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Abstract

There has been substantial interest in developing Markov chain Monte Carlo algorithms
based on piecewise deterministic Markov processes. However, existing algorithms can
only be used if the target distribution of interest is differentiable everywhere. The key to
adapting these algorithms so that they can sample from densities with discontinuities is
to define appropriate dynamics for the process when it hits a discontinuity. We present
a simple condition for the transition of the process at a discontinuity which can be used
to extend any existing sampler for smooth densities, and give specific choices for this
transition which work with popular algorithms such as the bouncy particle sampler, the
coordinate sampler, and the zigzag process. Our theoretical results extend and make rig-
orous arguments that have been presented previously, for instance constructing samplers
for continuous densities restricted to a bounded domain, and we present a version of
the zigzag process that can work in such a scenario. Our novel approach to deriving the
invariant distribution of a piecewise deterministic Markov process with boundaries may
be of independent interest.
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1. Introduction

In recent years there has been substantial interest in using continuous-time piecewise deter-
ministic Markov processes (PDMPs) as the basis for Markov chain Monte Carlo (MCMC)
algorithms. These ideas started in the statistical physics literature [2, 22, 28] and have led to a
number of new MCMC algorithms, such as the bouncy particle sampler (BPS) [8], the zigzag
(ZZ) process [5], and the coordinate sampler (CS) [33], amongst many others. See [18] and
[31] for an introduction to the area. One potential benefit which is associated with these sam-
plers are that they are non-reversible, and it is known that non-reversible samplers can mix
faster than their reversible counterparts [3, 9, 13].

Informally, a PDMP process evolves according to a deterministic flow—defined via an ordi-
nary differential equation—for a random amount of time, before exhibiting an instantaneous
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2 A. CHEVALLIER ET AL.

transition, and then following a (possible different) deterministic flow for another random
amount of time, and so on.

Initial PDMP samplers were defined to sample target distributions which were continuously
differentiable (C1) on R

d, but there is interest in extending them to more general target distri-
butions. To date, this has been achieved for sampling from distributions defined on the union
of spaces of different dimensions [7, 10] and for sampling from distributions on restricted
domains [4], binary distributions [26], and phylogenetic trees [21]. Here we rigorously con-
sider a further extension to sampling from target distributions on R

d which are piecewise C1.
That is, they can be defined by partitioning R

d into a countable number of regions, with the
target density being C1 on each region. We call such densities piecewise smooth. Such tar-
get distributions arise in a range of statistical problems, such as latent threshold models [24],
binary classification [25], and changepoint models [29]. The importance of this extension of
PDMP samplers is also indicated by the usefulness of extensions of Hamiltonian Monte Carlo
(HMC) to similar problems [1, 14, 27, 34].

The challenge with extending PDMP samplers to piecewise smooth densities is the need
to specify the appropriate dynamics when the sampler hits a discontinuity in the density.
Essentially, we need to specify the dynamics so that the PDMP has our target distribution
μ as its invariant distribution. Current samplers are justified based on considering the infinites-
imal generator, denoted by A, of the PDMP. Informally, the generator is an operator that acts on
functions and describes how the expectation of that function of the state of the PDMP changes
over time. The idea is that if we average the generator applied to a function and this is zero for
a large set of functions f ∈F , ∫

Af dμ = 0, (1)

then the distribution μ must be the invariant distribution. Whilst intuitively this makes sense,
many papers use this intuitive reasoning without giving a formal proof that the distribution
they average over is in fact the invariant distribution; see for instance [18, 31]. One important
exception is the work of [16], where precise conditions and functional-analytic proofs are given
which establish that smooth, compactly supported functions form a core for the generator. This
then rigorously establishes μ-invariance of the PDMP. In this work, we actually take a different
approach from [16]: we make use of the particular nature of the PDMPs under consideration
and give conditions under which (1) directly holds for the whole domain D(A), then show that
a large class of functions F ⊂D(A) separate measures, without attempting to show that F is a
core. This avoids the need for highly technical proofs as in [16].

Furthermore, once we introduce discontinuities, this complicates the definition of the gen-
erator. The impact of these discontinuities is realized in terms of the domain of the generator,
and this necessitates the use of additional arguments which take account of the impact of the
discontinuity when applying arguments based on integration by parts.

More specifically, we can see the challenge of dealing with discontinuities and some of the
contributions of this paper by considering the previous work of [4], who consider designing
PDMP samplers when the target distribution is only compactly supported on R

d—a special
case of our present work. It should be noted that there is a sign error in the condition given by
Equation (4) of [4], and furthermore their proof was not complete—see Appendix E. In this
work, we will provide a full proof.

The paper is structured as follows. In the next section we give a brief introduction to
PDMPs and some common PDMP samplers. Then in Section 3 we give general conditions for
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FIGURE 1. Exit boundary
(
∂E+

0

)
and entrance boundary

(
∂E+

0

)
: x0 is in the entrance boundary ∂E−

0 ,

while x′
t is in the exit boundary ∂E+

0 . The arrows represent the flow �(·, ·).

checking the invariant distribution of a PDMP. The result in this section formalizes the infor-
mal argument used by previous authors. We then develop these results for the specific cases
where the PDMP has active boundaries—for example, due to a compact support, or when we
wish to sample from a mixture of densities defined on spaces of differing dimensions. The
results in this section can be used to address some shortcomings of [4] for sampling on a
bounded domain, and have been used to justify the reversible jump PDMP algorithm of [10].
In Section 5 we use our results to provide a simple sufficient condition on the dynamics for a
PDMP to admit a specific piecewise smooth density as its invariant density. Various proofs and
technical assumptions for these results are deferred to the appendices. We then show how to
construct dynamics at the discontinuities for a range of common PDMP samplers, and empir-
ically compare these samplers on some toy examples—with a view to gaining intuition as to
their relative merits, particularly when we wish to sample from high-dimensional piecewise
smooth densities. The paper ends with a discussion.

2. PDMP basic properties

2.1. General PDMP construction

For this work, we require a general construction of piecewise deterministic Markov pro-
cesses (PDMPs) in spaces featuring boundaries. We will follow the construction of Davis in
[11, p. 57], and largely make use of the notation therein.

Let K be a countable set, and for k ∈ K, let E0
k be an open subset of Rdk . Let E0 be their

disjoint union:

E0 :=
{

(k, z) : k ∈ K, z ∈ E0
k

}
.

For any k ∈ K, we have a Lipschitz vector field on E0
k that induces a flow �k(t, z).

In this setting, trajectories may reach the boundaries of the state. Hence we define the
entrance and exit boundaries using the flow, ∂−E0

k and ∂+E0
k respectively (see Figure 1):

∂±E0
k =

{
z ∈ ∂E0

k |z = �k(± t, ξ ) for some ξ ∈ E0
k and t > 0

}
.

Note that it may be possible for a point to be both an entrance and an exit boundary.
We then have ∂1E0

k := ∂−E0
k\∂+E0

k as in [11, p. 57], and also

Ek := E0
k ∪ ∂1E0

k .
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4 A. CHEVALLIER ET AL.

Finally, the full state space is the disjoint union,

E :=
⋃

k

({k} × Ek).

The active boundary (that is, the exit boundary) is then defined as

� :=
⋃

k

({k} × ∂+E0
k

)
.

These are points on the boundary that the deterministic flow can hit.
We will denote the state of a PDMP on E at time t by Zt ∈ E. A detailed construction of the

PDMP is provided by Davis [11, p. 59], but we provide here a summary of the quantities that
define a PDMP (Zt):

(i) An event rate λ(z), with z ∈ E. An event occurs in [t, t + h] with probability λ(Zt)h +
o(h).

(ii) A jump kernel defined for z ∈ E ∪ �: Q(·|z) with Q(·|z) a probability measure on E. At
each event time Ti, the state will change according to the jump kernel: ZTi ∼ Q(·|ZTi−).

(iii) The deterministic flow � which determines the behaviour of Zt between jumps.

(iv) For any trajectory Zt such that

lim
t↑t0

Zt = Zt0− ∈ �,

the state will change according to the jump kernel: Zt0 ∼ Q(·|Zt0−).

Remark 1. The trajectory never enters �, which is not in the domain.

2.2. PDMP samplers

In the case of most PDMP samplers, the state space is constructed by augmenting the
space of interest with an auxiliary velocity space Vk: E0

k = Uk × Vk. The deterministic flow is
then typically given by free transport, i.e. �k(t, x, v) = (x + tv, v), though other examples exist
[6, 30, 31]. The use of such simple dynamics allows for the exact simulation of the process
dynamics, without resorting to numerical discretization.

For the purposes of this work, it will be useful to introduce three of the more popular
classes of PDMP sampler, which we will then be able to refer back to as running examples.
Each of these processes works on a velocity-augmented state space and follows free-transport
dynamics, and so they differ primarily in (i) the set of velocities which they use, and (ii) the
nature of the jumps in the process. We describe the dynamics for each process if we wish to
sample from a density π (x) on R

d:

1. The bouncy particle sampler [8] uses a spherically symmetric velocity space, given
by either R

d equipped with the standard Gaussian measure, or the unit sphere
equipped with the uniform surface measure. ‘Bounce’ events occur at rate λ(x, v) =
〈v, −∇ log π (x)〉+, and at such events, the velocity deterministically jumps to v′ =(

I − 2 (∇ log π (x))(∇ log π (x))�
(∇ log π (x))�(∇ log π (x))

)
v, i.e. a specular reflection against the level set of log π

at x.
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2. The zigzag process [5] uses {±1}d as its velocity space, equipped with the uniform mea-
sure. There are now d different types of bounce events, corresponding to the coordinates
of the velocity vector. Bounces of type i occur at rate λi(x, v) = (−vi∂i log π (x))+, and
at such events, vi is deterministically replaced by −vi.

3. The coordinate sampler [20, 33] uses {±ei}d
i=1 as its velocity space, equipped with the

uniform measure, where ei is the ith coordinate vector. Bounce events again happen at
rate λ(x, v) = 〈v, −∇ log π (x)〉+. At such events, the velocity is resampled from the full
velocity space, with probability proportional to λ(x, −v′).

When d = 1, all of these processes are identical. Additionally, all three processes can be
supplemented with ‘refreshment’ events, which occur at a rate independent of v, and modify
the velocity in a way which leaves its law invariant. This can include full resampling, autore-
gressive resampling in the case of spherical velocities, coordinate-wise resampling in the case
of velocity laws with independent coordinates, and other variations.

From the above definitions, it is easy to see that the event rates only make sense when π is
sufficiently smooth, and that in the presence of discontinuities, complications in defining the
process will arise. Furthermore, it is not a priori clear which processes will work best in the
presence of such discontinuities.

2.3. Review: extended generator and semigroup

We collect some basic definitions and facts which will be crucial for our later results.
Let B(E) denote the set of bounded measurable functions E →R. For any f ∈B(E), we

recall the definition of the semigroup Pt associated to the process Zt:

Ptf (z) =Ez[f (Zt)], z ∈ E,

where Ez is the expectation with respect to Pz, with Pz the probability such that Pz[Z0 = z] = 1.

Proposition 1. The semigroup Pt is a contraction for the sup norm:

‖Ptf ‖∞ ≤ ‖f ‖∞,

for all f ∈B(E) and t ≥ 0.

Proof. See [11, p. 28]. �
The semigroup is said to be strongly continuous for f ∈B(E) if limt↓0 ‖Ptf − f ‖∞ = 0. Let

B0 be the set of functions for which Pt is strongly continuous:

B0 :=
{

f ∈B(E) : lim
t↓0

‖Ptf − f ‖∞ = 0

}
.

Lemma 1. We have that B0 ⊂B(E) is a Banach space with sup norm ‖ · ‖∞, and Pt maps
B0 →B0 for any t ≥ 0.

Proof. See [11, p. 29]. �
Let us write (A,D(A)) for the infinitesimal generator (also referred to as the strong

generator) of the semigroup (Pt). By definition, for all f ∈D(A),

Af = lim
t→0

1

t
(Ptf − f ),
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6 A. CHEVALLIER ET AL.

with this limit being taken in ‖ · ‖∞, with

D(A) =
{

f ∈B0 :

∥∥∥∥1

t
(Ptf − f ) − g

∥∥∥∥∞
→ 0, for some g ∈B(E)

}
. (2)

Since g in (2) is a limit of functions in a Banach space, if such a g exists, it must be unique,
and Af is well-defined.

Lemma 2. Let f ∈D(A). Then Af ∈B0. In other words, A : D(A) →B0.

