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Abstract

Data harmonization is an emerging approach to strategically combining data from 

multiple independent studies, enabling addressing new research questions that are not 

answerable by a single contributing study. A fundamental psychometric challenge for 

data harmonization is to create commensurate measures for the constructs of interest 

across studies. In this study, we focus on a regularized explanatory multidimensional 

item response theory model (re-MIRT) for establishing measurement equivalence across 

instruments and studies, where regularization enables the detection of items that vi-

olate measurement invariance, also known as differential item functioning (DIF). Be-

cause the MIRT model is computationally demanding, we leverage the recently devel-

oped Gaussian Variational Expectation-Maximization (GVEM) algorithm to speed up 

the computation. In particular, the GVEM algorithm is extended to a more compli-

cated and improved multi-group version with categorical covariates and Lasso penalty 

for re-MIRT, namely, the importance weighted GVEM with one additional maximiza-

tion step (IW-GVEMM). This study aims to provide empirical evidence to support 

feasible uses of IW-GVEMM for re-MIRT DIF detection, providing a useful tool for 

integrative data analysis. Our results show that IW-GVEMM accurately estimates 

the model, detects DIF items, and finds a more reasonable number of DIF items in a 

real world dataset. The proposed method has been integrated into R package VEMIRT 

(https://map-lab-uw.github.io/VEMIRT).

Key words: latent variable modeling, variational estimation, regularization, differen-

tial item functioning
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1 Introduction

Addressing broad scope research questions, such as the impact of medical, behavioral, and

psycho-social interventions, is typically beyond the scope of a single research project and

requires data from multiple studies to build a more cumulative science. Integrative data

analysis (IDA) is a novel framework for conducting simultaneous analysis of raw data pooled

from different studies. It offers many advantages, including increased power due to larger

sample sizes, enhanced external validity and generalizability due to greater heterogeneity in

demographic and psycho-social characteristics, cost-effectiveness due to the reuse of extant

data, and potential to address new research questions not feasible by a single study, among

others (Curran & Hussong, 2009; Curran, Obeidat, & Losardo, 2010). However, significant

methodological challenges must be addressed when pooling data from independent studies,

and one such challenge is to establish commensurate measures for the constructs of interest

(e.g., Nance et al., 2017). When data from different yet overlapping instruments and diverse

samples are pooled, the assumption of measurement invariance, often required by existing

methods, would likely be violated.

Procedures for evaluating and establishing measurement equivalence across samples are

well developed from both factor analysis and item response theory frameworks. These tra-

ditional methods focus on comparing independent groups defined by a single categorical

covariate to determine if any items display differential item functioning (DIF, also known as

item-level measurement non-invariance). More recently, Bauer (2017) proposed the moder-

ated nonlinear factor analysis (MNLFA), a unified flexible model that can handle different

types of study-specific covariates simultaneously, such as gender (categorical) and age (con-

tinuous), and can handle different types of responses. The cost of this generalization is the

drastically increased model complexity that prohibits the adoption of conventional DIF de-

tection methods simply because the resulting number of potential model comparisons would

be huge. To overcome this problem, Bauer, Belzak, and Cole (2020) proposed a regularized

MNLFA by using a penalized likelihood function that imposes a Lasso (i.e., least absolute
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shrinkage and selection operator) penalty on DIF parameters. This procedure obviates the

reliance on statistical hypothesis testing for DIF, but instead, the penalty term shrinks small

DIF parameters directly toward zero, indicating that DIF is not detected on these item pa-

rameters. Although the Lasso penalty has been proven to have good performance under

some conditions (van de Geer, 2008; Zhao & Yu, 2006), the theoretical guarantee of Lasso

(such as oracle property) in item response theory models has yet to be established.

The current regularized MNLFA is only restricted to unidimensional constructs, while

this work aims to expand the methodology to accommodate multidimensional constructs.

This is an important step forward as many theoretical constructs in behavioral and health

measurement in general are related, complex, and multifaceted (Fayers, 2007; Michel et al.,

2018; Zheng, Chang, & Chang, 2013). For instance, HIV stigma, a barrier to HIV testing and

counseling, status disclosure, partner notification, and antiretroviral theory (ART) access

and adherence, is found to have at least two dimensions: emotional stigma and physical

stigma (Carrasco, Arias, & Figueroa, 2017). In addition, clinical patient-reported outcome

measures (PROMs) have been increasingly endorsed, or even mandated by policymakers and

payers as a means of gauging not only a treatment’s benefits, but also its appropriateness.

Since multi-trait assessment has emerged as a fundamental requirement for patient-centered

decision making, the methodology also needs to advance on par with the demand. From

a statistical perspective, using a multivariate approach would also produce more accurate

factor scores with reduced standard errors of measurement by borrowing information from

correlated scales.

In this study, we focus on a regularized explanatory multidimensional IRT (re-MIRT)

model that handles potential item measurement non-invariance (i.e., DIF), thereby adjust-

ing for, for instance, between-study heterogeneity. With proper penalty such as Lasso,

fitting re-MIRT on the integrated data will output a commensurate scale for multidimen-

sional constructs (e.g., depression, anxiety, alcohol use) that well accounts for study-specific

idiosyncrasy resulting from the diversity of study populations and the use of different instru-
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ments. In addition, for the common items shared among studies, re-MIRT automatically

tests for measurement invariance and corrects for non-invariance when spotted. Hence, the

final factor scores from re-MIRT are cleaned from the contamination of DIF and they can

be readily used in subsequent statistical analyses for addressing critical research questions.

In recent literature, C. Wang, Zhu, and Xu (2023) first used the Lasso-type penalty with

the two-dimensional two-parameter logistic model, and their proposed methods outperform

the likelihood ratio test approach, especially when the proportion of DIF items is high. How-

ever, the regularization method can be slow because it requires a full estimation for each

candidate tuning parameter value. When a large grid of tuning parameters is considered,

the entire algorithm may take hours to finish. In this study, we aim to overcome these diffi-

culties by leveraging the recently developed Gaussian Variational Expectation-Maximization

(GVEM) algorithm (Cho, Wang, Zhang, & Xu, 2021) for MIRT models, which relies on a

variational lower bound to approximate the true marginal likelihood, to speed up the com-

putation. We generalize the GVEM algorithm to the more complicated DIF analysis setting

with categorical covariates. To obtain a tighter lower bound for more accurate DIF detec-

tion, we further incorporate the importance sampling approach as an additional step after

GVEM estimation to reduce the estimation bias (Ma, Ouyang, Wang, & Xu, 2023). Com-

pared to existing DIF detection methods, our proposed method is more efficient and scalable

to higher dimensions and large-scale data, while still performing well in DIF detection. In

addition, the source code for the proposed method is made available in R package VEMIRT,

which can be accessed at https://map-lab-uw.github.io/VEMIRT.

