}/(1 - \bar{z}_j z)$$

form a normalized (although not orthonormal) basis for K. We require an important property of interpolating sequences which was proved by Clark [2], Lemma 3.2.

LEMMA 3. Let b be an interpolating Blaschke product. Then the map $G: k \longrightarrow (a_1, a_2, \dots)$ with $\{a_n\}$ given by

$$k = \sum_{j=1}^{\infty} a_j k_j$$

is a bounded invertible operator of K onto $\ensuremath{\text{L}}^2$.

Proof. If $||S_f||_e \le \varepsilon$ then $||f+b(H^\infty+C)|| \le \varepsilon$ by Lemma 2. By Theorem 4 in [1] and Theorem 2 in [4], there exists a compact operator T on K such that $||S_f+T|| \le \varepsilon$. Hence

$$\varepsilon^2 I - S_f S_f^* - A \ge 0$$

and

$$A = S_f T^* + TS_f^* + TT^*$$

where I denotes the identity operator on K. Let $\{e_j\}$ denote the orthonormal basis of ℓ^2 given by $e_j=(\delta_{\ell j},\,\delta_{2j},\,\dots)$. Then

$$\begin{split} & \left[(Ak_i, \ k_j) \right] = \left[(G^*AGe_i, e_j) \right] \\ & = \left[(G^*S_f^T^*Ge_i, \ e_j) + (G^*TS_f^*Ge_i, \ e_j) + (G^*TG(G^*G)^{-1}G^*T^*Ge_i, \ e_j) \right] \\ & = \left[f(z_j) (G^*T^*Ge_i, \ e_j) + \overline{f(z_i)} (G^*TGe_i, \ e_j) \right] \\ & + \left[(G^*TGe_i, \ e_j) \right] \left[(G^*G \ e_i, \ e_j) \right]^{-1} \left[(G^*T^*Ge_i, \ e_j) \right] \,. \end{split}$$

Put $[t_{ij}] = [(G * TGe_i, e_j)]$ and $[a_{ij}] = [(Ak_i, k_j)]$, then the lemma follows. The converse follows by reversing the above steps.

Proof of Theorem. By Lemma 1 there exists a unique sequence $\{w_j\}$ in ℓ^∞ modulo ℓ^∞_0 such that $f(z_j)=w_j$ $j=1,2,\ldots,$ f=u on Z(b) and f in H^∞ .

 $(1) \Longrightarrow (2). \text{ Let } F \in H^{\infty} + C \text{ such that } \|F\|_{\infty} \leq \varepsilon \text{ and } F|Z(b) = u \text{ ,}$ then F - f = 0 on Z(b). We will prove that $F(z_j) - f(z_j) \longrightarrow 0$ as $j \longrightarrow \infty$. Suppose $\{F(z_j) - f(z_j)\} \not\in k_0^{\infty}$. Then there exists a subsequence $\{s_j\}$ in $\{z_j\}$ and a nonzero complex number a such that $F(s_j) - f(s_j) \longrightarrow a$ as $j \longrightarrow \infty$. Moreover there exists a subnet $\{t_j\}_{\Lambda}$ in $\{s_j\}$ such that $t_j \xrightarrow{\Lambda} \phi$ in $M(H^{\infty})$ and $t_j \xrightarrow{\Lambda} \phi(z) = \alpha$. Since $F \in H^{\infty} + C$, we can write F = g + v for some $g \in H^{\infty}$ and $v \in C$. Then

$$F(t_j) - f(t_j) = g(t_j) + v(t_j) - f(t_j)$$

$$\longrightarrow \phi(g) + v(\alpha) - \phi(f) = \phi(F - f) = 0.$$

This contradicts $a \neq 0$ and it follows that $F(z_j) - f(z_j) \longrightarrow 0$ $j \longrightarrow \infty$.

- $(2) \Longrightarrow (3). \text{ Since } (F-f)(z_j) \longrightarrow 0 \text{ , if } \phi \in Z(b) \text{ then }$ $\phi(F-f) = 0 \text{ and hence } F-f \in b(H^\infty+C) \text{ by } [3, \text{ Theorem 1 }].$ This and Lemma 2 imply $\|S_f\|_e \le \varepsilon$. Now Lemma 4 implies (3).
 - (3) \Longrightarrow (1). Use Lemmas 2 and 4.

References

- [1] S. Axler, I.D. Berg, N. Jewell, and A. Shields, "Approximation by compact operators and the space $H^{\infty} + C$ ", Ann. of Math., 109 (1979), 601-612.
- [2] D.N. Clark, "On interpolating sequences and the theory of Hankel and Toeplitz matrices", J. Funct. Anal. 5 (1970), 247-258.
- [3] C. Guillory, K. Izuchi and D. Sarason, "Interpolating Blaschke products and division in Douglas algebras", Proc. Roy. Irish Acad. Sect. A, 84 (1984), 1-7.
- [4] D. Sarason, "Generalized interpolation in H^{∞} ", Trans. Amer. Math. Soc., 127 (1967), 179-203.

Department of Mathematics
Faculty of Science (General Education)
Hokkaido University
Sapporo 060, Japan