Proof. This is immediate since Pt maps B0 →B0. �
We now define the extended generator (A,D(A)): D(A) is the set of (potentially unbounded)

measurable functions f : E →R such that there exists a measurable function h : E →R with
t �→ h(Zt) Pz-integrable almost surely for each initial point z, and such that the process

Cf
t := f (Zt) − f (Z0) −

∫ t

0
h(Zs) ds, t ≥ 0, (3)

is a local martingale; see [11, (14.16)]. For f ∈D(A), Af = h, for h as in (3).

Proposition 2. The extended generator is an extension of the infinitesimal generator:

1. D(A) ⊂D(A).

2. Af =Af for any f ∈D(A).

Proof. See [11, p. 32]. �
To simplify notation, we will define the action of our probability kernel, Q, on a function,

f , as

(Qf )(z) =
∫

E
f (y)Q(dy|z).

We will assume throughout this work that the standard conditions of Davis [11, (24.8)]
hold. Under this assumption on PDMPs, (A,D(A)) are fully characterized in [11, (26.14)].
In particular, the set D(A) is entirely known, and for all f ∈D(A),

Af (z) = �f (z) + λ(z){(Qf )(z) − f (z)}, (4)

where � is the differential operator associated to the deterministic flow of the PDMP. The
PDMP samplers we are interested in (see Section 2.2) have flow corresponding to free
transport, with corresponding � operator for continuously differentiable f ,

�f (x, v) = v · ∇xf (x, v).

Remark 2. To reiterate, while the domain of the strong generator D(A) is not known, the
domain D(A) is known and D(A) ⊂D(A).

3. A general framework for the invariant measure of a PDMP

A challenge in the piecewise smooth setting is that the usual approach to constructing and
working with PDMPs does not work without changing the topology. In particular, existing
results concerning the invariant measure of such processes require the process to be Feller. For
PDMPs with boundaries, this is in fact not the case in general [11, (27.5)].
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3.1. Strong continuity of the semigroup

First, we give a general result that is not tied to our specific context and is valid for any
PDMP that follows Davis’s construction, [11, Section 24, (24.8)].

Let F be the space of C1 functions contained in D(A) with compact support.

Proposition 3. Assume that the deterministic flow and the jump rates are bounded on any
compact set, and that Qf has compact support whenever f has compact support. Then F ⊂B0.
In other words, the semigroup Pt of the process is strongly continuous on F:

Ptf → f for all f ∈F ,

in ‖ · ‖∞, as t ↓ 0.

Proof. Let f ∈F . Since f ∈D(A),

Cf
t := f (Zt) − f (Z0) −

∫ t

0
Af (Zs) ds, t ≥ 0,

is a local martingale. Furthermore, by examining the expression for Af , one sees that it can be
rewritten as

Af (z) = �f (z) + λ(z)Qf (z) − λ(z)f (z)

from (4). Since f and Qf have compact support and are bounded, using the assumptions on �

and λ, we deduce that Af is bounded.
Since f and Af are bounded, Cf

t is bounded for any fixed t, which implies that it is a mar-
tingale. More precisely, consider the stopped process Cf

t∧T for any T > 0. This is a uniformly
bounded local martingale, and is hence a true martingale.

We have Cf
0 = 0; hence, for any starting point z and t > 0,

Ez[C
f
t ] = 0.

Hence

Ptf (z) − f (z) =
∫ t

0
PsAf (z) ds,

where we used Fubini’s theorem to swap the integral and the expectation. Since Pt is a
contraction for the sup norm, we see that

‖Ptf − f ‖∞ ≤
∫ t

0
‖PsAf ‖∞ ds

≤
∫ t

0
‖Af ‖∞ ds

≤ t‖Af ‖∞.

We thus conclude that Ptf − f → 0 as t ↓ 0. �
Remark 3. The set F does not capture every function of B0, nor is it invariant under Pt. We
will not attempt to prove that F is a core of the infinitesimal generator.

Recall that a set of functions F0 ⊂B(E) separates measures if for any probability measures
μ1, μ2 on E,

∫
f dμ1 = ∫ f dμ2 for all f ∈F0 implies that μ1 = μ2. In order to study the invari-

ant measure through the semigroup and its effect on functions, it is important to consider sets
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8 A. CHEVALLIER ET AL.

of functions which separate measures. Therefore, we will now show that F separates measures
on E0.

Proposition 4. Assume that the jump kernel Q is such that for any z ∈ �, the measure Q( · |z)
is supported on the boundary ∪k∂

−E0
k . Then F separates measures on E0.

Proof. Consider the set of C1 functions f : E →R which are compactly supported on each
open set E0

k . The collection of such functions separates measures on E0.
We will show that such functions belong to D(A), and hence to F , by using the explicit

characterization of D(A) from [11, Theorem 26.14].
Firstly, if f is C1 with compact support, Conditions 1 and 3 of [11, Theorem 26.14] are

automatically satisfied.
It remains to check the boundary condition:

f (z) =
∫

E
f (y)Q(dy|z) = Qf (z), z ∈ �. (5)

However, since we are considering only functions f which are compactly supported on each
E0

k , it holds that f (z) = 0 for any z ∈ � on the boundary. Recalling that Q( · |z) is supported only
on the boundary, we have that Qf (z) = 0 also for any z ∈ �. It hence follows that the boundary
condition is satisfied. �
Remark 4. The assumption of Proposition 4 is restrictive and does not cover, for example, the
case of variable selection described in [10]. However, it is possible to weaken the assumption
to cover the variable selection case. A sketch is available in Appendix A.

3.2. Invariant measure

We now turn to giving conditions for the invariant measure of our PDMP. The following
lemma will be important within the proof, as it allows us to ignore contributions from the
boundary when calculating expectations over the path of the PDMP.

Lemma 3. For all z ∈ E, the process starting from z spends a negligible amount of time on the
boundary: for any t > 0, ∫ t

0
1Zs∈E\E0 ds = 0,

Pz-almost surely.

Proof. In Davis’s construction, the number of events, including jumps at the boundary, is
countable for every trajectory. Hence, for every trajectory of the process, the set of times for
which Zt ∈ E \ E0 is countable and therefore negligible. �
Theorem 1. Let μ be a measure on E. Assume the following conditions hold:

1. The vector field of the deterministic flow and the jump rates are bounded on any compact
set.

2. Qf has compact support whenever f has compact support.

3. For any z ∈ �, the measure Q(·|z) is supported on the boundary ∪k∂
−E0

k .

4. We have μ(E \ E0) = 0.
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5. For all f ∈D(A),
∫

E Af dμ = 0.

Then μ is invariant.

Proof. Using this fact and Proposition 1.5 from Ethier and Kurtz [17] (or [11, (14.10)]),
we note that for any f ∈B0 and t > 0, we have that

∫ t
0 Psf ds ∈D(A), the domain of the strong

generator. We also have that

∫
E

Ptf dμ =
∫

E

[
f + A

∫ t

0
Psf ds

]
dμ =

∫
E

f dμ, (6)

where we have used our assumption that
∫

Ag dμ = 0 for any g ∈D(A) and taken
g = ∫ t

0 Psf ds.
Let fB(z) := f (z)1z∈E\E0 and f0(z) := f (z)1z∈E0 be a decomposition of f with f = f0 + fB. Let

1B(z) = 1z∈E\E0 be the indicator function of the boundary E \ E0.

From Lemma 3,
∫ t

0 Ps1B(z) ds = 0 for all z ∈ E. Hence we have that∫
E

[ ∫ t
0 Ps1B(z) ds

]
dμ(z) = 0, and by using Fubini’s theorem, that

∫ t

0

∫
E

Ps 1B dμ ds = 0.

By the non-negativity of Pt1B, there exists a null set N ⊂R
+ such that for all t ∈R

+ \N ,∫
E

Pt 1B dμ = 0.

For all z, fB(z) ≤ ‖f ‖∞1B(z), so for all t /∈N ,
∫

E Pt fB dμ = 0. Hence
∫

E Pt f dμ =∫
E Pt f0 dμ for all t /∈N . Since μ is supported on E0,

∫
E f dμ = ∫E f0 dμ and we deduce using

(6) that for all t /∈N , ∫
E

Pt f0 dμ =
∫

E
f0 dμ. (7)

Let μt be the law Zt with Z0 ∼ μ. Let μ0
t and μB

t be the measures defined by μ0
t (A) = μt(A ∩

E0) and μB
t (A) = μt(A ∩ (E \ E0)). Using (7), for all t /∈N ,∫

E0
f0 dμ0

t =
∫

E
Pt f0 dμ =

∫
E

f0 dμ =
∫

E0

f0 dμ0.

Since F separates measures on E0 by Proposition 4, μ0
t = μ0 for all t /∈N . Furthermore,

μ(E) = μt(E) and μ(E) = μ0(E); hence μ0
t (E) = μt(E) and μB

t (E) = 0. Thus μt = μ0
t = μ0 =

μ for all t /∈N .
Let t1, t2 /∈N . Then μt1 = μt2 = μ, and for all functions g which are measurable and

bounded, it holds that∫
E

Pt1+t2 g dμ =
∫

E
Pt1 (Pt2g) dμ =

∫
E

Pt2 g dμt1 =
∫

E
Pt2 g dμ =

∫
E

g dμ.

Hence μt1+t2 = μ. To conclude, since N is a null set, for all t > 0, there exist t1, t2 /∈N such
that t = t1 + t2, and therefore μt = μ. �
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4. PDMP samplers with active boundaries

Let Uk be an open set of Rdk for all k ∈ K, and let Vk ⊂R
dk be the velocity space associated

to the PDMP sampler on Uk. We consider the state space defined following the construction of
Davis described in Section 2.1: first, set

E0
k = Uk ×R

dk .

Remark 5. We do not take E0
k = Uk × Vk because E0

k must be open and Vk, the set of velocities
of the PDMP sampler, might not be.

Let π be a measure on the disjoint union ∪kUk with a density πk on each Uk, where πk can
be extended continuously to the closure Ūk. Let pk be the marginal velocity probability distri-
bution on R

dk with support on Vk, and let μ(k, x, v) = πk(x)pk(v) be a density on ∪k∈KUk × Vk

with respect to a suitable dominating measure (which will have discrete components when Vk

is a finite set), defining a measure on E.
The core result of this section relies on integration by parts, and as such requires extra

assumptions on the sets Uk. For clarity of exposition, we give here an intuitive version of the
required assumptions; a detailed version can be found in Assumptions 3 and 4 in the appendix.

Assumption 1. Assumptions 3 and 4 can be informally described as follows:

(i) Uk has no interior discontinuities on a (dk − 1)-dimensional subset.

(ii) The boundary ∂Uk can be decomposed into a finite union of smooth parts, on each of
which the normal is well-defined.

(iii) The set of corner points, on which the normals of the boundary are not defined, is
negligible in an appropriate sense.

(iv) For each x ∈ Uk, v ∈ Vk, there is a finite number of intersections between each line x +
Rv and ∂Uk.

(v) For each v ∈ Vk, the projection of the points on the boundary, which are tangent to the
velocity, onto Hv = span(v)⊥ is negligible in an appropriate sense.

Let Nk be the subset of points x on the boundary ∂Uk where the normal n(x) is properly
defined (see (10) of the appendix for a precise statement).

Assumption 2.

(i) We have
∫ |λ(z)| dμ < ∞.

(ii) For all k ∈ K, πk is C1 in Ūk.

(iii) For any k ∈ K, and any v ∈ Vk, ∇πk · v is in L1(Leb).

Theorem 2. If Assumptions 2, 3, and 4 hold, then for all f ∈D(A),

∫
E

Af dμ = −
∫

E0
f (k, x, v)∇xμ · v dx dv +

∫
E0

λ(z)[Qf (z) − f (z)] dμ

+
∑
k∈K

∫
x∈∂Uk∩Nk,v∈Vk

f (k, x, v)πk(x)〈n(x), v〉 dσ (x) dp(v),
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where f(k, x, v) is defined as f (k, x, v) := limt↓0 f (k, x − tv, v), for x ∈ ∂Uk ∩ Nk, v ∈R
dk such

that 〈n(x), v〉 > 0, and σ is the Lebesgue measure induced on the surface ∂Uk.