The rest of the paper is organized as follows. We first introduce the re-MIRT model for

binary responses, followed by the regularized GVEM algorithm and bias reduction methods.

Then we present two simulation studies and a real data analysis to evaluate the performance

of the proposed algorithm. This paper ends with some final discussions.
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2 Method

2.1 Regularized Explanatory MIRT

Let N , J , K, and G denote the numbers of persons, items, latent dimensions, and groups,

respectively. For a dichotomously scored item j, the probability that person i with a latent

trait vector θi gives a correct response to item j is modeled as

P (Yij = 1 | θi) = 1
1 + e−[(aj+γT

j Xi)Tθi−(bj−βT
j Xi)] , (1)

where aj ∈ RK is a vector of discrimination parameters of item j, bj is a difficulty parameter

of item j, and θi ∈ RK is a vector of latent traits for person i. The explanatory feature of

the model is reflected by the inclusion of person level covariates, Xi ∈ RP , which includes

all the grouping information related to DIF (Wilson, De Boeck, & Carstensen, 2008). In

this study, we focus on a simpler case where person level covariates uniquely determine the

group membership, i.e., Xi ≡ X̄g for all i ∈ Ig where Ig is the set of all persons in group

g. βj ∈ RP is a vector of regression coefficients implying the effect of grouping variables on

the probability of correct response on item j. Similarly, γj ∈ RP ×K is a matrix of regression

coefficients denoting the interaction effects of θi and grouping variables on item responses.

By this way of parameterization, γj = 0 and βj = 0 if item j does not have DIF, while

γj = 0 and βj ̸= 0 if item j has uniform DIF. Similar to the multiple-group IRT approach,

the distribution of θi is allowed to differ across groups, i.e., θi ∼ NK(µ̄g, Σ̄g) for all i ∈ Ig,

which is known as impact.

Let Kj ⊆ {1, . . . , K} denote the set of latent dimensions that item j loads on, |Kj| denote

the cardinality of the set, and define −Kj ≡ {1, . . . , K} \Kj. For any a ∈ RK , γ ∈ RP ×K

and Σ ∈ RK×K , let {a}Kj
∈ R|Kj |, {γ}Kj

∈ RP ×|Kj | and {Σ}Kj
∈ R|Kj |×|Kj | be the slices of

a, γ and Σ that keep the rows and/or columns indicated by Kj. As explained in C. Wang

et al. (2023), in a confirmatory MIRT model, if k /∈ Kj, then ajk = 0 and {γj}{k} = 0, i.e.,
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the kth column of γj is a zero vector. Hence for each item j, we have {aj}−Kj
= 0 and

{γj}−Kj
= 0.

Denoting all model parameters by ∆ = {µ̄g, Σ̄g}G
g=1

⋃{aj, bj, γj, βj}J
j=1 and the latent

traits of all persons by Θ = {θi}N
i=1, the marginal likelihood of all the responses is

L(∆) ≡
∫
RN×K

P (Y = y | Θ)p(Θ)dΘ

=
G∏

g=1

∏
i∈Ig

∫
RK

 J∏
j=1

P (Yij = yij | θi)
 pi(θi)dθi,

where

P (Yij = yij | θi) = [P (Yij = 1 | θi)]yij [1− P (Yij = 1 | θi)]1−yij

is the conditional likelihood,

pi(θi) = NK(θi | µ̄g, Σ̄g) (2)

is the K-dimensional Gaussian density of θi, and µ̄g and Σ̄g are the corresponding group-level

population mean and covariance matrix respectively.

Since persons i and j are in the same group if and only if Xi = Xj, we only need to

consider the case where each X̄g ∈ RG−1 consists of G − 1 dummy variables indicating the

group membership, that is,

[
X̄1 X̄2 · · · X̄G

]
=
[
0 IG−1

]
=



0 1 0 · · · 0

0 0 1 · · · 0
... ... ... . . . ...

0 0 0 · · · 1


.

For groups g = 2, . . . , G let γ̄gj = γT
j X̄g and β̄gj = βT

j X̄g denote the DIF slope and intercept

parameters of group g against group 1 on item j, respectively. As the reference group, fix

γ̄1j = 0 and β̄1j = 0 for j = 1, . . . , J . Since X and X̄ only contain group-level dummy

variables, estimating γj and βj is equivalent to estimating γ̄gj and β̄gj. To simplify notations,
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we let γij ≡ γT
j Xi = γ̄gj and βij ≡ βT

j Xi = β̄gj for g = 1, . . . , G and i ∈ Ig. Throughout

this paper we will gradually add more parameters to the model, and for simplicity we always

let ∆ denote the current set of all the parameters to be estimated.

The “regularized” feature of the model is reflected by the Lasso or L1-penalized marginal

log-likelihood function

ℓ∗(∆) = log L(∆)− λ
(
∥γ̄∥1 + ∥β̄∥1

)
, (3)

where

log L(∆) = log
∫
RN×K

P (Y = y | Θ)p(Θ)dΘ

=
G∑

g=1

∑
i∈Ig

log
∫
RK

 J∏
j=1

P (Yij = yij | θi)
 pi(θi)dθi, (4)

∥γ̄∥1 =
G∑

g=1

J∑
j=1

K∑
k=1
|γ̄gjk|,

∥β̄∥1 =
G∑

g=1

J∑
j=1
|β̄gj|,

and λ > 0 is a prespecified regularization parameter that controls sparsity (C. Wang et al.,

2023). We will discuss a data-driven method which selects λ using information criteria in

Section 2.4. Since (4) involves K-dimensional integrals which are intractable when K is

large, directly maximizing (3) is challenging and approximation methods are needed.

