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Abstract. The observational evidence that may indicate the presence of large scale modes of oscillation 
in galaxies is reviewed, and some results of theoretical modal calculations are described. 

1. Observational Evidence 

Although to a first approximation the matter in galaxies rotates in circular orbits 
about a center, there are also indications of large scale systematic and non-random 
departures from purely circular motion. A natural interpretation of these motions is 
that they indicate the presence of various free modes of oscillation of the galaxy that 
have been excited at some time in the past, either during the formation of the galaxy 
or as a result of a tidal interaction with another galaxy. Three important pieces of 
evidence of large scale non-circular motions are listed below. 

(i) Kerr (1962) found that the Northern and Southern hemisphere 21 cm maps of 
our Galaxy fitted together better if there is a general radial outflow of 7 km s " 1 in 
the solar neighborhood. 

(ii) It has been noticed in many instances that the derived rotation curves of 
external galaxies are not symmetrical about a center. One example is M31 for which 
Burke et al. (1964) found different rotation curves for the opposite N F and SP sections. 
Such differences can be explained by the presence of modes of odd angular wave 
number m. Presumably m = 1 modes are the most fundamental of these and are the 
most likely to be prominent. 

(iii) Roberts ' (1966) detailed map of the observed radial velocity field for M31 
(his Figure 2) is markedly different from that which would be observed for pure 
circular motion. In particular the minor axis is not a line of constant radial velocity 
(the systemic radial velocity) but shows an inflow of matter towards the center at 
distances less than 9 kpc, and an outflow at greater distances. 

This interpretation assumes that M31 is flat. An alternative explanation is possible 
in terms of a bending of the plane of M31. Reasons for rejecting this explanation are 
that substantial bending is required on account of the high inclination of M31, 
whereas the theoretical analysis of Hunter and Toomre (1969) showed that bending 
of the central regions of a galaxy is hard to maintain. Our Galaxy, for example, is 
bent substantially only in the outer parts (Kerr et al, 1957). 

Roberts remarked on the similarity of opposite quadrants of his radial velocity 
map, and this indicates the predominance of motions of even angular wave number. 
Figures 1 and 2 show the isovel maps of the upper half of M31 that result from adding 
a prescribed radial velocity in the plane of the galactic disk of M31 to the circular 
velocity derived by Roberts. The form of the radial velocity used was chosen to agree 
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roughly with that shown in Roberts ' map along the minor axis, and was then extended 
over the whole plane of the disk. Figure 1 results from the addition of an axisymmetric 
non-circular motion. Isovel lines in the left hand quadrant have the more involved 
forms away from the central regions, and in some areas slope counter to the direction 
they would for pure circular motion (Roberts ' Figure 3). This is in qualitative agree
ment with Roberts ' Figure 2. The features noted above are more marked in my 

Fig. 1. Curves of constant radial velocity for an axisymmetric radial motion added to the circular 
velocity field of M31. A unit change between isovels corresponds to a jump of —21 km s - 1 , and 
11 represents the systemic velocity of — 310 km s _ 1 . The marks along the axes are at 4 kpc intervals. 

Figure 2 in which the added radial motion has a n m = 2 angular variation. Greater 
radial motions are present in this case, and the figure changes considerably with the 
orientation of the motion. Since the beam width used for the observations was 
relatively large, the true isovel map is still somewhat uncertain, but the indications 
are that it is consistent with the presence of organized large scale non-circular motions 
in the plane of M31. 