Proof (sketch). The outline of the proof is that we first use the definition of the generator
acting on a function Af and then rearrange the resulting integral using integration by parts.
If our PDMP has no boundary, this will give just the first two terms on the right-hand side
[18, 31]. The effect of the boundaries is to introduce the additional terms when performing
integration by parts. For full details of the proof, see Section B.2. �
Corollary 1. If Assumptions 2, 3, and 4 hold, then for all f ∈D(A),∫

E
Af dμ = −

∫
E0

f (k, x, v)∇xμ · v dx dv +
∫

E0
λ(z)[Qf (z) − f (z)] dμ

+
∑
k∈K

∫
∂−Ek

[f (k, x, v) − Qf (k, x, −v)]πk(x)〈n(x), v〉 dσ (x) dp(v). (8)

Proof. Plugging the boundary condition (5) that must be satisfied by any f ∈D(A) into the
result of Theorem 2 yields the result. �

To show that a PDMP has the correct invariant distribution, we need to show that∫
E Af dμ = 0. It is difficult to give simple criteria for this in full generality, so in what fol-

lows we will focus on samplers where the position is unchanged at the boundary. This is
consistent with the dynamics of current PDMP samplers where trajectories are continuous, and
events of the PDMP only change the velocity. A natural approach for constructing other sam-
pling behaviour at the boundary is to work with samplers for which f (k, x, v)∇xμ · v dx dv +∫

E0 λ(z)[Qf (z) − f (z)] dμ = 0. In this case, we only need to verify that the dynamics at the
boundary are such that the remaining term in (8) simplifies to 0: see [19] for a condition for a
class of moves on the boundary for which this term vanishes. In more generality, such as for
the variable selection sampler of [10], we can also introduce additional events into the sampler
to compensate for the boundary term.

5. PDMP samplers for piecewise continuous densities

Let π be a density on R
d, and let {Uk : k ∈ K} be a finite collection of disjoint open subsets

of Rd, such that ∪kUk =R
d, which satisfy our technical Assumptions 3 and 4. We assume that

π is C1 on each Ūk. We are now in the same setting as in the previous section.
Let ∂U =⋃k∈K (∂Uk ∩ Nk) be the union of the boundaries, i.e. the set of discontinuities of

π . We consider now only points on the boundary where exactly two sets Uk1 , Uk2 intersect, and
where the respective normals are well-defined; the set of points where more sets intersect or
the normal is ill-defined form a null set by assumption and thus have no impact on the resulting
invariant distribution.

In the following we will restrict ourselves to transition kernels on the boundary that keep
the location, x, unchanged and only update the velocity, v.

For each such x in ∂U, there exist k1(x) and k2(x) such that x ∈ Ūk1 and x ∈ Ūk2 . We will
define the ordering of the labels so that πk1 (x) < πk2 (x). Let n(x) be the outer normal for Uk1 .
Thus this is the normal that points to the region k2(x), which is the region that has higher
density, under π , at x.

Let V+
x = {v ∈ V|〈v, n(x)〉 > 0} and V−

x = {v ∈ V|〈v, n(x)〉 < 0}. Thus V+
x is the set of veloc-

ities that would move the position x into k2(x), thereby increasing the density under π , and V−
x

is the set of velocities that move the position into k1(x).
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For x ∈ ∂U, let lx be the following (unnormalized) density on V:

lx(v) =
{|〈n(x), v〉|p(v)πk2(x)(x) ∀v ∈ V+

x ,

|〈n(x), v〉|p(v)πk1(x)(x) ∀v ∈ V−
x .

This is just proportional to the density p(v) weighted by the size of the velocity in the direction
of the normal n(x) and weighted by the density at x in the region, either k1(x) or k2(x), that the
velocity is moving toward.

Consider the transition (x, v) → (x′, v′) obtained by first flipping the velocity and then apply-
ing the Markov kernel Q. Since we assume that Q only changes the velocity, there exists
a Markov kernel Q′

x such that this transition can be described as δx( dx′)Q′
x( dv′|v). One can

equally define this kernel by Q′
x(A|v) = Q({x} × A|x, −v) for any measurable A.

Theorem 3. Assume for all v ∈ Vx that p(v) = p(−v), and that the transition kernel Q only
changes the velocity, and define the family of kernels Q′

x for x ∈ ∂U as above. Furthermore,
assume that

−
∫

E0
f (k, x, v)∇xμ · v dx dv +

∫
E0

λ(z)[Qf (z) − f (z)] dμ = 0,

and that
∀x ∈ ∂U, lx is an invariant density of Q′

x. (9)

Then
∫

E Af dμ = 0 for all f ∈D(A), and μ is the invariant distribution of the process.

Proof. Starting from Theorem 2, for all f ∈D(A),∫
E

Af dμ = −
∫

E0
f (k, x, v)∇xμ · v dx dv +

∫
E0

λ(z)[Qf (z) − f (z)] dμ

+
∑
k∈K

∫
x∈∂Uk∩Nk,v∈V

f (k, x, v)πk(x)〈n(x), v〉 dσ (x) dp(v).

By assumption, − ∫E0 f (k, x, v)∇xμ · v dx dv + ∫E0 λ(z)[Qf (z) − f (z)] dμ = 0, and so we sim-
plify the integral of Af to∫

E
Af dμ =

∑
k∈K

∫
x∈∂Uk∩Nk,v∈V

f (k, x, v)πk(x)〈n(x), v〉 dσ (x) dp(v).

To simplify notation, in the rest of the proof we write k1 for k1(x) and k2 for k2(x). We
rewrite the previous equation as follows:∫

E
Af dμ =

∫
x∈∂U

∫
v∈V+

x

[
f (k2, x, v)πk2 (x) − f (k1, x, v)πk1 (x)

] |〈n(x), v〉| dp(v) dσ (x)

−
∫

x∈∂U

∫
v∈V−

x

[
f (k2, x, v)πk2 (x) − f (k1, x, v)πk1 (x)

] |〈n(x), v〉| dp(v) dσ (x).

Using the fact that if v ∈ V−
x then −v ∈ V+

x , we can rewrite the right-hand side as∫
x∈∂U

(∫
v∈V+

x

[
f (k2, x, v)πk2 (x) − f (k1, x, v)πk1 (x)

] |〈n(x), v〉| dp(v)

−
∫

v∈V+
x

[
f (k2, x, −v)πk2 (x) − f (k1, x, −v)πk1 (x)

] |〈n(x), v〉| dp(−v)

)
dσ (x).

A sufficient condition for
∫

E Af dμ = 0 is that for all x the integral over v in the brackets is 0.

https://doi.org/10.1017/apr.2023.61 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.61


PDMP Monte Carlo methods for piecewise smooth densities 13

Any f ∈D(A) satisfies the boundary condition (5) on �. For v ∈ V+
x , we have (k1, x, v) ∈ �

and (k2, x, −v) ∈ �; hence,

f (k1, x, v) =
∫

f (z′)Q(dz′|(k1, x, v)),

f (k2, x, −v) =
∫

f (z′)Q(dz′|(k2, x, −v)).

Thus our sufficient condition for
∫

E Af dμ = 0 becomes∫
V+

x

[f (k2, x, v)πk2 (x) − Qf (k1, x, v)πk1 (x)]|〈n(x), v〉| dp(v)

=
∫
V+

x

[Qf (k2, x, −v)πk2 (x) − f (k1, x, −v)πk1 (x)]|〈n(x), v〉| dp(−v).

Using again the fact that if v ∈ V+
x then −v ∈ V−

x , this condition can be rewritten as follows:∫
V+

x

f (k2, x, v)πk2 (x)|〈n(x), v〉| dp(v) +
∫
V−

x

f (k1, x, v)πk1 (x)|〈n(x), v〉| dp(v)

=
∫
V+

x

Qf (k2, x, −v)πk2 (x)|〈n(x), v〉| dp(−v)

+
∫
V−

x

Qf (k1, x, −v)πk1 (x)|〈n(x), v〉| dp(−v).

We can then write this in terms of lx and Q′
x by introducing a function f ′(x, v) that is

defined as

f ′(x, v) = f (k1, x, v) if v ∈ V−
x , and f ′(x, v) = f (k2, x, v) if v ∈ V+

x .

Then, using p(v) = p(−v) and the definitions of lx and Q′
x, our sufficient condition becomes∫

Vx

f ′(x, v) dlx(v) =
∫
Vx

(∫
Vx

f ′(x, v′)Q′
x(dv′|v)

)
dlx(v).

This is true if lx is an invariant density of Q′
x. �

6. Boundary kernels for usual PDMP samplers

We give here possible Markov kernels for the bouncy particle sampler, the zigzag sampler,
and the coordinate sampler. Since the condition of Theorem 3 only depends on the veloc-
ity distribution, any two processes that share the same velocity distribution can use the same
boundary Markov kernels. We present two approaches to constructing appropriate kernels on
the boundary.

6.1. Sampling l using Metropolis–Hastings

Recall from Theorem 3 that a valid kernel for the velocity when we hit a boundary can be
constructed as follows: first, construct a transition kernel Q′

x which leaves lx invariant; then, if
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the current velocity is v, simulate a new velocity from Q′
x(·| − v). That is, we can simulate a

new velocity by (i) flipping the velocity and (ii) applying Q′
x.

The simplest choice of Q′
x is just the identity map, i.e. a kernel that keeps the velocity.

However, this would correspond to a transition kernel on the boundary which simply flips the
velocity, thus forcing the PDMP to retrace its steps. Where possible, we can improve on this
by choosing Q′

x to be a kernel which samples from lx, though it should be noted that this choice
may be difficult to implement.

When V is bounded, an alternative is to define Q′
x as a Metropolis–Hastings kernel [15]

targeting lx, with proposals from a uniform sampler of V . The algorithm starting from v then
proceeds as follows:

1. Sample v′ uniformly in V .

2. Accept v∗ = v′ with probability α = lx(v′)
lx(v) ; otherwise set v∗ = v.

Of course, it is also possible to iterate the Metropolis–Hastings kernel several times to get a
good sample from lx at a reasonable cost.

6.2. Limiting behaviours

A natural strategy for constructing the transition kernel for the velocity at a boundary is
to consider the limiting behaviour of the sampler for a family of continuous densities which
tend to a piecewise discontinuous density in an appropriate limit. We will do this for a density
π with one discontinuity on a hyperplane with normal n: π (x) = c01〈x,n〉<0 + c11〈x,n〉≥0 with
c0 < c1. In the following we will assume c0 > 0, but the extension of the arguments to the case
c0 = 0 is straightforward.

We can approximate π by a continuous density πk such that ∇ log (πk) is piecewise
constant:

πk(x) = c01〈x,n〉∈(∞,−C/k] + c1 exp{k〈x, n〉}1〈x,n〉∈(−C/k,0] + c11〈x,n〉∈(0,∞),

where C = log (c1/c0). As k → ∞ we can see that πk converges to π . In the following we will
call the region where 〈x, n〉 ∈ [−C/k, 0] the boundary region of πk, as this is approximating
the boundary defined by the discontinuity in π .

The advantage of using the densities πk is that the resulting behaviour of standard PDMP
samplers is tractable, and, as we will see, the distribution of the change in velocity from enter-
ing to exiting the boundary region of πk will not depend on k. The choice of k does affect
the change in position of the PDMP as it moves through the boundary region. The effect of
increasing k is just to reduce the time spent passing through the boundary region. In the limit
as k → ∞ this becomes instantaneous, and the PDMP’s position will be unchanged.

We consider this limiting behaviour for the bouncy particle sampler, the coordinate sampler,
and the zigzag process. Whilst we derive the transition distribution for the velocity in each
case from this limiting behaviour, we will demonstrate that each distribution is valid for the
corresponding sampler directly by showing that it satisfies our condition (9). The proofs of the
propositions in this section are deferred to Appendix D.

6.2.1. Limiting behaviour of the bouncy particle sampler. Consider the bouncy particle sam-
pler dynamics for sampling from πk for a trajectory that enters the boundary region, and ignore
any refresh events. If the state of the bouncy particle sampler is (x, v), then dynamics are such
that events occur at a rate max{0, −〈v, ∇ log πk(x)〉}, and at an event the velocity is reflected
in ∇ log πk(x). Whilst in the boundary region, ∇ log πk(x) = kn.
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For any v such that 〈v, n〉 > 0, it is clear that λ(x, v) = 0 for all x. Hence, the trajectory
through the boundary region will be a straight line.

Let v be such that 〈v, n〉 < 0. Without loss of generality assume that the trajectory enters
the boundary region at t = 0 with 〈x0, n〉 = 0. If no jumps occur, the trajectory will exit the
boundary region at some time te, where 〈xte , n〉 = −C/k, which implies te = −C/(k〈v, n〉). For
such a trajectory, the Poisson rate whilst passing through the boundary region is λ = −k〈v, n〉.
Remembering that C = log (c1/c0), we have that the probability of a trajectory passing through
the region in a straight line is

exp{−λte} = exp

{
− log

(
c1

c0

)}
= c0

c1
,

which does not depend on k.
Finally, the probability of an event that changes the velocity in the boundary region is thus

1 − c0/c1. If there is an event, then the velocity reflects in the normal and becomes v′ = v −
2〈v, n〉. As 〈v′, n〉 > 0, no further events will occur whilst passing through the boundary region.