2.2 Regularized Multi-Group GVEM

2.2.1 Variational Estimation

We generalize the Gaussian variational EM algorithm for MIRT models in Cho et al. (2021) to

the more complex multiple-group scenario. Variational approximation methods are emerging

approaches in modern statistics and machine learning for large-scale data analysis (Blei,

Kucukelbir, & McAuliffe, 2017). The primary idea of GVEM is to approximate the original
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marginal likelihood that involves intractable integrals with a computationally feasible form

known as the variational lower bound.

Traditional EM algorithms require finding the posterior distributions of latent variables,

p(θi | yi) for each person i, by Bayes’ theorem within the E-step, which is intractable for

large K due to the high-dimensional integral needed for computing marginal distributions.

Variational EM algorithms, by contrast, approximate this unknown posterior distribution

p(θi | yi) by a variational distribution qi whose density is qi(θi). Then the logarithm of the

integral in (4) can be written as

log
∫
RK


[∏J

j=1 P (Yij = yij | θi)
]

pi(θi)
qi(θi)

 qi(θi)dθi

= logEθi∼qi


[∏J

j=1 P (Yij = yij | θi)
]

pi(θi)
qi(θi)

 , (5)

where the expectation in (5) is taken with respect to the variational distribution. By Jensen’s

inequality, we obtain the evidence lower bound (ELBO) of (5) by switching the order of

logarithm and expectation, i.e.,

logEθi∼qi


[∏J

j=1 P (Yij = yij | θi)
]

pi(θi)
qi(θi)


≥ Eθi∼qi

log


[∏J

j=1 P (Yij = yij | θi)
]

pi(θi)
qi(θi)


=

J∑
j=1

Eθi∼qi
log P (Yij = yij | θi) + Eθi∼qi

log pi(θi)− Eθi∼qi
log qi(θi). (6)

By carefully choosing the family of distributions where qi is from, we hope all terms in (6)

have analytical solutions such that numerical integration is not necessary. Then, we esti-

mate parameters by maximizing the ELBO instead of the intractable marginal log-likelihood

function. The performance of this strategy depends heavily on how tight this lower bound

is. Actually, it can be shown that the equality holds if and only if the Kullback–Leibler (KL)

divergence KL (qi(θi) ∥ p(θi | yi)) is zero, or equivalently qi(θi) ≡ p(θi | yi). Therefore, the
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key of the GVEM algorithm is to find a suitable qi which not only approximates the posterior

distribution well so that the KL divergence above is small but also leads to an ELBO that is

easy to maximize. Following Cho et al. (2021), we choose qi from the K-dimensional Gaus-

sian family NK(µi, Σi) with µi and Σi the mean vector and the covariance matrix of the

Gaussian variational distribution respectively, and intend to maximize a variational lower

bound of ELBO,

Q(∆) =
N∑

i=1

J∑
j=1

{
log eξij

1 + eξij
+
(1

2 − Yij

) [
(bj − βij)− (aj + γij)Tµi

]
− 1

2ξij

− η(ξij)
[
(bj − βij)2 − 2(bj − βij)(aj + γij)Tµi

+ (aj + γij)T
(
Σi + µiµ

T
i

)
(aj + γij)− ξ2

ij

]}

− 1
2

G∑
g=1

Ng log
∣∣∣Σ̄g

∣∣∣+ ∑
i∈Ig

tr
{
Σ̄−1

g

[
Σi + (µi − µ̄g) (µi − µ̄g)T

]} ,

(7)

where Ng = |Ig| is the size of group g, ξij is a local variational parameter that helps simplify

the estimation procedure (Cho et al., 2021), and

η(ξ) =


1
2ξ

( 1
1 + e−ξ

− 1
2

)
, ξ ̸= 0,

1
8 , ξ = 0.

In the E-step we maximize (7) with respect to each variational distribution qi = NK(µi, Σi),

which is equivalent to minimize KL (qi(θi) ∥ p(θi | yi)) so that qi(θi) is the best approxima-

tion of p(θi | yi) within the Gaussian family. This is different from the E-step in traditional

EM algorithms where we let qi(θi)← p(θi | yi) be the true posterior distribution such that

KL (qi(θi) ∥ p(θi | yi)) = 0, which is ideal but leads to difficulty in computation. In the

M-step we maximize (7) with respect to model parameters, including ξij, µ̄g, Σ̄g, aj, bj,

γ̄gj and β̄gj. In summary, the E-step and the M-step of GVEM are both “maximization”

steps, but with respect to variational parameters and model parameters, respectively. Hence
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Rijmen and Jeon (2013) referred to it as the Maximization-Maximization (MM) algorithm.

For GVEM, the two steps can be combined into one joint maximization step with respect to

all the parameters in ∆.

Maximizing (7) is straightforward for all the parameters except L1-penalized γ̄gj and β̄gj

because we end up with a closed form updating formula for each parameter by letting the

partial derivative of Q(∆) with respect to it be zero. There are no closed form updating

formulas for γ̄gj and β̄gj, so we adopt a quadratic approximation approach similar to C. Wang

et al. (2023): the closed form update rule for entry δ with respect to objective function f is

δ ← −
Sλ

(
∂Q

∂δ
− δ

∂2Q

∂δ2

)
∂2Q

∂δ2

,

where Sλ(z) = sign(z) max(|z| − λ, 0) is a soft thresholding operator (Donoho & Johnstone,

1995). The updating formulas derived for all the parameters are shown in the supplementary

material.

2.2.2 Model Identification

We need to fix µ̄1 = 0 and diag(Σ̄1) = 1 for model identification. Here the subscript

“1” denotes the reference group, and users are free to define any group as the reference.

However, the model is still not identified even with these two constraints when impact is

present because any group g′ ∈ {2, . . . , G} can be rescaled without affecting other groups.

Fixing any u ∈ RK
+ and v ∈ RK , for all g = 1, . . . , G and i ∈ Ig, we have the equality

(aj + γ̄gj)Tθi − (bj − β̄gj) = (aj + γ̄ ′
gj)Tθ′

i − (bj − β̄′
gj),

where

θ′
i = θi, γ̄ ′

gj = γ̄gj, β̄′
gj = β̄gj

10
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when g ̸= g′, and
θ′

i = diag(u)θi + v,

γ̄ ′
gj = [diag(u)]−1 (aj + γ̄gj)− aj,

β̄′
gj = β̄gj − (aj + γ̄gj)T [diag(u)]−1 v

when g = g′. For example, under uniform DIF such that γ̄gj = 0, consider the unidimensional

case K = 1 where

µ̄1 = 0, µ̄2 = −1, Σ̄1 = Σ̄2 = 1, β̄1j = 0, β̄2j = aj.