The most straightforward calculations of free modes of oscillation are those obtained 
using the 'cold disk' model. A particular equilibrium model is selected, typically by 
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Fig. 2. Curves of constant radial velocity for an m = 2 radial motion added to the circular velocity 
field of M31. The dashed lines show the directions of maximum amplitude of the radial motion. 

taking a given rotation curve and then finding a finite mass distribution whose gravi
tational attraction provides the necessary centrifugal force. Possible free oscillations 
are determined by solving in a fully self-consistent manner the zero pressure hydro-
dynamic equations that govern departures from the unperturbed state of circular 
motion (Hunter, 1965). Although such an analysis produces unstable modes of short 
wavelength where there is nothing to prevent the growth of Jeans instability, a few 
stable large scale modes are also found which remain discrete when the shorter 
wavelength modes tend to form continua (Hunter, 1969). Figure 3 shows the radial 
and circular velocity components of the first two axisymmetric modes of a model of 
M31 derived by fitting Roberts ' combined « = f rotation curve within 25 kpc by a 
suitable mass distribution. The first mode is highly concentrated towards the center 
and has a higher frequency of 37.5 km s " 1 k p c " 1 than that of 10.8 km s " 1 k p c " 1 

of the second mode. The latter also has an associated radial velocity field more like 
that observed for M31. Non-radial modes may also by computed though, in this 
theory, steady modes show no spiral structure. Figure 4 of Hunter (1969) shows the 
circular velocity field associated with a large scale and centrally concentrated m= 1 

https://doi.org/10.1017/S0074180900000826 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900000826


LARGE SCALE OSCILLATIONS OF GALAXIES 329 

mode for another galactic model which would cause an asymmetrical rotation 
curve to be observed for it. 

Recently I have been calculating modes of oscillation by using a more realistic set 
of hydrodynamic equations for a galaxy of stars that takes account of stellar random 
velocities. The latter are supposed small compared with circular velocities, and the 
collisionless Boltzmann equation is expanded in terms of an appropriate small param
eter. This expansion leads to a set of equations for the moments of the perturbed 
distribution function. An early truncation of the expansion leads to the equations of 
zero pressure hydrodynamics, but the continuation of the expansion one stage further 
gives a more complicated set of hydrodynamic equations with general stress terms. 
These stresses can be related to the systematic velocities so that a closed set of equa
tions is obtained. 

Fig. 3. The spatial variation of the radial velocity U and circular velocity Kfor the first two axisym
metric modes of M31. Here r measures radial distance from the galactic center, and the outer radius 

R is at 25 kpc. 

The distribution of stellar random radial velocities in the unperturbed galaxy must 
be specified in this theory. Toomre (1964) has shown via a local analysis of the full 
collisionless Boltzmann equation that all short wavelength axisymmetric oscillations 
are stable for a Schwarzschild distribution of random velocities provided the mean 
radial random velocity c>3 .36 GG/K, where G is the constant of gravitation, a is the 
surface density and K is the epicyclic frequency. A similar stability condition can be 
established for the stellar hydrodynamic equations; the only difference being that 
the coefficient 3.36 is replaced by 3.0. 

Modal calculations have been performed with the distribution of mean radial 
random velocity given by c2 =4K4I!}(GG/K)2. Here /? is a parameter that is varied 
between calculations, /? = 0 corresponding to a cold disk, and /? = 0.023 corresponding 
to the theoretical stability limit described above. The results of axisymmetric calcu
lations confirm that the theoretical stability limit, derived strictly only for short 
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wavelength disturbances, is more generally valid, though the critical value of /? may 
be more like 0.025 than 0.023. The precise point of stabilization is hard to determine 
because of the sensitivity of the calculations to numerical errors. Non-axisymmetric 
calculations, principally for ra = 2, show that these modes are not so readily stabilized 
even at considerably larger values of ft where instabilities still persist. The instabilities 
of large scale do not have any clear spiral form. 

Fig. 4. The radial velocity U for the second axisymmetric mode of M31 for increasing random 
velocities as specified in the text. 

The increase of random velocities causes changes in the shape of modes. Figure 4 
shows how the radial velocity of the second axisymmetric mode of the present M31 
model is affected. Generally there is a tendency for the smooth shapes of cold disk 
modes to break down. This is much more marked with the first axisymmetric mode 
which disintegrates for values of /? much less than the critical one. Thus the slower 
second axisymmetric mode seems from the calculations to be the more fundamental 
mode of a galaxy and the rough agreement between the non-circular velocities ob
served on the minor axis of M31 and the calculated shapes of Figure 4 support the idea 
that this mode is present in M31. 
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