Hence the probability transition kernel assigns probabilities

Q(x, v′|x, v) =

⎧⎪⎨
⎪⎩

1, v′ = v and 〈v, n〉 > 0,

c0/c1, v′ = v and 〈v, n〉 < 0,

1 − c0/c1, v′ = v − 2〈n, v〉n and 〈v, n〉 < 0.

If we translate this into the corresponding transition kernel at a general discontinuity, for a
trajectory that hits the boundary defined by the continuity at a point with unit normal n = n(x),
then

QBPS(x, v′|x, v) =

⎧⎪⎨
⎪⎩

1, v′ = v and v ∈ V+
x ,

πk1(x)(x)/πk2(x)(x), v′ = v and v ∈ V−
x ,

1 − πk1(x)(x)/πk2(x)(x), v′ = v − 2〈n, v〉n and v ∈ V−
x .

That is, if the trajectory is moving to the region of lower probability density, then it passes
through the discontinuity with a probability proportional to the ratio in the probability
densities. Otherwise, it reflects off the surface of discontinuity.

Proposition 5. The transition kernel of the velocity, Q′
x, derived from QBPS satisfies (9).

This result holds for either implementation of the bouncy particle sampler, i.e. where the
distribution of the velocity is uniform on the sphere, or is an isotropic multivariate Gaussian.
Examination of the proof of the proposition shows that we only require that p(v) is spherically
symmetric.

6.2.2. Limiting behaviour of the coordinate sampler. In the coordinate sampler, the velocity
is always in the direction of one of the coordinates of x, and we will denote the set of 2d
possible velocities by V . The dynamics of the coordinate sampler are similar to those of the
bouncy particle sampler except that the transition kernel at an event is different. At an event,
the probability of the new velocity being v′ ∈ V is proportional to max{0, 〈v′, ∇ log πk(x)〉}.

The calculations for the transition kernel of the coordinate sampler for a trajectory that
enters the boundary region of πk is similar to that for the bouncy particle sampler, except that,
if there is an event, the distribution of the new velocity changes to that for the coordinate
sampler.
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The resulting probability transition kernel, expressed for a general discontinuity, is

QCS(x, v′|x, v) =

⎧⎪⎪⎨
⎪⎪⎩

1, v′ = v and v ∈ V+
x

πk1(x)(x)/πk2(x)(x), v′ = v and v ∈ V−
x ,

(1 − πk1(x)(x)/πk2(x)(x)) 〈v′,n〉
K , v′ ∈ V+

x and v ∈ V−
x ,

where K =∑v∈V+
x
〈v, n〉 is a normalizing constant for the distribution of the new velocity if it

changes.
That is, a trajectory moving to the higher-probability region is unaffected by the discontinu-

ity. A trajectory moving to a lower-probability region either passes through the discontinuity
or bounces. The bounce direction is chosen at random from v′ ∈ V+

x with probability equal to
the component of v′ in the direction of the normal at the discontinuity, n.

Proposition 6. The transition kernel of the velocity, Q′
x, derived from QCS satisfies (9).

6.2.3. Limiting behaviour of the zigzag sampler. For the zigzag process the velocities are of
the form {±1}d. Given the positions, events occur independently for each component. That is,
if vi ∈ {±1} is the component of the velocity in the ith coordinate axis, then this velocity will
flip, i.e. change sign, at a rate max{0, −vi∂ log πk(x)/∂xi}. For the boundary region of πk(x)
we have

∂ log πk(x)

∂xi
= kni,

where ni is the ith component of the normal n.
If we consider the dynamics of zigzag once it enters the boundary region of πk(x), then each

velocity component with vini < 0 will potentially flip. Whilst travelling through the boundary
region, the rate at which such a vi will flip will be −vinik. If a component flips, then the
new velocity satisfies v′

i = −vi, and hence v′
i ni > 0 and the rate of any future flip while in the

boundary region will be 0. Thus, each component will flip at most once whilst the trajectory
passes through the boundary region.

The resulting dynamics are somewhat complicated, but can easily be simulated using the
following algorithm:

(a) For i = 1, . . . , d simulate τi as independent realizations of an exponential random
variable with rate k max{−nivi, 0}. If nivi ≥ 0 then set τi = ∞.

(b) Calculate the time t∗ at which we leave the boundary as the smallest value t > 0 for
which

n∑
i=1

vini(τi − |t − τi|) = ±C/k,

or
n∑

i=1

vini(τi − |t − τi|) = 0.

(c) The new velocity has v′
i = vi if τi > t∗ and v′

i = −vi otherwise.

The key idea is that whilst the trajectory remains within the boundary region, each velocity
component flips independently with its own rate. Step (a) then simulates the time at which each
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FIGURE 2. Example trajectories for the bouncy particle sampler (left), coordinate sampler (middle), and
zigzag process (right) for simulating from a 100-dimensional Gaussian distribution restricted to a cube for
different transitions on the boundary. For the zigzag process and coordinate sampler, the basis is rotated
by a random matrix R. We show the dynamics for the first two coordinates only. The different transitions
correspond to the limiting behaviour in Sections 6.2.1–6.2.3 (top); using a single Metropolis–Hastings
step to sample from lx (middle); and using 100 Metropolis–Hastings steps to sample from lx (bottom).

component of the velocity would switch. Step (b) calculates, for the event times simulated in
1, the time t∗ at which the trajectory will leave the boundary. There are two possibilities, the
first corresponding to passing through the boundary, the second to bouncing back to the region
where we started. For the first of these possibilities we have two options, corresponding to
C/k and −C/k, to allow for the two possible directions with which we can enter the bound-
ary region. Then in Step (c) we calculate the velocity once the trajectory exits the boundary
region—using the fact that a velocity component will have flipped if and only if τi < t∗.

It is simple to show that the distribution of the new velocity, v′, simulated in Step (c) is
independent of k, as the value of k only introduces a scale factor into the definition of the
event times τi and the exit time t∗. Thus for a general discontinuity, we define the probability
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FIGURE 3. MCMC estimates over time of Eπ [1[−1,1]d (X)], the expectation of the indicator function of

[ − 1, 1]d under π , for different samplers, repeated 5 times for each sampler. Here d = 20 and
the expectation is computed with respect to the d-dimensional density (proportional to) π (x) =
αine

− ‖x‖2

2σ2
in 1R−1x∈[−1,1]d + αoute

− ‖x‖2

2σ2
out 1R−1x/∈[−1,1]d , with (αin, αout, σin, σout) = (1, 1, 2, 0.8), where R is

a random rotation matrix. The red line corresponds to the true value of the expectation. For the bouncy
particle sampler, a refresh rate of 5 is used. Each sampler ran for 100000 events.

transition kernel, QZZ, as corresponding to the above algorithm with k = 1, with n = n(x) and
C = log (πk2(x)(x)/πk1(x)(x)), the log of the ratio in probability density at x for the two regions.

Proposition 7. The transition kernel of the velocity Q′
x induced by QZZ satisfies (9).

6.3. Bouncy particle sampler with reflection and refraction

The bouncy particle sampler can be implemented using a Gaussian velocity distribution,
similarly to Hamiltonian Monte Carlo. In that case, it is possible to use the boundary ker-
nel developed for Hamiltonian Monte Carlo which reflects and refracts on the boundary
[1]. This kernel is fully deterministic and is as follows. As before, let k1 and k2 denote
the regions on either side of the discontinuity, with the density being higher in the region
k2, and let n be the normal that points to k2. Let U = log(πk2 (x)) − log (πk1 (x)) > 0 be
the (positive) difference in log density between the two sides of the boundary. If 〈v, n〉 < 0
and 〈v, n〉2 > 2U, then the process crosses the boundary and the outgoing velocity is v′ =
v + (√〈v, n〉2 − 2U − 〈v, n〉)n (refraction). Otherwise, if 〈v, n〉 < 0 and 〈v, n〉2 < 2U, the
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FIGURE 4. Example trajectories for the bouncy particle sampler for simulating from a d-dimensional
Gaussian distribution restricted to a cube, for d = 2, 10, 100, and for different transitions on the bound-
ary. For d = 10, 100 we show the dynamics for the first two coordinates only. The different transitions
correspond to the limiting behaviour, QBPS, of Section 6.2.1 (top); using a single Metropolis–Hastings
step to sample from lx (middle); and using 100 Metropolis–Hastings steps to sample from lx (bottom).

boundary is not crossed and the output velocity is v′ = v − 2〈v, n〉n (reflection). If 〈v, n〉 > 0
then, as we are moving to the region with higher density, we always refract, and the new
velocity is v′ = v + (√〈v, n〉2 + 2U − 〈v, n〉)n.

The idea of the refraction is that only the velocity in the direction of the normal, n, is
changed. If the PDMP is moving to a region with higher density, then the velocity in the
direction of n is increased; if it is moving fast enough into a region with lower density, it is
reduced.

Let QRR be the probability kernel defined by the reflection and refraction process. The
following result gives the validity of this kernel.

Proposition 8. The transition kernel of the velocity, Q′
x induced by QRR satisfies (9).

We give examples of using this boundary kernel in Figure 3 and Appendix F.
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FIGURE 5. Example trajectories for the coordinate sampler for simulating from a d-dimensional Gaussian
distribution restricted to a cube, for d = 2, 10, 100, and for different transitions on the boundary. For
d = 10, 100 we show the dynamics for the first two coordinates only. The different transitions correspond
to the limiting behaviour, QCS, of Section 6.2.2 (top); using a single Metropolis–Hastings step to sample
from lx (middle); and using 100 Metropolis–Hastings steps to sample from lx (bottom).

7. Comparison of samplers

We now present some simulation results that aim to illustrate the theory, and show how
different samplers and different choices of kernel at the discontinuities behave. We do this by
considering a simple model for which it is easy to see the boundary behaviour, with a target
density

π (x) = αine
− ‖x‖2

2σin 1x∈[−1,1]d + αoute
− ‖x‖2

2σout 1x/∈[−1,1]d ,

which is Gaussian inside and outside the hypercube [−1, 1]d, with a discontinuous boundary
on the hypercube.
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FIGURE 6. Example trajectories for the zigzag sampler for simulating from a d-dimensional Gaussian
distribution restricted to a cube, for d = 2, 10, 100, and for different transitions on the boundary. For
d = 10, 100 we show the dynamics for the first two coordinates only. The different transitions correspond
to the limiting behaviour, QZZ, of Section 6.2.3 (top); using a single Metropolis–Hastings step to sample
from lx (middle); and using 100 Metropolis–Hastings steps to sample from lx (bottom).

For algorithms such as the zigzag process and the coordinate sampler, the choice of basis is
extremely important. In particular, we expect the zigzag process to perform very well for prod-
uct measures if the velocity basis is properly chosen. Hence we use a rotated basis where we
generate a random rotation matrix R and rotate the canonical basis by R. (For results for zigzag
with the canonical basis, see Appendix F.) The random matrix R is obtained by computing the
polar decomposition of a random matrix composed of independent and identically distributed
standard normal random variables.

Since the goal of the experiments is to highlight the boundary behaviour, and not a gen-
eral comparison between the bouncy particle sampler, the zigzag process, and the coordinate
sampler, we only perform basic tuning of these algorithms, in particular with respect to
the refresh rate which is necessary for the bouncy particle sampler to be ergodic (without
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FIGURE 7. Example trajectories for the zigzag sampler for simulating from a d-dimensional Gaussian
distribution restricted to a cube, for d = 2, 10, 100; and for different transitions on the boundary—using
the canonical basis. For d = 10, 100 we show the dynamics for the first two coordinates only. The different
transitions correspond to the limiting behaviour, QZZ of Section 6.2.3 (top); using a single Metropolis–
Hastings step to sample from lx (middle); and using 100 Metropolis–Hastings steps to sample from lx
(bottom).

boundaries). For each sampler we consider a range of transition kernels at the discontinu-
ity. These are the Metropolis–Hastings kernel of Section 6.1; using 1 or 100 iterations of
the Metropolis–Hastings kernel; and using the kernel derived from the limiting behaviour in
Sections 6.2.1–6.2.3. We have implemented all methods in dimensions d = 2, 10, and 100,
though we only present results for d = 100 here in Figure 2, with the full results shown in
Appendix F.