For any θ1 ∼ N (µ̄1, Σ̄1) from group 1, consider corresponding θ2 = θ1 − 1 ∼ N (µ̄2, Σ̄2) from

group 2. Since

ajθ1 − (bj − β̄1j) = aj(θ2 + 1)− bj = ajθ2 − (bj − β̄2j),

we cannot statistically distinguish between group 1 and group 2: group 2 has a lower mean

θ level, but its DIF in the intercept offsets this difference. However, although the two groups

are statistically equivalent, group 1 does not have DIF since it is the reference group, while

group 2 has DIF in the intercepts. Intuitively, all the items are more difficult to group 2

than to group 1 (i.e., β̄2j = aj > 0 for all j) is equivalent to that group 2 has a lower mean

latent trait level (i.e., µ̄2 = µ̄1 − 1).

Note that the possibility that DIF in item parameters is absorbed into differences in the

distributions of latent traits across groups (i.e., impact) is not a problem if we have prior

information about which items are DIF-free and hence can work as anchor items; any group

differences detected on these items are attributed to impact rather than DIF (J.-H. Chen,

Chen, & Shih, 2014). Even without such information, identifiability is still not an issue if we

can safely assume that the proportion of DIF items is not too high. Since the regularization

method penalizes non-zero DIF parameters, it favors sparse models with fewer DIF items

and automatically lets non-DIF items be the anchors (Y. Chen, Li, Ouyang, & Xu, 2023;
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C. Wang et al., 2023). The only difficult case is when there are too many DIF items (e.g.,

DIF proportion exceeds 50%). In the simulation study below we will consider the case where

60% of the items have DIF. To distinguish between DIF and impact under such a challenging

scenario, we generate balanced DIF effects (Debelak & Strobl, 2019), that is, there are both

positive and negative DIF parameters that cancel out on average. Our proposed method

turns out to work well on detecting such balanced DIF effects. Only if DIF occurs uniformly

in one direction and DIF prevalence is higher than 50% that the method will not work

well. It is worth emphasizing that the identification constraints are required by the model

implied by (1) and (2), not the estimation algorithm. Regularization methods are already an

improvement over other approaches that require pre-specified DIF-free items because they

automatically look for them and set them as anchors.

2.2.3 Debiasing Lasso

After the EM algorithm converges, DIF parameters are determined because they have not

been shrunk to exactly zero. No DIF is detected in item j if all entries in γ̄gj and β̄gj have

been shrunk to zero for every group g, while any non-zero entry in γ̄gj or β̄gj indicates DIF

in item j. However, although DIF items have been determined, Lasso penalty is known to

result in biased estimators for non-zero entries (Hastie, Tibshirani, & Wainwright, 2015). To

better estimate model parameters and conduct model comparison for finding the best tuning

parameter λ, it is necessary to re-estimate all the non-zero entries in γ̄gj and β̄gj. Following

C. Wang et al. (2023), debiasing can be done by running the EM algorithm again without

a penalty (i.e., λ = 0) while fixing current zero entries in γ̄’s and β̄’s at zero. Our final

regularized GVEM algorithm for DIF detection is as follows:

1. Set initial values: µi ← 0, Σi ← I, ξij ← 0, µ̄g ← 0, Σ̄g ← I, {aj}Kj
← 1, {aj}−Kj

←

0, bj ← 0, γ̄gj ← 0 and β̄gj ← 0.

2. Repeat until convergence with λ = 0 to find better initial values: in each iteration,

update all the parameters using the closed form formulas.
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3. For each λ, start from the initial values obtained from Steps 1 and 2:

a. Repeat until convergence with the λ given: in each iteration, update all the param-

eters using the closed form formulas.

b. Repeat until convergence with λ = 0 and current zero entries of γ̄gj and β̄gj fixed at

zero: in each iteration, update all the parameters using the closed form formulas.

Note that zero entries in γ̄gj and β̄gj are determined by Step 3a, and Step 3b is for debiasing

non-zero entries only. The choice of initial values in Step 1 is arbitrary here, and researchers

are encouraged to choose initial values based on their prior information. Step 2 is not

necessary but helps speed up Step 3a by starting from better initial values.

2.3 Bias Reduction via Importance Sampling

The multi-group GVEM algorithm is known to have a large bias in discrimination parame-

ters, especially when the latent traits of different dimensions are highly correlated and the

sample size is not large enough (Cho et al., 2021), so it may not perform as well when

detecting non-uniform DIF. To reduce bias in model parameter estimates, we employ an

additional importance sampling step after GVEM converges to find a better approximation

of the marginal log-likelihood function than the variational lower bound. This idea has re-

cently been used in Ma et al. (2023) to reduce the estimation bias of GVEM for (single-group)

MIRT models.

Recall that we obtained a lower bound of the marginal log-likelihood function (4) by

Jensen’s inequality,

E log X ≤ logEX = E logEX,

where the last equality holds because logEX is a constant. To obtain a tighter bound, we

hope to find a random variable Y such that

E log X ≤ E log Y ≤ E logEX,
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so a natural choice is the empirical mean, i.e.,

Y = 1
M

M∑
m=1

X(m),

where X(1), X(2), . . . , X(m) are independent and have the same distribution as X. Apply-

ing this idea to the marginal log-likelihood function log L(∆) in (4), we can sample from

the estimated variational distributions of latent traits and use the importance sampling

weighted samples to approximate a tighter variational lower bound than (7). More specifi-

cally, after the GVEM algorithm converges, in an additional E-step we draw S×M samples

{θ(s,m)
i }S

s=1
M
m=1 from estimated qi(θi) = NK(µi, Σi) for each person i. With these samples,

we have the following improved variational lower bound:

log L(∆) =
G∑

g=1

∑
i∈Ig

logEθi∼qi


[∏J

j=1 P (Yij = yij | θi)
]

pi(θi)
qi(θi)


≥

G∑
g=1

∑
i∈Ig

E{θ
(m)
i }M

m=1∼qi
log

 1
M

M∑
m=1

[∏J
j=1 P (Yij = yij | θ(m)

i )
]

pi(θ(m)
i )

qi(θ(m)
i )


≈

G∑
g=1

∑
i∈Ig

1
S

S∑
s=1

log

 1
M

M∑
m=1

[∏J
j=1 P (Yij = yij | θ(s,m)

i )
]

pi(θ(s,m)
i )

qi(θ(s,m)
i )


≡ Q̂(∆).