An example of the resulting trajectories for d = 100, for the case of a Gaussian restricted to
the cube, i.e. αout = 0, can be found in Figure 2. Additional trajectory examples can be found
in the appendix for other dimensions in Figures 4–7. There are a number of obvious qualitative
conclusions that can be drawn. First, using a single Metropolis–Hastings kernel leads to poor
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FIGURE 8. MCMC estimates over time of Eπ [1[−1,1]d (X)], the expectation of the indicator function of [ −
1, 1]d under π , for different samplers, repeated 5 times for each sampler. Here d = 20 and the expectation

is computed with respect to the d-dimensional density (proportional to) π (x) = αine
− ‖x‖2

2σ2
in 1x∈[−1,1]d +

αoute
− ‖x‖2

2σ2
out 1x/∈[−1,1]d , with (αin, αout, σin, σout) = (1, 1, 2, 0.8). The red line corresponds to the true value.

For the bouncy particle sampler, a refresh rate of 5 is used. Each sampler ran for 100000 events.

exploration for these examples—the trajectories often double back on themselves when they
hit the boundary, and the trajectories for all three algorithms explore only a small part of the
sample space. Increasing the number of Metropolis–Hastings kernels qualitatively improves
exploration noticeably, but does introduce diffusive-like behaviour. For the bouncy particle
sampler and the zigzag process, the kernel derived from the limiting behaviour allows for
smaller changes in the velocity at the boundary. We see this as the trajectories look qualitatively
different from the Metropolis kernels, with the diffusive behaviour being suppressed. Overall
the bouncy particle sampler with the limiting kernel appears to mix best—though this may in
part be because this sampler is known to mix well for low-dimensional summaries of the target,
but less well for global properties [12].

When the density π is a product, i.e. the basis used in the zigzag process is not rotated by
a random matrix R, the zigzag process does not display diffusive behaviour, as can be seen in
Figure 7 in Appendix F.

Finally, while the case αout = 0 allows a clear visualization of the trajectories, we
provide simulations for the general case αout �= 0 in Figure 3, and in Figures 8–10 of
Appendix F. Figures 9 and 10 provide example trajectories in dimension 20, while we verify in
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FIGURE 9. Example trajectories for each sampler using the 20-dimensional density (proportional

to) π (x) = αine
− ‖x‖2

2σ2
in 1x∈[−1,1]d + αoute

− ‖x‖2

2σ2
out 1x/∈[−1,1]d , with (αin, αout, σin, σout) = (1, 1, 2, 0.8). For the

bouncy particle sampler, a refresh rate of 5 is used. Each sampler ran for 10000 events.

Figures 3 and 8 that the integral with respect to a test function converges to the true value to
show the validity of our boundary kernels, using a random orthogonal basis and the canoni-
cal basis, respectively. It is clear the variability is worse for Metropolis compared to limiting
behaviours. In dimension 20 with a rotated basis, the zigzag process with the limiting behaviour
seems better overall, but the simulation of the boundary kernel is significantly more difficult
than for the other processes. To make a fair comparison between kernels, we would need to
rescale the time axis, taking into account the complexity of each kernel.

8. Discussion

This paper focuses on PDMP-based MCMC samplers to sample densities which are only
piecewise smooth. In particular, we presented a general framework for showing invariance of
a given target, and then specialize to the case of the common PDMP samplers, namely the
bouncy particle sampler, coordinate sampler, and zigzag sampler, when the target is piecewise
smooth. Our general framework avoids the general functional-analytic approach of establishing
that a given set of functions is a core [16, 17]. Rather, we make use of specific properties of
the PDMP processes which we are interested in.

Since we do not use the functional-analytic and operator-theoretic framework of [16], we
lose some of their powerful results, such as the existence of a tractable core for the generator
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FIGURE 10. Example trajectories for each sampler using the 20-dimensional density (proportional to)

π (x) = αine
− ‖x‖2

2σ2
in 1R−1x∈[−1,1]d + αoute

− ‖x‖2

2σ2
out 1R−1x/∈[−1,1]d , with (αin, αout, σin, σout) = (1, 1, 2, 0.8) and

R a random rotation matrix. For the bouncy particle sampler, a refresh rate of 5 is used. Each sampler ran
for 10000 events.

and useful perturbation results [16, Section 10]. However, our conditions are arguably more
transparent and our general approach is considerably less technically demanding.

When the target π possesses discontinuities, we find that PDMP-based samplers display
a surprisingly rich set of behaviours at the boundary, as evidenced by our empirical results,
which demonstrate that the choice of jump kernel at the boundary is crucial. We see that the
limiting kernels compare favourably to Metropolis–Hastings-based jump kernels.

Ideas from [23] for designing the distribution of the change in velocity at a jump event for
standard PDMP samplers may possibly be adapted to our boundary kernels to improve their
mixing properties, as there is an equivalence between the densities lx that we introduce in
Theorem 3 and the densities that are left-invariant at jumps of a PDMP (see [23]).

There remain several avenues for future exploration. We believe it is possible to weaken
Assumptions 1 and 2. For example Assumption 1(ii) could be relaxed to allow for a countable
union of smooth parts; it should be possible to remove Assumption 1(v) using Sard’s theorem;
and Assumption 2(ii) could be relaxed to the following: for all x ∈ Uk, for all v ∈ Vk, t →
πk(x + tv) is absolutely continuous. Our chosen set of Assumptions 3 and 4 are sufficient to
allow an application of integration by parts, but a simpler and more transparent set of sufficient
assumptions would also be desirable. Finally, we conjecture that non-local moves into PDMP
samplers, for example based on [32] or otherwise, might also be useful in boosting convergence
in the presence of significant discontinuities.
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Appendix A. Weakened assumptions for Proposition 4

As mentioned in Remark 4, the assumption of Proposition 4 can be weakened to the follow-
ing: for any compact K1, there exists a compact K2 such that K1 ⊂ K2 and for any z ∈ Kc

2 ∩ �,
Q(K2, z) = 0. In other words, it is impossible to jump from the boundary outside of K2 to the
inside of K2.

For the sake of brevity, we only give an outline of the proof:

1. Let g0 be a function with compact support. The boundary condition (5) is not satisfied.

2. For any α > 0, build a sequence gα
i+1 such that gα

i+1 is C1, gα
i+1 = f on the domain of f

and gα
i+1 = Qgα

i on �, and gα
i+1(z) = gα

i (z) if d(z, �) > α.

3. Show that this sequence converges to gα , and that gα is C1 with compact support and
satisfies the boundary condition (5), and hence is in F . Furthermore, gα → f pointwise
when α → 0.

4. Use dominated convergence to conclude.

This covers the case of variable selection.

Appendix B. Theorem 2

B.1 Precise assumptions

Assumption 3. For each k ∈ K we assume the following:

(i) We have dimH ((Uk)o \ Uk) ≤ dk − 2, where dimH is the Hausdorff dimension.

(ii) There is a finite collection {Wk
1, . . . , Wk

l } of disjoint open sets, and a second collection of

disjoint open sets, {�k
1, . . . , �k

l }, such that each Wk
i , �k

i ⊂R
dk−1 with Wk

i ⊂ Wk
i ⊂ �k

i
for each i = 1, . . . l.

(iii) The boundaries satisfy dim ∂Wk
i ≤ dk − 2.

(iv) We have C1 (injective) embeddings φk
i : �k

i →R
dk , and also have continuous normals

ni : �k
i → Sdk−1.

(v) Set Mi := φ(Wk
i ), for each i = 1, . . . , l. Then we have ∂Uk = M1 ∪ · · · ∪ Ml.

(vi) The intersections satisfy dim Mi ∩ Mj ≤ d − 2 for any i �= j.

Let

Nk = {x ∈ ∂Uk|∃!i such that ∃u ∈ Wi such that φ(u) = x} (10)

be the set of points of ∂Uk for which the normal n(x) = n(u) is well-defined. Since
dimH ((Uk)o \ Uk) ≤ dk − 2, for all points for which the normal exists, the boundary separates
Uk and R

dk \ Uk, and does not correspond to an ‘internal’ boundary of Uk that is removed. By
convention, we assume that n(x) is the outer normal.

Assumption 4. We make the following assumptions: for all v ∈ V , there is a refinement
{Wv

1, ..., Wv
m} and {�v

1, ..., �v
m} of the boundary decomposition such that the following hold:

(i) This new decomposition satisfies the previous assumptions.

(ii) For all 0 < i ≤ m, there exists j ∈ {1, . . . , l} such that φ(Wv
i ) ⊂ φ(Wj).
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(iii) For all x ∈ Wv
i , y ∈ Wj such that φ(x) = φ(y), we have ni(x) = ni(y).

(iv) For each 0 < i ≤ m, dimH pv(Mv
i ) ≤ n − 2, where Mv

i = {φi(x) : x ∈ W
v
i and 〈v, ni(x)〉 =

0} and pv is the orthogonal projection on Hv = span(v)⊥.

(v) For all 0 < i ≤ m and all x ∈R
n, the sets Mv+

i ∩ (x +Rv) and Mv−
i ∩ (x +Rv) have at

most one element, where Mv+
i = {x = φ(y) ∈ Mi : 〈ni(y), v〉 > 0} and Mv−

i = {x = φ(y) ∈
Mi : 〈ni(y), v〉 < 0}.

B.2. Proof of Theorem 2

We abuse notation and write ∂vf for the derivative at t = 0 of f (x + tv, v) with respect to t
for a fixed v, which corresponds to the term �f .

B.2.1. Integrability. We give two integrability lemmas that will be useful for the following
proof.

Lemma 4. Let f ∈D(A). We know that

(i) f is bounded,

(ii) Af is bounded, and

(iii) f ∈D(A) and Af =Af .

Proof. Items (i) and (ii) are immediate since D(A) ⊂B0 ⊂B(E), and A : D(A) →B0 ⊂
B(E).

Item (iii) follows from the fact that for f ∈D(A) there is the Dynkin formula, which exactly
implies Cf

t is a true martingale ([11, (14.13)]), hence also a local martingale. �
Lemma 5. We have λ(k, x, v)(Qf (k, x, v) − f (k, x, v)) ∈ L1(μ) and ∂vf (k, x, v) ∈ L1(μ).

Proof. Since Af is bounded, Af ∈ L1(μ). Since f is bounded and with (i) of Assumption 2,
we have λ(k, x, v)(Qf (k, x, v) − f (k, x, v)) ∈ L1(μ). Hence ∂vf (k, x, v) ∈ L1(μ). �

This means that we can treat each term independently.

B.2.2. Integration of the infinitesimal generator over E.
Proposition 9. Let f ∈D(A) and let k ∈ K. For all v ∈ Vk we have∫

Uk

πk(x)∂vf (k, x, v) dx = −
∫

Uk

f (k, x, v)∂vπk(x) dx dv

+
∫

∂Uk∩Nk

πk(x)f (k, x, v) |〈n(x), v〉| dσ (x),

where σ is the Lebesgue measure of the boundary (seen as a Riemannian manifold).

Proof. We would like to use an integration-by-parts result on the integral in question, which
is precisely detailed in Appendix C.

So now let v ∈ Vk. Assumptions 3 and 4 imply that Uk satisfies Assumption 6 of
Appendix C. Furthermore, f ∈D(A) ⊂D(A); thus for all x ∈ Uk, t → f (k, x + tv, v) is abso-
lutely continuous. Finally, Lemma 5 implies that ∂vf (k, x, v) ∈ L1(μ); hence we can use
Proposition 10 of Appendix C on Uk with the function z �→ f (z)π (z). In this context, for
x ∈ ∂Uk, if 〈n(x), v〉 > 0,
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πk(x−)f (k, x−, v) = lim
t↑0

πk(x + tv)f (k, x + tv, v) = πk(x)f (k, x, v),

πk
(
x+)f (k, x+, v

)= 0;

otherwise, if 〈n(x), v〉 > 0,

πk(x−)f (k, x−, v) = 0,

πk(x+)f (k, x+, v) = lim
t↓0

πk(x + tv)f (k, x + tv, v) = πk(x)f (k, x, v).

This yields ∫
Uk

πk(x)∂vf (k, x, v) dx = −
∫

Uk

f (k, x, v)∂vπk(x) dx dv

+
∫

∂Uk\Cv

πk(x)f (k, x, v) 〈n(x), v〉 dσ (x),

where we have removed the absolute value around 〈n(x), v〉 to account for the sign difference of
πk(x−)f (k, x−, v) − πk(x+)f (k, x+, v). Furthermore, ∂Uk \ Cv ⊂ ∂Uk ∩ Nk, and these two sets
differ by a set of zero measure. Hence∫

Uk

∂vπk(x)f (k, x, v) dx = −
∫

Uk

f (k, x, v)∂vπk(x) dx dv

+
∫

∂Uk∩Nk

πk(x)f (k, x, v) 〈n(x), v〉 dσ (x),

which concludes the proof. �
Lemma 6. We have∫

Ek

∂vf (k, x, v)μ(k, x, v) dx dv = −
∫

Uk×Vk
f (k, x, v)∇xμ · v dx dv

+
∫

(∂Uk∩Nk)×Vk
f (k, x, v)μ(k, x, v)〈v, n(x)〉 dσ (x) dv.

Proof. Since ∂vf is in L1(μ), ∂vf (k, x, v)μ(k, x, v) is integrable. Hence by Fubini’s theorem,

∫
Uk×Vk

∂vf (k, x, v)μ(k, x, v) dx dv =
∫
Vk

∫
Uk

∂vf (k, x, v)μ(k, x, v) dx dv.

Using Proposition 9,∫
Uk×Vk

∂vf (k, x, v)μ(k, x, v) dx dv = −
∫
Vk

∫
Uk

f (k, x, v)(∇πk(x) · v)pk(v) dx dv

+
∫
Vk

∫
∂Uk∩Nk

f (k, x, v)μ(k, x, v)〈v, n(x)〉 dσ (x) dv.

Using (iii) from Assumption 2, f (k, x, v)(∇πk(x) · v)pk(v) is integrable, and f (k, x, v)μ(k, x, v)
is bounded. Hence we can use Fubini a second time on both terms to get the result. �
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Appendix C. Theorem: integration by parts

Assumption 5. (Informal geometrical assumption.) Let U be an open set in R
n such that the

following hold:

• Ū =R
n;

• the boundary ∂U can be decomposed as a finite union of smooth closed sub-manifolds
with piecewise C1 boundaries in R

n;

• for any x, v ∈R
n, the intersection ∂U ∪ {x +Rv} is finite (not taking into account the

points where v is tangent to ∂U);

• dimH (Nv) ≤ n − 2, where Nv is the subset of ∂U where the normal is ill-defined; and

• dimH pv(Mv) ≤ n − 2, where Mv = {x ∈ ∂U such that 〈v, n(x)〉 = 0} and pv is the orthog-
onal projection on Hv = v⊥,

with dimH being the Hausdorff dimension.

These assumptions are made precise in Assumption 6 of the next section.

Proposition 10. Let U be an open set of R
n satisfying Assumption 6, and let ∂U be its

boundary. Let f and g be measurable functions from U to R such that the following hold:

(i) f is bounded;

(ii) for any sequence (yn) ⊂ U with ‖yn‖ → ∞, limn→∞ g(yn) = 0;

(iii) for each x, v ∈R
n, the functions t �→ f (x + tv) and t �→ g(x + tv) are absolutely contin-

uous on U ∩ (x +Rv) and ∂tf , ∂tg ∈ L1(U).

Fix v ∈R
n. Then, using the convention

f (x+) = lim
t↓0

f (x + tv) and f (x−) = lim
t↑0

f (x + tv)

and
g(x+) = lim

t↓0
g(x + tv) and g(x−) = lim

t↑0
g(x + tv),

we have ∫
U

∂vf (x) g(x) dx =
∫

∂U\Nv

(g(x−)f (x−) − f (x+)g(x+)) |〈n(x), v〉| dσ (x)

−
∫

U
f (x) ∂vg(x) dx,

where the second term is integrated with respect to the Lebesgue measure of the boundary
(seen as a Riemannian manifold) and Nv is the set of points where the normal is ill-defined.

Proof. The proof is a corollary of the next section. �

C.1. Integration over open domain

Assumption 6. Let U be an open set in R
n such that for each v ∈ Sn−1 (the unit sphere in R

n),
the following hold:
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1. There exist W1 ⊂ W1 ⊂ �1, . . . , Wk ⊂ Wk ⊂ �k, 2k open sets in R
n−1, with

dimH ∂Wi ≤ n − 2 (these open sets may depend on v because of Item 6 of this
assumption).

2. There exist φi : �i →R
n, i = 1, . . . k, which are C1 one-to-one maps such that the differ-

ential Dφi(x) is one-to-one for all x ∈ �i. This implies that there is a continuous normal
ni : �i → Sn−1.

3. We have ∂U = M1 ∪ · · · ∪ Mk where the sets Mi = φi(Wi) are closed.

4. We have dimH Mi ∩ Mj ≤ n − 2 for all i �= j.

5. Let W0
i = {x ∈ Wi : v · ni(x) = 0}). For each i, dimH pv(M0

i ) ≤ n − 2, where M0
i = φi(W0

i )
and pv is the orthogonal projection on H = Hv = v⊥.

6. Let W+
i = {x ∈ Wi ∈ Mi : ni(x) · v > 0} and W−

i = {x ∈ Wi : ni(x) · v < 0}. For all i and all
y ∈R

n, the sets M+
i ∩ (y +Rv) and M−

i ∩ (y +Rv) have at most one element, where
M+

i = φi(W
+
i ) and M−

i = φi(W
−
i ).

Assumption 7. Let f : U →R be a measurable function such that the following hold:

(i) For each y, v ∈R
n, the function t �→ f (y + tv) is absolutely continuous on every bounded

interval I such that y + Iv ⊂ U.

(ii) We have lim‖y‖→∞ f (y) = 0 (that is, for any sequence (yn) ⊂ U with ‖yn‖ → ∞).

(iii) If U is not bounded, then for each v ∈R
n, ∂vf ∈ L1(U).

We extend f to R
n \ ∂U with f (y) = 0 for every y /∈ U, so that we can suppose that U =

R
n \ ∂U.

Theorem 4. Let U be an open set of Rn satisfying Assumption 6, for some fixed v ∈R
n with

‖v‖ = 1. Let

Nv =
(

k⋃
i=1

(φi(∂Wi) ∪ M0
i )

)⋃⎛
⎝ ⋃

1≤i<j≤k

Mi ∩ Mj)

⎞
⎠

be the set on which normals are ill-defined. Then for any f satisfying Assumption 7, the
following hold:

1. We have dimH Nv ≤ 2 and dimH pv(Nv) ≤ n − 2.

2. For each y ∈ ∂U \Nv, the limits

lim
t↓0

f (y + tv) = f (y+) and lim
t↑0

f (y + tv) = f (y−)

exist.

3. The normal n(y) is well-defined at each point y ∈ ∂U \Nv, and∫
U

∂vf (y) dy =
∫

∂U\Nv

(f (y−) − f (y+)) |n(y) · v| dσ (y),

where σ is the Lebesgue measure on ∂U.
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We can use the theorem with a product f = gπ where

• g : U →R is measurable, bounded, and absolutely continuous on each set U ∩ (y +Rv),
y ∈R

n, and ∂tg ∈ L1(U); and

• π : U →R is in C1(U) ∩ L1(U) and is bounded with bounded derivatives,
lim‖y‖→∞ π (y) = 0, and the derivative ∂vπ ∈ L1(U).

C.2. Proof of Theorem 4

For the first point, let

Nv =
(

k⋃
i=1

(φi(∂Wi) ∪ M0
i )

)⋃⎛
⎝ ⋃

1≤i<j≤k

Mi ∩ Mj)

⎞
⎠ ,

N = p−1
v (pv(Nv)) and V = H \ pv(Nv).

By Assumptions 6.1, 6.4, and 6.5, dimH(pv(Nv)) ≤ n − 2; therefore pv(Nv) has zero
H-Lebesgue measure.

For the second point, the fact that f (y +) and f (y −) exist is a direct consequence of
Assumption 7(i).

Finally we consider the third point. For all z ∈ H, define

E(z) = {t ∈R : z + tv ∈ ∂U}.
By Assumption 6.6, the set E(z) has 2k elements at most for all z ∈ V . Set

U′ = U \N .

Since dimH (pv(Nv)) ≤ n − 2, it follows that dimH N ≤ n − 1. Therefore,∫
U

∂vf (y) dy =
∫

U′ ∂vf (y) dy.

By Fubini’s theorem, ∫
U′ ∂vf (y) dy =

∫
V

(∫
R\E(z)

∂tf (z + tv) dt

)
dz.

By Assumption 7, for almost all z ∈ V and for each connected component (a, b) of R \ E(z),∫
(a,b)

∂vf (z + tv) dt = f ((z + tb)−) − f ((z + ta)+).

Taking into account that limt→±∞ f (z + tv) = 0, we obtain∫
U

∂tf (y) dy =
∫

V

∑
t∈E(z)

(f ((z + tv)−) − f ((z + tv)+)) dz.

Now we want to see that the latter integral is equal to∫
∂U\Nv

(f (y−) − f (y+)) |n(y) · v| dσ (y).
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Set

I = {1, . . . , k} × {+, −},
J(z) = {(i, s) ∈ I : ∃t ∈ E(z), z + tv ∈ Ms

i } for z ∈ H,

VJ = {z ∈ V : J(z) = J} for J ⊂ I, and

Vs
i = pv(Ms

i ) for (i, s) ∈ I.

By Assumption 6.6, for each (i, s) ∈ I, the map pv ◦ φi : Ws
i → Vs

i is a bijection, so that we
can define the map Fs

i : Vs
i → Ms

i by Fs
i (z) = φi((pv ◦ φi)−1(z)). Using the definition of the set

V = H \N , we see that for each z ∈ V and each t ∈ E(z), there exists (i, s) ∈ I unique such that
z + tv = Fs

i (z) ∈ Ms
i . Furthermore, for each (i, s) ∈ I, Vs

i ∩ V = ∪J�(i,s)VJ . It follows that

∫
U

∂tf (y) dy =
∫

V

∑
t∈E(z)

(f ((z + tv)−) − f ((z + tv)+)) dz

=
∑
J⊂I

∫
VJ

∑
t∈E(z)

(f ((z + tv)−) − f ((z + tv)+)) dz

=
∑
J⊂I

∫
VJ

∑
(i,s)∈J

(f (Fs
i (z)−) − f (Fs

i (z)+)) dz

=
∑

(i,s)∈I

∑
J�(i,s)

∫
VJ

(f (Fs
i (z)−) − f (Fs

i (z)+)) dz

=
∑

(i,s)∈I

∫
Vs

i ∩V
(f (Fs

i (z)−) − f (Fs
i (z)+)) dz.

Since the differential of each φi is always one-to-one and since Dφi(x)(u).u is never orthogonal
to v for x ∈ Ws

i and u �= 0, the local inverse function theorem implies that the maps Fs
i are

C1. Furthermore, the image of Fs
i is Ms

i and the normal to Ms
i at y = Fs

i (z) is n(y) = ±ni((pv ◦
φ)−1(z)). Therefore,∫

Vs
i ∩V

(f (Fs
i (z)−) − f (Fs

i (z)+)) dz =
∫

Ms
i \Nv

(f (y−) − f (y+))|n(y)| dσ (y).

Finally, since ∂U \Nv = ∪(i,s)∈I(Ms
i \Nv),

∑
(i,s)∈I

∫
Vs

i ∩V
(f (Fs

i (z)−) − f (Fs
i (z)+)) dz =

∫
∂U\Nv

(f (y−) − f (y+))|n(y)| dσ (y).

Appendix D. Validity of transition kernels derived from limiting behaviour

D.1. Bouncy particle sampler: proof of Proposition 5

For the specified QBPS, we first derive the form of the associated probability kernel on
velocities, Q′

x, remembering that Q′
x is obtained by flipping the velocity and then applying the
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transition defined by QBPS. This gives

Q′
x(v′|v) =

⎧⎪⎨
⎪⎩

1, v′ = −v and v ∈ V−
x ,

πk1(x)(x)/πk2(x)(x), v′ = −v and v ∈ V+
x ,

1 − πk1(x)(x)/πk2(x)(x), v′ = −v + 2〈n, v〉n and v ∈ V+
x .

The transition kernel Q′
x allows for two possible transitions, either v′ = −v or v′ = v −

2〈n, v〉n. These transitions have the following properties:

(i) In the first case, if v ∈ V+
x then v′ ∈ V−

x , and vice versa. In the second case, if v ∈ V+
x

then v′ ∈ V+
x .

(ii) For either transition, 〈v′, v′〉 = 〈v, v〉, and |〈n, v′〉| = |〈n, v〉|. Furthermore, by the spher-
ical symmetry of p(v) for the bouncy particle sampler, the first of these means that
p(v) = p(v′).