(8)

When S → ∞ and M → ∞, it can be shown that Q̂(∆) converges in probability to the

marginal log-likelihood function log L(∆) (Burda, Grosse, & Salakhutdinov, 2016). In the

simulation study we will show that even small values like S = M = 10 can lead to huge

improvement and satisfactory performance. The new objective function to be maximized in

the two additional M-steps now becomes

Q̂∗(∆) = Q̂(∆)− λ
(
∥γ̄∥1 + ∥β̄∥1

)
. (9)

Due to its complexity, there are no closed form updating formulas as in GVEM, so instead
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we employ gradient-based optimization algorithms.

To ensure the positive definiteness of Σ̄g, we conduct Cholesky decomposition Σ̄g = L̄gL̄T
g

and maximize (9) with respect to L̄g instead of Σ̄g. Furthermore, we let µ̄1 = 0 and fix

diag(Σ̄1) = diag(L̄1L̄
T
1 ) = 1 by utilizing the transformation

L̄1 =



1

u21

√
1− u2

21

u31 u32

√
1− u2

31

√
(1− u31)2(1− u32)2

... ... ... . . .

uK1 uK2
√

1− u2
K1 uK3

√
(1− uK1)2(1− uK2)2 · · ·

√∏K
k=1(1− uKk)2


,

where ukℓ = tanh vkℓ ∈ (−1, 1), and vkℓ ∈ R for k = 2, . . . , K and ℓ = 1, . . . , i − 1

(Lewandowski, Kurowicka, & Joe, 2009). Gradients can be computed implicitly by au-

tomatic differentiation, such as using the torch package in R (Falbel & Luraschi, 2023).

We apply the Adam optimization algorithm by Kingma and Ba (2014), a popular op-

timizer in deep learning, to minimize Q̂(∆) with respect to all the model parameters:

µ̄g, L̄g, vkℓ, aj, bj, γ̄gj and β̄gj. Adam computes the adaptive learning rate for each parameter

based on moving averages of the first and second moments of the gradient, which helps avoid

the difficulty in choosing a single proper learning rate for all the parameters. Since Q̂∗(∆)

has additional penalty terms that are not differentiable but convex, we apply the proximal

gradient method (PGM; Hastie et al., 2015) to γ̄gj and β̄gj: each entry δ with penalty λ|δ|

is updated by

δ ← Ssλ(δ), (10)

where s is the adaptive learning rate used to update δ in Adam.

Similar to the regularized GVEM algorithm, we maximize Q̂∗(∆) twice in two consecutive

M-steps, the first one with a penalty and the second one without a penalty but fixing current

zero entries in γ̄gj and β̄gj, determined by the first one, at zero. Moreover, we found through
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simulation that the GVEM algorithm without penalty provides better initial values to the

following importance sampling procedure because regularized GVEM does not detect DIF

items well and hence gives inaccurate variational distributions of latent traits that importance

sampling is based on. Our final algorithm, named “importance-weighted Gaussian variational

expectation-maximization-maximization” (IW-GVEMM), is as follows:

1. Obtain initial values: run Steps 1 and 2 of the GVEM algorithm.

2. Conduct Cholesky decomposition and inversely transform parameters: Σ̄g = L̄gL̄T
g

and compute vkℓ from L̄1.

3. Draw random samples: draw θ
(s,m)
i ∼ NK(µi, Σi).

4. For each λ, start from the initial values obtained from Steps 1 to 3:

a. Repeat until convergence with the λ given: in each iteration, update µ̄g, L̄g, vkℓ, aj, bj, γ̄gj

and β̄gj using Adam, and then update γ̄gj and β̄gj using (10).

b. Repeat until convergence with λ = 0 and current zero entries of γ̄gj and β̄gj fixed

at zero: in each iteration, update µ̄g, L̄g, vkℓ, aj, bj, γ̄gj and β̄gj using Adam.

To avoid randomness in the E-step of the importance sampling, we only sample θ
(s,m)
i ’s once

in Step 3 and then fix them for all values of λ when running Step 4. Since Steps 1 to 3 do

not depend on λ, we only need to run them once for each dataset.

Compared to the Lasso EMM method proposed by C. Wang et al. (2023) which maximizes

the objective function (3) on K-dimensional Gaussian quadrature using the Newton-Raphson

method, the main advantage of this regularized IW-GVEMM method is that it better handles

higher dimensional latent traits because it does not need to compute K-dimensional numer-

ical integrals or invert K-dimensional matrices, which become very slow and numerically

unstable for large K.
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2.4 Information Criteria for Tuning Parameter Selection

We use information criteria to find the best tuning parameter λ in this study. The marginal

log-likelihood log L(∆) in (4) is difficult to compute because it involves K-dimensional nu-

merical integration, but its (approximate) variational lower bounds Q(∆) in (7) and Q̂(∆)

in (8) are by-products of our proposed algorithms. Consequently, we modify the generalized

information criterion (GIC; Zhang, Li, & Tsai, 2012)

GIC =− 2 log L(∆) + kN · ℓ0(∆)

=− 2
G∑

g=1

∑
i∈Ig

log
∫ J∏

j=1
P (Yij = yij | θi)pi(θi)dθi + kN · ℓ0(∆)

by replacing log L(∆) with Q(∆) as

GIC = −2Q(∆) + kN

(
∥γ̄∥0 + ∥β̄∥0

)
= −2

N∑
i=1

J∑
j=1

{
log eξij

1 + eξij
+
(1

2 − Yij

) [
(bj − βij)− (aj + γij)Tµi

]
− 1

2ξij

}

+
G∑

g=1

Ng log
∣∣∣Σ̄g

∣∣∣+ ∑
i∈Ig

tr
{
Σ̄−1

g

[
Σi + (µi − µ̄g) (µi − µ̄g)T

]}+ kN · ℓ0(∆)

for GVEM, and by replacing log L(∆) with Q̂(∆) as

GIC = −2Q̂(∆) + kN · ℓ0(∆)

= − 2
S

G∑
g=1

∑
i∈Ig

S∑
s=1

log

 1
M

M∑
m=1

[∏J
j=1 P (Yij = yij | θ(s,m)

i )
]

pi(θ(s,m)
i )

qi(θ(s,m)
i )

+ kN · ℓ0(∆)

for IW-GVEMM, where

ℓ0(∆) = ∥γ̄∥0 + ∥β̄∥0

=
G∑

g=1

J∑
j=1

K∑
k=1

1{γ̄gjk ̸= 0}+
G∑

g=1

J∑
j=1

1{β̄gj ̸= 0}
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is the number of non-zero DIF parameters and kN is an increasing function of N . In partic-

ular, GIC becomes BIC by taking kN = log N . Our simulation study shows that BIC does

not penalize DIF parameters strongly enough and leads to too many false positives under

some scenarios. Therefore, we also use kN = c log N log log N where c > 0 is a prespecified

constant that controls the magnitude of penalty, i.e., larger c indicates a higher penalty and

shrinks more parameters toward zero.