We need to show that lx(dv′) = ∫ Q′
x(dv′|v)lx(v) dv, where

lx(v) =
{|〈n, v〉|p(v)πk2(x)(x) ∀v ∈ V+

x ,

|〈n, v〉|p(v)πk1(x)(x) ∀v ∈ V−
x .

We will show this holds first for v′ ∈ V+
x and then for v′ ∈ V−

x .
If v′ ∈ V+

x then there are two possible transitions, from v = −v′ ∈ V−
x and from v ∈ V+

x where
v = −v′ + 2〈v′, n〉n. Let v∗ = −v′ + 2〈v′, n〉n. Since the Jacobian of both transformations is 1,∫

Q′
x(dv′|v)lx(v) dv = 1 · (|〈n, −v′〉|p(−v′)πk1(x)(x)

)
dv′

+
(

1 − πk1(x)(x)

πk2(x)(x)

) (|〈n, v∗〉|p(v∗)πk2(x)(x)
)

dv′,

=|〈n, v′〉|p(v′)
(

πk1(x)(x) +
(

1 − πk1(x)(x)

πk2(x)(x)

)
πk2(x)(x)

)
dv′,

where the last equality comes from applying Property (ii) of the transition. The last expression
simplifies to lx(dv′) as required.

For v′ ∈ V−
x we have only one transition and thus∫

Q′
x(dv′|v)lx(v)dv =

(
πk1(x)(x)

πk2(x)(x)

) (|〈n, −v′〉|p(−v′)πk2(x)(x)
)

dv′,

which, again using Property (ii), is lx(v′).

D.2. Coordinate sampler: proof of Proposition 6

We follow a similar argument to that of the previous section. First we write down the form
of Q′

x derived from QCS:

Q′
x(v′|v) =

⎧⎪⎪⎨
⎪⎪⎩

1, v′ = −v and v ∈ V−
x ,

πk1(x)(x)/πk2(x)(x), v′ = −v and v ∈ V+
x ,

(1 − πk1(x)(x)/πk2(x)(x)) 〈v′,n〉
K , v′ ∈ V+

x and v ∈ V+
x ,

where K =∑v∈V+
x

|〈n, v〉|.
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For the coordinate sampler, p(v) = 1/(2d) for each of the possible values for v. Now we need
to show lx(v′) =∑Q′

x(v′|v)lx(v). We will consider the cases v′ ∈ V+
x and v′ ∈ V−

x separately.
For the latter case, the argument is the same as for the bouncy particle sampler. Thus we just
present the case for v′ ∈ V+

x .
We have ∑

Q′
x(v′|v)lx(v) = 1 · (|〈n, −v′〉|p(−v′)πk1(x)(x)

)
+ 〈v′, n〉

(
1 − πk1(x)(x)

πk2(x)(x)

) ∑
v∈V+

x

|〈n, v〉|
K

p(v)πk2(x)(x)

= p(v′)〈v′, n〉
⎛
⎝πk1(x)(x) +

(
1 − πk1(x)(x)

πk2(x)(x)

)
πk2(x)(x)

∑
v∈V+

x

|〈n, v〉|
K

⎞
⎠

= p(v′)〈v′, n〉
(

πk1(x)(x) +
(

1 − πk1(x)(x)

πk2(x)(x)

)
πk2(x)(x)

)
.

The second equality comes from the fact that p(v) is constant for all v ∈ V . The third equality
comes from the definition of K.

D.3. Zigzag sampler: proof of Proposition 7

As discussed, the kernel for the velocity does not depend on k. Without loss of generality,
we can set k = 1 for implementing the algorithm that defines QZZ. We need to show that Q′

x

keeps lx invariant. We will prove this by showing that the following stronger detailed balance
condition holds:

lx(v)Q′
x(v′|v) = lx(v′)Q′

x(v|v′), ∀v, v′ ∈ V .

As Q′
x(v′|v) = QZZ(v′| − v), writing the detailed balance condition for pairs −v and v′, we have

that it suffices to show

lx(−v)QZZ(v′|v) = lx(v′)QZZ(−v| − v′), ∀v, v′ ∈ V .

By a slight abuse of notation, let k(v) = k1(x) if v ∈ V−
x and k(v) = k2(x) if v ∈ V+

x . Then
we can write lx(v) = |〈n, v〉|p(v)πk(v)(x). Thus, using the fact that p(v) defines a uniform
distribution on V , we have that the detailed balance condition simplifies to

|〈n, v〉|πk(−v)(x)QZZ(v′|v) = |〈n, v′〉|πk(v′)(x)QZZ(−v| − v′), ∀v, v′ ∈ V .

This can be viewed as matching the probability that we have a velocity v and transition to v′
with one where we flip the velocities, starting at −v′ and transitioning to −v.

We show that the detailed balance condition holds separately for different combinations of
whether v ∈ V+

x or v ∈ V−
x and whether v′ ∈ V+

x or v′ ∈ V−
x .

First assume v ∈ V+
x and v′ ∈ V−

x . This corresponds to a trajectory that is moving from the
lower- to the higher-density region, but that reflects off the boundary and stays in the lower-
density region. It is straightforward to see that the events that change the velocity only increase
〈n, v〉, the speed at which the trajectory moves through the boundary region to the higher-
density region. Thus a transition from V+

x to V−
x is impossible, and QZZ(v′|v) = 0. Similarly,
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−v′ ∈ V+
x and −v ∈ V−

x so QZZ(−v| − v′) = 0. Hence the detailed balance conditions trivially
hold in this case.

Next assume v ∈ V−
x and v′ ∈ V+

x . This corresponds to a trajectory that is moving from the
higher- to the lower-density region, but that reflects off the boundary and stays in the higher-
density region. In this case k(−v) = k(v′) and thus the detailed balance condition becomes

|〈n, v〉|QZZ(v′|v) = |〈n, v′〉|QZZ(−v| − v′), ∀v ∈ V−
x , v′ ∈ V+

x . (11)

To prove that the detailed balance condition holds, we will first obtain an expression for
QZZ(v′|v), and then introduce a coupling between a transition for v to v′ and one from −v′
to −v to link it to a similar expression for QZZ(−v| − v′).

The randomness in the algorithm that defines QZZ only comes through the randomness of
the event times simulated in Step (a) of Section 6.2.3. Remember that τi is the time at which
component i of the velocity will switch, if the trajectory is still within the boundary region.
Each τi is (conditionally) independent of the others, and has an exponential distribution with
rate max{0, −nivi}, where ni is the component of the ith coordinate of the unit normal n. If
nivi ≥ 0, then τi = ∞.

It is helpful to introduce three sets of components:

• Let S1 be the set of components i such that v′
i = vi and nivi < 0.

• Let S2 be the set of components i such that v′
i = −vi.

• Let S3 be the set of components i such that v′
i = vi and nivi ≥ 0.

So S1 is the set of components of the velocity v that are moving the particle towards the
low-density region, and are unchanged by the transition to v′; S2 is the set of components that
flip during the transition from v to v′; and S3 is the set of components of the velocity v that are
moving the particle towards the high-density region, and are unchanged by the transition to v′.

Only components i of the velocity for which nivi < 0 can change during the transition from
v to v′. This means that if there exists i ∈ S2 such that nivi ≥ 0, then the transition from v to v′
is impossible. By the same argument, the transition from −v′ to −v is impossible. Thus in this
case QZZ(v′|v) = QZZ(−v| − v′) = 0 and detailed balance trivially holds. So in the following
we will assume that nivi < 0 for i ∈ S2.

By a similar argument we have that the set S1 is the set of indices of the velocity that could
have changed during the transition from v to v′, but did not, whereas S3 is the set of indices of
the velocity that could never have changed during the transition.

To ease notation, let m = |S2|, the number of indices in the set S2, and note that m ≥ 1 as
v �= v′. Without loss of generality we can relabel the coordinates so that S2 = {1, . . . , m}, and
we will use τ1:m to denote the vector of event times for the coordinates in S2.

We now introduce a function of time, t, that depends on τ1:n. This is

h(t; τ1:n) =
m∑

i=1

nivi(t − 2 max{0, t − τi}) +
∑
i∈S1

nivit +
∑
i∈S3

nivit.

This can be viewed as the net distance travelled by the trajectory up to time t in the direction
of the normal n, given that only velocity coordinates in S2 can change, and these change at
times τ1:m. This function is important as it determines when the trajectory leaves the boundary
region, and determines the termination of the simulation algorithm in Step (b). As v ∈ V−

x and
v′ ∈ V+

x , and the changes in velocity in the direction of n are monotone as we flip components,
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we have that h(t; τ1:n) is strictly decreasing at t = 0, is strictly increasing for large enough
t, and is unimodal. As h(0;τ1:m) = 0, this means that there is a unique t∗(τ1:m) > 0 such that
h(t∗(τ1:m);τ1:m) = 0. This is the exit time from the boundary region calculated in Step (b) of
the algorithm.

We can now define the set T of values of τ1:m that are consistent with a transition from v
to v′. The conditions are that all components of the velocity must flip before t∗, and that the
trajectory must not pass through the boundary region—see the other stopping criteria in Step
(b) of the algorithm. This gives us that

T =
{
τ1:m : τi ≤ t∗(τ1:m), i = 1, . . . , m; min

0<t<t∗(τ1:m)
h(t; τ1:n) > −C

}
.

The probability of a transition from v to v′ is thus the probability that τ1:m ∈ T times the prob-
ability that τi > t∗(τ1:m) for i ∈ S1. As each τi, i ∈ S1 or i ∈ S2, has an independent exponential
distribution with rate −nivi,

QZZ(v′|v) =
∫
T

⎛
⎝∏

i∈S1

exp{nivit
∗(τ1:m)}

⎞
⎠
(

m∏
i=1

(−nivi) exp{niviτi} dτ1:m

)
.

Now consider the reverse transition, from −v′ to −v. Under our existing definitions of S1,
S2, and S3, we have that S2 is still the set of indices that the flip for the transition from −v′ to
−v, but now S1 is the set of components of the velocity that could never have flipped, while S3
is the set of components that could have flipped but did not.

We can define the same quantities for the reverse transition from −v′ to −v. We will use
tildes to denote quantities that relate to this transition. So τ̃1:m will be the vector of flip times
for components in i ∈ S2. We have

h̃(t; τ̃1:n) =
m∑

i=1

nivi(t − 2 max{0, t − τ̃i}) −
∑
i∈S1

nivit −
∑
i∈S3

nivit,

using the fact that −v′
i = vi for i ∈ S2 and −v′

i = −vi otherwise. By the same argument as above,
there is a unique t̃∗(τ̃1:m) > 0 such that h̃(t̃∗(τ̃1:m);τ̃1:m) = 0. The set of possible values of τ̃1:m
that are consistent with the transition from −v′ to v is

T̃ =
{
τ̃1:m : τ̃i ≤ t̃∗(τ̃1:m), i = 1, . . . , m; min

0<t<t̃∗(τ̃1:m)
h̃(t; τ̃1:n) > −C

}
.

Finally we can write down the transition probability as before, remembering that the rate of
flipping for components i ∈ S2 is −nivi as before, but for i ∈ S3 it is nivi. Thus

QZZ(−v| − v′) =⎛
⎝∏

i∈S3

exp{−nivit̃
∗(τ̃1:m)}

⎞
⎠
(∫

T̃

m∏
i=1

(−nivi) exp{niviτ̃i} dτ̃1:m

)
. (12)

To relate the two transition probabilities, we introduce a coupling between τ1:m and τ̃1:m, so
τ̃1:m = g(τ1:m), where

τ̃i = g(τ1:m)i = t∗(τ1:m) − τi.
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This coupling is a natural one. If we consider the path through the boundary region given by
τ1:m that transitions from v to v′, we can reverse that path to get a path that transitions from −v′
to −v. For the forward path a flip of component i at time τi occurs at a time t∗(τ1:m) − τi prior
to the end of the path. Thus for the reverse path the flip would occur at time t∗(τ1:m) − τi.