We first apply the GVEM and the IW-GVEMM algorithms with different values of λ,

and after all the estimation is done, we choose the λ with the lowest information criteria

(BIC or GIC). Note that c is a constant for model comparison using GIC rather than a

model parameter that affects the estimation. Our simulation study shows that Q̂(∆) works

as a good proxy of log L(∆) for selecting the best tuning parameter for IW-GVEMM that

helps detect DIF.

3 Simulation

Two simulation studies are conducted to examine the performance of GVEM and IW-

GVEMM algorithms for DIF detection in two-parameter re-MIRT models. Study I focuses

on uniform DIF detection and study II focuses on non-uniform DIF detection. In both stud-

ies, we set G = 3 groups, one reference group and two focal groups, where the first focal

group has low DIF and the second has high DIF. The latent traits θ of all the three groups

are generated from

N2

0,

 1 0.85

0.85 1




when K = 2 and from

N3

0,


1 0.85 0.85

0.85 1 0.85

0.85 0.85 1




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when K = 3, i.e., there is no impact for the two focal groups. Such high correlations

among latent dimensions are not uncommon in practice (W.-C. Wang, Chen, & Cheng,

2004), and prior studies showed that high correlations like 0.85 result in more difficulty in

model estimation and DIF detection compared to low correlations like 0.25 (Cho et al., 2021;

C. Wang et al., 2023). Our pilot study suggests that the correlation has little effect on the

running time and the DIF detection accuracy of the proposed approaches. The test length

is fixed at J = 10K, and each dimension corresponds to 10 items that load solely on this

dimension. In both studies, for the reference group, slopes a are generated from U(1.5, 2.5)

and intercepts b are generated from N (0, 1). To evaluate the magnitude of DIF, we compute

wABC, the area between expected item score curves for the reference and the focal groups

(Edelen, Stucky, & Chandra, 2015). Two factors, sample size n of each group (500 and

1000) and proportion of DIF items (20% and 60%), are manipulated. For each simulation

condition we run 100 replications. Our convergence criterion is that the absolute difference

of every entry δ of all the parameters between consecutive iterations (i.e., |δ(t) − δ(t−1)| at

the tth iteration) is less than 0.001.

For comparison, we also apply the Lasso EMM method proposed by C. Wang et al.

(2023) to the same simulated data. Same as GVEM and IW-GVEMM, EMM also tries to

maximize the objective function in (3), but uses Gaussian quadrature rather than Gaussian

variational approximation to deal with the integrals. Denser quadrature approximates the

integral better and results in higher accuracy and longer computation time. We construct

multidimensional Gaussian quadrature using the nested Gauss-Hermite rule (Genz & Keister,

1996) and the sparse combination technique (Heiss & Winschel, 2008). As a result, there

are 133 and 703 grid points for K = 2 and K = 3 respectively. More grid points help

achieve higher accuracy, but as will be shown later, even with such small numbers of grid

points, EMM is much slower than our proposed methods. It is worth noting that since

latent dimensions are highly correlated with each other, in several replications the estimates

of group-level covariance matrices can be nearly singular after the M-steps of EMM, which
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makes estimation difficult. For such replications, we have to increase the numbers of grid

points to 445 for K = 2 and 4191 for K = 3 to make EMM work, and they require much

longer running time.

Following Cho, Xiao, Wang, and Xu (2024), we set c = 1 for GIC. We will consider some

other possible strategies for choosing c in the next section on real data analysis. Within each

replication, we estimate the model with eight λ values from
{
0.1
√

N, 0.2
√

N, . . . , 0.8
√

N
}

first. If the best model corresponds to λ = 0.8
√

N , then we additionally estimate the model

with larger tuning parameters, 0.9
√

N, 1.0
√

N, 1.1
√

N, . . . , until the best model does not

correspond to the largest λ. Under the simplest condition (n = 500 and 20% DIF), the mean

running times (in seconds) of the first five replications over the eight λ’s on a MacBook

Pro with M3 Max are shown in Table 1, where the numbers of grid points for EMM are

133 and 703 for K = 2 and K = 3. The two proposed methods show a clear advantage

in efficiency compared to the EMM method, especially when the dimension of the latent

traits grows. GVEM is faster than IW-GVEMM, but as will be shown later, IW-GVEMM

is more accurate. Given the long running time of EMM, we use multiple computers to run

the remaining replications, so their running times are not comparable.

Table 1: Mean Running Times (in Seconds) of the First Five Replications

K GVEM IW-GVEMM EMM
2 5.61 66.98 168.13
3 8.44 85.94 2288.70

3.1 Simulation I: Uniform DIF

Under the uniform DIF condition, the slopes for the two focal groups are equal to those for

the reference group even for DIF items. Table 2 shows the DIF parameters and the mean

wABCs of each condition.

Tables 3 and 4 show the true and the false positive rates of DIF detection across 100

replications, where standard deviations are shown in parentheses. Besides low and high
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Table 2: DIF Parameters in Simulation Study I
First Half of DIF Items Second Half of DIF Items

Group γ̄gj β̄gj Mean wABC γ̄gj β̄gj Mean wABC
Low DIF 0 0.5 0.070 0 −0.5 0.070
High DIF 0 1 0.138 0 −1 0.138

DIF groups, we also show whether items are marked as DIF regardless of low or high DIF

group as “Total”. It turns out that importance sampling leads to a huge improvement: true

positive rates are much higher, and false positive rates are similar or lower except for BIC

with 60% DIF. Moreover, IW-GVEMM has a similar performance to EMM but runs much

faster. EMM is better at detecting low DIF under 20% DIF conditions, but this pattern is

reversed under 60% DIF. One possible reason is that due to long running time we do not

use large numbers of grid points for EMM except for several replications where group-level

covariance matrices become singular. With more grid points, EMM is expected to be more

accurate, but still it is unlikely that EMM will show very obvious advantages in accuracy

over IW-GVEMM. It is worth noting that since IW-GVEMM works on the Cholesky factors

of the covariance matrices, it is more robust to high correlations among latent dimensions

than EMM. This also helps explain why the performance of EMM is not consistently better

than its approximation IW-GVEMM. We found in the pilot study that EMM tends to have

better performance than IW-GVEMM when the correlations among the latent traits are

lower, which agrees with our explanation here. GIC leads to both lower true positive rates

and lower false positive rates in all conditions than BIC, which is expected because GIC

penalizes more severely and shrinks more DIF parameters to zero. BIC generally works well

for 20% DIF but leads to high false positive rates for 60% DIF; GIC with c = 1 controls false

positive rates in all conditions but has difficulty detecting low DIF. In practice, researchers

may apply the methods proposed in the next section to find a better c for GIC that achieves

balance between the true and the false positive rates. Unsurprisingly, the larger sample

size leads to higher true positive rates but also slightly higher false positive rates with GIC.

Both the proportions of DIF items and the numbers of latent dimensions result in mixed
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differences.
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3.2 Simulation II: Non-Uniform DIF

In the second simulation study, there are DIF effects on both intercepts and slopes, which

are shown in Table 5. The true and false positive rates of DIF detection across replications

are shown in Tables 6 and 7. All three algorithms perform worse due to the more complex

model setting, but the general patterns are largely similar to the uniform DIF simulation

study: IW-GVEMM and EMM perform similarly, and both have better performance than

GVEM, GIC penalizes more than BIC, and true positive rates increase with larger sample

sizes. Besides, although IW-GVEMM and EMM are still good at detecting high DIF, DIF

is mostly detected on the intercept β̄ rather than the slope γ̄. It is less of a problem in

practice because DIF in slopes usually comes with DIF in intercepts.

Table 5: DIF Parameters in Simulation Study II
First Half of DIF Items Second Half of DIF Items

Group γ̄gj β̄gj Mean wABC γ̄gj β̄gj Mean wABC
Low DIF −0.4 0.5 0.079 0.4 −0.5 0.065
High DIF −0.8 1 0.170 0.8 −1 0.117
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4 Real Data Analysis

To demonstrate the feasibility of the IW-GVEMM algorithm for detecting DIF in real data,

we apply it to a dataset from the Patient-Reported Outcomes Measurement Information

System (PROMIS) depression and anxiety subscales, which includes responses to 21 items of

5219 cancer patients. The two subscales measure depressive (10 items) and anxiety (11 items)

symptoms respectively, and item content can be found in Table 11 of C. Wang et al. (2023).

Teresi, Ocepek-Welikson, Kleinman, Ramirez, and Kim (2016a, 2016b) used this dataset to

study DIF on race, a categorical variable with four levels, and we also focus on detecting

race DIF here. The reference group is “Non-Hispanic White” (sample size N1 = 2239),

and the three focal groups are “Non-Hispanic Black” (N2 = 1077), “Hispanic” (N3 = 1012)

and “Non-Hispanic Asians/Pacific Islanders” (N4 = 891). All the 21 items have ordered

categorical responses: “1 = Never”, “2 = Rarely”, “3 = Sometimes”, “4 = Often” and

“5 = Always”, and the proportions that “Never” is chosen fall between 50% to 65% in most

items. Therefore, similar to Bauer et al. (2020), we create dichotomous item responses by

collapsing all categories except “Never” (i.e., “Rarely”, “Sometimes”, “Often”, and “Always”)

to “Yes”, indicating that the patient exhibits this symptom.

Teresi et al. (2016a, 2016b) applied two approaches to detect DIF items. Their first

method is the Wald test, which is an iterative method using backward elimination. Initially

all the items are assumed to have no DIF and hence work as anchor items. For each anchor

item, an IRT model is fit with the constraint that all the current anchor items but this one

have the same item parameters across all groups. Then a Wald test is conducted to determine

whether the item parameters of this item have significant differences across groups. If so, this

item is marked as having DIF and eliminated from the set of anchor items. This procedure

is run repeatedly until the set of anchor items stabilizes. Their second method is the ordinal

logistic regression, where for each item they regress the response on the group, the latent

trait, and their interaction term. An item is marked as having DIF if the group effect or the

interaction effect is significantly different from zero. For both methods, they did not seem
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to model impact but instead assumed a common latent trait distribution for all groups.

Before discussing our empirical findings, we propose two possible ways for finding the

best constant c in GIC for model selection. Figure 1 shows the relationship between ℓ0, the

number of non-zero DIF parameters of the model with the lowest GIC, against c. Figure 1

looks similar to scree plots in principal component analysis, and it suggests that the models

chosen by BIC, GIC with c = 0.7, and GIC with c = 0.9 correspond to “elbows” of the plot.

Or we may choose c by focusing on predictive accuracy as a model fit index. For group g and

item j, we compute the predicted proportion of respondents that choose “Yes” according to

the estimated impact and item parameters:

Eθ∼NK(µ̄g ,Σ̄g)P (Yj = 1 | θ) ≈ 1
⌈N/G⌉

⌈N/G⌉∑
i=1

P (Yij = 1 | θi) ≜ p̂gj,

where the expectation is approximated using Monte Carlo integration to accommodate high-

dimensional settings, θi’s are independently sampled from NK(µ̄g, Σ̄g) and P (Yij = 1 | θi)

is defined in (1). Then, we define RMSE as the root mean square error between predicted

and observed proportions:

RMSE =

√√√√√ 1
GJ

G∑
g=1

J∑
j=1

[
p̂gj −

∑
i∈Ig

Yij

Ng

]2

.

The RMSEs corresponding to GIC with c = 0.7 and c = 0.9 are 0.021 and 0.022 respectively,

suggesting that they have similar model fit. Note that the RMSEs reported here do not

serve the purpose of cross-validation because they tend to be smaller for smaller c (i.e., more

complex models). This also provides support for our default choice of c = 1 in the simulation

study, but still we recommend trying different values of c and comparing their results.