It is straightforward to show that if τ̃1:m = g(τ1:m) then h(t; τ1:m) = h̃(t∗(τ1:m) − t; τ̃1:m). This
result is intuitive; it is saying the distance of the forward trajectory within the boundary region
at time t is equal to the distance of the backward trajectory within the boundary region at time
t∗(τ1:m) − t. This immediately implies that t∗(τ1:m) = t̃∗(τ̃1:m): the exit times for the forward
and backward trajectories are the same. Furthermore, if we consider the second constraint on
τ1:m in the definition of T , then we have

min
0<t<t∗(τ1:m)

h(t; τ1:n) = min
0<t<t̃∗(τ̃1:m)

h̃(t; τ̃1:n),

for τ̃1:m = g(τ1:m). Combining this with the fact that τi ≤ t∗(τ1:m), we have τ̃1:m ≤ t̃∗(τ̃1:m). We
have that the function g maps τ1:m ∈ T to τ̃1:m ∈ T̃ . Furthermore, the function g is invertible,
and by similar arguments we have that g−1 maps τ̃1:m ∈ T̃ to τ1:m ∈ T . Hence g is a bijection
from T to T̃ .

The function g defines a linear map between τ1:m and τ̃1:m. For τ1:m ∈ T we have that, by
definition of t∗(τ1:m),

m∑
i=1

nivi(2τi − t∗(τ1:m)) +
d∑

i=m+1

nivit
∗(τ1:m) = 0. (13)

This gives that

t∗(τ1:m) =
m∑

i=1

(−2nivi

K

)
τi, where K = −

m∑
i=1

nivi +
d∑

i=m+1

nivi.

Furthermore, using that v′ is equal to v except that vi is flipped for i = 1, . . . , m, we have
K = 〈v′, n〉.

Let b1:m be the 1 × m vector whose ith entry is bi = 2vini/K. If we let 1m denote the 1 × m
vector of ones, and Im the m × m identity matrix, then we have

τ̃1:m = g(τ1:m) = (b1:m1�
1:m − Im)τ1:m = Aτ1:m,

where the m × m matrix A = (b1:m1�
1:m − Im). In the following argument we will make the

change of variables τ̃1:m = g(τ1:m) = Aτ1:m, and we will need the determinant of the Jacobian
of this transformation. Using the matrix determinant lemma, this is given by

|det(A)| = |(1 − 1�
1:mb1:m)||det(−Im)| =

∣∣∣∣∣1 −
m∑

i=1

bi

∣∣∣∣∣ .

This simplifies to∣∣∣∣∣1 −
m∑

i=1

bi

∣∣∣∣∣=
∣∣∣∣∣1 +

m∑
i=1

2vini

〈v′, n〉

∣∣∣∣∣=
∣∣∣∣ 〈v′, n〉 +∑m

i=1 2vini

〈v′, n〉
∣∣∣∣=
∣∣∣∣ 〈v, n〉
〈v′, n〉

∣∣∣∣ .
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So now, taking the definition of QZZ(v′|v) and applying the change of variables τ̃1:m =
g(τ1:m), we get

QZZ(v′|v) =
∫
T

∏
i∈S1

exp{nivit
∗(τ1:m)}

m∏
i=1

((−nivi) exp{niviτi}) dτ1:m

=
∫
T̃

exp

⎧⎨
⎩
∑
i∈S1

nivit̃
∗(τ̃1:m)

⎫⎬
⎭
∣∣∣∣ 〈v, n〉
〈v′, n〉

∣∣∣∣
m∏

i=1

(
(−nivi) exp{nivi(t̃

∗(τ̃1:m) − τ̃i)}
)

dτ̃1:m

=
∣∣∣∣ 〈v, n〉
〈v′, n〉

∣∣∣∣
∫
T̃

(
m∏

i=1

(−nivi)

)
exp

⎧⎨
⎩
∑
i∈S1

nivit̃
∗(τ̃1:m) +

m∑
i=1

nivi(t̃
∗(τ̃1:m) − τ̃i)

⎫⎬
⎭ dτ̃1:m

=
∣∣∣∣ 〈v, n〉
〈v′, n〉

∣∣∣∣
∫
T̃

(
m∏

i=1

(−nivi)

)
exp

⎧⎨
⎩
∑
i∈S3

−nivit̃
∗(τ̃1:m) +

m∑
i=1

niviτ̃i

⎫⎬
⎭ dτ̃1:m,

where the final equality comes from the definition of t̃∗(τ̃1:m) = t∗(τ1:m), using (13) after
substituting in τi = t̃∗(τ̃1:m) − τ̃i.

By comparing the final expression with (12), we get that

QZZ(v′|v) =
∣∣∣∣ 〈v, n〉
〈v′, n〉

∣∣∣∣QZZ(−v|v′),

which satisfies (11) as required.
The final combination involves v, v′ ∈ V+

x and −v′, −v ∈ V−
x , or vice versa. The detailed

balance condition in this case becomes

πk1(x)(x)|〈n, v〉|QZZ(v′|v) = πk2(x)(x)|〈n, v′〉|QZZ(−v| − v′), ∀v, v′ ∈ V−
x .

We can show this using an argument similar to the one above, with the same coupling of paths
from v to v′ with paths from v′ to v. The main differences are as follows. First, the definition of
T is simplified to {

τ1:m : τi ≤ t∗(τ1:m), i = 1, . . . , m
}

,

as, by monotonicity of the changes in velocity, we do not need to check whether the other exit
condition in Step (b) holds. Second, the definition of t∗(τ1:m) changes, with it being the value
of t for which h(t; τ1:m) = C. For τ1:m ∈ T , this becomes

m∑
i=1

nivi(2τi − t∗(τ1:m)) +
d∑

i=m+1

nivit
∗(τ1:m) = C

because of the different exit condition in Step (b). We have similar changes to the definitions
of T̃ and t̃∗(τ̃1:m).

However, we can define QZZ(v′|v) and QZZ(−v| − v′) in a similar way. Furthermore we can
use the same linear transformation g, which is still a bijection between T and T̃ . Whilst the
definition t∗ has changed, this only introduces an additive constant into the linear transforma-
tion defined by g, and thus the Jacobian of the transformation is unchanged. Following the

https://doi.org/10.1017/apr.2023.61 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.61


PDMP Monte Carlo methods for piecewise smooth densities 39

argument above, we thus get to the same expression for QZZ(v′|v) after making the change of
variables:

QZZ(v′|v) =
∣∣∣∣ 〈v, n〉
〈v′, n〉

∣∣∣∣
∫
T̃

(
m∏

i=1

(−nivi)

)

×exp

⎧⎨
⎩
∑
i∈S1

nivit̃
∗(τ̃1:m) +

m∑
i=1

nivi(t̃
∗(τ̃1:m) − τ̃i)

⎫⎬
⎭ dτ̃1:m.

Now substituting in our new definition of t̃∗(τ̃1:m) = t∗(τ1:m) we get

QZZ(v′|v) =
∣∣∣∣ 〈v, n〉
〈v′, n〉

∣∣∣∣QZZ(−v|v′) exp{C},

where the additional factor of exp{C} is due to the different definition of t∗. As C =
log (πk2(x)(x)/πk1(x)(x)) this rearranges to

πk1(x)(x)|〈v′, n〉|QZZ(v′|v) = πk2(x)(x)|〈v, n〉|QZZ(−v|v′),

as required.

D.4. Bouncy particle sampler with reflect and refract: proof of Proposition 8

We first write down the form of Qx
′ derived from QRR. To do this it is helpful to define

functions that define the new velocity at a reflection or refraction. Remember that U is the
change in log density as we move from the region with lower density, k1, to the region with
higher density, k2, and is strictly positive. We will define the reflection of a velocity v by L(v) =
v − 2〈v, n〉n. For refractions we need to distinguish between transitions from k1 to k2 and vice
versa. The refraction for a transition from k1 to k2 is R1(v) =√〈v, n〉2 + 2Un + v − 〈v, n〉n,
and for k2 to k1 it is R2(v) =√〈v, n〉2 − 2Un + v − 〈v, n〉n, with R2 being defined only for v
such that 〈v, n〉2 > 2U.

Using these functions, we can write the transition kernel Qx
′ as

Qx
′(v′|v) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 for v ∈ V−
x and v′ = R1(−v),

1 for v ∈ V+
x , 〈v, n〉2 > 2U, and v′ = R2(−v),

1 for v ∈ V+
x , 〈v, n〉2 ≤ 2U, and v′ = L(−v),

0 otherwise.

We need to show that lx(dv′) = ∫ Q′
x(dv′|v)lx(v)dv with

lx(v) =
{|〈n, v〉|p(v)πk2(x)(x) ∀v ∈ V+

x ,

|〈n, v〉|p(v)πk1(x)(x) ∀v ∈ V−
x .

Since, for each v′, there is only a finite number of v such that Q′
x(v′|v) > 0, the former

is equivalent to lx(v′) =∑Q′
x(v′|v)lx(v)Jv,v′ , where Jv,v′ is the Jacobian of the deterministic

transformation from v to v′.
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If v′ ∈ V+
x and 〈v′, n〉2 ≤ 2U, then the only v for which Q′

x(v′|v) is non-zero is v = L(−
v′). The result trivially holds as this transition has unit Jacobian, ‖v‖ = ‖v′‖, so p(v) = p(v′);
|〈n, v〉| = |〈n, v′〉|; v′ ∈ V+

x and Q′
x(v′|v) = 1.

If v′ ∈ V+
x and 〈v, n〉2 > 2U, then the only v for which Q′

x(v′|v) is non-zero is for v such
that v′ = R1(v), which is equivalent to v = R2(−v′) ∈ V−

x . So as p(v) = C1 exp{− 1
2‖v‖2} for

some constant C1,∑
Q′

x(v′|v)lx(v) = lx(R2(−v′))

= |〈n, R2(−v′)〉| · p(R2(−v′)) · πk1 (x)

= |〈n, R2(−v′)〉|
(

C1 exp

{
−1

2
‖R2(−v′)‖2

})
πk1 (x). (14)

Now

‖R2(−v′)‖2 =
∥∥∥∥
√

〈v′, n〉2 − 2Un − v′ + 〈v′, n〉n
∥∥∥∥

2

= 〈v′, n〉2 − 2U + ‖v′ − 〈v′, n〉n‖2

= ‖v′‖2 − 2U,

where the third equality comes from n being orthogonal to v′ − 〈v′, n〉n. This gives(
C1 exp

{
−1

2
(‖v′‖2 − 2U)

})
πk1 (x) = p(v′) exp{U}πk1 (x).

The definition of U gives that exp{U}πk1 (x) = πk2 (x).
Now v′ =√〈v, n〉2 + 2Un − v + 〈v, n〉n. Up to a sign change, this only changes the

velocity in the direction of n. Thus the Jacobian of the transformation is given by

J−1
v,v′ =

∣∣∣∣d〈v′, n〉
d〈v, n〉

∣∣∣∣=
∣∣∣∣ d

d〈v, n〉
√

〈v, n〉2 + 2U

∣∣∣∣=
∣∣∣∣∣ 〈v, n〉√〈v, n〉2 + 2U

∣∣∣∣∣= |〈v, n〉|
|〈v′, n〉| .

Thus, substituting in these expressions, we have

∑
Q′

x(v′|v)lx(v)Jv,v′ = |〈n, R2(−v′)〉|p(v′)πk2 (x)
|〈v′, n〉|
|〈v, n〉|

= |〈n, v〉|p(v′)πk2 (x)
|〈v′, n〉|
|〈v, n〉|

= |〈n, v′〉|p(v′)πk2 (x)

= lx(v′),

as required.
An equivalent calculation holds for v′ ∈ V−

x , which is omitted for brevity.

Appendix E. Comments on reference [4]

Equation (4) of [4] should read Qb(x, u, dv)ρ(du) = Qb(x, −v, − du)ρ(− dv), x ∈ ∂O, for
u in the exit boundary and v in the entrance boundary. The sketch of the proof given in the
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appendix of [4] also requires a correction. The condition (S2) on the domain of the generator
has to be modified: it only holds for v in the exit boundary, and not for every v. This mistake,
combined with the sign error in Equation (4), is what allows [4] to reach the conclusion that∫
Lf dπ dρ = 0, missing the fact that the boundary term for the exit velocities cancels out the

one for the entrance velocities. A full proof is provided in this manuscript, with proper care for
the entrance/exit velocities.

Appendix F. Additional simulation results

For αout = 0, Figures 4–6 show trajectories for the bouncy particle sampler, the coordinate
sampler, and the zigzag process for dimensions d = 2, 10, 100 for the sampling from a Gaussian
restricted to a cube. Figure 7 shows trajectories for the zigzag process if we use the canonical
basis—in this case the distributions of all coordinates are independent, and the zigzag process
benefits from this by being able to run independent dynamics for each coordinates.

For αout > 0, Figures 8 and 9 show trajectories and Monte Carlo estimates along trajectories
in dimension 20, in the case where the canonical basis is not rotated. In this case, the zigzag
sampler clearly performs the best. Figure 10 shows trajectories when the basis is rotated.
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