Table 8 shows the DIF detection results. DIF is marked by “⋆” for the Wald test and

the logistic regression, and these results were obtained directly from Teresi et al. (2016a,

2016b). Since IW-GVEMM found no non-uniform DIF, non-zero estimates of DIF intercept
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Figure 1: Relationship between Number of Non-Zero DIF Parameters and c of GIC in PROMIS
Data

parameters (β) are shown instead of “⋆” in Table 8. DIF items detected by the three

approaches do not agree with each other. In particular, regardless of the information criteria,

IW-GVEMM finds much fewer DIF items for the “Non-Hispanic Asians/Pacific Islanders”

group. This striking difference may be attributed to the fact that Teresi et al. (2016a, 2016b)

did not consider impact, i.e., the differences among groups’ population distributions were

not considered. As shown in Table 9, the three focal groups all have higher mean anxiety

and depression levels than the reference group, so ignoring this difference will inevitably bias

DIF detection. Another possible reason is that ordinal responses are collapsed into binary

to use our proposed method, whereas Teresi et al. (2016a, 2016b) used the original ordinal

responses for DIF analysis. If DIF is absent between “Never” and “Yes” but is present among

the four positive responses that are collapsed into “Yes”, then only their approaches are able

to detect DIF. As a result, extending our proposed methods to ordinal responses would be

an important and useful future direction.
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Table 9: Estimated Mean and Covariance Matrix (Impact) of PROMIS Anxiety and Depression
Scales Using IW-GVEMM

Information Criterion Parameter White Black Hisp. NHAPI

BIC

µ̄g1 0 0.054 0.216 0.084
µ̄g2 0 0.121 0.265 0.161

[Σ̄g]11 1 1.002 0.962 1.033
[Σ̄g]12 0.941 0.975 0.898 1.010
[Σ̄g]22 1 1.048 0.957 1.078

GIC, c = 0.7

µ̄g1 0 0.048 0.222 0.079
µ̄g2 0 0.111 0.271 0.159

[Σ̄g]11 1 1.000 0.956 1.037
[Σ̄g]12 0.941 0.979 0.895 1.012
[Σ̄g]22 1 1.058 0.956 1.078

GIC, c = 0.9

µ̄g1 0 0.044 0.227 0.081
µ̄g2 0 0.112 0.267 0.159

[Σ̄g]11 1 0.999 0.966 1.036
[Σ̄g]12 0.942 0.977 0.901 1.011
[Σ̄g]22 1 1.056 0.959 1.079

5 Discussion

This study demonstrates the feasibility of applying regularized IW-GVEMM to detect DIF

within the regularized explanatory MIRT framework. Because all model parameters can

be updated in closed forms in the M-step of the GVEM algorithm, it is computationally

more efficient than the traditional EM algorithm. However, it may have unsatisfactory per-

formance under non-uniform DIF conditions, which is likely due to the fact that GVEM

generates a relatively large bias in discrimination parameters. Such an issue is common in

variational estimation for various statistical models (Bishop & Nasrabadi, 2006). As a rem-

edy, we further adopt the importance weighted variational technique (Ma et al., 2023), which

gives a tighter variational lower bound of the marginal log-likelihood function. Simulation

shows that importance sampling greatly improves the accuracy of estimation, although this

additional step is slower due to gradient-based numerical optimization. Information criteria

help determine the best tuning parameter λ for DIF detection. BIC often works well, but it
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can lead to inflated false positive rates under some conditions. GIC provides more flexible

control over the degree of penalization, but it involves another parameter c that may be hard

to determine in practice.

This study has certain limitations that suggest potential directions for future research.

First, following C. Wang et al. (2023), although our proposed approach allows and estimates

impact, we let all the groups have the same latent trait distribution in the simulation study.

Studying the performance of the proposed and other existing methods when impact exists

and is large will provide useful guidance for users. Second, we proposed ways to find good

values for c for GIC, but did not extensively study their performance using simulation because

it is beyond the focus of this study. In practice, we may consider cross-validation for model

comparison and selection, i.e., split the data into training and test data, fit the models to

training data, and then compare their prediction accuracy over test data.

Similar to C. Wang et al. (2023), we only consider the Lasso or L1 penalty for DIF

detection. Due to the inherent bias introduced by Lasso penalty, one additional M-step

without penalty is needed. A future direction is to use nonconcave penalties, such as

a truncated L1 penalty (TLP; Shen, Pan, & Zhu, 2012), whose idea is to replace (3) by

ℓ∗
TLP(∆) = log L(∆)− η

[
Jτ (γ̄) + Jτ (β̄)

]
, where Jτ (δ) = min(|δ|, τ) is an elementwise func-

tion and τ > 0 is a tuning parameter. TLP corrects the bias of Lasso by combining adaptive

shrinkage with thresholding, so there is no need to run an additional M-step to reduce bias.

The optimal tuning parameter may be determined by BIC or GIC as well.

Properly identifying DIF and adjusting for DIF is essential for data harmonization be-

cause assuming strict item invariance across groups may be too strict and lead to inaccurate

findings. Regularized explanatory MIRT is a flexible modeling framework that simultane-

ously handles multidimensional traits and potential DIF explained by multiple covariates.

It obviates the tedious process of detecting DIF on each item and each covariate one at a

time, which is often the case in traditional likelihood-ratio-based DIF detection, and the

reliance on modification indices in confirmatory factor analysis. The IW-GVEMM algo-
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rithm provides a computationally efficient alternative to the classic EM algorithm, and it

can naturally handle high dimensional latent traits. Hence, it has a great potential to serve

as a screening tool when analyzing integrated item response data. It is worth noting that

we utilize dummy coding when dealing with multiple categorical covariates or one categor-

ical covariate with multiple levels. This requires us to choose one group as a reference and

all other groups become focal groups, and the proposed regularized DIF detection method

identifies DIF items by comparing each focal group to the reference group. As a result, the

proposed method may find different DIF items if a different reference group is chosen. This

poses no problem when the goal is to adjust for non-invariance during data harmonization.

However, if the goal is to detect DIF, then the selection of a designated reference group

needs careful justification because we cannot directly compare two focal groups unless we

run the algorithm again where one focal group becomes the new reference group. Hence,

future research is needed to develop reference group agnostic DIF detection methods that

will pinpoint items behaving differently across pairs of groups without designating a specific

reference group.
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